
Building Vision for BusinessMVTec Software GmbH

Quick Guide

A quick access to the functionality of HALCON, Version 7.1.4

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without prior written permission of the publisher.

Edition 1 December 2003 (HALCON 7.0)
Edition 1a July 2004 (HALCON 7.0.1)
Edition 2 July 2005 (HALCON 7.1)
Edition 2a April 2006 (HALCON 7.1.1)
Edition 2b December 2006 (HALCON 7.1.2)

Copyright c© 2008 by MVTec Software GmbH, München, Germany MVTec Software GmbH

Microsoft, Windows, Windows 95, Windows NT, Windows 2000, Windows XP, Microsoft .NET, Visual
C++, Visual Basic, and ActiveX are either trademarks or registered trademarks of Microsoft Corpora-
tion.

All other nationally and internationally recognized trademarks and tradenames are hereby recognized.

More information about HALCON can be found at:

http://www.halcon.com/

Contents

1 Introducing HALCON 1
1.1 Key Features . 2
1.2 Who Should Use HALCON? . 3
1.3 Required Knowledge . 3
1.4 Getting Started with HALCON . 4
1.5 Where to Get More Information . 5

2 How to Develop Applications with HALCON 7
2.1 A Look Under the Surface of HALCON: Architecture and Data Structures 9
2.2 Quick Start with HDevelop . 15
2.3 Using HALCON Within Programming Languages . 16
2.4 Extending HALCON . 18
2.5 Limitations . 19

3 Machine Vision Methods 21
3.1 Image Acquisition . 22
3.2 Region Of Interest . 27
3.3 Blob Analysis . 39
3.4 1D Measuring . 53
3.5 Edge Extraction (pixel-precise) . 64
3.6 Edge Extraction (subpixel-precise) . 74
3.7 Contour Processing . 84
3.8 Template Matching . 98
3.9 Color Processing . 111
3.10 1D Bar Code . 125
3.11 2D Data Code . 134
3.12 OCR . 145
3.13 Stereo . 163
3.14 Visualization . 173

4 Industries 189
4.1 Electric Components And Equipment . 190
4.2 Food . 193
4.3 Health Care And Life Science . 194
4.4 Iron, Steel And Metal . 197

4.5 Machinery . 199
4.6 Photogrammetry And Remote Sensing . 204
4.7 Printing . 208
4.8 Rubber, Synthetic Material, Foil . 209
4.9 Semiconductors . 211

5 Application Areas 221
5.1 1D Bar Codes . 222
5.2 2D Data Codes . 223
5.3 Completeness Check . 224
5.4 Measuring And Comparison 2D . 226
5.5 Measuring And Comparison 3D . 231
5.6 Optical Character Recognition . 234
5.7 Position Recognition 2D . 235
5.8 Print Inspection . 237
5.9 Object Recognition 2D . 239
5.10 Surface Inspection . 241

Introducing HALCON 1

Chapter 1

Introducing HALCON

HALCON defines the state of the art in machine vision software. It provides a comprehensive vision
library and is always based on the latest and most advanced technology. Whatever your task, HALCON
will solve it, fast and with highest accuracy.

Vision Development Environment

A professional image processing tool must be more than just a library of image processing operators.
Solving image processing tasks is just one part of a complete solution, which comprises other software
components like process control or database access, and hardware components from illumination to
image acquisition devices and many other mechanical components. Therefore, it is important that the
image processing system is easy to use and can be integrated into the development cycle in a flexible
manner.

To achieve this, HALCON takes care of all important aspects:

• The software development is supported by the integrated development environment HDevelop,
which enables a quick development of image processing tasks combined with an easy integration
into standard development environments like Microsoft Visual C++ via HDevEngine or automatic
code export.

• The problem-oriented documentation covers all levels from a quick access to important information
up to a detailed discussion of advanced topics.

• These descriptions are combined with hundreds of examples for an intuitive understanding of the
solutions, which can serve as templates to shorten the development time.

• Last but not least, HALCON provides open interfaces for efficient data exchange, to integrate own
operators, or to access specialized hardware round off the system.

Vision Library

HALCON fulfills all requirements of a professional vision library:

In
tr

od
uc

tio
n

2 Introducing HALCON

• It comprises methods for all standard and advanced types of image processing from image acqui-
sition from many different devices up to the advanced shape-based matching.

• Apart from image processing functionality, HALCON provides tools that are typically needed in
the context of machine vision applications, e.g., for the communication via sockets or the serial
interface, file handling, data analysis, arithmetic operations, or classification.

• HALCON offers flexible ways of parallelization to exploit multi-processor or multi-core hardware
to speed up an application.

• The HALCON library that is used in an application will not be visible to the end user and requires
only minimum resources in an installation, which makes it perfect for OEM developments.

1.1 Key Features

Leading-Edge Technologies

In addition to the full set of standard machine vision methods, HALCON offers functionality that is out-
standing in the field of machine vision libraries, e.g., 3D camera calibration, shape-based and component-
based matching, subpixel-precise edge and line extraction, subpixel contour processing, reconstruction
via binocular stereo, arbitrary regions of interest, and much more.

Apart from this, many methods that are known from other libraries are offered with a much better per-
formance. An example for this is the morphology, which is up to 100 times faster than in other products,
and at the same time offers much more flexibility.

One Software for All Applications

Thanks to its more than 1150 operators, HALCON is at home in all areas of research, development, and
production where images are processed and analyzed. Numerous customers all over the world already
use HALCON to solve their machine vision tasks.

Protection of Investment

By choosing HALCON, you choose independence: Switch to another operating system? HALCON
supports a wide range of Windows NT/2000/XP, Linux, and UNIX platforms, including x64 systems.
Migrate your applications from C++ to C#? HALCON can be used within various programming lan-
guages and environments. Your application grows and needs more computing power? Switch to a
multi-processor or multi-core computer and HALCON will automatically parallelize its execution (see
section 2.1.3 on page 14). Last but not least, you are free to choose the image acquisition hardware
that fulfills your requirements, because HALCON provides ready-to-use interfaces to a large number of
image acquisition devices (analog, digital, IEEE 1394, CameraLink).

Rapid Prototyping

In many cases it is important to determine quickly if and how a problem can be solved. With HDevelop,
HALCON’s integrated development environment (IDE), you can rapidly develop machine vision appli-
cations. Besides being a fully-fledged program interpreter with debug functions, HDevelop assists you

1.2 Who Should Use HALCON? 3

actively, e.g., by suggesting operators and by automatically visualizing the result of an operation. With
the help of integrated tools you can inspect images and results and quickly find suitable parameter values
that solve your vision task.

Open Architecture

HALCON offers a comprehensive vision library but does not claim to be all-encompassing. Therefore,
it is based on an open architecture. Thus, you can extend HALCON by integrating your own vision
functionality in form of new operators (see section 2.4.1 on page 18). And if you want to use a frame
grabber that HALCON does not yet support you can use the images directly or create an interface for
your frame grabber.

1.2 Who Should Use HALCON?

To put it shortly: everybody in need of a machine vision software.

HALCON is especially designed to be used by:

• OEMs to develop machines that include vision components, e.g., for chip or print inspection, or to
develop software solutions, e.g., for car plate reading or cell analysis,

• System integrators to develop customer-specific machine vision solutions,

• VARs that bundle HALCON with other products, and

• Research groups and universities that profit from the unbeatable completeness of the library, typ-
ically in combination with the integrated development environment HDevelop for intuitive proto-
typing.

1.3 Required Knowledge

Image Processing

Of course, the more familiar you are with the terminology and the standard methods of image processing,
the easier it is to apply HALCON to solve your machine vision task. To make it even easier, this manual
briefly describes the standard methods and how to apply them with HALCON in chapter 3 on page 21.
As an alternative, you can start out in chapter 4 on page 189 or chapter 5 on page 221, which present
examples from various industries and application areas and includes references to the used methods.

Programming

If you want to use HALCON via a programming language, you must be familiar with this language and
the corresponding development tools. The Programmer’s Guide concentrates on describing HALCON’s
language interfaces, i.e., the provided data structures and classes, how to call operators, etc.

Operating System

You will need basic knowledge about your platform’s operating system in order to install HALCON and
the corresponding license.

In
tr

od
uc

tio
n

4 Introducing HALCON

1.4 Getting Started with HALCON

To get a first impression of HALCON, we recommend to install the demo version of HDevelop, which
can be used without a license. It provides the full image processing functionality of HALCON; the main
restrictions are that the frame grabber interface cannot be used and that programs cannot be saved.

Equipped with the demo version of HDevelop, you can set out and explore the possibilities that HAL-
CON offers you by running the example programs described in the following chapters. See section 2.2
on page 15 for a brief introduction to HDevelop.

You can either download HALCON from MVTec’s web server or install it from CD. Note that not all
HALCON releases are available on CD.

To evaluate the full power of HALCON, e.g., online image acquisition or using HALCON from a pro-
gramming language, you can obtain a temporary license from your local distributor free of charge. De-
tailed information about licensing can be found in the Installation Guide.

1.4.1 How to Install the HALCON Demo Version from CD

Detailed information about the installation process can be found in the Installation Guide.

1.4.1.1 Windows NT/2000/XP Platforms

For the following steps, you need administrator privileges.!
• Insert the CD in your CD-ROM drive. If the installation process does not start automatically, run

Setup.exe in the directory install-windows.

• The setup program is self-explanatory and guides you through the installation process.

• The setup allows you to choose between different types of installations; select Demo to install the
demo version.

After the installation, you can start the demo version of HDevelop from the Windows start menu without
further action.

1.4.1.2 UNIX Platforms

• Insert the CD in your CD-ROM drive and mount the corresponding device. You probably need
root privileges to mount the device correctly.

• Run the shell script install-unix in the top-level directory of the CD.

• The script asks for the installation path of HALCON and allows to select which optional compo-
nents are installed. Simply accept the suggested defaults by pressing Enter .

• After the installation, you must set some environment variables. The setup program informs you
about the necessary actions.

To start the demo version of HDevelop, execute hdevelop_demo from a shell.

1.5 Where to Get More Information 5

1.4.2 How to Install the HALCON Demo Version via WWW

• MVTec’s download area can be found under http://www.mvtec.com/download. Note that you
must first register before downloading the software.

• Select the demo version of HALCON and your operating system. Then, follow the instructions.

On a Windows NT/2000/XP system, you can start the demo version of HDevelop from the start menu.
On a UNIX system, execute hdevelop_demo from a shell.

1.5 Where to Get More Information

• This Manual

Information about developing applications in HDevelop or in a programming language can be
found in chapter 2 on page 7.

Chapter 3 on page 21 describes the main machine vision methods and how to use them in HAL-
CON. It also includes examples.

The following two chapters present HALCON example programs sorted by machine vision indus-
try (see chapter 4 on page 189) and by application area (see chapter 5 on page 221), respectively.

• Installation Guide

This manual explains the different licensing methods and supplies detailed information about in-
stalling, upgrading, and uninstalling HALCON.

• HDevelop User’s Manual

This manual is your guide to using HDevelop, HALCON’s integrated development environment
(IDE). It describes the elements of its graphical user interface, the language used in HDevelop
programs, how to export programs to other programming languages, and more.

• Programmer’s Guide

If you want to use HALCON from a programming language consult this manual for detailed infor-
mation about the provided interfaces and their data types, classes, etc. Furthermore, this manual
explains how to use HDevEngine to execute HDevelop programs and procedures from a program-
ming language.

• Extension Package Programmer’s Manual

This manual explains how to integrate your own functionality into HALCON via the so-called
extension packages.

• Frame Grabber Integration Programmer’s Manual

If you want to use a frame grabber that is not yet supported by HALCON this manual explains how
to create your own frame grabber interface for it.

• Application Guide

Currently, this guide consists of the following Application Notes:

In
tr

od
uc

tio
n

6 Introducing HALCON

Application Note on Image Acquisition: This manual shows how to use simple and complex
configurations of image acquisition devices, explains the various timing modes, and more.

Application Note on Shape-Based Matching: Here you can find out about how to use HAL-
CON’s shape-based matching to find objects based on a single model image and to locate
them with subpixel accuracy.

Application Note on 2D Data Codes: This manual shows how to use HALCON’s 2D data code
reader.

Application Note on 1D Metrology: This manual shows how to detect edges and how to mea-
sure their position and distance along lines and arcs.

Application Note on 3D Machine Vision: This manual is your gate into the world of 3D ma-
chine vision.

• Reference Manuals

The reference of all HALCON operators is available in HDevelop, C++, COM, and C syntax.

• Release Notes

If you have used an earlier version of HALCON, please take a look at the release notes, which
can be found in the file release_notes.html in the directory into which you have installed
HALCON.

• Example Programs

HALCON provides an extensive set of example programs, not only for HDevelop but also for
different programming languages. These examples can be found in the subdirectory examples of
the folder into which you have installed HALCON. Many of the examples are described in this
manual.

• Support

Your local distributor is the competent contact for all questions about HALCON. Please take a look
at http://www.mvtec.com/halcon/support for the current list of distributors.

• Training Seminars

Some distributors offer training seminars where you can learn more about HALCON (see
http://www.mvtec.com/halcon/support/training.html for a list of upcoming seminars).

How to Develop Applications with HALCON 7

Chapter 2

How to Develop Applications with
HALCON

2.1 A Look Under the Surface of HALCON: Architecture and Data Structures 9
2.2 Quick Start with HDevelop . 15
2.3 Using HALCON Within Programming Languages 16
2.4 Extending HALCON . 18
2.5 Limitations . 19

D
ev

el
op

m
en

t

8 How to Develop Applications with HALCON

HALCON offers many ways for the application development. But to make full use of the architecture
the mode depicted in figure 2.1 is recommended.

Prototyping

Method Development

HDevelop

HALCON Library

Application

C
o

d
e

 E
x

p
o

rt

H
D

e
v

E
n

g
in

e

Further Tools

User Interfaces

Visual Studio

C
o

m
p

ila
tio

n

Figure 2.1: Three-step approach for the application development.

• Image inspection, prototyping of the vision method, and the final development of the vision method
are done within HDevelop. Here, the program is structured into procedures in which each proce-
dure represents one sub task, like initialization, processing, and cleanup. The main program is used
only as a test environment to call the procedures by passing images and receiving the results.

• The complete application is developed in a programming environment like Microsoft Visual Stu-
dio. Regarding the integration of the HDevelop procedures, you can choose between two ways:
Either you export the procedures to your programming language and then import them, e.g., via an
include statement. Alternatively, you can directly execute the HDevelop procedures using HDev-
Engine. The user interface and other necessary code is implemented using the normal mechanisms
offered by the given language. Finally, the project is compiled and linked.

• Together with the HALCON library, the generated program represents the solution that can, e.g.,
be loaded onto the destination machine or sent to a customer.

An overview of the philosophy of developing with HALCON can be seen in figure 2.1.

The three-step approach has several advantages:

• Whenever needed the vision part can easily be optimized or extended because HDevelop offers
much better inspection and debugging facilities for image data than the standard programming
environments.

• If you are using HDevEngine, you do not even need to compile and link your application after a
change in the HDevelop program (if you did not change the signatures of the procedures). If you
are using exported code, you typically do not need to modify the rest of the application but only to
compile and link the application again.

• Because the vision part is separated from the general code it can easily be executed in a stand-
alone manner. Furthermore, it can be given to others without the need to pass the whole project.

2.1 A Look Under the Surface of HALCON: Architecture and Data Structures 9

Especially in the case of support questions, the HDevelop program with one or more images can
quickly be sent to the distributor.

• Finally, a reuse for other architectures like Linux can easily be achieved because HDevelop runs
in exactly the same manner on multiple operating system - quite unlike a program developed with
Microsoft tools.

For basic information on the prototyping with HDevelop see section 2.2 on page 15. How to export
code from HDevelop is explained in the HDevelop User’s Manual in chapter 4 on page 113. A brief
introduction to using HALCON in a programming environment can be found in section 2.3 on page 16.
How to use HDevEngine is explained in the Programmer’s Guide in part V on page 117. For using a
programming environment like Microsoft Visual C++, see the relevant Microsoft documentation.

2.1 A Look Under the Surface of HALCON: Architecture and
Data Structures

HALCON’s architecture, data structures, and internal mechanisms were developed according to the phi-
losophy that they should be

1. efficient

2. open

3. standardized

4. self-describing

Efficient means that the execution time of each HALCON operator should be as short as possible. Fur-
thermore, the operator design has been made such that combinations that are standard sequences or more
complex tasks must still remain efficient.

The open architecture is important in two respects: First, it must be possible to make use of HALCON
from many different languages. Here, passing of external data to HALCON and accessing internal data of
HALCON must also be supported. Finally, there must be transparent interfaces to integrate user-defined
operators and non-standard image acquisition devices. This open architecture allows, e.g., a simple
update to a new version of a frame grabber interface without changing the installation of HALCON.

Standardized means that the signatures, naming, and usage of operators and data structures must follow
strict rules. This allows a quick learning combined with few possible errors.

Finally, HALCON provides detailed information about each operator and their parameters not only in
the documentation but also online via specialized operators.

The basic architecture can be seen in figure 2.2. The main part is the image processing library, which
consists of a huge number of operators. They provide all the functionality by performing various opera-
tions on the available data structures. These operators are accessed via the so-called language interfaces.
They are libraries which allow direct use of the operators in the typical programming style of the differ-
ent programming languages. Finally, there are extra libraries for dynamically loading extra functionality.
On the left side, there are the so-called frame grabber interfaces, while the user extensions can be seen
on the right side.

Looking closer into the architecture, two components are important: operators and data structures.

D
ev

el
op

m
en

t

10 How to Develop Applications with HALCON

Frame

Grabber

Interfaces

Extension

Packages
HALCON

Image Processing Library

HALCON/C HALCON/C++ HALCON/COM

Figure 2.2: Basic architecture of HALCON.

2.1.1 HALCON Operators

Whenever any kind of functionality is used from the HALCON library, it is done via an operator. The
current version has more than 1150 of these operators. Most of them comprise multiple methods, which
are selected via parameters. A full list of all operators can be found in the Reference Manuals or in the
dialog Operators of HDevelop. Important features of operators are:

• There is no hierarchy among operators. From the software architecture point of view, all operators
are on the same level.

• Of course, there are logical groups of operators. This can directly be seen by the classes offered
for C++ and COM, where operators processing the same data type are used as members of the
corresponding classes.

• Operators have standardized rules for ordering input and output parameters (see section 2.1.2).

• The design of operators follows the rules of the open architecture. Therefore, you can create
your own operators and thus extend HALCON, while getting the same look-and-feel for your own
operators (see section 2.4.1 on page 18).

• Many operators can make transparent use of automatic parallelization, which allows an easy way
of speeding up the program when using large images on a multi-CPU or multi-core computer (see
section 2.1.3 on page 14).

2.1 A Look Under the Surface of HALCON: Architecture and Data Structures 11

2.1.2 Parameters and Data Structures

Philosophy:

• HALCON has two basic types of parameters: iconic data (images etc.) and control data (integers,
handles, etc.), see below.

• The parameters for each operator are arranged in a standardized order: input iconic, output iconic,
input control, and output control. Not all of the groups might be needed for a given operator.
However, the order remains the same.

• Each operator has a self-describing interface. This description contains, besides the standard doc-
umentation, information about parameters like types or value lists, which can be accessed online
in the Reference Manuals or in the dialog Operators of HDevelop.

• Input parameters of operators are never modified, which results in a very clear and simple seman-
tics. There are only three operators that do not follow this principle to ensure maximum perfor-
mance (namely set_grayval, overpaint_gray and overpaint_region).

• The open architecture allows to access internal data and to integrate external data.

• All necessary data structures for 2D image processing like (multichannel) images, region, contours,
tuples (a kind of array), etc. are directly supported using an extremely efficient implementation.

A detailed description of the low-level data structures can be found in the Extension Package Program-
mer’s Manual, chapter 4 on page 49. For the corresponding types and classes in the supported program-
ming languages see the Programmer’s Guide.

2.1.2.1 Images

Philosophy:

• Images belong to the iconic data.

• The major part of an image are the channels, i.e., matrices containing the gray values of various
pixel types.

• For each image, the so-called domain specifies which part of the image is processed. It thus acts as
a region of interest (ROI). The domain is a HALCON region (see section 2.1.2.2) and can therefore
be defined very flexibly (from a simple rectangle to a set of unconnected pixels, see below). For
details about ROI handling see Region Of Interest on page 27.

Pixel Data

An almost arbitrary content is possible, from standard 8-bit gray values to floating-point numbers de-
scribing derivatives.

For integer values one, two, and four byte versions (with and without sign) are available. Besides this,
floating point and complex images are available. Finally, special data types for describing edge direction
or hue values are supported.

D
ev

el
op

m
en

t

12 How to Develop Applications with HALCON

Image Channels

A channel corresponds to an image matrix. Each image can have an arbitrary number of channels. All
channels of an image have the same size.

Typical cases are: single-channel gray value image, color image with three channels (e.g., RGB), or a
multichannel image from a multispectral sensor or as a result of texture filtering.

Coordinate Systems

The origin of an image lies in the center of the pixel in the upper left corner. The individual pixels are
accessed using row and column coordinates, like in a matrix. The coordinates range from (0,0) up to
(height-1, width-1).

Note that because the origin lies in the center of the upper left pixel, the pixels’ corners have non-integer
coordinates. For example, the pixel in the upper left corner has the corner coordinates (-0.5, -0,5), (-0.5,
+0.5), (0.5, -0.5), and (0.5, 0.5).

2.1.2.2 Regions

Philosophy:

• Regions belong to the iconic data.

• A region is defined as a set of pixels. The pixels of a region do not need to be connected. This
means that even an arbitrary collection of pixels can be handled as a single region. With the oper-
ator connection a region can be split into its so-called connected components, i.e., components
consisting of connected pixels.

• The implementation of regions is based on an efficient implementation of the so-called runlength
encoding. This encoding has many advantages: low memory consumption, efficient processing,
and easy handling of regions of interest (domains).

• Because of the implementation based on runlength encoding, it is possible to have overlapping
regions, e.g., as the result of a dilation of connected components. This would not be possible with
a classical implementation based on label images.

• The coordinates of pixels inside a region are not limited to the coordinates of a given image, the
region can be larger than the image, possibly as the result of a dilation operation. Whether a region
should be clipped to the maximum image extents can be controlled using the operator set_system
with the parameter value ’clip_region’.

• The number of regions for an application is virtually unlimited.

2.1.2.3 XLDs

Philosophy:

• XLD is the abbreviation for eXtended Line Description and comprises all contour and polygon
based data.

2.1 A Look Under the Surface of HALCON: Architecture and Data Structures 13

• XLDs belong to the iconic data.

• Subpixel accurate operators like edges_sub_pix return the contours as XLD data.

• A contour is a sequence of 2D control points, which are connected by lines.

• Typically, the distance between control points is about one pixel.

• XLD objects contain, besides the control points, so-called local and global attributes. Typical
examples for these are, e.g., the edge amplitude of a control point or the regression parameters of
a contour segment.

• Besides the extraction of XLD objects, HALCON supports further processing. Examples for this
are the selection of contours based on given feature ranges or segmenting of a contour into lines,
arcs, polygons or parallels.

2.1.2.4 Control Tuples

Philosophy:

• Tuples are the generic data type for integer and floating point values as well as strings. A variable
of type tuple can be of any of the three basic types.

• Besides single values, arrays of the basic types are supported. Therefore, one variable can contain
none, one, or an arbitrary number of values, where the types of each element can be different.

• In most cases, single values are treated in the same way as multiple values. If, e.g., an operator like
area_center is called with a single region, one value is returned for each result (in the example for
the area and the coordinates of the center of the region). When the operator is called with multiple
regions, a tuple with the corresponding number of values is returned for each result. For example,
if you call area_center with four regions, it returns three tuples (one for the area and two for the
coordinates of the center), each containing four values corresponding to the four regions.

• The index of tuples range from 0 to the number of values minus 1. Please note, that iconic tuples !
start with index 1!

2.1.2.5 Handles

Philosophy:

• Handles are references to complex data structures, e.g., models for the shape-based matching. For
efficiency and data security reasons, not the entire structure but only the handle is passed to the
programmer.

• All processing of data is controlled with a unique integer value. These integers are magic numbers
that must not be changed and can differ from execution to execution and version to version.

• Examples where handles are used are graphics windows, files, sockets, image acquisition devices,
OCR, OCV, measuring, matching, and so on.

D
ev

el
op

m
en

t

14 How to Develop Applications with HALCON

2.1.3 Parallel HALCON

To put it in a nutshell, Standard HALCON is optimized for running sequential programs on single-
processor or single-core computers. Under Windows NT/2000/XP, Linux, and Solaris, HALCON is
thread-safe, i.e., it can be used in multithreaded programs (with some exceptions listed in the Program-
mer’s Guide, section 1.1 on page 3). However, all HALCON operators are executed exclusively, thus
threads will have to wait for each other.

In contrast, Parallel HALCON supports parallel programming (e.g., multithreaded programs) by being
thread-safe and reentrant. This means that multiple threads can call a HALCON operator simultaneously.
Parallel HALCON is available for Windows NT/2000/XP, Linux, and Solaris.

Besides supporting parallel programming, Parallel HALCON automatically parallelizes operators if
started on multi-processor or multi-core hardware, e.g., a dual-Pentium board. The parallelization mech-
anism is based on distributing the data which has to be processed, i.e., the images, on multiple threads
that run on different processors (so-called data parallelism). For example, for a filtering operation on a
four-processor board the image will be split into four parts which will then be processed in parallel by
four threads executing the (same) filtering operator. Together with HALCON’s philosophy for treating
images and regions, this form of parallelization is very efficient because images need not to be copied.
The degree of parallelization is optimized online to minimize the parallelization overhead. For example,
very small images will not be processed in parallel, as the overhead would surpass the parallelization
speed-up. Moreover, not all HALCON operators lend themselves to parallelization.

Detailed information on using Parallel HALCON can be found in the Programmer’s Guide, section 1.2
on page 4.

Note that Parallel HALCON is designed for shared-memory systems, i.e., systems in which multiple
processors share a common memory as it is the case for typical multi-processor or multi-core boards.
The main reason is that only in a shared-memory system threads can share the HALCON object database
and do not need to copy images. This limitation means that Parallel HALCON is not suited to the use on
workstation clusters or other multi-processor or multi-core hardware that does not offer shared memory.

2.1.4 Image Acquisition

Currently, HALCON provides interfaces for about forty frame grabbers in the form of dynamically
loadable libraries (Windows: DLLs; UNIX: shared libraries). These libraries are installed together with
the HALCON libraries. Library names start with the prefix HFG; the libraries starting with parHFG are
used by Parallel HALCON.

In the following, we give a brief overview of the HALCON frame grabber interface; please refer to the
Application Note on Image Acquisition for detailed information about this topic.

The HALCON frame grabber interface libraries form the bridge between software provided by the frame
grabber’s manufacturer and HALCON. They form a common, generic interface that requires a small set
of operators only.

If you successfully installed your frame grabber, all you need to do to access it from HALCON is to
call the operator open_framegrabber, specifying the name of the frame grabber and some additional
information, e.g., regarding the connected camera. Then, images can be grabbed by calling the operator
grab_image (or grab_image_async).

2.2 Quick Start with HDevelop 15

Please note that the HALCON frame grabber interfaces may change more frequently than the
HALCON library itself. One reason for this is that MVTec continuously develops new inter-
faces; furthermore, if the software provided by the frame grabber manufacturers changes, e.g.,
if new features are integrated, the corresponding HALCON interfaces will be adapted. You can
find the latest information together with downloadable interfaces (including documentation) under
http://www.mvtec.com/halcon/framegrabber.

2.2 Quick Start with HDevelop

HDevelop is a powerful integrated development environment for both prototyping and application de-
velopment. HDevelop is very easy to use. Below, you find a brief introduction. Two tutorials, which
show how to run HDevelop programs and how to create them, are located in the subdirectory doc\html\
tutorials of the folder where you installed HALCON. Detailed information about HDevelop can be
found in the HDevelop User’s Manual.

To start HDevelop under Windows NT/2000/XP, click on Start > Programs > MVTec HALCON 7.1
> HDevelop. Under UNIX, HDevelop is started from the shell by executing hdevelop.

To load an example, select the menu File > Open. This will open a file selection dialog that shows the
main directories of the HDevelop examples (under Windows). For beginners, we recommend to select
an example from the directory Applications. As an alternative, the menu File > Open Example
Program... can be used. Here, a dialog is opened that allows you to select examples based on different
categories instead of the actual location.

After loading the file, the corresponding program code is displayed in the program window. The used
variables - so far not instantiated - can be seen in the variable watch window. The program is now ready
for execution.

Steps to run a program:

1. In the toolbar, click the button Run to execute the program. To continue at a stop statement, click
Run again.

2. Besides the button Run, HDevelop provides a button to step through a program, executing single
lines and displaying the results immediately afterwards. The buttons Step Into and Step Out
are useful if the program contains procedures.

3. To rerun the complete program click the button Set program to initial state and then Run.
To rerun parts only, simply click with the mouse to the left of the desired program line. This will
reposition the program counter (green arrow). Now click Run.

Hints for understanding the program:

1. At the bottom of the main window, HDevelop provides a status bar. This displays useful informa-
tion in many cases. Especially during execution, when the program stops to visualize results or
waits for a user interaction corresponding instructions are given.

D
ev

el
op

m
en

t

16 How to Develop Applications with HALCON

2. For information concerning individual program lines double click them so that the name of the
applied operator and its parameters are displayed in the operator/procedure window. There, the
help button provides specific information.

3. Many programs will automatically display relevant data in the graphics window. Manual visual-
ization can easily be achieved by double clicking on the icons in the variable watch window.

4. Some examples contain procedures. Program lines containing procedures are marked by green or
dark green bars. You can switch between the procedures (including the main procedure) via the
combo box Procedures in the program window.

5. In many examples expressions like assignments, arithmetic operations (both often represented in
the program by “:=”), or control structures like loops occur. If you need help concerning the
language used in HDevelop please consult the HDevelop User’s Manual.

Further hints for HDevelop:

1. Depending on the selected installation type, not all images used in an example program might be
available. In this case, we recommend to insert the HALCON CD or to install the needed images.

2. Some programs use frame grabbers for image acquisition. If the corresponding frame grabber type
is not available, an error message will be raised. In this case, we recommend to either use another
example or to modify the parameters to fit to the available hardware. Furthermore, if HDevelop
Demo is used, no frame grabber interfaces can be used, including the File frame grabber, which
reads images from files. If you want to use these programs, please use HDevelop.

2.3 Using HALCON Within Programming Languages

HALCON offers three so-called language interfaces. They are libraries that enable you to call the op-
erators and to use the data types of the HALCON library in an easy way. Two language interfaces are
designed for specific languages. These are the C and the C++ interfaces. In contrast, the COM interface
is independent of a given language. It can be used, e.g., with Visual Basic, C#, or Delphi.

Independent of which programming language you choose, a suitable interface library (halconc.*, hal-
concpp.*, halconx.*) together with the HALCON library (halcon.*) must be linked to the application. In
addition to this, for C and C++ the corresponding include files must be included.

To start the development, we recommend to first check one of the ready-to-run example programs. Here,
you can see how the project must be set up and how operators and types are used.

For each language interface, the names of types, classes, the naming conventions of operators, etc. may
differ to be compliant with the typical rules that apply for the selected language. For details of the op-
erator signatures, please refer to the corresponding reference manuals, which are available in HDevelop,
C++, COM (Visual Basic), and C syntax.

2.3 Using HALCON Within Programming Languages 17

2.3.1 C

The C interface is the simplest interface supported by HALCON. Each operator is represented by either
one or two global functions where the operator name and the parameter sequence is identical to HDe-
velop. All operators are available in a version that accepts tuples as input. These operators have names
that start with "T_". Furthermore, if an operator also accepts single parameters for all control param-
eters, a simplified operator that only uses basic types (long, double, and char*) is provided. These
operators have no "T_" prefix. Two types (Hobject and Htuple) are offered for iconic and control data.
Because C does not offer destructors, you have to free iconic data by calling the operator clear_obj.
To manipulate, create, destroy, and access tuples, macros are provided. For more information see the
Programmer’s Guide, part IV on page 93.

The following code shows a small excerpt of an example program to read an image and to display it in a
graphics window.

read_image(&Monkey, "monkey");

get_image_pointer1(Monkey, &Pointer, Type, &Width, &Height);

open_window(0, 0, Width, Height, 0, "visible", "", &WindowHandle);

disp_obj(Monkey, WindowHandle);

2.3.2 C++

The C++ interface is much more sophisticated than the C interface. Here, the advantages of C++ and
object-oriented programming are used, i.e., automatic type conversion, construction and destruction, or
grouping functions together with their data into classes. Like in the C interface, global functions for each
HALCON operator are provided for a procedural style of programming. Here, the classes Hobject and
HTuple are used. Furthermore, operators can be used as members of classes like HDataCode2d, HMea-
sure, or HShapeModel. In addition, classes like HImage or HRegion are used. For more information
see the Programmer’s Guide, part II on page 15.

The following code shows a small excerpt of an example program to read an image and to display it in a
graphics window and apply some basic blob analysis.

HImage Mandrill("monkey");

HWindow w(0, 0, 512, 512);

Mandrill.Display(w);

HRegion Bright = (Mandrill >= 128);

HRegionArray Conn = Bright.Connection();

HRegionArray Large = Conn.SelectShape("area", "and", 500, 90000);

2.3.3 Visual Basic

Analogously to C++, two styles for programming are offered: procedural and object-oriented. For the
procedural style, the class HOperatorSetX provides all HALCON operators, where HUntypedObjectX

D
ev

el
op

m
en

t

18 How to Develop Applications with HALCON

is used to handle iconic data and the built-in type Variant is used for control data. For the object-
oriented style, classes like HDataCode2dX, HMeasureX, or HShapeModelX are provided for the central
functionality. In addition, classes for iconic data, e.g., HImageX or HRegionX, are available. For more
information see the Programmer’s Guide, part III on page 69

The following code shows a small example program to read an image and apply some basic blob analysis.

Dim image As New HImageX

Dim region As HRegionX

Call image.ReadImage("monkey")

Set region = image.Threshold(128, 255)

2.3.4 C#

Like Visual Basic, C# uses HALCON via the COM interface. Therefore, everything that was described
above also applied to C#. The only difference is that the data type Variant is called Object in .NET,
and hence also in C#.

The following code shows the Visual Basic example given above in C# syntax.

HImageX image = new HImageX();

HRegionX region;

image.ReadImage("monkey");

region = image.Threshold(128, 255);

2.4 Extending HALCON

2.4.1 Extension Packages (User-Defined Operators)

HALCON may easily be extended by new operators. Although HALCON already contains more than
1150 operators for various tasks, you may wish to implement new operators, e.g., in order to access a
special hardware or to implement an alternative algorithm. To do so, HALCON provides the Extension
Package Interface, which allows the integration of new operators (implemented in C) in the form of so-
called extension packages. It contains several predefined routines and macros for the easy handling of
image data and memory objects in C. Once a new operator has been successfully integrated, it can be
used like any other HALCON operator. The Extension Package Programmer’s Manual contains detailed
information about extending the operator library.

2.5 Limitations 19

2.4.2 Frame Grabber Interfaces

Using a similar mechanism, frame grabber interfaces are integrated using dynamic libraries. This allows
you to integrate unsupported frame grabbers without further changes of the rest of the system. How to
create and integrate a frame grabber interface is described in the Frame Grabber Integration Program-
mer’s Manual. Furthermore, HALCON is shipped with a template source code that can be used as the
basis of an integration.

2.5 Limitations

There are some limitations, which you have to keep in mind, although in most applications you won’t
come near these limits.

• Maximum image size: 32767×32767

• Maximum number of image matrices in memory: 100000

• Maximum number of iconic objects per parameter: 100000

• Maximum number of channels per image: 1000

• Maximum number of contour points: 200000

• Maximum number of polygon control points: 10000

• Range for coordinates: from -32768 to +32767

• Maximum length of strings: 1024 characters

D
ev

el
op

m
en

t

20 How to Develop Applications with HALCON

Machine Vision Methods 21

Chapter 3

Machine Vision Methods

This chapter describes important machine vision methods.

3.1 Image Acquisition . 22
3.2 Region Of Interest . 27
3.3 Blob Analysis . 39
3.4 1D Measuring . 53
3.5 Edge Extraction (pixel-precise) . 64
3.6 Edge Extraction (subpixel-precise) . 74
3.7 Contour Processing . 84
3.8 Template Matching . 98
3.9 Color Processing . 111
3.10 1D Bar Code . 125
3.11 2D Data Code . 134
3.12 OCR . 145
3.13 Stereo . 163
3.14 Visualization . 173

M
et

ho
ds

22 Machine Vision Methods

3.1 Image Acquisition

Obviously, the acquisition of images is a task that must be solved in all machine vision applica-
tions. Unfortunately, this task mainly consists of interacting with special, non-standardized hard-
ware in the form of the image acquisition device, e.g., a frame grabber board or an IEEE 1394
camera. To let you concentrate on the actual machine vision problem, HALCON provides you
with interfaces performing this interaction for a large number of image acquisition devices (see
http://www.mvtec.com/halcon/framegrabber for the latest information).

Within your HALCON application, the task of image acquisition is thus reduced to a few lines of code,
i.e., a few operator calls. What’s more, this simplicity is not achieved at the cost of limiting the avail-
able functionality: Using HALCON, you can acquire images from various configurations of acquisition
devices and cameras in different timing modes.

Besides acquiring images from cameras, HALCON also allows you to input images that were stored in
files (supported formats: BMP, TIFF, GIF, JPEG, PNG, PNM, PCX, XWD). Of course, you can also
store acquired images in files.

3.1.1 Basic Concept

Acquiring images with HALCON basically consists of three steps. Reading images from files is even
simpler: It consists of a single call to the operator read_image.

Close Image Acquisition
Device

Acquire Image(s)

Open Image Acquisition
Device

Open Image Acquisition Device

If you want to acquire images from a frame grabber board or an image acquisition device like an IEEE
1394 camera, the first step is to connect to this device. HALCON relieves you of all device-specific
details; all you need to do is to call the operator open_framegrabber, specifying the name of the
corresponding frame grabber interface.

There is also a "virtual" frame grabber interface called File. As its name suggests, this "frame grabber"
reads images from files, and also from so-called image sequence files. The latter are HALCON-specific
files, typically with the extension .seq; they contain a list of image file names, separated by new lines
(you can create it easily using a text editor). If you connect to such a sequence, subsequent calls to
grab_image return the images in the sequence specified in the file. Alternatively, you can also read all

3.1 Image Acquisition 23

images from a specific directory. Then, you do not have to create a sequence file, but simply specify the
directory name instead of the sequence file as value for the parameter ’CameraType’. Now, subsequent
calls to grab_image return the images found in the specified image directory. Both approaches are
useful if you want to test your application with a sequence of image files and later switch to a real image
acquisition device.

Acquire Image(s)

Having connected to the device, you acquire images by simply calling grab_image.

To load an image from disk, you use read_image. Images are searched for in the current directory and
in the directories specified in the environment variable HALCONIMAGES.

Close Image Acquisition Device

At the end of the application, you close the connection to the image acquisition device to free its resources
with the operator close_framegrabber.

A First Example

As already remarked, acquiring images from file corresponds to a single operator call:

read_image (Image, ’particle’)

The following code processes images read from an image sequence file:

SequenceName := ’datacode/ecc200/ecc200_cpu_light.seq’

open_framegrabber (’File’, 1, 1, 0, 0, 0, 0, ’default’, -1, ’default’, -1,

’default’, SequenceName, ’default’, -1, -1, FGHandle)

while (1)

grab_image (Image, FGHandle)

... process image ...

endwhile

M
et

ho
ds

24 Machine Vision Methods

3.1.2 Extended Concept

In real applications, it is typically not enough to tell the camera to acquire an image; instead, it may
be important that images are acquired at the correct moment or rate, and that the camera and the frame
grabber are configured suitably. Therefore, HALCON allows to further parameterize the acquisition
process.

Close Image Acquisition
Device

Acquire Image(s)

Set Parameters

Open Image Acquisition
Device

Open Image Acquisition Device

When connecting to your image acquisition device with open_framegrabber, the main parameter
is the name of the corresponding HALCON frame grabber interface. As a result, you obtain a so-
called handle, with which you can access the device later, e.g., to acquire images with grab_image or
grab_image_async.

With other parameters of open_framegrabber you can describe the configuration of image acquisition
device(s) and camera(s), which is necessary when using more complex configurations, e.g., multiple
cameras connected to different ports on different frame grabber boards. Further parameters allow you to
specify the desired image format (size, resolution, pixel type, color space). For most of these parameters
there are default values that are used if you specify the values ’default’ (string parameters) or -1
(numeric parameters).

With the operator info_framegrabber you can query information like the version number of the inter-
face or the available boards, port numbers, and camera types.

Detailed information about the parameters of open_framegrabber can be found in the Application
Note on Image Acquisition (configuring the connection: section 3 on page 7; configuring the acquired
image: section 4 on page 12).

Set Parameters

As described above, you already set parameters when connecting to the image acquisition device with
open_framegrabber. These parameters (configuration of image_acquisition device(s) / camera(s) and
image size etc.) are the so-called general parameters, because they are common to almost all frame

3.1 Image Acquisition 25

grabber interfaces. However, image acquisition devices differ widely regarding the provided function-
ality, leading to many more special parameters. These parameters can be customized with the operator
set_framegrabber_param.

With the operator get_framegrabber_param you can query the current values of the common and
special parameters.

Detailed information about setting parameters can be found in the Application Note on Image Acquisi-
tion in section 4 on page 12.

Acquire Image(s)

Actually, in a typical machine vision application you will not use the operator grab_image to acquire
images, but grab_image_async. The difference between these two operators is the following: If you
acquire and process images in a loop, grab_image always requests the acquisition of a new image and
then blocks the program until the acquisition has finished. Then, the image is processed, and afterwards,
the program waits for the next image. When using grab_image_async, in contrast, images are acquired
and processed in parallel: While an image is processed, the next image is already being acquired. This,
of course, leads to a significant speedup of the applications.

HALCON offers many more modes of acquiring images, e.g., triggering the acquisition by external sig-
nals or acquiring images simultaneously from multiple cameras. Detailed information about the various
modes of acquiring images can be found in the Application Note on Image Acquisition in section 5 on
page 16.

3.1.3 Programming Examples

Example programs for all provided frame grabber interfaces can be found in the subdirectory examples\
hdevelop\Image\Framegrabber. Further examples are described in the Application Note on Image
Acquisition.

3.1.4 Selecting Operators

Open Image Acquisition Device

Standard:

open_framegrabber

Advanced:

info_framegrabber

Set Parameters

Standard:

set_framegrabber_param, get_framegrabber_param

M
et

ho
ds

26 Machine Vision Methods

Acquire Image(s)

Standard:

read_image, grab_image, grab_image_async

Close Image Acquisition Device

Standard:

close_framegrabber

3.1.5 Tips & Tricks

Direct Access to External Images in Memory

You can also pass externally created images, i.e., the raw image matrix in the computer’s memory, to
HALCON using the operators gen_image1, gen_image3, or gen_image1_extern. For an example
see the Application Note on Image Acquisition on page 29.

Unsupported Image Acquisition Devices

If you want to use an image acquisition device that is currently not supported by HALCON, i.e., for
which no HALCON frame grabber interface exists, you can create your own interface; how to do this is
described in detail in the Frame Grabber Integration Programmer’s Manual.

3.2 Region Of Interest 27

3.2 Region Of Interest

The concept of regions of interest (ROIs) is essential for machine vision in general and for HALCON in
particular. The aim is to focus the processing on a specific part of the image. This approach combines
region information with the image matrix: Only the image part corresponding to the region remains
relevant, which reduces the number of pixels to be processed.

The advantages of using ROIs are manifold. First of all, it is a very good method to speed up a process
because fewer pixels need to be processed. Furthermore, it focuses processing, e.g., a gray value feature
is usually calculated only for a part of the image. Finally, ROIs are used to define templates, e.g., for
matching. HALCON allows to make full use of the concept of ROIs because it enables using arbitrary
shapes for the regions. This means that you are not limited to standard shapes like rectangles or polygons,
but can really use any form - the best one to solve a given problem.

3.2.1 Basic Concept

Making use of ROIs is split into two simple parts: creating regions and combining them with the image.

Create ROI

Create Region

Create Region

HALCON provides many ways to create regions, which can then be used as ROIs. The traditional way
is to generate standard shapes like circles, ellipses, rectangles, or polygons. In addition, regions can
be derived by converting them from other data types like XLD, by segmenting an image, or by user
interaction.

Create ROI

By combining a region with an image, the region assumes the role of an ROI, i.e., it defines which part
of the image must be processed. In HALCON, the ROI is also called the domain of the image. This
term comes from mathematics where an image can be treated as a function that maps coordinates to
gray values. An ROI reduces the domain of this function from the complete image to the relevant part.
Therefore, the operator to combine regions and images is called reduce_domain. This simple operator
fulfills the desired task in almost all applications.

M
et

ho
ds

28 Machine Vision Methods

A First Example

As an example for the basic concept, the following program shows all important steps to make use of an
ROI. The image is acquired from file. Inside the image, only a circular part around the center should be
processed. To achieve this, a circular region is generated with gen_circle. This region is combined
with the image using reduce_domain. This has the effect that only the pixels of the ROI are processed
when calling an operator. If, e.g., the operator edges_sub_pix is applied to this image, the subpixel
accurate contours are extracted only inside the circle. To make this visible, some visualization operators
are added to the end of the example program.

read_image (Image, ’mreut’)

gen_circle (ROI, 256, 256, 200)

reduce_domain (Image, ROI, ImageReduced)

edges_sub_pix (ImageReduced, Edges, ’lanser2’, 0.5, 20, 40)

dev_display (Image)

dev_display (ROI)

dev_display (Edges)

Figure 3.1: Processing the image only within the circular ROI.

3.2 Region Of Interest 29

3.2.2 Extended Concept

When we take a closer look at ROIs, extra steps become important if an application needs to be more
flexible.

Visualize Results

Create ROI

Create Region

Align ROIs Or Images

Draw Region

Segment Image(s)

Segment Image(s)

Very typical for HALCON is the creation of ROIs by a segmentation step. Instead of having a predefined
ROI, the parts of the image that are relevant for further processing are extracted from the image using
image processing methods. This approach is possible because ROIs are nothing else but normal HAL-
CON regions, and therefore share all their advantages like efficient processing and arbitrary shapes (see
section 2.1.2.2 on page 12 for more information on HALCON regions). The segmentation of regions
used for ROIs follows the same approach as standard blob analysis. For more details, please refer to the
description of this step on page 40.

Draw Region

The standard way to specify ROIs is to draw the shape interactively using the mouse. To make this easy,
HALCON provides special operators for standard shapes and free-form shapes. All operators for this
kind of action start with the prefix draw_. The drawing is performed by making use of the left mouse
button (drawing, picking, and dragging) and finished by clicking the right mouse button. For each such
draw-operator HALCON provides operators to generate regions by using the returned parameters (see
the description of the step Create Region on page 27). Operators for mouse interaction can be found in
the reference manual in the chapter “Graphics . Drawing”. More information on user interaction can be
also found in the chapter Visualization on page 173.

M
et

ho
ds

30 Machine Vision Methods

Align ROIs Or Images

Sometimes the coordinates of an ROI depend on the position of another object in the image. If the object
moves, the ROI must be moved (aligned) accordingly. This is achieved by first locating the object using
template matching. Based on the determined position and the orientation, the coordinates of the ROIs
are then transformed.

How to perform alignment using shape-based matching is described in the Application Note on Shape-
Based Matching in section 4.3.4 on page 36.

Create Region

The standard way is to generate regions based on the coordinates and dimensions returned by a
user interaction or by coordinate values stored in a file. In this case, operators like gen_circle,
gen_rectangle2, or gen_region_polygon_filled are used. More advanced are special shapes used
to guide a preprocessing step to save execution time. Typical examples for this are grids of lines or dots
or checker boards. With these shapes, the images can be covered in a systematic way and checked for
specific object occurrences. If you want to segment, e.g., blobs of a given minimum size it is sufficient to
use in a first step a search grid that is finer than the minimum object size to locate fragments. In a second
step these fragments are dilated (dilation_rectangle1) and the segmentation method is called once
again, now within this enlarged area. If the objects cover only a relatively small area of the image this
approach can speed up the process significantly.

Create ROI

This step combines the region and the image to make use of the region as the domain of the image.
The standard method that is recommended to be used is reduce_domain. It has the advantage of being
safe and having a simple semantics. rectangle1_domain is a shortcut for generating rectangular ROIs
(instead of calling gen_rectangle1 and reduce_domain in sequence). For advanced applications
change_domain can be used as a slightly faster version than reduce_domain. This operator does not
perform an intersection with the existing domain and does not check if the region is outside the image -
which will cause a system crash when applying an operator to the data afterwards if the region lies partly
outside the image. If the programmer ensures that the input region is well defined, this is a way to save
(a little) execution time.

Visualize Results

Finally, you might want to display the ROIs or the reduced images. With the operator get_domain, the
region currently used by the image can be accessed and displayed (and processed) like any other region.
When displaying an image, e.g., with disp_image, only the defined pixels are displayed. Pixels in the
graphics window outside the domain of the image will not be modified.

For detailed information see the description of this method on page 173.

3.2.3 Industries

3.2.3.1 Machinery

The example circles.dev on page 200 shows very well how an ROI can be generated by a segmenta-
tion step to reduce the execution time of a subsequent edge extraction.

3.2 Region Of Interest 31

3.2.3.2 Semiconductors

The program ic.dev on page 215 from a board inspection application shows very well how one seg-
mentation result can guide the next segmentation by making effective use of ROIs.

3.2.3.3 Photogrammetry And Remote Sensing

In remote sensing, often multiple types of object classes must be extracted. In this case, it is very effective
to apply a stepwise segmentation of the image, where one step can focus the next one on specific parts
of the image using ROIs. For a corresponding program see forest.dev on page 204.

3.2.4 Programming Examples

This section gives a brief introduction to programming ROIs in HALCON. Two examples show the
principles of region generation, combining these with images, and then processing the data.

3.2.4.1 Processing inside a User Defined Region

Example: examples\quick_guide\hdevelop\critical_points.dev

Figure 3.2 shows an image with marks that are used for a camera calibration in a 3D application. Here,
we assume that the marks must be extracted in a given part of the image only.

a) b)

Figure 3.2: (a) Original image with drawn ROI; (b) reduced image with extracted points.

To achieve this, the user draws a region of interest with the mouse. The corresponding operator is
draw_region. It has the window handle returned by dev_open_window as input and returns a region
when the right mouse button is pressed. The operator reduce_domain combines this region with the
image.

draw_region (Region, WindowHandle)

reduce_domain (Image, Region, ImageReduced)

M
et

ho
ds

32 Machine Vision Methods

When calling the point extraction operator critical_points_sub_pix on this reduced image, only
points inside the ROI are found. The final part of the program shows how to display these points overlaid
on the image.

critical_points_sub_pix (ImageReduced, ’facet’, 1.5, 8, _, _, _, _,

RowSaddle, ColSaddle)

dev_clear_window ()

dev_display (ImageReduced)

dev_set_color (’yellow’)

for i := 0 to |RowSaddle|-1 by 1

gen_cross_contour_xld (Cross, RowSaddle[i], ColSaddle[i], 25, 0.785398)

dev_display (Cross)

endfor

3.2.4.2 Interactive Partial Filtering of an Image

Example: examples\quick_guide\hdevelop\median_interactive.dev

The task is to filter an image with a median filter only at the points where the user clicks with the mouse
into the image, i.e., in the graphics window displaying the image.

Figure 3.3: Partially filtered image.

To do this, a loop is used inside which the mouse position is continuously requested with
get_mposition. Because this operator throws an exception if the mouse is outside the graphics window
the call is protected with dev_set_check.

3.2 Region Of Interest 33

Button := 0

while (Button # 4)

Row := -1

Column := -1

dev_set_check (’~give_error’)

get_mposition (WindowHandle, Row, Column, Button)

dev_set_check (’give_error’)

If the mouse is over the window, a circular region is displayed, which shows where the filter would be
applied.

if (Row >= 0 and Column >= 0)

gen_circle (Circle, Row, Column, 20)

boundary (Circle, RegionBorder, ’inner’)

dev_display (RegionBorder)

If the left mouse button is pressed, median_image must be applied in the local neighborhood of the
current mouse position. This is done by generating a circle with gen_circle and then calling re-
duce_domain.

if (Button = 1)

reduce_domain (Image, Circle, ImageReduced)

Now, the filter is called with this reduced image and the result is painted back into the input image for
possible repetitive filtering. The loop will be terminated when the right mouse button is clicked.

median_image (ImageReduced, ImageMedian, ’circle’, 5, ’mirrored’)

overpaint_gray (Image, ImageMedian)

endif

3.2.4.3 Other Examples

HDevelop

• examples\application_guide\3d_machine_vision\hdevelop\
3d_information_for_selected_points.dev
Calculating world coordinates for a point in a stereo image pair
→ description in the Application Note on 3D Machine Vision on page 106

• examples\application_guide\3d_machine_vision\hdevelop\
camera_calibration_exterior.dev
Measures positions on a caliper rule using camera calibration
→ description in the Application Note on 3D Machine Vision on page 41

• examples\application_guide\3d_machine_vision\hdevelop\
grid_rectification_ruled_surface.dev
Rectify an arbitrarily distorted image using a regular grid
→ description in the Application Note on 3D Machine Vision on page 127

M
et

ho
ds

34 Machine Vision Methods

• examples\application_guide\shape_matching\hdevelop\align_measurements.dev
Inspects individual razor blades using shape-based matching to align ROIs for the measure tool
→ description in the Application Note on Shape-Based Matching on page 36

• examples\application_guide\shape_matching\hdevelop\
first_example_shape_matching.dev
Introduces HALCON’s shape-based matching
→ description in the Application Note on Shape-Based Matching on page 4

• examples\application_guide\shape_matching\hdevelop\multiple_models.dev
Searching for two types of objects simultaneously
→ description in the Application Note on Shape-Based Matching on page 25

• examples\application_guide\shape_matching\hdevelop\multiple_objects.dev
Searches for multiple instances of a security ring
→ description in the Application Note on Shape-Based Matching on page 34

• examples\application_guide\shape_matching\hdevelop\multiple_scales.dev
Searches for nuts of different sizes
→ description in the Application Note on Shape-Based Matching on page 44

• examples\application_guide\shape_matching\hdevelop\process_shape_model.dev
Creates a model ROI by modifying the result of inspect_shape_model
→ description in the Application Note on Shape-Based Matching on page 10

• examples\application_guide\shape_matching\hdevelop\reuse_model.dev
Storing and reusing a shape model
→ description in the Application Note on Shape-Based Matching on page 46

• examples\hdevelop\Applications\Aerial\forest.dev
Extraction of trees and meadows from forest
→ description here in the Quick Guide on page 204

• examples\hdevelop\Applications\Aerial\roads.dev
Extraction of roads from aerial image
→ description here in the Quick Guide on page 207

• examples\hdevelop\Applications\Barcode\multiple.dev
Reading multiple bar codes of type Code 39
→ description here in the Quick Guide on page 222

• examples\hdevelop\Applications\Calibration\world_coordinates_line_scan.dev
Measures distances between the pitch lines of a caliper rule in a line scan image using camera
calibration

• examples\hdevelop\Applications\FA\ball.dev
Inspection of ball bonding
→ description here in the Quick Guide on page 211

• examples\hdevelop\Applications\FA\ball_seq.dev
Inspection of ball bonding (multiple images)

• examples\hdevelop\Applications\FA\circles.dev

3.2 Region Of Interest 35

Fits circles into curved contour segments
→ description here in the Quick Guide on page 200

• examples\hdevelop\Applications\FA\holes.dev
Extracts positions and radii of holes

• examples\hdevelop\Applications\FA\ic.dev
Extracts resistors, capacitors and ICs from board using color information
→ description here in the Quick Guide on page 215

• examples\hdevelop\Applications\Medicine\particle.dev
Extracts particles of varying sizes
→ description here in the Quick Guide on page 194

• examples\hdevelop\Applications\OCR\ocrcolor.dev
Segmenting and reading numbers using color information
→ description here in the Quick Guide on page 234

• examples\hdevelop\Applications\OCR\ocrcolort.dev
Segmenting numbers using color information and training the OCR

• examples\hdevelop\Applications\OCV\adaption_ocv.dev
Analyzes impact of changes on reported character quality

• examples\hdevelop\Applications\OCV\print_quality.dev
Inspects quality of letter A in different images

• examples\hdevelop\Applications\Sequences\autobahn.dev
Fast detection of lane markers

• examples\hdevelop\Control\for.dev
Uses a for loop to iterate over extracted blobs

• examples\hdevelop\Filter\Geometric-Transformations\
projective_trans_image_reduced.dev
Applying projective transformations to an image and its domain

• examples\hdevelop\Manuals\HDevelop\ic.dev
Combining different segmentation methods
→ description in the HDevelop User’s Manual on page 144

• examples\hdevelop\Manuals\HDevelop\particle.dev
Measures small particles
→ description in the HDevelop User’s Manual on page 136

• examples\hdevelop\Manuals\HDevelop\road_signs.dev
Finds road markings on a motorway
→ description in the HDevelop User’s Manual on page 151

• examples\hdevelop\Regions\Creation\gen_grid_region.dev
Creating a grid region consisting of lines or points

• examples\hdevelop\Segmentation\Threshold\dual_threshold.dev
Segmenting signed images into positive and negative regions

M
et

ho
ds

36 Machine Vision Methods

• examples\hdevelop\Tools\2D-Transformations\vector_angle_to_rigid.dev
Matching a pattern and displaying the normalized image

• examples\hdevelop\Tools\2D-Transformations\vector_to_proj_hom_mat2d.dev
Rectifies image of stadium to simulate overhead view

• examples\hdevelop\Tools\Grid-Rectification\grid_rectification.dev
Rectifying an arbitrarily distorted image using a regular grid

• examples\hdevelop\Tools\Hough\hough_lines.dev
Detecting lines in an image using the Hough transform

• examples\hdevelop\Tools\Hough\hough_lines_dir.dev
Detecting lines in an image using the Hough transform and local gradient directions

• examples\hdevelop\Tools\Stereo\binocular_disparity_segmentation.dev
Demonstrates stereo results using an artificial image pair

• examples\hdevelop\XLD\Features\fit_ellipse_contour_xld.dev
Approximating XLD contours with ellipses or elliptic arcs

C++

• examples\cpp\source\example2.cpp
Accessing image data and applying various tasks

• examples\cpp\source\example3.cpp
Iterating over a set of image pixels

• examples\cpp\source\pen.cpp
Inspects the quality of print on a pen using the variation model of HALCON

3.2.5 Selecting Operators

Segment Image(s)

Please refer to the detailed operator list for the step Segment Image(s) on page 50.

Draw Region

Standard:

draw_circle, draw_rectangle1, draw_rectangle2, draw_region

Advanced:

draw_circle_mod, draw_rectangle1_mod, draw_rectangle2_mod, draw_xld, draw_xld_mod

Align ROIs Or Images

Operators for aligning ROIs or images are described in the Application Note on Shape-Based Matching.

3.2 Region Of Interest 37

Create Region

Standard:

gen_circle, gen_ellipse, gen_rectangle2, gen_region_polygon_filled

Advanced:

gen_checker_region, gen_grid_region

More operators to generate regions can be found in the reference manual in chapter “Regions . Creation”.

Create ROI

Standard:

reduce_domain, rectangle1_domain

Advanced:

change_domain, full_domain, add_channels

Visualize Results

Please refer to the operator list for the method Visualization (see section 3.14.5 on page 184).

3.2.6 Relation to Other Methods

One class of operators does not follow the standard rules for ROI handling: the operators of the measure
tool (see the description of this method on page 53). Here, the ROI is defined during the creation of
a tool (gen_measure_arc and gen_measure_rectangle2) by specifying the coordinates as numeric
values. The domain defined for the image will be ignored in this case.

3.2.7 Tips & Tricks

Modifying ROI Shapes

Sometimes the shape of a given ROI, either generated from the program or defined by the user, does
not fulfill the requirements. Here, HALCON provides many operators to modify the shape to adapt it
accordingly. Often used operators are, e.g., fill_up to fill holes inside the region, shape_trans to
apply a general transformation like the convex hull or the smallest rectangle, or morphological operators
like erosion_circle to make the region smaller or closing_circle to fill gaps. More operators like
these can be found in the Reference Manual in the chapters “Morphology . Region” and “Regions .
Transformation”.

M
et

ho
ds

38 Machine Vision Methods

Storing ROI shapes

If an ROI is used multiple times it is useful to save the region to file and load it at the beginning of the
application. Storing to file is done using write_region, loading with read_region.

Speed Up

ROIs are a perfect way to save execution time: The smaller the ROI, the faster the application. This can
be used as a general rule. If we consider this in more detail, we also need to think about the shape of
ROIs. Because ROIs are based on the HALCON regions they use runlength encoding (see section 2.1.2.2
on page 12 for more information on HALCON regions). This type of encoding is perfect if the runs are
long. Therefore, a horizontal line can be both stored and processed more efficiently than a vertical line.
This holds as well for the processing time of ROIs. Obviously this type of overhead is very small and
can only be of importance with very fast operators like threshold.

3.2.8 Advanced Topics

Filter masks and ROIs

If a filter is applied with a reduced domain, the result along the ROI boundary might be surprising
because gray values lying outside the boundary are used as input for the filter process. To understand
this, you must consider the definition of domains in this context: A domain defines for a filter for which
input pixels output pixels must be calculated. But pixels outside the domain (which lie within the image
matrix) can be used for processing. If this behavior is not desired, the operator expand_domain_gray
can be used to propagate the border gray values outward. The result looks as if the boundary is copied
multiple times with larger and larger distances.

Binary Images

In some applications, it might be necessary to use ROIs that are available as binary images. To con-
vert these to HALCON regions, you must use gen_image1 to convert them into a HALCON image,
followed by threshold to generate the region. The conversion back can easily be achieved using re-
gion_to_bin followed by get_image_pointer1. It is also possible to import binary image files using
read_region.

3.3 Blob Analysis 39

3.3 Blob Analysis

The idea of blob analysis is quite easy: In an image the pixels of the relevant objects (also called fore-
ground) can be identified by their gray value. For example, figure 3.4 shows tissue particles in a liquid.
These particles are bright and the liquid (background) is dark. By selecting bright pixels (thresholding)
the particles can be detected easily. In many applications this simple condition of dark and bright pixels
no longer holds, but the same results can be achieved with extra pre-processing or alternative methods
for pixel selection / grouping.

a) b)

Figure 3.4: Basic idea of blob analysis: (a) original image, (b) extracted blobs with calculated center
points.

The advantage of blob analysis is the extreme flexibility that comes from the huge number of operators
that HALCON offers in this context. Furthermore, these methods typically have a very high performance.
Methods known from blob analysis can also be combined with many other vision tasks, e.g., as a pre-
processing step for a flexible generation of regions of interest.

M
et

ho
ds

40 Machine Vision Methods

3.3.1 Basic Concept

Blob analysis mainly consists of three parts:

Extract Features

Segment Image(s)

Acquire Image(s)

Acquire Image(s)

First, an image is acquired.

For detailed information see the description of this method on page 22.

Segment Image(s)

Having acquired the image, the task is to select the foreground pixels. This is also called segmentation.
The result of this process typically is referred to as blobs (binary large objects). In HALCON, the data
type is called a region.

Extract Features

In the final step, features like the area (i.e., the number of pixels), the center of gravity, or the orientation
are calculated.

A First Example

An example for this basic concept is the following program, which belongs to the example explained
above. Here, the image is acquired from file. All pixels that are brighter than 120 are selected using
threshold. Then, an extra step is introduced which is not so obvious: The operator connection
separates the set of all bright pixels into so called connected components. The effect of this step is that
we now have multiple regions instead of the single region that is returned by threshold. The last step
of this program is the calculation of some features. Here, the operator area_center determines the size
(number of pixels) and the center of gravity. Please note that area_center returns multiple values for
all three feature parameters (one value for each connected component).

read_image (Image, ’particle’)

threshold (Image, BrightPixels, 120, 255)

connection (BrightPixels, Particles)

area_center (Particles, Area, Row, Column)

3.3 Blob Analysis 41

3.3.2 Extended Concept

In many cases the segmentation of blobs will be more advanced than in the above example. Reasons for
this are, e.g., clutter or inhomogeneous illumination. Furthermore, postprocessing like transforming the
features to real world units or visualization of results are often required.

Visualize Results

Transform Results Into
World Coordinates

Extract Features

Process Regions

Segment Image(s)

Extract Segmentation
Parameters

Preprocess Image(s)
(Filtering)

Rectify Image(s)

Align ROIs Or Images

Acquire Image(s)

Align ROIs Or Images

In some applications, the regions of interest must be aligned relative to another object. Alternatively, the
image itself can be aligned, e.g., by rotating or cropping it.

M
et

ho
ds

42 Machine Vision Methods

How to perform alignment using shape-based matching is described in the Application Note on Shape-
Based Matching in section 4.3.4 on page 36.

Rectify Image(s)

Similarly to alignment, it may be necessary to rectify the image, e.g., to remove radial distortions or to
transform the image into a reference point of view.

Detailed information about rectifying images can be found in the Application Note on 3D Machine
Vision in section 3.3 on page 49.

Preprocess Image(s) (Filtering)

The next important part is the pre-processing of the image. Here, operators like mean_image or
gauss_image can be used to eliminate noise. median_image is useful for suppressing small spots
or thin lines. The operator anisotrope_diff is useful for edge-preserving smoothing, and finally
fill_interlace is used to eliminate defects caused by interlaced cameras.

Extract Segmentation Parameters

Instead of using fixed threshold values, they can be extracted dynamically for each image. One example
for this is a gray value histogram that has multiple peaks, one for each object class. Here, you can use
the operators gray_histo_abs and histo_to_thresh.

As an advanced alternative, you can use the operator intensity in combination with a reference image
that contains only background: During setup, you determine the mean gray value of a background region.
During the inspection, you again determine this mean gray value. If it has changed, you adapt the
threshold accordingly.

Segment Image(s)

For the segmentation various methods can be used. The most simple method is threshold, where one
or more gray value ranges that belong to the foreground objects are specified. Another very common
method is dyn_threshold. Here, a second image is passed as a reference. With this approach, a local
threshold instead of a global threshold is used. These local threshold values are stored in the reference
image. The reference image can either be static by taking a picture of the empty background or can be
determined dynamically with smoothing filters like mean_image.

Process Regions

Once blob regions are segmented, it is often necessary to modify them, e.g., by suppressing small areas,
regions of a given orientation, or regions that are close to other regions. In this context, the morpho-
logical operators opening_circle and opening_rectangle1 are often used to suppress noise and
closing_circle and closing_rectangle1 to fill gaps.

Blobs with a specific feature can be selected with select_shape, select_shape_std, and se-
lect_shape_proto.

3.3 Blob Analysis 43

Extract Features

To finalize the image processing, features of the blobs are extracted. The type of features needed depends
on the application. A full list can be found in the Reference Manual in the chapters “Regions . Features”
and “Image . Features”.

Transform Results Into World Coordinates

Features like the area or the center of gravity often must be converted to world coordinates. This can be
achieved with the HALCON camera calibration.

How to transform results into world coordinates is described in detail in the Application Note on 3D
Machine Vision in section 3.2 on page 44.

Visualize Results

Finally, you might want to display the images, the blob (regions), and the features.

For detailed information see the description of this method on page 173.

3.3.3 Industries

3.3.3.1 Health Care And Life Science

Medicine is the typical application area for blob analysis. Classical objects to be processed are cells or
structures in tissues. For a corresponding example see the description of particle.dev on page 194.

3.3.3.2 Semiconductors

A typical task during the manufacturing of a chip is to inspect the bonding of the wires. For a corre-
sponding example see the description of ball.dev on page 211.

3.3.3.3 Rubber, Synthetic Material, Foil

For quality assurance the outer boundary of plastic material needs to be checked. For a corresponding
example see the description of fin.dev on page 209.

3.3.3.4 Food

In OCR applications like the inspection of the “best before” date, blob analysis is very useful to extract
the symbols in a robust manner. For a corresponding example see the description of program bot-
tle.dev on page 193.

M
et

ho
ds

44 Machine Vision Methods

3.3.3.5 Machinery

A standard task in machinery is to read text that is engraved on metal surfaces. This task can be dif-
ficult because of textures and changing illumination conditions. For a corresponding example see the
description of engraved.dev on page 199.

3.3.3.6 Photogrammetry And Remote Sensing

Difficult tasks can also be solved by using methods based on blob analysis. The example program
forest.dev on page 204 shows how to extract different object classes from an aerial image.

3.3.4 Programming Examples

This section gives a brief introduction to using HALCON for blob analysis.

3.3.4.1 Crystals

Example: examples\quick_guide\hdevelop\crystal.dev

Figure 3.5a shows an image taken in the upper atmosphere with collected samples of crystals. The task
is to analyze the objects to determine the frequency of specific shapes. One of the important objects are
the hexagonally shaped crystals.

a) b)

c)

Figure 3.5: Extracting hexagonal crystals: (a) original image with arrows marking the crystals to be ex-
tracted, (b) result of the initial segmentation, (c) finally selected blobs.

3.3 Blob Analysis 45

First, the image is read from file with read_image. The segmentation of objects is performed with a
local threshold because of the relatively low contrast of the crystals combined with a non-homogeneous
background. The background is determined with the average filter mean_image. The filter mask size is
selected such that it has about three times the width of the dark areas. dyn_threshold now compares
the smoothed with the original gray values, selecting those pixels that are darker by a contrast of 8 gray
values. connection separates the objects into connected components. Figure 3.5b shows the result of
this initial segmentation.

read_image (Image, ’crystal’)

mean_image (Image, ImageMean, 21, 21)

dyn_threshold (Image, ImageMean, RegionDynThresh, 8, ’dark’)

connection (RegionDynThresh, ConnectedRegions)

In the following processing step, the task now is to select only the hexagonally shaped crystals. For
this, they are first transformed into their convex hull. This is like putting a rubber band around each
region. From these regions, those that are big (select_shape) and have a given gray value distribution
(select_gray) are selected. The parameters for the selection are determined so that only the relevant
crystals remain (see figure 3.5c).

shape_trans (ConnectedRegions, ConvexRegions, ’convex’)

select_shape (ConvexRegions, LargeRegions, ’area’, ’and’, 600, 2000)

select_gray (LargeRegions, Image, Crystals, ’entropy’, ’and’, 1, 5.6)

3.3.4.2 Atoms

Example: examples\quick_guide\hdevelop\atoms.dev

Specialized microscopes are able to determine the rough location of single atoms. This is useful, e.g., to
analyse the grid change of crystals at a p-n-junction. A segmentation that works perfectly well on images
like these is the watershed method. Here, each dark basin is returned as a single region. Because at the
outer part of the image atoms are only partially visible, the first task is to extract only those that are not
close to the image border. Finally, the irregularity is extracted. This is done by looking for those atoms
that have an abnormal (squeezed) shape (see figure 3.6).

gauss_image (Image, ImageGauss, 5)

watersheds (ImageGauss, Basins, Watersheds)

select_shape (Basins, SelectedRegions1, ’column1’, ’and’, 2, Width-1)

select_shape (SelectedRegions1, SelectedRegions2, ’row1’, ’and’, 2,

Height-1)

select_shape (SelectedRegions2, SelectedRegions3, ’column2’, ’and’, 1,

Width-3)

select_shape (SelectedRegions3, Inner, ’row2’, ’and’, 1, Height-3)

select_shape (Inner, Irregular, ’compactness’, ’and’, 1.45, 3)

M
et

ho
ds

46 Machine Vision Methods

Figure 3.6: Inspecting atom structure.

3.3.4.3 Other Examples

HDevelop

• examples\application_guide\3d_machine_vision\hdevelop\
handeye_stationarycam_grasp_nut.dev
Calculates pose for grasping a nut based on results of hand-eye calibration for a stationary camera
→ description in the Application Note on 3D Machine Vision on page 120

• examples\application_guide\image_acquisition\hdevelop\line_scan.dev
Simulates grabbing from a line scan camera and merges images and extracted regions
→ description in the Application Note on Image Acquisition on page 34

• examples\hdevelop\Applications\Aerial\dem_trees.dev
Extraction of trees using texture and a digital elevation model

• examples\hdevelop\Applications\Aerial\forest.dev
Extraction of trees and meadows from forest
→ description here in the Quick Guide on page 204

• examples\hdevelop\Applications\Aerial\texture.dev
Find textured areas (trees and bushes)

• examples\hdevelop\Applications\FA\ball.dev
Inspection of ball bonding
→ description here in the Quick Guide on page 211

• examples\hdevelop\Applications\FA\ball_seq.dev
Inspection of ball bonding (multiple images)

• examples\hdevelop\Applications\FA\board.dev
Detection of missing solder

• examples\hdevelop\Applications\FA\clip.dev
Determines the orientation of clips

3.3 Blob Analysis 47

• examples\hdevelop\Applications\FA\holes.dev
Extracts positions and radii of holes

• examples\hdevelop\Applications\FA\hull.dev
Inspects an injection molded nozzle

• examples\hdevelop\Applications\FA\ic.dev
Extracts resistors, capacitors and ICs from board using color information
→ description here in the Quick Guide on page 215

• examples\hdevelop\Applications\Medicine\particle.dev
Extracts particles of varying sizes
→ description here in the Quick Guide on page 194

• examples\hdevelop\Applications\Monitoring\movement_col.dev
Extracts moving objects and within them scans for specific color

• examples\hdevelop\Applications\OCR\stamp_catalogue.dev
Segmenting and grouping characters on a cluttered page

• examples\hdevelop\Applications\OCV\print_quality.dev
Inspects quality of letter A in different images

• examples\hdevelop\Control\for.dev
Uses a for loop to iterate over extracted blobs

• examples\hdevelop\Control\while.dev
Uses a while loop to provide interaction until right mouse button is clicked

• examples\hdevelop\Filter\Texture\entropy_image.dev
Segmenting an image based on the entropy of gray values

• examples\hdevelop\Image\Features\gray_features.dev
Calculating standard gray value features

• examples\hdevelop\Manuals\HDevelop\ball.dev
Inspects bonding of balls
→ description in the HDevelop User’s Manual on page 141

• examples\hdevelop\Manuals\HDevelop\calib.dev
Extracts circles on a calibration board
→ description in the HDevelop User’s Manual on page 143

• examples\hdevelop\Manuals\HDevelop\eyes.dev
Performing a basic segmentation on a single image
→ description in the HDevelop User’s Manual on page 149

• examples\hdevelop\Manuals\HDevelop\ic.dev
Combining different segmentation methods
→ description in the HDevelop User’s Manual on page 144

• examples\hdevelop\Manuals\HDevelop\marks.dev
Detects circular marks fixed at a person’s body
→ description in the HDevelop User’s Manual on page 3

M
et

ho
ds

48 Machine Vision Methods

• examples\hdevelop\Manuals\HDevelop\particle.dev
Measures small particles
→ description in the HDevelop User’s Manual on page 136

• examples\hdevelop\Manuals\HDevelop\stamps.dev
Finds images in a document
→ description in the HDevelop User’s Manual on page 131

• examples\hdevelop\Manuals\HDevelop\wood.dev
Determines the age of a tree by counting its annual rings
→ description in the HDevelop User’s Manual on page 139

• examples\hdevelop\Regions\Features\orientation_region.dev
Calculating the orientation of regions

• examples\hdevelop\Regions\Transformations\connection.dev
Calculating connected components of regions

• examples\hdevelop\Regions\Transformations\fill_up_shape.dev
Filling up holes with give shape in regions

• examples\hdevelop\Regions\Transformations\max_connection.dev
Limiting the number of regions returned by connection operator

• examples\hdevelop\Segmentation\Threshold\threshold.dev
Selecting gray values lying within an interval

• examples\quick_guide\hdevelop\color_fuses.dev
Sort fuses by color
→ description here in the Quick Guide on page 116

• examples\quick_guide\hdevelop\color_pieces.dev
Completeness check of colored game pieces using MLP classification
→ description here in the Quick Guide on page 118

• examples\quick_guide\hdevelop\color_pieces_euclid.dev
Completeness check of game color pieces using Euclidean classification

• examples\quick_guide\hdevelop\color_simple.dev
Segment color image in HSV color space
→ description here in the Quick Guide on page 115

• examples\quick_guide\hdevelop\edge_segments.dev
Extracting connected edges segments
→ description here in the Quick Guide on page 68

• examples\quick_guide\hdevelop\surface_scratch.dev
Detects scratches on a surface via local thresholding and morphology
→ description here in the Quick Guide on page 241

C++

• examples\cpp\source\example1.cpp
Reading an image and performing a simple segmentation

3.3 Blob Analysis 49

Visual Basic

• examples\vb\Manual\eyes.vbp
Locates the eyes of a monkey

• examples\vb\Segmentation\monkey.vbp
Blob analysis with interactive control of some parameters

C

• examples\c\example2.c
Performing some basic segmentation

• examples\c\example_multithreaded1.c
Using multiple threads with Parallel HALCON

3.3.5 Selecting Operators

Acquire Image(s)

Please refer to the operator list for the method Image Acquisition (see section 3.1.4 on page 25).

Align ROIs Or Images

Operators for rectifying images are described in the Application Note on Shape-Based Matching.

Rectify Image(s)

Operators for rectifying images are described in the Application Note on 3D Machine Vision.

Preprocess Image(s) (Filtering)

Standard:

mean_image, gauss_image, median_image

Advanced:

smooth_image, anisotrope_diff, fill_interlace, rank_image

Extract Segmentation Parameters

Standard:

gray_histo_abs, histo_to_thresh

Advanced:

intensity

M
et

ho
ds

50 Machine Vision Methods

Segment Image(s)

Standard:

threshold, fast_threshold, bin_threshold, dyn_threshold, histo_to_thresh,
gray_histo

Advanced:

watersheds, watersheds_threshold, regiongrowing, regiongrowing_mean, var_threshold

Process Regions

Standard:

connection, select_shape, opening_circle, closing_circle, opening_rectangle1,
closing_rectangle1, difference, intersection, union1, shape_trans, fill_up

Advanced:

select_shape_proto, select_gray, clip_region, sort_region, skeleton,
partition_dynamic, rank_region

Morphological operators can be found in the Reference Manual in the chapter “Morphology”.

Extract Features

Standard:

area_center, smallest_rectangle1, smallest_rectangle2, compactness, eccentricity,
elliptic_axis, area_center_gray, intensity, min_max_gray

Advanced:

diameter_region, inner_circle, gray_histo_abs, entropy_gray

Transform Results Into World Coordinates

Standard:

image_points_to_world_plane

Advanced:

gen_contour_region_xld, contour_to_world_plane_xld

More operators for transforming results into world coordinates are described in the Application Note on
3D Machine Vision.

3.3 Blob Analysis 51

Visualize Results

Please refer to the operator list for the method Visualization (see section 3.14.5 on page 184).

3.3.6 Relation to Other Methods

3.3.6.1 Methods that are Using Blob Analysis

OCR (see description on page 145)
Blob analysis is typically used as a preprocessing step for OCR to segment the characters.

3.3.6.2 Alternatives to Blob Analysis

Edge Extraction (subpixel-precise) (see description on page 74)
In blob analysis a region is described by the gray values of its pixels. As an alternative, a region could
be described by the change of the gray values at their borders. This approach is called edge detection.

3.3.7 Tips & Tricks

Use of Domains (Regions of Interest)

The concept of domains (the HALCON term for a region of interest) is very important for blob analysis.
With domains, the processing can be focused to a certain area in the image and thus sped up. The more
the region in which the segmentation is performed can be restricted, the faster and more robust the search
will be. For an overview on how to construct regions of interest and how to combine them with the image
see the method Region Of Interest on page 27.

Connected Components

By default, most HALCON segmentation operators like threshold return one region even if you see
multiple not connected areas on the screen. To transform this region into separated objects (i.e., con-
nected components in the HALCON nomenclature) one has to call connection.

Speed Up

Many online applications require maximum speed. Because of its flexibility, HALCON offers many
ways to achieve this goal. Here the most common methods are listed.

• Regions of interest are the standard method to increase the speed by processing only those areas
where objects need to be inspected. This can be done using pre-defined regions but also by an
online generation of the regions of interest that depend on other objects found in the image.

• If an object has a specific minimum size, the operator fast_threshold is a fast alternative to
threshold. This kind of fast operator can also directly be generated by using operators like
gen_grid_region and reduce_domain before calling the thresholding operator.

M
et

ho
ds

52 Machine Vision Methods

• By default, HALCON performs some data consistency checks. These can be switched off using
set_check.

• By default, HALCON initializes new images. Using set_system with the parameter
"init_new_image", this behavior can be changed.

3.3.8 Advanced Topics

Line Scan Cameras

In general, line scan cameras are treated like normal area sensors. In some cases, however, not single
images but an “infinite” sequence of images showing objects, e.g., on a conveyor belt, must be processed.
In this case the end of one image is the beginning of the next one. This means that objects that partially
lie in both images must be combined into one object. For this purpose HALCON provides the operator
merge_regions_line_scan. This operator is called after the segmentation of one image, and combines
the current objects with those of previous images. For more information see the Application Note on
Image Acquisition.

High Accuracy

Sometimes high accuracy is required. This is difficult with blob analysis because objects are only ex-
tracted with integer pixel coordinates. Note, however, that many features that can be calculated for
regions, e.g., the center of gravity, will be subpixel precise. One way to get higher accuracy is to use a
higher resolution. This has the effect that the higher number of pixels for each region results in better
statistics to estimate features like the center of gravity (area_center). As an alternative, gray value fea-
tures (like area_center_gray) can be used if the object fulfills specific gray value requirements. Here,
the higher accuracy comes from the fact that for each pixel 255 values instead of one value (foreground
or background) is used. To really gain a high accuracy you should use the subpixel-precise edge and line
extraction.

3.4 1D Measuring 53

3.4 1D Measuring

The idea of measuring (also called metrology or caliper) is very intuitive: Along a predefined region of
interest, edges are located that are mainly perpendicular to the orientation of the region of interest. Here,
edges are defined as transitions from dark to bright or from bright to dark.

Based on the extracted edges, you can measure the dimensions of parts. For example, you can measure
the width of a part by placing a region of interest over it and locating the edges on its left and the right
side. The effect of this can be seen in figure 3.7a, whereas figure 3.7b shows the corresponding gray
value profile.

a) b)

Figure 3.7: (a) Measuring a fuse wire; (b) gray value profile along the region of measurement with ex-
tracted edges.

As an alternative to these simple rectangular regions of interest, circular arcs can be used to measure,
e.g., the widths of the cogs on a cog wheel.

The advantage of the measure approach is its ease of use combined with a short execution time and a
very high accuracy. With only a few operators, high-performing applications can be realized.

M
et

ho
ds

54 Machine Vision Methods

3.4.1 Basic Concept

Measuring consists of four main steps:

Destroy Measure Object

Measure

Create Measure Object

Acquire Image(s)

Acquire Image(s)

First, an image is acquired.

For detailed information see the description of this method on page 22.

Create Measure Object

Having acquired the image, you specify where to measure, i.e., you describe the position, orientation,
etc. of the line or arc along which you want to measure. Together with some other parameters, this
information is stored in the so-called measure object.

You access the measure object by using a so-called handle. Similarly to a file handle, this handle is
needed when working with the tool. Each time the measure tool is executed, this handle is passed as a
parameter.

In object-oriented languages like C++ it is possible to use the measure class instead of the low-level
approach with handles. Here, creation and destruction are realized with the standard object-oriented
methods.

Measure

Then, you can apply the measuring by specifying the measure object and some other vision parameters
like, e.g., the minimum contrast. You can find detailed information about this step in the Application
Note on 1D Metrology in section 3 on page 10.

Destroy Measure Object

When you no longer need the measure object, you destroy it by passing the handle to close_measure.

3.4 1D Measuring 55

3.4.2 Extended Concept

In many cases, a measuring application will be more complex than described above. Reasons for this are,
e.g., clutter or inhomogeneous illumination. Furthermore, post-processing like transforming the features
to real-world units, or visualization of results may be required.

Destroy Measure Object

Visualize Results

Transform Results Into
World Coordinates

Measure

Create Measure Object

Rectify Image(s)

Align ROIs Or Images

Radiometrically Calibrate
Image(s)

Acquire Image(s)

Radiometrically Calibrate Image(s)

To allow high-accuracy measurements, the camera should have a linear response function, i.e., the gray
values in the images should depend linearly on the incoming energy. Since some cameras do not have
a linear response function, HALCON provides the so-called radiometric calibration (gray value calibra-
tion): With the operator radiometric_self_calibration you can determine the inverse response
function of the camera (offline) and then apply this function to the images using lut_trans before
performing the measuring.

M
et

ho
ds

56 Machine Vision Methods

Align ROIs Or Images

In some applications, the line or arc along which you want to measure, must be aligned relative to another
object.

How to perform alignment using shape-based matching is described in the Application Note on Shape-
Based Matching in section 4.3.4 on page 36.

Rectify Image(s)

Similarly to alignment, it may be necessary to rectify the image, e.g., to remove radial distortion.

Detailed information about rectifying images can be found in the Application Note on 3D Machine
Vision in section 3.3 on page 49.

Create Measure Object

You can teach the measurement line or arc interactively with operators like draw_rectangle2 or read
its parameters from file (read_string). As an alternative, its coordinates can be generated based on
the results of other vision tools like Blob Analysis (see the description of this method on page 39). In
particular, the measurement line or arc may need to be aligned to a certain object as described above.

If the measurement is always performed along the same line or arc, you can create the measure object
offline and then use it multiple times before destroying it. However, if you want to align the measurement,
the position and orientation of the line or arc will differ for each image. In this case, you must create a
new measure object for each image. An exception to this rule is if only the position changes but not the
orientation. Then, you can keep the measure object and adapt its position via translate_measure.

Please refer to the Application Note on 1D Metrology, section 2 on page 5, for more information.

Transform Results Into World Coordinates

If you have calibrated your vision system, you can easily transform the results of measuring into world
coordinates with image_points_to_world_plane. How to do this is described in the Application
Note on 1D Metrology in section 3.5 on page 20.

This is described in detail in the Application Note on 3D Machine Vision in section 3.2 on page 44.

Visualize Results

The best way to visualize edge positions is to create (short) XLD line segments with operators like
gen_contour_polygon_xld.

For detailed information see the description of this method on page 173.

3.4.3 Industries

3.4.3.1 Semiconductors

The Quick Guide contains two examples for applying measurements in the semiconductor in-
dustry: measure_pin.dev on page 226 shows how to inspect major dimensions of an IC.
fuzzy_measure_pin.dev on page 212 performs a similar task under difficult illumination conditions.

3.4 1D Measuring 57

3.4.3.2 Iron, Steel And Metal

The example measure_arc.dev on page 197 shows how to inspect the exact distance between elongated
holes of a cast part after chamfering.

3.4.4 Programming Examples

The following example gives a brief introduction to using the measure tool of HALCON. The longest
parts are pre- and postprocessing; the measurement itself consists only of two operator calls. Further
examples are described in the Application Note on 1D Metrology.

3.4.4.1 Inspecting a Fuse

Example: examples\quick_guide\hdevelop\fuse.dev

Preprocessing consists of the generation of the measurement line. In the example program, this step is
accomplished by assigning the measure object’s parameters to variables.

read_image (Fuse, ’fuse’)

Row := 297

Column := 545

Length1 := 80

Length2 := 10

Angle := rad(90)

gen_measure_rectangle2 (Row, Column, Angle, Length1, Length2, Width,

Height, ’bilinear’, MeasureHandle)

Now the actual measurement is performed by applying the measure object to the image. The parameters
are chosen such that edges around dark areas are grouped to so called pairs, returning the position of the
edges together with the width and the distance of the pairs.

measure_pairs (Fuse, MeasureHandle, 1, 1, ’negative’, ’all’, RowEdgeFirst,

ColumnEdgeFirst, AmplitudeFirst, RowEdgeSecond, ColumnEdgeSecond,

AmplitudeSecond, IntraDistance, InterDistance)

The last part of the program displays the results by generating a region with the parameters of the mea-
surement line and converting the edge positions to short XLD contours (see figure 3.8).

M
et

ho
ds

58 Machine Vision Methods

for i := 0 to |RowEdgeFirst|-1 by 1

gen_contour_polygon_xld (EdgeFirst,

[-sin(Angle+rad(90))*Length2+RowEdgeFirst[i],

-sin(Angle-rad(90))*Length2+RowEdgeFirst[i]],

[cos(Angle+rad(90))*Length2+ColumnEdgeFirst[i],

cos(Angle-rad(90))*Length2+ColumnEdgeFirst[i]])

gen_contour_polygon_xld (EdgeSecond,

[-sin(Angle+rad(90))*Length2+RowEdgeSecond[i],

-sin(Angle-rad(90))*Length2+RowEdgeSecond[i]],

[cos(Angle+rad(90))*Length2+ColumnEdgeSecond[i],

cos(Angle-rad(90))*Length2+ColumnEdgeSecond[i]])

write_string (WindowID, ’width: ’+IntraDistance[i]+’ pix’)

endfor

Figure 3.8: Measuring the width of the fuse wire.

3.4.4.2 Other Examples

HDevelop

• examples\application_guide\1d_metrology\hdevelop\fuzzy_measure_switch.dev
Determine the width of and the distance between the pins of a switch with a fuzzy measure object
→ description in the Application Note on 1D Metrology on page 25

• examples\application_guide\1d_metrology\hdevelop\measure_caliper.dev
Measures the distance between the pitch lines of a caliper
→ description in the Application Note on 1D Metrology on page 16

• examples\application_guide\1d_metrology\hdevelop\measure_ic_leads.dev
Measures leads of an IC
→ description in the Application Note on 1D Metrology on page 11

• examples\application_guide\1d_metrology\hdevelop\measure_ring.dev
Determine the width of cogs with a circular measure object
→ description in the Application Note on 1D Metrology on page 22

• examples\application_guide\1d_metrology\hdevelop\measure_switch.dev

3.4 1D Measuring 59

Determine the width of and the distance between the pins of a switch with a measure object
→ description in the Application Note on 1D Metrology on page 4

• examples\application_guide\3d_machine_vision\hdevelop\
camera_calibration_exterior.dev
Measures positions on a caliper rule using camera calibration
→ description in the Application Note on 3D Machine Vision on page 41

• examples\application_guide\3d_machine_vision\hdevelop\
camera_calibration_multi_image.dev
Calibrates the camera and measures positions on a caliper rule
→ description in the Application Note on 3D Machine Vision on page 39

• examples\application_guide\shape_matching\hdevelop\align_measurements.dev
Inspects individual razor blades using shape-based matching to align ROIs for the measure tool
→ description in the Application Note on Shape-Based Matching on page 36

• examples\hdevelop\Applications\Calibration\world_coordinates_line_scan.dev
Measures distances between the pitch lines of a caliper rule in a line scan image using camera
calibration

• examples\hdevelop\Applications\FA\pm_measure_board.dev
Locates IC on a board and measures pin distances
→ description here in the Quick Guide on page 213

• examples\hdevelop\Applications\Measure\fuzzy_measure_pin.dev
Measures pins of an IC using fuzzy measure
→ description here in the Quick Guide on page 212

• examples\hdevelop\Applications\Measure\measure_arc.dev
Measures width of object along circular arc
→ description here in the Quick Guide on page 197

• examples\hdevelop\Applications\Measure\measure_online.dev
Measures your object in a live image

• examples\hdevelop\Applications\Measure\measure_pin.dev
Measures pins of an IC
→ description here in the Quick Guide on page 226

• examples\hdevelop\Tools\Measure\gen_measure_arc.dev
Measuring edges perpendicular to a given arc

• examples\hdevelop\Tools\Measure\gen_measure_rectangle2.dev
Measuring edges perpendicular to a given line

• examples\quick_guide\hdevelop\close_contour_gaps.dev
Closing gaps in extracted straight contours
→ description here in the Quick Guide on page 92

C++

• examples\cpp\source\fuzzy_measure_pin.cpp
Measures pins of an IC using fuzzy measure

M
et

ho
ds

60 Machine Vision Methods

• examples\mfc\Matching\Matching.cpp
Locating an IC using HALCON/C++ and MFC, creating a HALCON window

• examples\mfc\MatchingCOM\Matching.cpp
Locating an IC using HALCON/COM and MFC

• examples\mfc\MatchingExtWin\Matching.cpp
Locating an IC using HALCON/C++ and MFC, painting into an existing window

• examples\motif\Matching\matching.cpp
Locating an IC using HALCON/C++ and Motif

• examples\qt\Matching\matching.cpp
Locating an IC using HALCON/C++ and Qt

Visual Basic

• examples\vb\Online\Measure\measure.vbp
Measuring edge positions in a live image

• examples\vb\Tools\Matching\matching.vbp
Locates an IC on a board and measures pin distances

• examples\vb\Tools\Measure\measure.vbp
Measuring pins with interactive control of parameters

Visual Basic .NET

• examples\vb.net\Matching\Matching.vbproj
Locates an IC on a board and measures pin distances

C#

• examples\c#\Matching\Matching.csproj
Locates an IC on a board and measures pin distances

Delphi

• examples\delphi\Matching\matching.dpr
Locates an IC on a board and measures pin distances

3.4.5 Selecting Operators

Acquire Image(s)

Please refer to the operator list for the method Image Acquisition (see section 3.1.4 on page 25).

Radiometrically Calibrate Image(s)

Standard:

radiometric_self_calibration, lut_trans

3.4 1D Measuring 61

Align ROIs Or Images

Operators for aligning ROIs or images are described in the Application Note on Shape-Based Matching.

Rectify Image(s)

Operators for rectifying images are described in the Application Note on 3D Machine Vision.

Create Measure Object

Standard:

gen_measure_rectangle2, gen_measure_arc, translate_measure

Measure

Standard:

measure_pos, measure_pairs

Advanced:

set_fuzzy_measure, fuzzy_measure_pos, fuzzy_measure_pairs, fuzzy_measure_pairing

Transform Results Into World Coordinates

Standard:

image_points_to_world_plane

Advanced:

gen_contour_region_xld, contour_to_world_plane_xld

More operators for transforming results into world coordinates are described in the Application Note on
3D Machine Vision.

Visualize Results

Advanced:

gen_contour_polygon_xld

Please refer to the operator list for the method Visualization (see section 3.14.5 on page 184).

M
et

ho
ds

62 Machine Vision Methods

Destroy Measure Object

Standard:

close_measure

3.4.6 Relation to Other Methods

3.4.6.1 Alternatives to 1D Measuring

Edge Extraction (subpixel-precise) (see description on page 74)
A very flexible way to measure parameters of edges is to extract the edge contour with edges_sub_pix.
The advantage of this approach is that it can handle free-form shapes. Furthermore, it allows to determine
attributes like the edge direction for each edge point.

3.4.7 Tips & Tricks

Suppress Clutter or Noise

In many applications there is clutter or noise that must be suppressed. The measure operators offer
multiple approaches to achieve this. The best one is to increase the threshold for the edge extraction to
eliminate faint edges. In addition, the value for the smoothing parameter can be increased to smooth
irrelevant edges away.

When grouping edges to pairs, noise edges can lead to an incorrect grouping if they are in the vicinity of
the “real” edge and have the same polarity. In such a case you can suppress the noise edges by selecting
only the strongest edges of a sequence of consecutive rising and falling edges.

Reuse of Measure Objects

Because the creation of a measure object needs some time, we recommend to reuse them if possible.
If no alignment is needed, the measure object can, for example, be created offline and reused for each
image. If the alignment involves only a translation, translate_measure can be used to correct the
position.

Use an Absolute Gray Value Threshold

As an alternative to edge extraction, the measurements can be performed based on an absolute gray value
threshold by using the operator measure_thresh. Here, all positions where the gray value crosses the
given threshold are selected.

3.4.8 Advanced Topics

Fuzzy Measuring

In case there are extra edges that do not belong to the measurement, HALCON offers an extended
version of measuring: fuzzy measuring. This tool allows to define so-called fuzzy rules, which describe

3.4 1D Measuring 63

the features of good edges. Possible features are, e.g., the position, the distance, the gray values, or the
amplitude of edges. These functions are created with create_funct_1d_pairs and passed to the tool
with set_fuzzy_measure. Based on these rules, the tool will select the most appropriate edges.

The advantage of this approach is the flexibility to deal with extra edges even if a very low min-
imum threshold or smoothing is used. An example for this approach is the example program
fuzzy_measure_pin.dev on page 212.

Please refer to the Application Note on 1D Metrology, section 4 on page 25, for more information.

Evaluation of Gray Values

To have full control over the evaluation of the gray values along the measurement line or arc, you can use
measure_projection. The operator returns the projected gray values as an array of numbers, which
can then be further processed with HALCON operators for tuple or function processing (see the chapters
“Tuple” and “Tools . Function” in the Reference Manual). Please refer to the Application Note on 1D
Metrology, section 3.4 on page 16, for more information.

M
et

ho
ds

64 Machine Vision Methods

3.5 Edge Extraction (pixel-precise)

The traditional way of finding edges, i.e., dark / light transitions in an image, is to apply an edge filter.
These filters have the effect to find pixels at the border between light and dark areas. In mathematical
terms this means that these filters determine the image gradient. This image gradient is typically returned
as the edge amplitude and/or the edge direction. By selecting all pixels with a high edge amplitude,
contours between areas can be extracted.

HALCON offers all standard edge filters like the Sobel, Roberts, Robinson, or Frei filters. Besides
these, post-processing operators like hysteresis thresholding or non-maximum suppression are provided.
In addition, state-of-the-art filters that determine the edge amplitude and edge direction accurately are
provided. This enables you to apply the filters in a flexible manner.

b)

a)

c)

Figure 3.9: Result of applying an edge filter: (a) amplitude, (b) direction, (c) extracted edges.

Please note that in addition to this classical approach, HALCON provides advanced operators for
subpixel-precise edge and line extraction (see the description of this method on page 74) and for succes-
sive post-processing and feature extraction.

3.5 Edge Extraction (pixel-precise) 65

3.5.1 Basic Concept

Using edge filters typically consists of three basic steps:

Process Edges

Extract Edges

Filter Image

Acquire Image(s)

Acquire Image(s)

First, an image is acquired.

For detailed information see the description of this method on page 22.

Filter Image

On the input image, an edge filter is applied. This operation results in one or two images. The basic
result is the edge amplitude, which is typically stored as a byte image, with the gray value of each pixel
representing the local edge amplitude. Optionally, the direction of the edges is returned. These values
are stored in a so-called direction image, with the values 0...179 representing the angle in degrees divided
by two.

Extract Edges

The result of applying the edge filter is an image containing the edge amplitudes. From this image,
the edges are extracted by selecting the pixels with a given minimum edge amplitude using a threshold
operator. The resulting edges are typically broader than one pixel and therefore have to be thinned. For
this step, various methods are available.

Process Edges

Having extracted the edges, two further processing steps can be applied: The first step is to convert the
edge regions into another data structure for a potential further processing and for extracting features. The
second step is to extract the regions enclosed by the edges.

M
et

ho
ds

66 Machine Vision Methods

A First Example

The following program shows an example for the basic concept of edge filters. As an edge filter, so-
bel_amp is applied with the mode ’thin_sum_abs’ to get thin edges together with a 3x3 filter mask.
Then, the operator threshold is used to extract all pixels with an edge amplitude higher than 20. The
resulting region contains some areas where the edge is wider than one pixel. Therefore, the operator
skeleton is applied to thin all edges completely. The result is depicted in figure 3.9c on page 64.

read_image (Image, ’fuse’)

sobel_amp (Image, EdgeAmplitude, ’thin_sum_abs’, 3)

threshold (EdgeAmplitude, Region, 20, 255)

skeleton (Region, Skeleton)

3.5.2 Extended Concept

Visualize Results

Process Edges

Extract Edges

Filter Image

Acquire Image(s)

Filter Image

HALCON offers a wide range of edge filters. One of the most popular filters is the Sobel filter. This
is the best of the old-fashioned filters. It combines speed with a reasonable quality. The corresponding
operators are called sobel_amp and sobel_dir.

In contrast, edges_image provides the state of the art of edge filters. This operator is actually more
than just a filter. It includes a thinning of the edges using a non-maximum suppression and a hysteresis
threshold for the selection of significant edge points. It also returns the edge direction and the edge
amplitude very accurately, which is not the case with the Sobel filter. This operator is recommended if
higher quality is more important than a longer execution time. The corresponding operator to find edges
in multi-channel images, e.g., a color image, is edges_color.

3.5 Edge Extraction (pixel-precise) 67

Extract Edges

The easiest way to extract the edges from the edge amplitude image is to apply threshold to select
pixels with a high edge amplitude. The result of this step is a region that contains all edge points. With
skeleton, these edges can be thinned to a width of one pixel. As an advanced version for threshold,
hysteresis_threshold can be used to eliminate insignificant edges. A further advanced option is to
call the operator nonmax_suppression_dir before skeleton, which in difficult cases may result in
more accurate edges. Note that in order to use this operator you must have computed the edge direction
image.

In contrast, the advanced filter edges_image already includes the non-maximum suppression and the
hysteresis threshold. Therefore, in this case a simple threshold suffices to extract edges that are one
pixel wide.

If only the edge points as a region are needed, the operator inspect_shape_model can be used. Here,
all steps including edge filtering, non-maximum suppression, and hysteresis thresholding are performed
in one step with high efficiency.

Process Edges

If you want to extract the coordinates of edge segments, split_skeleton_lines is the right choice.
This operator must be called for each connected component (result of connection) and returns all the
control points of the line segments. As an alternative, a Hough transform can be used to obtain the line
segments. Here, the operators hough_lines_dir and hough_lines are available.

You can extract the regions enclosed by the edges easily using background_seg. If regions merge
because of gaps in the edges, the operators close_edges or close_edges_length can be used in
advance to close the gaps before regions are extracted. As an alternative, morphological operators like
opening_circle can be applied to the output regions of background_seg. In general, all operators
described for the method Process Regions on page 42 can be applied here as well.

Visualize Results

Finally, you might want to display the images, the edges (regions), and the line segments.

For detailed information see the description of this method on page 173.

3.5.3 Industries

3.5.3.1 Photogrammetry And Remote Sensing

Sometimes, objects can no longer be separated because they have similar gray values. When us-
ing color information, it is possible to extract the object borders quite easily. The example program
edges_color.dev on page 205 shows how to separate two areas that have the same luminance but
different hues.

3.5.4 Programming Examples

This section gives a brief introduction to using HALCON for edge filtering and edge extraction.

M
et

ho
ds

68 Machine Vision Methods

3.5.4.1 Aerial Image Interpretation

Example: examples\quick_guide\hdevelop\edge_segments.dev

Figure 3.10 shows an image taken from an aeroplane. The task is to extract the edges of roads and
buildings as a basis for the image interpretation.

a) b)

Figure 3.10: (a) Extracting edges and (b) approximating them by segments.

The extraction of edges is very simple and reliable when using the operator edges_image. This operator
returns both the edge amplitude and the edge direction. Here, the parameters are selected such that a non-
maximum suppression (parameter value ’nms’) and a hysteresis threshold (threshold values 20 and 40)
are performed. The non-maximum suppression has the effect that only pixels in the center of the edge are
returned, together with the corresponding values for the amplitude and the direction. All other pixels are
set to zero. Therefore, a threshold with the minimum amplitude of 1 is sufficient here. As a preparation
for the next step, the edge contour regions are split up into their connected components.

read_image (Image, ’mreut’)

edges_image (Image, ImaAmp, ImaDir, ’lanser2’, 0.5, ’nms’, 20, 40)

threshold (ImaAmp, Region, 1, 255)

connection (Region, ConnectedRegions)

The rest of the example program converts the region data into numeric values. To be more pre-
cise: the edges are approximated by individual line segments. This is performed by calling
split_skeleton_lines for each connected component. The result of this call are four tuples that
contain the start and the end coordinates of the line segments. For display purposes, each of these line
segments is converted into an XLD contour.

3.5 Edge Extraction (pixel-precise) 69

Number := |ConnectedRegions|

XLDContours := []

for i := 1 to Number by 1

SingleEdgeObject := ConnectedRegions[i]

split_skeleton_lines (SingleEdgeObject, 2, BeginRow, BeginCol, EndRow,

EndCol)

for k := 0 to |BeginRow|-1 by 1

gen_contour_polygon_xld (Contour, [BeginRow[k],EndRow[k]],

[BeginCol[k],EndCol[k]])

XLDContours := [XLDContours,Contour]

endfor

endfor

dev_display (XLDContours)

3.5.4.2 Other Examples

HDevelop

• examples\hdevelop\Applications\Aerial\roads.dev
Extraction of roads from aerial image
→ description here in the Quick Guide on page 207

• examples\hdevelop\Applications\FA\sharpness.dev
Determines the sharpness of an image using different approaches

• examples\hdevelop\Applications\Sequences\autobahn.dev
Fast detection of lane markers

• examples\hdevelop\Filter\Edges\close_edges.dev
Closing edge gaps using the edge amplitude image

• examples\hdevelop\Filter\Edges\close_edgeslength.dev
Closing edge gaps using the edge amplitude image

• examples\hdevelop\Filter\Edges\derivate_gauss.dev
Various usages for convolving an image with derivatives of the Gaussian

• examples\hdevelop\Filter\Edges\diff_of_gauss.dev
Approximating the LoG operator (Laplace of Gaussian)

• examples\hdevelop\Filter\Edges\edges_color.dev
Extracting edges using color information
→ description here in the Quick Guide on page 205

• examples\hdevelop\Filter\Edges\edges_image.dev
Extracting edges (amplitude and direction) using Deriche, Lanser, Shen, or Canny filters

• examples\hdevelop\Filter\Edges\frei_amp.dev
Extracting edges (amplitude) using the Frei-Chen operator

• examples\hdevelop\Filter\Edges\frei_dir.dev
Extracting edges (amplitude and direction) using the Frei-Chen operator

M
et

ho
ds

70 Machine Vision Methods

• examples\hdevelop\Filter\Edges\highpass_image.dev
Extracting high frequency components from an image

• examples\hdevelop\Filter\Edges\info_edges.dev
Estimate the width of a filter in edges_image

• examples\hdevelop\Filter\Edges\kirsch_amp.dev
Extracting edges (amplitude) using the Kirsch operator

• examples\hdevelop\Filter\Edges\kirsch_dir.dev
Extracting edges (amplitude and direction) using the Kirsch operator

• examples\hdevelop\Filter\Edges\laplace.dev
Extracting edges using the Laplace Operator

• examples\hdevelop\Filter\Edges\laplace_of_gauss.dev
Extracting edges using the LoG operator (Laplace of Gaussian)

• examples\hdevelop\Filter\Edges\prewitt_amp.dev
Extracting edges (amplitude) using the Prewitt operator

• examples\hdevelop\Filter\Edges\prewitt_dir.dev
Extracting edges (amplitude and direction) using the Prewitt operator

• examples\hdevelop\Filter\Edges\roberts.dev
Extracting edges using the Roberts filter

• examples\hdevelop\Filter\Edges\robinson_amp.dev
Extracting edges (amplitude) using the Robinson operator

• examples\hdevelop\Filter\Edges\robinson_dir.dev
Extracting edges (amplitude and direction) using the Robinson operator

• examples\hdevelop\Filter\Edges\sobel_amp.dev
Extracting edges (amplitude) using the Sobel operator

• examples\hdevelop\Filter\Edges\sobel_dir.dev
Extracting edges (amplitude and direction) using the Sobel operator

• examples\hdevelop\Filter\Lines\bandpass_image.dev
Extracting lines using bandpass filter

• examples\hdevelop\Graphics\Output\disp_xld.dev
Displaying an XLD object

• examples\hdevelop\Manuals\HDevelop\road_signs.dev
Finds road markings on a motorway
→ description in the HDevelop User’s Manual on page 151

• examples\hdevelop\Regions\Transformations\background_seg.dev
Calculating connected background components for given foreground regions

• examples\hdevelop\Segmentation\Edges\hysteresis_threshold.dev
Performing a hysteresis threshold operation on an edge image

3.5 Edge Extraction (pixel-precise) 71

• examples\hdevelop\Segmentation\Edges\nonmax_suppression_amp.dev
Suppressing non-maximum points

• examples\hdevelop\Segmentation\Edges\nonmax_suppression_dir.dev
Suppress non-maximum points on edges

• examples\hdevelop\Tools\Hough\hough_lines.dev
Detecting lines in an image using the Hough transform

• examples\hdevelop\Tools\Hough\hough_lines_dir.dev
Detecting lines in an image using the Hough transform and local gradient directions

• examples\quick_guide\hdevelop\surface_scratch.dev
Detects scratches on a surface via local thresholding and morphology
→ description here in the Quick Guide on page 241

C++

• examples\cpp\source\example10.cpp
Working with contour data and zooming results

• examples\cpp\source\example3.cpp
Iterating over a set of image pixels

• examples\cpp\source\example4.cpp
Extracting edges using a Sobel filter

• examples\cpp\source\example9.cpp
Extracts roads from aerial images

Visual Basic

• examples\vb\Online\Movement\movement.vbp
Detecting moving objects

C

• examples\c\example2.c
Performing some basic segmentation

• examples\c\example4.c
Applying an LUT for visualization of relevant details

3.5.5 Selecting Operators

Acquire Image(s)

Please refer to the operator list for the method Image Acquisition (see section 3.1.4 on page 25).

M
et

ho
ds

72 Machine Vision Methods

Filter Image

Standard:

sobel_amp, sobel_dir, edges_image

Advanced:

derivate_gauss, edges_color

Extract Edges

Standard:

threshold, skeleton, inspect_shape_model

Advanced:

hysteresis_threshold, nonmax_suppression_dir

Process Edges

Standard:

background_seg, close_edges, close_edges_length, opening_circle,
split_skeleton_lines, hough_lines_dir, hough_lines

Visualize Results

Please refer to the operator list for the method Visualization (see section 3.14.5 on page 184).

3.5.6 Relation to Other Methods

3.5.6.1 Alternatives to Edge Extraction (pixel-precise)

Blob Analysis (see description on page 39)
As an alternative to edge extraction, blob analysis can be used. This approach provides many methods
from simple thresholding to region growing and watershed methods.

3.5.7 Tips & Tricks

Use of Domains (Regions of Interest)

The concept of domains (the HALCON term for a region of interest) is very important for edge extraction.
With domains, the processing can be focused to a certain area in the image and can thus be sped up. The
more the region in which the edge filtering is performed can be restricted, the faster and more robust the
extraction will be. For an overview on how to construct regions of interest and how to combine them
with the image see the method Region Of Interest on page 27.

3.5 Edge Extraction (pixel-precise) 73

Speed Up

Many online applications require maximum speed. Because of its flexibility, HALCON offers many
ways to achieve this goal. Here the most common ones are listed.

• Regions of interest are the standard way to reduce the processing to only those areas where objects
must be inspected. This can be achieved using pre-defined regions but also by an online generation
of the regions of interest that depends on other objects found in the image.

• If high speed is important, the operators sobel_amp and inspect_shape_model are the preferred
choice.

• By default, HALCON initializes new images. Using set_system(’init_new_image’,
’false’), this behavior can be changed to save execution time.

3.5.8 Advanced Topics

Subpixel Edge and Line Extraction

The state-of-the-art alternative to edge filters are the subpixel-accurate edge and line extractors of HAL-
CON. Here, the result is not an edge image, but XLD contours that correspond to the locations of the
edges and lines without any intermediate step. For more information see Edge Extraction (subpixel-
precise).

Contour Processing

As a post-processing step, you can convert the edge region into XLD contours by using, e.g., the operator
gen_contours_skeleton_xld. The advantage of this approach is the extended set of operators offered
for contour processing on page 84.

M
et

ho
ds

74 Machine Vision Methods

3.6 Edge Extraction (subpixel-precise)

In addition to the traditional way of applying an edge filter to get the edge amplitude and thus the edges
(see the method Edge Extraction (pixel-precise) on page 64), HALCON provides one-step operators that
return subpixel-precise XLD contours. Besides this, not only edges but also lines can be extracted. This
approach can also be applied to color images.

The advantage of this approach is its ease of use, because only a single operator call is needed. Fur-
thermore, the accuracy and stability of the found contours is extremely high. Finally, HALCON offers
a wide set of operators for the post-processing of the extracted contours, which includes, e.g., contour
segmentation and fitting of circles, ellipses, and lines.

b)a)

Figure 3.11: Result of contour extraction: (a) edge contours, (b) line contours.

This chapter covers only the extraction of contours. For information about processing them see the
method Contour Processing on page 84.

3.6.1 Basic Concept

Extracting contours can easily be performed in a single step. Normally, no other operation is required.

Extract Edges Or Lines

Acquire Image(s)

Acquire Image(s)

First, an image is acquired as input for the process.

For detailed information see the description of this method on page 22.

3.6 Edge Extraction (subpixel-precise) 75

Extract Edges Or Lines

HALCON offers various operators for the subpixel-accurate extraction of contours. The standard oper-
ator is based on the first derivative. It takes the image as input and returns the XLD contours. When
using the second derivatives, first a Laplace operator must be executed before the contours along the
zero crossings can be extracted. Besides the gray-value-based methods, HALCON provides the latest
technology for the extraction of color edges.

Besides the extraction of edges, HALCON provides operators for the extraction of lines. In other systems
lines are also called ridges. In contrast to edges, a line consists of two gray value transitions. Thus, a line
can be considered as two parallel edges.

A First Example

The following program explains the basic concept of edge extraction. The only operator needed to extract
edge contours is edges_sub_pix. It has the image as input and returns the XLD contours. Here, the
filter ’lanser2’ is selected with a medium-sized smoothing mask. The low value for the parameter
Low ensures that contours are tracked even along low-contrast parts. To show that the result consists of
multiple contours, the 12-color mode for visualization is selected. The result is depicted in figure 3.11b
on page 74.

read_image (Image, ’mreut4_3’)

edges_sub_pix (Image, Edges, ’lanser2’, 0.5, 8, 50)

dev_set_colored (12)

dev_clear_window ()

dev_display (Edges)

M
et

ho
ds

76 Machine Vision Methods

3.6.2 Extended Concept

In addition to the extraction, optional steps can be performed.

Visualize Results

Transform Results Into
World Coordinates

Determine Contour
Attributes

Extract Edges Or Lines

Radiometrically Calibrate
Image(s)

Acquire Image(s)

Radiometrically Calibrate Image(s)

To extract edges or lines with high accuracy, the camera should have a linear response function, i.e.,
the gray values in the images should depend linearly on the incoming energy. Since some cameras
do not have a linear response function, HALCON provides the so-called radiometric calibration (gray
value calibration): With the operator radiometric_self_calibration you can determine the inverse
response function of the camera (offline) and then apply this function to the images using lut_trans
before performing the edge and line extraction.

Extract Edges Or Lines

The most often used operator for edge contour extraction is edges_sub_pix. You can select various
filter methods by specifying the corresponding name with the parameter Filter. For standard applica-
tions, we recommend to use the values ’canny’ (based on a Gaussian convolution) or ’lanser2’. The
advantage of ’lanser2’ is the recursive implementation which has no increase in execution time when
using a large smoothing. As a fast version the parameter value ’sobel’ can be used.

The operator zero_crossing_sub_pix can be used in combination with a filter like derivate_gauss
with parameter value ’laplace’. The Laplace operator is mainly applied in the medical area.

To extract edges in multi-channel images, e.g., in a color image, HALCON provides the operator
edges_color_sub_pix .

3.6 Edge Extraction (subpixel-precise) 77

The most commonly used operator for line extraction is lines_gauss. Compared to lines_facet it
is more robust and provides more flexibility. The width of lines that should be extracted is specified by
the parameter Sigma: The wider the line, the larger the value must be chosen. For very wide lines we
recommend to zoom down the image (zoom_image_factor) in order to reduce the overall execution
time.

Like for edges, HALCON provides line extraction also for multi-channel images. The corresponding
operator is lines_color.

Determine Contour Attributes

The edge and line extraction operators not only provide the XLD contours but also so-called attributes.
Attributes are numerical values; they are associated either with each control point of the contour
(called contour attribute) or with each contour as a whole (global contour attribute). The operators
get_contour_attrib_xld and get_contour_global_attrib_xld enable you to access these val-
ues by specifying the attribute name.

The attribute values are returned as tuples of numbers. Typical attributes for edges are, e.g., the edge am-
plitude and direction. For lines a typical attribute is the line width. The available attributes can be queried
for a given contour with query_contour_attribs_xld and query_contour_global_attribs_xld.

Transform Results Into World Coordinates

In many applications the coordinates of contours should be transformed into another coordinate system,
e.g., into 3D world coordinates. After you have calibrated your vision system, you can easily perform
the transformation with the operator contour_to_world_plane_xld. With this approach you can also
eliminate lens distortions and perspective distortions.

This is described in detail in the Application Note on 3D Machine Vision in section 3.2 on page 44.

Visualize Results

Finally, you might want to display the images and the contours.

For detailed information see the description of this method on page 173.

3.6.3 Industries

3.6.3.1 Health Care And Life Science

A standard task in angiography is the inspection of the coronary vessels. In addition to locating the
vessels, an important step is to determinate their diameter. This task is solved by the example program
lines_gauss.dev on page 196.

3.6.3.2 Photogrammetry And Remote Sensing

A very complex task is the extraction of roads from an aerial image. The example program roads.dev
on page 207 shows how lines and edges can be used in combination to get road segments with a high
probability.

M
et

ho
ds

78 Machine Vision Methods

3.6.4 Programming Examples

This section gives a brief introduction to using HALCON for edge extraction.

3.6.4.1 Measuring the diameter of drilled holes

Example: examples\quick_guide\hdevelop\rim_simple.dev

Figure 3.12 shows an image of a car rim. The task is to measure the diameters of the drilled holes.

a) b) c)

Figure 3.12: (a) automatically determined ROIs; (b) extracted edges; (c) computed ellipses and diameters.

First, a segmentation step is performed to roughly find the borders of the holes. The actual edge extraction
is then performed only in these regions of interest (ROIs). This has two advantages: First, there are many
edges in the image that are of no interest for the measurement. By restricting the processing to ROIs you
can easily select the relevant objects. Secondly, the contour extraction is time-consuming. Thus, a
reduced domain is an efficient way to speed-up the process.

Locating the holes is quite easy: First, all dark pixels are selected. After selecting all those connected
components that are circular and have a certain size, only the holes remain. Finally, the regions of interest
are obtained by accessing the borders of the holes and dilating them. The resulting ROIs are depicted in
figure 3.12a.

threshold (Image, Dark, 0, 128)

connection (Dark, DarkRegions)

select_shape (DarkRegions, Circles, [’circularity’,’area’], ’and’,

[0.85,50], [1.0,99999])

boundary (Circles, RegionBorder, ’inner’)

dilation_circle (RegionBorder, RegionDilation, 6.5)

union1 (RegionDilation, ROIEdges)

Calling reduce_domain changes the domain of the image to the prepared region of interest. Now, the
edge extractor can be applied (see figure 3.12b).

reduce_domain (Image, ROIEdges, ImageROI)

edges_sub_pix (ImageROI, Edges, ’lanser2’, 0.3, 10, 30)

3.6 Edge Extraction (subpixel-precise) 79

The extracted contours are further processed to determine their diameter: With
fit_ellipse_contour_xld, ellipses are fitted to the contours. In other words, those ellipses
are determined that fit the extracted contours as closely as possible. The operator returns the parameters
of the ellipses. With the operator gen_ellipse_contour_xld, the corresponding ellipses are created
and displayed (compare figure 3.12b and figure 3.12c).

fit_ellipse_contour_xld (Edges, ’ftukey’, -1, 2, 0, 200, 3, 2, Row, Column,

Phi, Ra, Rb, StartPhi, EndPhi, PointOrder)

NumHoles := |Ra|

gen_ellipse_contour_xld (ContEllipse, Row, Column, Phi, Ra, Rb,

gen_tuple_const(NumHoles,0), gen_tuple_const(NumHoles,rad(360)),

gen_tuple_const(NumHoles,’positive’), 1)

The diameters can easily be computed from the ellipse parameters and then be displayed in the image
using write_string (see figure 3.12c).

for i := 0 to NumHoles-1 by 1

write_string (WindowID, ’D1=’ + 2*Ra[i])

write_string (WindowID, ’D2=’ + 2*Rb[i])

endfor

3.6.4.2 Other Examples

HDevelop

• examples\application_guide\1d_metrology\hdevelop\fuzzy_measure_switch.dev
Determine the width of and the distance between the pins of a switch with a fuzzy measure object
→ description in the Application Note on 1D Metrology on page 25

• examples\application_guide\1d_metrology\hdevelop\measure_caliper.dev
Measures the distance between the pitch lines of a caliper
→ description in the Application Note on 1D Metrology on page 16

• examples\application_guide\1d_metrology\hdevelop\measure_ic_leads.dev
Measures leads of an IC
→ description in the Application Note on 1D Metrology on page 11

• examples\application_guide\1d_metrology\hdevelop\measure_ring.dev
Determine the width of cogs with a circular measure object
→ description in the Application Note on 1D Metrology on page 22

• examples\application_guide\1d_metrology\hdevelop\measure_switch.dev
Determine the width of and the distance between the pins of a switch with a measure object
→ description in the Application Note on 1D Metrology on page 4

• examples\application_guide\3d_machine_vision\hdevelop\
camera_calibration_exterior.dev
Measures positions on a caliper rule using camera calibration
→ description in the Application Note on 3D Machine Vision on page 41

M
et

ho
ds

80 Machine Vision Methods

• examples\application_guide\3d_machine_vision\hdevelop\
radial_distortion.dev
Eliminating radial distortions
→ description in the Application Note on 3D Machine Vision on page 48

• examples\hdevelop\Applications\Aerial\roads.dev
Extraction of roads from aerial image
→ description here in the Quick Guide on page 207

• examples\hdevelop\Applications\Calibration\3d_position_of_circles.dev
Determine the pose of circles in 3D from their perspective 2D projections

• examples\hdevelop\Applications\Calibration\lens_distortions.dev
Eliminates distortions of edges extracted from a distorted image

• examples\hdevelop\Applications\Calibration\world_coordinates_line_scan.dev
Measures distances between the pitch lines of a caliper rule in a line scan image using camera
calibration

• examples\hdevelop\Applications\FA\circles.dev
Fits circles into curved contour segments
→ description here in the Quick Guide on page 200

• examples\hdevelop\Applications\Medicine\angio.dev
Extracts blood vessels and their diameters from an angiogram

• examples\hdevelop\Filter\Edges\edges_color_sub_pix.dev
Extracting edges with sub-pixel precision using color information

• examples\hdevelop\Filter\Edges\edges_sub_pix.dev
Extracting edges with sub-pixel precision

• examples\hdevelop\Filter\Lines\lines_color.dev
Extracting lines using color information
→ description here in the Quick Guide on page 191

• examples\hdevelop\Filter\Lines\lines_facet.dev
Extracting lines using the facet model

• examples\hdevelop\Filter\Lines\lines_gauss.dev
Extracting lines and their widths
→ description here in the Quick Guide on page 196

• examples\hdevelop\Graphics\Output\disp_xld.dev
Displaying an XLD object

• examples\hdevelop\Graphics\Output\dump_window_data.dev
Dump the content of the graphics window to an image object

• examples\hdevelop\Tools\2D-Transformations\vector_to_proj_hom_mat2d.dev
Rectifies image of stadium to simulate overhead view

• examples\hdevelop\Tools\Calibration\change_radial_distortion_contours_xld.dev
Eliminating radial distortions from extracted contours

3.6 Edge Extraction (subpixel-precise) 81

• examples\hdevelop\XLD\Features\fit_ellipse_contour_xld.dev
Approximating XLD contours with ellipses or elliptic arcs

• examples\hdevelop\XLD\Features\fit_ellipse_tooth_rim_xld.dev
Approximating the contour of a tooth rim with an ellipse to find its center.

• examples\hdevelop\XLD\Transformation\clip_contours_xld.dev
Clipping an XLD contour

• examples\hdevelop\XLD\Transformation\crop_contours_xld.dev
Cropping an XLD contour

• examples\hdevelop\XLD\Transformation\gen_parallel_contour_xld.dev
Computing the parallel contour of an XLD contour

• examples\hdevelop\XLD\Transformation\sort_contours_xld.dev
Sorting XLD contours by spatial position

• examples\hdevelop\XLD\Transformation\union_cocircular_contours_xld.dev
Merging contours belonging to the same circle

• examples\hdevelop\XLD\Transformation\union_contours_xld.dev
Connecting collinear line segments

• examples\quick_guide\hdevelop\close_contour_gaps.dev
Closing gaps in extracted straight contours
→ description here in the Quick Guide on page 92

• examples\quick_guide\hdevelop\measure_metal_part.dev
Inspects metal part by fitting lines and circles
→ description here in the Quick Guide on page 90

C++

• examples\cpp\source\example9.cpp
Extracts roads from aerial images

• examples\mfc\FGMultiThreading\FGMultiThreading.cpp
Using multiple threads to grab and process images in parallel

3.6.5 Selecting Operators

Acquire Image(s)

Please refer to the operator list for the method Image Acquisition (see section 3.1.4 on page 25).

Radiometrically Calibrate Image(s)

Standard:

radiometric_self_calibration, lut_trans

M
et

ho
ds

82 Machine Vision Methods

Extract Edges Or Lines

Standard:

edges_sub_pix, derivate_gauss, lines_gauss, lines_facet

Advanced:

zero_crossing_sub_pix, edges_color_sub_pix, lines_color

Determine Contour Attributes

Standard:

get_contour_attrib_xld, get_contour_global_attrib_xld,
query_contour_attribs_xld, query_contour_global_attribs_xld

Transform Results Into World Coordinates

Standard:

contour_to_world_plane_xld

More operators for transforming results into world coordinates are described in the Application Note on
3D Machine Vision.

Visualize Results

Please refer to the operator list for the method Visualization (see section 3.14.5 on page 184).

3.6.6 Relation to Other Methods

3.6.6.1 Alternatives to Edge Extraction (subpixel-precise)

Subpixel Thresholding
Besides the subpixel-accurate edge and line extractors, HALCON provides a subpixel-accurate thresh-
old operator called threshold_sub_pix. If the illumination conditions are stable, this can be a fast
alternative.

Subpixel Point Extraction
In addition to the contour-based subpixel-accurate data, HALCON offers subpixel-accurate point opera-
tors for various applications. In the reference manual, these operators can be found in the chapter “Filter
. Points”.

3.6 Edge Extraction (subpixel-precise) 83

3.6.7 Tips & Tricks

Use of Domains (Regions of Interest)

The concept of domains (HALCON term for region of interest) is very important for contour extraction.
With domains, the processing can be focused to a certain area in the image and can thus be sped up. The
more the region in which edges or lines are extracted can be restricted, the faster and more robust the
extraction will be. For an overview on how to construct regions of interest and how to combine them
with the image see the method Region Of Interest on page 27.

3.6.8 Advanced Topics

Contour Processing

Typically, the task is not finished by just extracting the contours and accessing the attributes. HALCON
provides further processing like contour segmentation, feature extraction, or approximation. For more
information see the method Contour Processing.

M
et

ho
ds

84 Machine Vision Methods

3.7 Contour Processing

One of HALCON’s powerful tool sets are the subpixel-accurate contours. Contours belong to the data
type XLD (see section 2.1.2.3 on page 12 for more information). These contours are typically the re-
sult of some kind of image processing and represent, e.g., the borders of objects. Figure 3.13a shows
such edges overlaid on the original image; Figure 3.13b zooms into the rectangular area marked in Fig-
ure 3.13a and furthermore highlights the so-called control points of the contours with crosses. Here, you
can clearly see the highly accurate positioning of the control points.

HALCON provides operators to perform advanced types of measurements with these contours. For
example, the contours can be segmented into lines and circular or elliptic arcs (see Figure 3.13c). The
parameters of these segments, e.g., their angle, center, or radius, can then be determined and used, e.g.,
in the context of a metrology task.

a) b) c)

Figure 3.13: XLD contours: (a) edge contours, (b) zoom into rectangular area, (c) segmented lines and
elliptic arcs.

The advantage of contour processing is twofold: First, its high accuracy enables reliable measurements.
Secondly, the extensive and flexible set of operators provided for this data type enables you to solve
problems that cannot be solved with classical methods like metrology.

3.7 Contour Processing 85

3.7.1 Basic Concept

The processing of contours consists of multiple steps that can be combined in a flexible way.

Extract Features

Perform Fitting

Process XLD Contours

Create XLD Contours

Create XLD Contours

The most common way to create XLD contours is to apply one of the subpixel-accurate extraction oper-
ators described for the method Extract Edges Or Lines on page 76. As an alternative, an edge filter with
some post-processing can be used. The resulting regions are then converted to XLD contours. Please
note that this approach is only pixel-accurate. For more information about this approach see the method
Edge Extraction (pixel-precise) on page 64.

Process XLD Contours

Typically, only certain contours of an object are used for an inspection task. One possibility to restrict
the extraction of contours to the desired ones is to use a well-fitting region of interest as, e.g., depicted
in figure 3.14a: The rectangular ROI just covers the upper part of the blades. When applying an edge
extractor, exactly one contour on each side of the objects is found.

In many cases, however, not only the desired contours are extracted. An example is depicted in fig-
ure 3.14b, where the ROI was chosen too large. Thus, the contours must be processed to obtain the
desired parts of the contours. In the example, the contours are segmented into parts and only parallel
segments with a certain length are selected (see the result in figure 3.14c).

Another reason for processing contours occurs if the extraction returns unwanted contours caused by
noise or texture or if there are gaps between contours because of a low contrast or contour intersections.

Perform Fitting

Having obtained contour segments that represent a line or a circular or elliptic arc, you can determine the
corresponding parameters, e.g., the coordinates of the end points of a line or the center and radius of a
circle, by calling one of the fitting operators. Their goal is to approximate the input contour as closely as
possible to a line or elliptic or circular arc. Because the used minimization algorithms are very advanced
and all contour points are used for the process, the parameters can be calculated very reliably.

M
et

ho
ds

86 Machine Vision Methods

b)

c)

a)

Figure 3.14: Selecting the desired contours: (a) exactly fitting ROI, (b) too many contours because of too
large ROI, (c) result of post-processing the contours from (b).

Extract Features

From both raw contours and processed contour parts features can be determined. Some of these consider
the contour as a linear object. Others treat a contour as the outer boundary of an object. Obviously,
the center of gravity makes sense only for a closed object, whereas the curvature is a feature of a linear
object.

A First Example

The following program is an example for the basic concept of contour processing. It shows how short
segments returned by the line extractor can be grouped to longer ones.

First, an image is acquired from file using read_image. The task is to extract the roads, which show
up as thin bright lines in the image. For this the operator lines_gauss is used. When we look at
the result of the contour extraction in figure 3.15a, we see that a lot of unwanted small segments are
extracted. They can be suppressed easily by calling select_contours_xld with a minimum contour
length. A further problem is that some roads are split into more than one segment. They can be combined
with the operator union_collinear_contours_xld. Looking at the result in figure 3.15b, we see that
many fragments have been combined along straight road parts. In curves this method fails because the
orientation of the segments differs too much.

read_image (Image, ’mreut4_3’)

lines_gauss (Image, Lines, 1.5, 2, 8, ’light’, ’true’, ’true’, ’true’)

select_contours_xld (Lines, LongContours, ’contour_length’, 15, 1000, 0, 0)

union_collinear_contours_xld (LongContours, UnionContours, 30, 2, 9, 0.7,

’attr_keep’)

3.7 Contour Processing 87

a) b)

Figure 3.15: Processing XLD contours, (a) extracted contours, (b) processed contours.

3.7.2 Extended Concept

In addition to the standard contour processing, HALCON provides other tools that can be added. Typical
examples for these are camera calibration, geometric transformations, or type conversions. With these,
the contour methods can be integrated into the overall vision task.

Visualize Results

Convert And Access XLD
Contours

Extract Features

Transform Results Into
World Coordinates

Perform Fitting

Process XLD Contours

Create XLD Contours

M
et

ho
ds

88 Machine Vision Methods

Create XLD Contours

The standard method to create contours is to call a contour extraction operator. Contour extraction
for edges is performed with edges_sub_pix, edges_color_sub_pix, or zero_crossing_sub_pix.
Lines are extracted using lines_gauss, lines_facet, or lines_color. For subpixel blob analysis
the operator threshold_sub_pix can be used. These operators are described in more detail with the
method Edge Extraction (subpixel-precise) on page 74.

If pixel-accuracy is sufficient, you can use an edge filter (like sobel_amp or edges_image) or a line
filter (like bandpass_image) followed by thresholding and thinning. The resulting elongated regions
are then converted into XLD contours with the operator gen_contours_skeleton_xld. For more
information on this approach see the method Edge Extraction (pixel-precise) on page 64.

Contours can also be synthesized from different sources, e.g., CAD data, user interaction, or me-
trology. Having obtained the coordinates of the control points from such a source, the operators
gen_contour_polygon_xld and gen_contour_polygon_rounded_xld convert them to XLD con-
tours. You can also draw XLD contours interactively with the operators draw_xld and draw_xld_mod.

Finally, the border of regions can be converted into XLD contours. The corresponding operator is called
gen_contour_region_xld.

Process XLD Contours

The first method to segment contours is to call segment_contours_xld. This operator offers various
modes: Splitting into line segments, linear and circular segments, or linear and elliptic segments. The
individual contour segments can then be selected with select_obj and passed to one of the fitting
operators described with the step Perform Fitting on page 85. Whether a contour segment represents a
line, a circular, or an elliptic arc can be queried via the global contour attribute ’cont_approx’ using
the operator get_contour_global_attrib_xld.

If only line segments are needed, you can use the combination of gen_polygons_xld followed by
split_contours_xld. The behavior is similar to using segment_contours_xld. The main differ-
ence is the possible postprocessing: When applying gen_polygons_xld, a so-called XLD polygon is
generated. This is a different data type, which represents the initial step for grouping of segments to
parallel lines.

An important step during contour processing is the suppression of irrelevant contours. This can be ac-
complished with the operator select_shape_xld, which provides almost 30 different shape features.
By specifying the desired minimum and maximum value and possibly combining multiple features, con-
tours can be selected very flexibly. As an alternative, you can use the operator select_contours_xld,
which offers typical features of linear structures. Finally, the operator select_xld_point can be used
in combination with mouse functions to interactively select contours.

If there are gaps within a contour, the pieces are treated as separate objects, which makes fur-
ther processing and feature extraction difficult. You can merge linear segments with the operators
union_collinear_contours_xld or union_straight_contours_xld. To handle contours with
a complex shape you must first segment them into linear segments (see above).

HALCON also provides an operator for general shape modifications: shape_trans_xld. With this
operator you can, e.g., transform the contour into its surrounding circle, convex hull, or surrounding
rectangle.

3.7 Contour Processing 89

Perform Fitting

With the operator fit_line_contour_xld you can determine the parameters of a line segment. The
operator provides different optimization methods, most of which are suppressing outliers. It returns the
coordinates of the start and the end point of the fitted line segment and the normal form of the line. To
visualize the results, you can use the operator gen_contour_polygon_xld.

For the fitting of circular and elliptic segments the operators fit_circle_contour_xld and
fit_ellipse_contour_xld are available. They also provide various optimization methods. For a
circular segment the center and the radius are returned together with the angle range of the visible part.
In addition, a second radius and the orientation of the main axis are returned for elliptic segments. To
visualize the results of both operators, you can use the operator gen_ellipse_contour_xld.

Transform Results Into World Coordinates

As a post-processing step, it may be necessary to correct the contours, e.g., to remove radial distortions,
or to transform the contours into a 3D world coordinate system in order to extract dimensional features in
world units. Such a transformation is based on calibrating the camera. After the calibration, you simply
call the operator contour_to_world_plane_xld to transform the contours.

How to transform contours into world coordinates is described in detail in the Application Note on 3D
Machine Vision in section 3.2 on page 44.

Extract Features

HALCON offers various operators to access the feature values. Commonly used shape features are
calculated by area_center_xld, compactness_xld, convexity_xld, eccentricity_xld, di-
ameter_xld, and orientation_xld. The hulls of the contours can be determined with small-
est_circle_xld or smallest_rectangle2_xld. Features based on geometric moments are calcu-
lated, e.g., by moments_xld.

Convert And Access XLD Contours

Finally, it might be necessary to access the raw data of the contours or to convert contours into another
data type, e.g., into a region.

You can access the coordinates of the control points with the operator get_contour_xld. It returns
the row and column coordinates of all control points of a contour in two tuples of floating-point val-
ues. In case of a contour array (tuple), you must loop over all the contours and select each one using
select_obj.

To convert contours to regions, simply call the operator gen_region_contour_xld. The operator
paint_xld paints the contour with anti-aliasing into an image.

The operators for edge and line extraction not only return the XLD contours but also so-called
attributes. Attributes are numerical values; they are associated either with each control point
(called contour attribute) or with each contour as a whole (global contour attribute). The operators
get_contour_attrib_xld and get_contour_global_attrib_xld enable you to access these val-
ues by specifying the attribute name. More information on this topic can be found in the description of
the step Determine Contour Attributes on page 77.

M
et

ho
ds

90 Machine Vision Methods

Visualize Results

Finally, you might want to display the images and the contours.

For detailed information see the description of this method on page 173.

3.7.3 Industries

3.7.3.1 Machinery

A typical task in quality control is to inspect the exact dimensions of objects. For objects with complex
shapes, which quite often occur in machinery, the flexibility of HALCON’s contour processing is ideal.
For a corresponding example see circles.dev on page 200.

3.7.3.2 Electric Components And Equipment

Color is a useful extra information if the gray values are not sufficient to extract components. For cables,
it is difficult to locate the centers and the extents if this information is not available. Using the subpixel-
accurate color line extractor, both features can be extracted in a robust manner. For a corresponding
example see lines_color.dev on page 191.

3.7.3.3 Photogrammetry And Remote Sensing

A very complex task is the extraction of objects like roads from an aerial image. The example program
roads.dev on page 207 demonstrates the powerful contour processing methods of HALCON. Both
lines (as centers of road candidates) and edges (as candidates for road borders) are input for the process.
By a stepwise verification and grouping process the road candidates are extracted.

3.7.4 Programming Examples

This section gives a brief introduction to using HALCON for contour processing.

3.7.4.1 Measuring Lines and Arcs

Example: examples\quick_guide\hdevelop\measure_metal_part.dev

The first example shows how to segment a contour into lines and (circular) arcs and how to determine
the corresponding parameters. Figure 3.16 shows the final result of the fitted primitives overlaid on the
input image.

As the initial step, the contours of the metal part are extracted using the operator edges_sub_pix. The
resulting contours are segmented into lines and circular arcs and sorted according to the position of their
upper left corner.

3.7 Contour Processing 91

Figure 3.16: Fitted lines and circles.

edges_sub_pix (Image, Edges, ’lanser2’, 0.5, 40, 90)

segment_contours_xld (Edges, ContoursSplit, ’lines_circles’, 6, 4, 4)

sort_contours_xld (ContoursSplit, SortedContours, ’upper_left’, ’true’,

’column’)

Then, lines and circles are fitted to the extracted segments. As already noted, the individual segments
must be accessed inside a loop. For this, first their total number is determined with count_obj (note that
HDevelop depicts this operator as an assignment). Inside the loop, the individual segments are selected
with the operator select_obj (again note the different HDevelop syntax). Then, their type (line or
circular arc) is determined by accessing a global attribute with get_contour_global_attrib_xld.
Depending on the result, either a circle or a line is fitted. For display purposes, circles and lines are
created using the determined parameters. Furthermore, the length of the lines is computed with the
operator distance_pp.

M
et

ho
ds

92 Machine Vision Methods

NumSegments := |SortedContours|

for i := 1 to NumSegments by 1

SingleSegment := SortedContours[i]

get_contour_global_attrib_xld (SingleSegment, ’cont_approx’, Attrib)

if (Attrib = 1)

fit_circle_contour_xld (SingleSegment, ’atukey’, -1, 2, 0, 5, 2, Row,

Column, Radius, StartPhi, EndPhi, PointOrder)

gen_ellipse_contour_xld (ContEllipse, Row, Column, 0, Radius, Radius,

0, rad(360), ’positive’, 1.0)

else

fit_line_contour_xld (SingleSegment, ’tukey’, -1, 0, 5, 2, RowBegin,

ColBegin, RowEnd, ColEnd, Nr, Nc, Dist)

gen_contour_polygon_xld (Line, [RowBegin,RowEnd], [ColBegin,ColEnd])

distance_pp (RowBegin, ColBegin, RowEnd, ColEnd, Length)

endif

endfor

3.7.4.2 Close gaps in a contour

Example: examples\quick_guide\hdevelop\close_contour_gaps.dev

The second example demonstrates how to close gaps in an object contour (see figure 3.17). The example
is based on synthetic data. Instead of using a real image, a light gray square on a dark gray background
is generated and a part of its boundary is blurred.

gen_rectangle1 (Rectangle, 30, 20, 100, 100)

region_to_bin (Rectangle, BinImage, 130, 100, 120, 130)

rectangle1_domain (BinImage, ImageReduced, 20, 48, 40, 52)

mean_image (ImageReduced, SmoothedImage, 15, 15)

paint_gray (SmoothedImage, BinImage, Image)

a) b)

Figure 3.17: Original edges and result of grouping process.

3.7 Contour Processing 93

The extraction of contours with edges_sub_pix thus results in an interrupted boundary (see fig-
ure 3.17a). Note that the edge extraction is restricted to the inner part of the image, otherwise edges
would be extracted at the boundary of the image.

rectangle1_domain (BinImage, ImageReduced, 20, 48, 40, 52)

edges_sub_pix (ImageReduced, Edges, ’lanser2’, 1.1, 22, 30)

A suitable operator for closing gaps in linear segments is union_collinear_contours_xld. Before
we can apply this operator, some pre-processing is necessary: First, the contours are split into linear
segments using segment_contours_xld. Then, regress_contours_xld is called to determine the
regression parameters for each segment. These parameters are stored with each contour and could be
accessed with get_regress_params_xld. Finally, union_collinear_contours_xld is called. Its
result is depicted in figure 3.17b on page 92.

segment_contours_xld (Edges, LineSegments, ’lines’, 5, 4, 2)

regress_contours_xld (LineSegments, RegressContours, ’no’, 1)

union_collinear_contours_xld (RegressContours, UnionContours, 10, 1, 2,

0.1, ’attr_keep’)

3.7.4.3 Other Examples

HDevelop

• examples\application_guide\3d_machine_vision\hdevelop\
camera_calibration_exterior.dev
Measures positions on a caliper rule using camera calibration
→ description in the Application Note on 3D Machine Vision on page 41

• examples\application_guide\3d_machine_vision\hdevelop\
handeye_stationarycam_grasp_nut.dev
Calculates pose for grasping a nut based on results of hand-eye calibration for a stationary camera
→ description in the Application Note on 3D Machine Vision on page 120

• examples\application_guide\3d_machine_vision\hdevelop\
radial_distortion.dev
Eliminating radial distortions
→ description in the Application Note on 3D Machine Vision on page 48

• examples\hdevelop\Applications\Aerial\roads.dev
Extraction of roads from aerial image
→ description here in the Quick Guide on page 207

• examples\hdevelop\Applications\Calibration\lens_distortions.dev
Eliminates distortions of edges extracted from a distorted image

• examples\hdevelop\Applications\Calibration\world_coordinates_line_scan.dev
Measures distances between the pitch lines of a caliper rule in a line scan image using camera
calibration

M
et

ho
ds

94 Machine Vision Methods

• examples\hdevelop\Applications\FA\circles.dev
Fits circles into curved contour segments
→ description here in the Quick Guide on page 200

• examples\hdevelop\Applications\Medicine\angio.dev
Extracts blood vessels and their diameters from an angiogram

• examples\hdevelop\Filter\Lines\lines_color.dev
Extracting lines using color information
→ description here in the Quick Guide on page 191

• examples\hdevelop\Filter\Lines\lines_gauss.dev
Extracting lines and their widths
→ description here in the Quick Guide on page 196

• examples\hdevelop\Graphics\Output\disp_xld.dev
Displaying an XLD object

• examples\hdevelop\Graphics\Output\dump_window_data.dev
Dump the content of the graphics window to an image object

• examples\hdevelop\Tools\2D-Transformations\vector_to_proj_hom_mat2d.dev
Rectifies image of stadium to simulate overhead view

• examples\hdevelop\Tools\Calibration\change_radial_distortion_contours_xld.dev
Eliminating radial distortions from extracted contours

• examples\hdevelop\Tools\Geometry\distance_cc_min.dev
Calculating the distance between two contours

• examples\hdevelop\XLD\Creation\gen_contour_region_xld.dev
Extracting the contours of regions as XLD objects

• examples\hdevelop\XLD\Features\fit_circle_contour_xld.dev
Approximating an XLD contour with a circle

• examples\hdevelop\XLD\Features\fit_ellipse_contour_xld.dev
Approximating XLD contours with ellipses or elliptic arcs

• examples\hdevelop\XLD\Features\fit_ellipse_tooth_rim_xld.dev
Approximating the contour of a tooth rim with an ellipse to find its center.

• examples\hdevelop\XLD\Features\fit_line_contour_xld.dev
Approximating XLD contours with line segments

• examples\hdevelop\XLD\Features\select_xld_point.dev
Selecting XLD contours containing a specified point

• examples\hdevelop\XLD\Features\shape_trans_xld.dev
Transforming contours into various standard shapes

• examples\hdevelop\XLD\Features\test_self_intersection_xld.dev
Testing if an XLD contour intersects itself

3.7 Contour Processing 95

• examples\hdevelop\XLD\Features\test_xld_point.dev
Testing if an XLD contour contains a specific point

• examples\hdevelop\XLD\Transformation\clip_contours_xld.dev
Clipping an XLD contour

• examples\hdevelop\XLD\Transformation\close_contours_xld.dev
Closing XLD contours

• examples\hdevelop\XLD\Transformation\crop_contours_xld.dev
Cropping an XLD contour

• examples\hdevelop\XLD\Transformation\gen_parallel_contour_xld.dev
Computing the parallel contour of an XLD contour

• examples\hdevelop\XLD\Transformation\projective_trans_contour_xld.dev
This program uses hom_mat3d_project and projective_trans_region to rotate an XLD contour in
3D

• examples\hdevelop\XLD\Transformation\sort_contours_xld.dev
Sorting XLD contours by spatial position

• examples\hdevelop\XLD\Transformation\union_cocircular_contours_xld.dev
Merging contours belonging to the same circle

• examples\hdevelop\XLD\Transformation\union_contours_xld.dev
Connecting collinear line segments

• examples\quick_guide\hdevelop\critical_points.dev
Locates saddle point markers in an image
→ description here in the Quick Guide on page 31

C++

• examples\cpp\source\example10.cpp
Working with contour data and zooming results

• examples\cpp\source\example9.cpp
Extracts roads from aerial images

3.7.5 Selecting Operators

Create XLD Contours

Standard:

gen_contour_polygon_xld, gen_contour_region_xld, gen_ellipse_contour_xld,
draw_xld, draw_xld_mod

Advanced:

gen_contour_polygon_rounded_xld

M
et

ho
ds

96 Machine Vision Methods

Further operators can be found in the following places: detailed operator list for the step Extract Edges
Or Lines on page 82, operator list for the method Edge Extraction (pixel-precise) (see section 3.5.5 on
page 71).

Process XLD Contours

Standard:

segment_contours_xld, gen_polygons_xld, split_contours_xld, select_shape_xld,
select_contours_xld, select_xld_point, union_collinear_contours_xld,
union_straight_contours_xld, shape_trans_xld

Advanced:

union_collinear_contours_ext_xld

Perform Fitting

Standard:

fit_line_contour_xld, fit_circle_contour_xld, fit_ellipse_contour_xld

Transform Results Into World Coordinates

Standard:

contour_to_world_plane_xld, change_radial_distortion_contours_xld

More operators for transforming results into world coordinates are described in the Application Note on
3D Machine Vision.

Extract Features

Standard:

area_center_xld, orientation_xld, smallest_circle_xld, smallest_rectangle1_xld,
smallest_rectangle2_xld, compactness_xld, convexity_xld, diameter_xld,
eccentricity_xld

A full list of operators can be found in the Reference Manual in the chapter “XLD . Features”.

Convert And Access XLD Contours

Standard:

get_contour_xld, gen_region_contour_xld

Advanced:

3.7 Contour Processing 97

paint_xld

More information on operators for accessing XLD data can be found in the Reference Manual in the
chapter “XLD . Access”. Operators for determining contour attributes can be found in the detailed
operator list for the step Determine Contour Attributes on page 82.

Visualize Results

Please refer to the operator list for the method Visualization (see section 3.14.5 on page 184).

3.7.6 Relation to Other Methods

3.7.6.1 Alternatives to Contour Processing

Line Processing
A very basic alternative to contour processing are the operators for line processing. In this context,
lines are treated as tuples of start and end points. The extraction can, e.g., be performed with de-
tect_edge_segments. Of course, XLD polygons can also be converted into this type of lines. Opera-
tors for processing this type of lines can be found in the Reference Manual in the chapter “Lines”.

3.7.7 Advanced Topics

Line Scan Cameras

In general, line scan cameras are treated like normal area sensors. But in some cases, not single images
but an infinite sequence of images showing objects, e.g., on a conveyor belt, have to be processed. In
this case the end of one image is the beginning of the next one. This means that contours that partially
lie in both images must be combined into one contour. For this purpose HALCON provides the operator
merge_cont_line_scan_xld. This operator is called after the processing of one image and combines
the current contours with those of previous images. For more information see Application Note on Image
Acquisition.

M
et

ho
ds

98 Machine Vision Methods

3.8 Template Matching

The idea of template matching is quite simple: In a training image a so-called template is presented. The
system derives a model from this template. This model is then used to locate objects that look “similar”
to the template in search images. Depending on the selected method, this approach is able to handle
changes in illumination, clutter, varying size, position, and rotation, or even relative movement of parts
of the template.

The advantage of template matching is its ease of use combined with great robustness and flexibility.
Template matching does not require any kind of segmentation of the desired objects. Objects can be
located even if they are overlapped by other objects. Furthermore, template matching has only a few pa-
rameters. Even these can be determined automatically in most cases. This makes this method especially
attractive for applications where the end user only has little skills in machine vision.

HALCON offers different methods for template matching. The selection depends on the image data and
the task to be solved.

• The gray-value-based matching is the classical method. It can be used if the gray values inside the
object do not vary and if there are no missing parts and no clutter. The method can handle single
instances of objects, which can appear rotated in the search image.

• The shape-based matching represents the state of the art in machine vision. Instead of using the
gray values, features along contours are extracted and used both for the model generation and the
matching. This has the effect that this method is invariant to changes in illumination and variations
of the objects gray values. It can handle missing object parts, clutter, and noise. Furthermore,
multiple instances can be found and multiple models can be used at the same time. The method
allows the objects to be rotated and scaled.

How to use shape-based matching is described in detail in the Application Note on Shape-Based
Matching.

• The component-based matching can be considered as a high-level shape-based matching: The
enhancement is that an object can consist of multiple parts that can move (rotate and translate)
relative to each other. A simple example of this is a pair of pliers. Logically this is considered as
one object, but physically it consists of two parts. The component-based matching allows handling
such a compound object in one search step. The advantage is an improved execution time and
increased robustness compared to handling the parts as distinct models.

• The point-based matching has the intention to combine two overlapping images. This is done by
first extracting significant points in both images. These points are the input for the actual matching
process. The result of the matching is a mapping from one image to the other, allowing translation,
rotation, scaling, and perspective distortions. This mapping is typically used to combine the two
images into a single, larger one. Of course, one image can also be treated as a template and the
other image as showing an instance of the object that should be found. The advantage is the ability
to handle perspective distortions without calibration. The disadvantage is the increased execution
time, which comes mainly from the extraction of the significant points.

3.8 Template Matching 99

3.8.1 Basic Concept

Template matching is divided into the following parts:

Destroy Model

Apply Matching

Train Model

Acquire Image(s)

Acquire Image(s)

Both for training and matching, first an image is acquired.

For detailed information see the description of this method on page 22.

Train Model

To create a matching model, first a region of interest that covers the template in the training image must
be specified. Only those parts of the image that are really significant and stable should be used for
training. The input for the training operator is the reduced image together with control parameters. The
handle of the model is the output of the training. The model will then be used for immediate search or
stored to file.

Apply Matching

Having created (or loaded) a model, it can now be used for locating objects in the image. Each method
offers specific methods to perform this task. If one or multiple objects are found, their poses (position,
rotation, and scaling) together with a score are returned. These values can already be the desired result
or serve as input for the next step of the vision process, e.g., for aligning regions of interest.

Destroy Model

When you no longer need the matching model you should destroy it using clear_shape_model.

A First Example

An example for this basic concept is the following program, which shows all necessary steps from model
generation to object finding.

M
et

ho
ds

100 Machine Vision Methods

Figure 3.18: Finding all clips in the image.

A training image is acquired from file. A region is generated as region of interest, covering one of the
clips in the image. After combining the region with the image, it is used as input for the training operator
create_shape_model. To keep the example simple, the same image is used to test the matching by
searching for all clips with find_shape_model. For visualization purposes the model contours are
accessed, moved to the corresponding positions, and overlaid on the image. Finally, the model is cleared
to release the memory.

read_image (Image, ’clip’)

gen_rectangle2 (ROI, 124, 181, 0.653, 129, 47)

reduce_domain (Image, ROI, ImageReduced)

create_shape_model (ImageReduced, 0, 0, rad(360), 0, ’no_pregeneration’,

’use_polarity’, 40, 10, ModelID)

find_shape_model (Image, ModelID, 0, rad(360), 0.7, 13, 0.5,

’interpolation’, 0, 0.9, Row, Column, Angle, Score)

get_shape_model_contours (ModelContours, ModelID, 1)

for i := 0 to |Row|-1 by 1

vector_angle_to_rigid (0, 0, 0, Row[i], Column[i], Angle[i], HomMat2D)

affine_trans_contour_xld (ModelContours, ContoursAffinTrans, HomMat2D)

endfor

clear_shape_model (ModelID)

3.8 Template Matching 101

3.8.2 Extended Concept

In many cases, template matching will be more complex than in the example above. Reasons for this
are, e.g., advanced training using a synthetic template, searching with multiple models at the same time,
or using the matching results as input for further processing like alignment.

Figure 3.19 shows the major steps. The first part is offline and consists of the training of the model, using
different input sources that depend on the application. The model can then be stored to be loaded again
for later use. For the matching itself, one or more models are used to search for objects in images. The
results are the poses, i.e., the position, rotation, and scale of the found objects.

Image

Position, angle, scale, score

Matching Application parameters

Model(s) on file

Training parameters

Synthetic reference image

CAD dataAveraged imageInteraction/image processing

Reduced reference image

Model generation

Offline

Online

Figure 3.19: Overview of the matching process.

M
et

ho
ds

102 Machine Vision Methods

Destroy Model

Visualize Results

Apply Matching

Train Model

Determine Training
Parameters

Rectify Image(s)

Radiometrically Calibrate
Image(s)

Acquire Image(s)

Radiometrically Calibrate Image(s)

To allow high-accuracy matching, the camera should have a linear response function, i.e., the gray values
in the images should depend linearly on the incoming energy. Since some cameras do not have a linear
response function, HALCON provides the so-called radiometric calibration (gray value calibration):
With the operator radiometric_self_calibration you can determine the inverse response function
of the camera (offline) and then apply this function to the images using lut_trans before performing
the matching.

Rectify Image(s)

As a preprocessing step, it may be necessary to rectify the image, e.g., to remove radial distortions or to
transform the image into a reference point of view. This will allow using template matching even if the
camera is looking from the side onto the object plane or the surface is a cylinder.

Detailed information about rectifying images can be found in the Application Note on 3D Machine
Vision in section 3.3 on page 49.

3.8 Template Matching 103

Determine Training Parameters

To make the use of the matching as easy as possible it is necessary to determine the training parameters
automatically. Because the shape-based matching is used most frequently, this section focuses on this
method. In addition, the shape-based matching is the basis for the component-based matching, and
therefore has very similar parameters.

The operator create_scaled_shape_model allows to use the value 0 for NumLevels, AngleStep,
and ScaleStep. This has the effect that the values are determined automatically. AngleStart, Angle-
Extent, ScaleMin, and ScaleMax are typically known from the setup of the system. They can also be
determined easily using HMatchIt with multiple test images and checking the values in the dialog Run >
Determine Pose Bounds. If ’no_pregeneration’ is used for the parameter Optimization wide
ranges can be used and restricted during the finding process. The other training parameters (Contrast,
MinContrast) can be determined using HMatchIt. If an automatic method is needed, please contact
your local distributor. Their support can provide application-specific procedures to determine the param-
eters.

Train Model

Creating a model differs from method to method, but several rules hold for all methods.

• You can use both real and synthetic images for the training. Using real images is easier. However, if
no such image is available or if the real images are too noisy you can create a synthetic image, e.g.,
with the operators gen_contour_polygon_rounded_xld, gen_image_const, and paint_xld.

If the training image is too noisy, you can enhance it, e.g., by smoothing noisy areas or by averaging
multiple templates into a single one.

• To speed up the matching process, a so-called image pyramid is created, consisting of the original,
fullsized image and a set of downsampled images. The model is then created and searched on
the different pyramid levels. You can view the image pyramid and the corresponding models for
shape-based matching in HMatchIt.

• Each model (except for the point-based matching) is manipulated via a handle. This handle points
to the real data, which can consume a large amount of memory. Therefore, it is important to clear
the model when it is no longer needed.

Having the general rules in mind, we now show how the creation is performed for the different methods.

• To create a model for gray-value-based matching, the operator create_template_rot is used.
The model can then be stored to file with write_template

• To create a model for the shape-based matching, the operator create_scaled_shape_model
is used. The other operator create_shape_model is just a convenient method if no scaling is
needed. The model can then be stored to file with write_shape_model

• For the component-based matching, the model can be created in different ways: If the compo-
nents and their relations are known, you can use the operator create_component_model. If
the components are known, but not their relations, you can train the relations using the operator
train_model_components with a set of training images, and then create the model using cre-
ate_trained_component_model. Finally, if the components themselves are not known, you can

M
et

ho
ds

104 Machine Vision Methods

determine them with the operator gen_initial_components, which then serve as the input for
train_model_components.

The model can then be stored to file with write_component_model. The training components
can be saved with write_training_components

• For the training of the point-based matching, no real model is generated. Here, only coordi-
nates must be determined, which will later be matched: For both the template and the search
image, subpixel locations of significant points are extracted. This is done using an operator like
points_foerstner. The returned positions, together with the image data, will then be input for
the matching.

Apply Matching

Finding an object with matching is an online process that has the image and one or multiple models as
input. Depending on the selected method, the search operators offer different ways of controlling the
search.

• You can search objects with gray-value-based matching using the operator cre-
ate_template_rot. This operator finds single instances of rotated objects. If the objects
are not rotated, the operator fast_match_mg allows to find all points with a high score. These
locations are returned as a region and can be further processed, e.g., with blob analysis (see the
description of this method on page 39).

• The standard operator for shape-based matching is find_scaled_shape_model. It allows lo-
cating multiple instances of the same template with rotations and scaling. If multiple models are
needed, the operator find_scaled_shape_models is used.

• For the component-based matching, find_component_model is used to locate multiple instances
of objects, which may be rotated and whose components may move with respect to each other.

• The matching operator for the point-based matching is proj_match_points_ransac. The input
are the two images containing the template and the object to be located, together with the significant
points. The result of the matching process is a 2D mapping from the template image to the object
image. This mapping is the input for operators like gen_projective_mosaic, which can be used
to combine the two images.

Visualize Results

A typical visualization task is to display the model contours overlaid on the image at the found position.
An easy way to do this is to access the model contours by calling get_shape_model_contours (for the
shape-based matching). With vector_angle_to_rigid and disp_xld, the contours can be displayed.
Displaying the results of the component-based matching is more complex. The easiest way is to call
get_found_component_model, which returns regions, one for each component. These can directly be
displayed with disp_region.

For detailed information see the description of this method on page 173.

3.8 Template Matching 105

3.8.3 Industries

3.8.3.1 Semiconductors

Semiconductor industry is the typical application area for template matching. Here, the main task is to
find objects and to determine their position accurately. For a corresponding example see the description
of pm_measure_board.dev on page 213.

Another example from semiconductor industry shows how to locate multiple components on
a printed circuit board in one step. For a corresponding example see the description of
cbm_modules_simple.dev on page 235.

A last example from semiconductor industry shows how to combine multiple low-resolution images into
one high-resolution image. This allows to cover a large area using standard camera technology and thus
to save money. For a corresponding example see the description of gen_projective_mosaic.dev on
page 214.

3.8.3.2 Electric Components And Equipment

An example from the electric components industry shows the possibilities of the component-based
matching. The classic approach would be to solve this task with matching for alignment, followed
by multiple measurements to get the position of the sub-parts. Here, the inspection is performed in one
step (see cbm_dip_switch.dev on page 190).

3.8.3.3 Printing

Matching is often a useful step to prepare a print inspection task: After locating the object that must be
tested, the reference pattern can be aligned and thus be compared easily. For a corresponding example
see print_check.dev on page 237.

3.8.4 Programming Examples

This section gives a brief introduction to using HALCON for template matching. The focus here is on
the shape-based matching.

3.8.4.1 Creating a Model for the “Green Dot”

Example: examples\quick_guide\hdevelop\create_model_green_dot.dev

This example shows how to use the shape-based matching with objects of varying size. Figure 3.20
depicts the training image, which contains the so-called “green dot”, a symbol used in Germany for
recycling packages. The template is not defined by a user interaction but by a segmentation step: Using
threshold all dark pixels are selected and the connected component with the appropriate size is chosen
(select_shape). This region is then filled and slightly dilated. Figure 3.20a depicts the result of the
segmentation.

M
et

ho
ds

106 Machine Vision Methods

threshold (Image, Region, 0, 128)

connection (Region, ConnectedRegions)

select_shape (ConnectedRegions, SelectedRegions, ’area’, ’and’, 10000,

20000)

fill_up (SelectedRegions, RegionFillUp)

dilation_circle (RegionFillUp, RegionDilation, 5.5)

b)a)

Figure 3.20: Creating a model for template matching: (a) ROI for the template region; (b) model contours.

The extracted region is then combined with the image (reduce_domain) to be used as the domain, i.e., as
the region of interest. To check whether the value for the parameter Contrast has been chosen correctly,
inspect_shape_model is called. The training is finally applied using create_scaled_shape_model.
The resulting model contours are depicted in figure 3.20b.

reduce_domain (Image, RegionDilation, ImageReduced)

inspect_shape_model (ImageReduced, ModelImages, ModelRegions, 1, 40)

create_scaled_shape_model (ImageReduced, 5, rad(-45), rad(90), 0, 0.8, 1.0,

0, [’none’,’no_pregeneration’], ’ignore_global_polarity’, 40, 10,

ModelID)

To complete the program, the model is written to file (write_shape_model); then, the memory of the
model is released with clear_shape_model.

write_shape_model (ModelID, ’green-dot.shm’)

clear_shape_model (ModelID)

3.8.4.2 Locating “Green Dots”

Example: examples\quick_guide\hdevelop\matching_green_dot.dev

In this example, we use the model created in the previous example to locate the so-called “green dots” in
a search image. As you can see in figure 3.21a, the search image contains three “green dots” in different
orientations and scales. Furthermore, some of them are partly occluded.

3.8 Template Matching 107

b)a)

Figure 3.21: Using template matching to locate rotated and scaled objects: (a) search image; (b) matches.

First, the shape model is read from file.

read_shape_model (’green-dot.shm’, ModelID)

Then, the search operator find_scaled_shape_model is executed. The result of the operator are the
positions, the orientations, and the scales of the “green dots”. To display the model contours overlaid
on the image, the contours are accessed with get_shape_model_contours. The for-loop is used to
handle the contours for each found location. This is done by generating an appropriate transformation
and then moving the contours to the correct position. Figure 3.21b depicts the result.

find_scaled_shape_model (ImageSearch, ModelID, rad(-45), rad(90), 0.8, 1.0,

0.5, 0, 0.5, ’least_squares’, 5, 0.8, Row, Column, Angle, Scale,

Score)

get_shape_model_contours (ModelContours, ModelID, 1)

for I := 0 to |Score|-1 by 1

vector_angle_to_rigid (0, 0, 0, Row[I], Column[I], Angle[I],

HomMat2DRotate)

hom_mat2d_scale (HomMat2DRotate, Scale[I], Scale[I], Row[I], Column[I],

HomMat2DScale)

affine_trans_contour_xld (ModelContours, ModelTrans, HomMat2DScale)

dev_display (ModelTrans)

endfor

At the end of the program, the memory of the model is released with clear_shape_model.

clear_shape_model (ModelID)

M
et

ho
ds

108 Machine Vision Methods

3.8.4.3 Other Examples

3.8.5 Selecting Operators

Acquire Image(s)

Please refer to the operator list for the method Image Acquisition (see section 3.1.4 on page 25).

Radiometrically Calibrate Image(s)

Standard:

radiometric_self_calibration, lut_trans

Rectify Image(s)

Operators for rectifying images are described in the Application Note on 3D Machine Vision.

Determine Training Parameters

Standard:

determine_shape_model_params, get_shape_model_params, inspect_shape_model

Train Model

Standard:

create_template_rot, create_scaled_shape_model, create_component_model,
gen_initial_components, train_model_components, create_trained_component_model,
points_foerstner, points_harris

Apply Matching

Standard:

best_match_mg, find_scaled_shape_model, find_component_model,
proj_match_points_ransac, gen_projective_mosaic

Advanced:

best_match_pre_mg, fast_match_mg, find_scaled_shape_models,
projective_trans_image_size

Visualize Results

Please refer to the operator list for the method Visualization (see section 3.14.5 on page 184).

3.8 Template Matching 109

Destroy Model

Standard:

clear_template, clear_shape_model, clear_component_model,
clear_training_components

3.8.6 Relation to Other Methods

3.8.6.1 Methods that are Using Template Matching

1D Measuring (see description on page 53)
OCR (see description on page 145)
1D Bar Code (see description on page 125)
The pose returned by the matching operators can be used as the input for a so-called alignment. This
means that either the position of an ROI is transformed relative to the movement of a specified object in
the image, or the image itself is transformed so that the pixels are moved to the desired position.
A detailed description of alignment can be found in the Application Note on Shape-Based Matching
in section 4.3.4 on page 36. For an example of using alignment as a preprocessing for the so-called
variation model in a print inspection application see the description of print_check.dev on page 237.

3.8.6.2 Alternatives to Template Matching

Blob Analysis (see description on page 39)
In some applications, the object to find can be extracted with classical segmentation methods. With
the operators area_center and orientation_region you can then determine its pose and use this
information, e.g., to align an ROI. With this approach, the execution time can be reduced significantly.
If the objects to be found appear only translated but not rotated or scaled, the morphological operators
erosion1 and opening can be used as binary template matching methods. Unlike in other vision
systems, in HALCON these operators are extremely fast.

3.8.7 Tips & Tricks

Use of Domains (Regions of Interest)

The concept of domains (the HALCON term for a region of interest) is very important for template
matching, both for the creation and the search: Especially during the creation it is very effective to make
use of arbitrarily shaped ROIs and thus mark out parts that do not belong to the template. During the
search, ROIs can be used to focus the process only on relevant parts, which reduces the execution time.
Two important notes on ROIs, which often cause confusion:

• The reference point of the template is defined by the center of gravity of the ROI used during
creation, not by the center of gravity of the contours returned by inspect_shape_model.

M
et

ho
ds

110 Machine Vision Methods

• During the search process, only the reference point of the model must fit into the search ROI, not
the complete shape. Therefore, sometimes very small ROIs consisting only of a few pixels can be
used.

For an overview on how to construct regions of interest and how to combine them with the image see
Region Of Interest on page 27.

Speed Up

Many online applications require maximum speed. Because of its flexibility, HALCON offers many
ways to achieve this goal. Below, the most common ones are listed:

• Regions of interest are the standard way to increase the speed by processing only those areas where
objects need to be inspected. This can be achieved using pre-defined regions, but also by an online
generation of the regions of interest that depends on other objects in the image.

• If multiple objects are searched for, it is more efficient to use find_scaled_shape_models in-
stead of using find_scaled_shape_model multiple times.

• Increasing the values for the parameters MinContrast and Greediness will decrease the exe-
cution time. However, you must make sure that the relevant objects will still be found.

• Using a lower value for the parameter Contrast during the training typically results in a better
performance because more pyramid levels can be used. If the contrast is too low, irrelevant con-
tours will also be included into the model, which typically causes a lower recognition rate and a
decreased accuracy.

• Very small templates cannot be found as quickly as larger ones. The reason for this is the reduced
number of significant contours within an image, which makes it harder to distinguish the template
from other structures. Furthermore, with smaller templates fewer pyramid levels can be used.

3.8.8 Advanced Topics

High Accuracy

Sometimes very high accuracy is required. Here the matching methods offer various interpolation meth-
ods to achieve this goal. However, with a poor image quality even a better interpolation method will not
improve the accuracy any more - it will just become slower. Here, it is important to consider both the
image quality and a reasonable interpolation method.

3.9 Color Processing 111

3.9 Color Processing

The idea of color processing is to take advantage of the additional information encoded in color or multi-
spectral images. Processing color images can simplify many machine vision tasks and provide solutions
to certain problems that are simply not possible in gray value images. In HALCON the following ap-
proaches in color processing can be distinguished: First, the individual channels of a color image can
be processed using standard methods like blob analysis. In this approach the channels of the original
image have to be decomposed first. An optional color space transformation is often helpful in order to
access specific properties of a color image. Secondly, HALCON can process the color image as a whole
by calling specialized operators, e.g., for pixel classification. Advanced applications of color processing
include lines and edges extraction.

b)a)

Figure 3.22: Simple color segmentation.

The example illustrated in figure 3.22 shows how to segment blue pieces of plasticine in a color image.

3.9.1 Basic Concept

Simple color processing, which is using the methods of blob analysis, mainly consists of three parts:

Process Image (Channels)

Decompose Channels

Acquire Image(s)

M
et

ho
ds

112 Machine Vision Methods

Acquire Image(s)

First, an image is acquired.

For detailed information see the description of this method on page 22.

Decompose Channels

In order to be able to process the individual channels, RGB color images have to be split up into a red,
green, and blue channel by using the operator decompose3.

Process Image (Channels)

Depending on the application, the individual channels can be processed using standard methods de-
scribed in this chapter. One of the most frequently used methods is blob analysis (see Blob Analysis on
page 39).

A First Example

An example for this basic concept is the following program, which belongs to the example explained
above.

Red Green Blue

Figure 3.23: Color image decomposed to its red, green, and blue channels.

Here, an RGB image is acquired from file. The image is split into its channels using decompose3. The
red and green channels are subtracted from the blue channel using sub_image. The purpose of this
process is to fade out pixels with high values in the other channels, leaving pure blue pixels only. Using
threshold, the blue pixels with a certain intensity are selected.

read_image (Image, ’plasticine’)

decompose3 (Image, Red, Green, Blue)

sub_image (Blue, Red, RedRemoved, 1, 0)

sub_image (RedRemoved, Green, RedGreenRemoved, 1, 0)

threshold (RedGreenRemoved, BluePixels, 10, 255)

3.9.2 Extended Concept

In many cases the processing of color images will be more advanced than in the above example. Depend-
ing on the actual application, the order of the following steps may vary, or some steps may be omitted
altogether.

3.9 Color Processing 113

Visualize Results

Compose Channels

Classify Colors

Train Colors

Transform Color Space

Decompose Channels

Demosaick Bayer Pattern

Acquire Image(s)

Demosaick Bayer Pattern

If the acquired image is a Bayer image, it can be converted to RGB using the operator cfa_to_rgb. The
encoding type of the Bayer pattern (the color of the first two pixels of the first row) must be known (see
figure 3.24).

GR R G

GR R G

BG G B

BG G B

encoding

Figure 3.24: Sample Bayer pattern and corresponding encoding.

M
et

ho
ds

114 Machine Vision Methods

Transform Color Space

The RGB color space is not always the most appropriate starting point to process color images. If this is
the case, a transformation to a different color space might be useful. HALCON supports many important
color spaces. Namely, the HSV and HSI color spaces are favorable to select distinct colors independent
of their intensity. Therefore, color segmentations in these color spaces are very robust under varying
illumination. The i1i2i3 color space qualifies for color classification, whereas the cielab color space is a
close match to human perception.

Train Colors

In order to do color classification the colors that need to be distinguished have to be trained. There
are different approaches for full color classification including Euclidean, box, and multilayer perceptron
(MLP) classification.

Classify Colors

The colors trained in the previous step are used in subsequent images to do the actual classification.

Compose Channels

Any number of channels can be joined to a multi-channel image using the operators compose2 through
compose7, or append_channel. This way, channels that were processed separately can be composed
back to color images for visualization purposes.

Visualize Results

Finally, you might want to display the images, the regions, and the features.

For detailed information see the description of this method on page 173.

3.9.3 Industries

3.9.3.1 Electric Components And Equipment

Many parts in electronic components make use of color coding. For a corresponding example see the
description of lines_color.dev on page 191.

3.9.3.2 Semiconductors

The inspection of circuit boards can be greatly enhanced when evaluating color images. For a corre-
sponding example see the description of ic.dev on page 215.

3.9.3.3 Food

Quality assurance tests in food inspection heavily rely on the use of color image processing.

3.9 Color Processing 115

3.9.3.4 Photogrammetry And Remote Sensing

The example program forest.dev on page 204 shows how to extract different object classes from an
aerial image.

3.9.4 Programming Examples

This section gives a brief introduction to using HALCON for color processing.

3.9.4.1 Robust Color Extraction

Example: examples\quick_guide\hdevelop\color_simple.dev

The object of this example is to segment the yellow cable in a color image in a robust manner.

Figure 3.25: Segmentation of a specific color.

Here, an RGB image is acquired from file. The image is split into its channels using decompose3.
Afterwards, a color space transformation from RGB to HSV is performed using trans_from_rgb. This
transformation converts the image channels into the separate components hue, saturation and intensity.
In the next steps the operator threshold selects all pixels with a high saturation value, followed by
reduce_domain in the hue channel which effectively filters out pale colors and grays. A histogram of the
remaining saturated (vivid) colors is displayed in figure 3.26. Each peak in this histogram corresponds to
a distinct color. The corresponding color band is shown below the histogram. Finally, the last threshold
selects the yellowish pixels.

read_image (Image, ’cable’ + i)

decompose3 (Image, Red, Green, Blue)

trans_from_rgb (Red, Green, Blue, Hue, Saturation, Intensity, ’hsv’)

threshold (Saturation, HighSaturation, 100, 255)

reduce_domain (Hue, HighSaturation, HueHighSaturation)

threshold (HueHighSaturation, Yellow, 20, 50)

M
et

ho
ds

116 Machine Vision Methods

Saturated Hues

Hue Saturation Value

yellow range

Figure 3.26: Segmentation in HSV color space.

Finding the proper threshold margins is crucial in applications like this. In HDevelop the Gray His-
togram tool can be used to determine the values interactively. See the HDevelop User’s Manual for more
information. To generate the color band shown in figure 3.26, use the following code snippet:

gen_image_gray_ramp (Hue, 0, 1, 128, 32, 128, 256, 64)

gen_image_proto (Hue, White, 255)

trans_to_rgb (Hue, White, White, Red, Green, Blue, ’hsv’)

compose3 (Red, Green, Blue, MultiChannelImage)

3.9.4.2 Sorting Fuses

Example: examples\quick_guide\hdevelop\color_fuses.dev

In this example different types of fuses are classified using color images. The applied method is similar
to the previous example. A training image has been used to specify ranges of hue for the fuse types that
need to be distinguished. The determined ranges are hard-coded in the program.

FuseColors := [’Orange’,’Red’,’Blue’,’Yellow’,’Green’]

FuseTypes := [5,10,15,20,30]

* HueRanges: Orange 10-30, Red 0-10...

HueRanges := [10,30,0,10,125,162,30,64,96,128]

A sequence of images is acquired from file, converted to the HSV color space, and reduced to contain
only saturated colors just like in the previous example. As already mentioned, color selection in this
color space is pretty stable under changing illumination. That is why the hard-coded color ranges are

3.9 Color Processing 117

Figure 3.27: Simple classification of fuses by color with varying illumination.

sufficient for a reliable classification. However, it has to be kept in mind that a certain degree of color
saturation must be guaranteed for the illustrated method to work.

decompose3 (Image, Red, Green, Blue)

trans_from_rgb (Red, Green, Blue, Hue, Saturation, Intensity, ’hsv’)

threshold (Saturation, Saturated, 60, 255)

reduce_domain (Hue, Saturated, HueSaturated)

The classification iterates over the fuse types and checks for sufficiently large areas in the given hue
range. This is done using blob analysis. Afterwards, an additional inner loop labels the detected fuses.

for Fuse := 0 to |FuseTypes|-1 by 1

threshold (HueSaturated, CurrentFuse, HueRanges[Fuse*2],

HueRanges[Fuse*2+1])

connection (CurrentFuse, CurrentFuseConn)

fill_up (CurrentFuseConn, CurrentFuseFill)

select_shape (CurrentFuseFill, CurrentFuseSel, ’area’, ’and’, 6000,

20000)

area_center (CurrentFuseSel, FuseArea, Row1, Column1)

dev_set_color (’magenta’)

for i := 0 to |FuseArea|-1 by 1

set_tposition (WH, Row1[i], Column1[i])

write_string (WH, FuseColors[Fuse] + ’ ’ +FuseTypes[Fuse]+’ Ampere’)

endfor

set_tposition (WH, 24*(Fuse+1), 12)

dev_set_color (’slate blue’)

write_string (WH, FuseColors[Fuse] + ’ Fuses: ’ + |FuseArea|)

endfor

stop ()

M
et

ho
ds

118 Machine Vision Methods

3.9.4.3 Completeness Check of Colored Game Pieces

Example: examples\quick_guide\hdevelop\color_pieces.dev

Completeness checks are very common in machine vision. Usually, packages assembled on a production
line have to be inspected for missing items. Before this inspection can be done, the items have to be
trained. In the example presented here, a package of game pieces has to be inspected. The game pieces
come in three different colors, and the package should contain four of each type. The pieces themselves
can be of slightly different shape, so shape-based matching is not an option. The solution to this problem
is to classify the game pieces by color. The method applied here is a classification using neural nets
(MLP classification).

(a) (b)

Figure 3.28: Example MLP classification: (a) Training, (b) Result.

In the training phase an image is acquired, which contains the different types of game pieces. The task
is to specify sample regions for the game pieces and the background using the mouse (see Figure 3.28a).
This is accomplished by looping over the draw_rectangle1 and gen_rectangle1 operators to draw
and create the corresponding regions. The tuple Classes, which will be used for the actual training, is
extended each time.

read_image (Image, ImageRootName+’0’)

for i := 1 to 4 by 1

dev_display (Image)

dev_display (Classes)

set_tposition (WindowHandle, 24, 12)

write_string (WindowHandle, ’Drag rectangle inside ’ + Regions[i-1] +

’ color. Click right mouse button to confirm.’)

draw_rectangle1 (WindowHandle, Row1, Column1, Row2, Column2)

gen_rectangle1 (Rectangle, Row1, Column1, Row2, Column2)

Classes := [Classes,Rectangle]

endfor

Once the classes are specified, a multilayer perceptron is created using create_class_mlp. With the

3.9 Color Processing 119

operator add_samples_image_class_mlp the training samples from the image are added to the train-
ing data of the multilayer perceptron. The actual training is started with train_class_mlp. The dura-
tion of the training depends on the complexity and sizes of the training regions.

create_class_mlp (3, 4, 4, ’softmax’, ’normalization’, 3, 42, MLPHandle)

add_samples_image_class_mlp (Image, Classes, MLPHandle)

set_tposition (WindowHandle, 100, 12)

write_string (WindowHandle, ’Training...’)

train_class_mlp (MLPHandle, 200, 1, 0.01, Error, ErrorLog)

After the training has finished, subsequent images are acquired and classified using clas-
sify_image_class_mlp. The operator returns a classified region.

for img := 0 to 3 by 1

read_image (Image, ImageRootName + img)

classify_image_class_mlp (Image, ClassRegions, MLPHandle, 0.5)

stop ()

endfor

The returned result is processed further using blob analysis. Each class of the classified region (with the
exception of the background class) is accessed using copy_obj. The regions of each class are split up
using connection and reduced to regions of a relevant size (select_shape). The remaining few lines
of code calculate the number of game pieces found for each class and make a decision whether the result
was OK or not.

for figure := 1 to 3 by 1

copy_obj (ClassRegions, ObjectsSelected, figure, 1)

connection (ObjectsSelected, ConnectedRegions)

select_shape (ConnectedRegions, SelectedRegions, ’area’, ’and’, 400,

99999)

Number := |SelectedRegions|

dev_set_color (Highlight[figure-1])

dev_display (SelectedRegions)

dev_set_color (’black’)

set_tposition (WindowHandle, 24+30*figure, 12)

write_string (WindowHandle, Regions[figure-1] + ’: ’ +Number)

write_string (WindowHandle, ’ ’)

dev_set_color (’green’)

if (Number#4)

dev_set_color (’red’)

write_string (WindowHandle, ’N’)

endif

write_string (WindowHandle, ’OK’)

dev_set_color (’black’)

endfor

To illustrate the advantage of using color information, and to compare the classification results, the
example program runs an additional training and classification on a converted gray image. As can be
seen in figure 3.29 only the yellow region is detected faithfully.

M
et

ho
ds

120 Machine Vision Methods

Figure 3.29: Poor classification result when only using the gray scale image.

rgb1_to_gray (Image, GrayImage)

compose3 (GrayImage, GrayImage, GrayImage, Image)

For more complex (and time-consuming) classifications, it is recommended to save the training data to
the file system using write_class_mlp. Later, the saved data can be restored using read_class_mlp.
In order to speed up the classification itself, you can use a different classification method like Euclidean
classification (see examples\quick_guide\hdevelop\color_pieces_euclid.dev).

3.9.4.4 Other Examples

HDevelop

• examples\hdevelop\Applications\Aerial\forest.dev
Extraction of trees and meadows from forest
→ description here in the Quick Guide on page 204

• examples\hdevelop\Applications\FA\ic.dev
Extracts resistors, capacitors and ICs from board using color information
→ description here in the Quick Guide on page 215

• examples\hdevelop\Applications\Monitoring\movement_col.dev
Extracts moving objects and within them scans for specific color

• examples\hdevelop\Applications\OCR\ocrcolor.dev
Segmenting and reading numbers using color information
→ description here in the Quick Guide on page 234

• examples\hdevelop\Applications\OCR\ocrcolort.dev
Segmenting numbers using color information and training the OCR

• examples\hdevelop\Filter\Color\cfa_to_rgb.dev
Converting a Bayer image (color filter array) into an RGB image

3.9 Color Processing 121

• examples\hdevelop\Filter\Edges\edges_color.dev
Extracting edges using color information
→ description here in the Quick Guide on page 205

• examples\hdevelop\Filter\Edges\edges_color_sub_pix.dev
Extracting edges with sub-pixel precision using color information

• examples\hdevelop\Filter\Lines\lines_color.dev
Extracting lines using color information
→ description here in the Quick Guide on page 191

• examples\hdevelop\Filter\Misc\symmetry.dev
Analyzing symmetry in horizontal direction

• examples\hdevelop\Manuals\HDevelop\ic.dev
Combining different segmentation methods
→ description in the HDevelop User’s Manual on page 144

• examples\hdevelop\Segmentation\Classification\class_2dim_sup.dev
Segmenting an image using two-dimensional pixel classification

• examples\hdevelop\Segmentation\Classification\class_2dim_unsup.dev
Segmenting two images by clustering

• examples\hdevelop\Segmentation\Classification\class_ndim_box.dev
Classifying pixels using hyper-cuboids

• examples\hdevelop\Segmentation\Classification\class_ndim_norm.dev
Classifying pixels using hyper-spheres

• examples\hdevelop\Segmentation\Classification\classify_image_class_mlp.dev
Segmenting an RGB image with an MLP classifier

• examples\hdevelop\Segmentation\Regiongrowing\regiongrowing_n.dev
Regiongrowing for multi-channel images

• examples\hdevelop\Segmentation\Topography\pouring.dev
Segmenting an image by "pouring water" over it

• examples\hdevelop\Tools\2D-Transformations\vector_to_proj_hom_mat2d.dev
Rectifies image of stadium to simulate overhead view

• examples\quick_guide\hdevelop\color_pieces_euclid.dev
Completeness check of game color pieces using Euclidean classification

C

• examples\c\example_multithreaded1.c
Using multiple threads with Parallel HALCON

M
et

ho
ds

122 Machine Vision Methods

3.9.5 Selecting Operators

Acquire Image(s)

Please refer to the operator list for the method Image Acquisition (see section 3.1.4 on page 25).

Demosaick Bayer Pattern

Standard:

cfa_to_rgb

Decompose Channels

Standard:

decompose3, access_channel

Transform Color Space

Standard:

trans_from_rgb, trans_to_rgb

The following color spaces are supported:

• argyb

• cielab

• ciexyz

• hls

• hsi

• hsv

• i1i2i3

• ihs

• rgb

• yiq

• yuv

3.9 Color Processing 123

Train Colors

Standard:

histo_2dim, learn_ndim_norm, learn_ndim_box

Advanced:

train_class_mlp

Process Image (Channels)

Standard:

smooth_image, mean_image, median_image

Advanced:

lines_color, edges_color, edges_color_sub_pix

Further operators can be found in the operator list for the method Blob Analysis (see section 3.3.5 on
page 49).

Classify Colors

Standard:

class_2dim_sup, class_2dim_unsup, class_ndim_norm, class_ndim_box

Advanced:

classify_image_class_mlp

Compose Channels

Standard:

compose3, append_channel

Visualize Results

Standard:

disp_color, disp_obj

Further operators can be found in the operator list for the method Visualization (see section 3.14.5 on
page 184).

M
et

ho
ds

124 Machine Vision Methods

3.9.6 Tips & Tricks

Use of Domains (Regions of Interest)

The concept of domains (the HALCON term for a region of interest) is also useful for color processing.
With domains, the processing can be focused to a certain area in the image and thus sped up. The more
the region in which the segmentation is performed can be restricted, the faster and more robust the search
will be. For an overview on how to construct regions of interest and how to combine them with the image
see the method Region Of Interest on page 27.

Speed Up

Many online applications require maximum speed. Because of its flexibility, HALCON offers many
ways to achieve this goal. Here, the most common methods are listed.

• Of the color processing approaches discussed in this section, the simplest is also the fastest (de-
compose color image and apply blob analysis). If you want to do color classification, you should
consider using class_ndim_norm or class_2dim_sup for maximum performance.

• Regions of interest are the standard method to increase the speed by processing only those areas
where objects need to be inspected. This can be done using pre-defined regions but also by an
online generation of the regions of interest that depend on other objects found in the image.

• By default, HALCON performs some data consistency checks. These can be switched off using
set_check.

• By default, HALCON initializes new images. Using set_system with the parameter
"init_new_image", this behavior can be changed.

3.9.7 Advanced Topics

Color Edge Extraction

Similar to the operator edges_image for gray value images (see Edge Extraction (pixel-precise) on
page 64), the operator edges_color can be applied to find pixel-precise edges in color images. For a
subpixel-precise edge extraction in color images, the operator edges_color_sub_pix is provided. It
corresponds to the gray value based operator edges_sub_pix (see Edge Extraction (subpixel-precise)
on page 74). Processing the detected color edges is the same as for gray value images (see Contour
Processing on page 84).

Color Lines Extraction

Similar to color edge extraction, HALCON supports the detection of lines in color images using
lines_color. For processing the detected lines, please refer to Edge Extraction (subpixel-precise)
on page 74 and Contour Processing on page 84.

3.10 1D Bar Code 125

3.10 1D Bar Code

The idea of bar code reading is quite easy. After specifying the type of the desired bar code, the operator
for finding the bar code is executed. The result of this is a region that contains the bar code and a tuple
that contains the measured element widths. These element widths are the input for the decoding step,
which returns the content of the bar code plus the parity (if it is supported).

The advantage of the HALCON bar code reader is its ease of use. No advanced experience in program-
ming or image processing is required. Only a few operators in a clear and simple order are applied.
Furthermore, the bar code reader is very powerful and flexible. An example for this is the ability to read
codes in any orientation or to decode codes where parts are missing.

3.10.1 Basic Concept

Bar code reading consists mainly of four steps:

Decode Bar Code(s)

Read Bar Code(s)

Create Bar Code Model

Acquire Image(s)

Acquire Image(s)

For the online part, i.e., during reading only, images must be acquired.

For detailed information see the description of this method on page 22.

Create Bar Code Model

The initial part is the creation of a bar code description. This description provides the finder and the
reader with all necessary information about the structure of the bar code. For standard codes only the
name needs to be provided, and HALCON will supply all desired parameters automatically. For codes
that are not directly supported by HALCON, the parameters needed for the search and the extraction of
the element widths must be passed by hand.

Read Bar Code(s)

The easiest way to find a bar code is to use the operator find_1d_bar_code. It locates the bar code
region within the image and returns this region, the bar code orientation, and the element widths.

M
et

ho
ds

126 Machine Vision Methods

Decode Bar Code(s)

The final step is the decoding of the element widths. For this, you use the operator de-
code_1d_bar_code. Only bar codes that can be passed to gen_1d_bar_code_descr can be decoded.
The decoding returns the internal code for each symbol (an index), the corresponding symbol as a string,
and the parity. Please note that the parity is optional for some bar codes and can also be interpreted as an
extra symbol. In this case, the parity parameter has no meaning.

A First Example

As an example for this basic concept, here is a very simple program, that finds and decodes the EAN 13
bar code depicted in figure 3.30.

Figure 3.30: Reading a bar code.

First, a test image is acquired from file. Then, the bar code description is generated using
gen_1d_bar_code_descr. As parameters, the bar code name and the code length are specified. Using
find_1d_bar_code, HALCON searches for the bar code in the whole image, using all possible orien-
tations. As a result, the bar code region and the element widths are returned. These widths together with
the bar code description are input for decode_1d_bar_code, which performs the decoding.

read_image (image, ’barcode/ean13/ean1301’)

gen_1d_bar_code_descr (’EAN 13’, 13, 13, BarCodeDescr)

find_1d_bar_code (image, CodeRegion, BarCodeDescr, [], [], BarcodeFound,

BarCode, Orientation)

decode_1d_bar_code (BarCode, BarCodeDescr, Characters, Reference, IsCorrect)

3.10 1D Bar Code 127

3.10.2 Extended Concept

In some cases, bar code reading can be more advanced than in the example above. Reasons for this are,
e.g., complex illumination conditions. Furthermore, preprocessing like rectification or visualization of
results can be necessary.

Visualize Results

Decode Bar Code(s)

Read Bar Code(s)

Segment Image(s)

Create Bar Code Model

Rectify Image(s)

Align ROIs Or Images

Preprocess Image(s)

Acquire Image(s)

Preprocess Image(s)

HALCON expects bar codes to be printed dark on a bright background. To read bright bar codes on a
dark background you must first invert the image using the operator invert_image.

Align ROIs Or Images

In general, HALCON can read bar codes of any orientation. If the orientation is known, reading becomes
more robust. One way to determine the orientation is to use alignment.

How to perform alignment using shape-based matching is described in the Application Note on Shape-
Based Matching in section 4.3.4 on page 36.

M
et

ho
ds

128 Machine Vision Methods

Rectify Image(s)

Both the finding and reading operators assume that the bar code elements are parallel and that the module
width does not vary within the bar code. If the bar code is printed on a cylindrical surface or the camera
is not mounted perpendicular to the surface, it might therefore be necessary to rectify the image before
applying the bar code reader.

How to perform the rectification for a bar code that is printed radially on a CD is shown in the description
of the example program circular_barcode.dev. Detailed information about compensating distortions
caused, e.g., by non-perpendicularly mounted cameras, can be found in the Application Note on 3D
Machine Vision in section 3.3 on page 49.

Create Bar Code Model

The operator needed to generate a bar code description is called gen_1d_bar_code_descr. It expects
the name of the code to be found and the minimum and maximum number of encoded symbols as input
and returns a description of the code. The two parameters specifying the code length are not critical,
because they are only used as a hint for the finding process.

If a bar code is searched for that is not supported by HALCON, the find operator can still be used
for this purpose. To give the system the necessary information about the structure of the code,
gen_1d_bar_code_descr_gen is used. Here, more basic information like the start and stop sym-
bols or the maximum number of modules must be specified. Please note that this information is not
sufficient for the decoding, i.e., you cannot use decode_1d_bar_code but must decode the results of
find_1d_bar_code manually.

Segment Image(s)

With find_1d_bar_code, HALCON provides an operator that locates the bar code regions without pro-
gramming effort. In some applications, the predefined segmentation of find_1d_bar_code might fail.
In this case, we recommend to use HALCON’s powerful segmentation and region processing methods
to (roughly) locate the bar code with an application-specific segmentation.

After such a segmentation, the operator get_1d_bar_code is used to extract the element widths as
preparation for the decoding. If the segmentation is not extracting the bar code closely enough, but
contains the bar code, find_1d_bar_code can be used to improve it using the segmentation result as
region of interest.

For detailed information see the description of this method on page 39.

Read Bar Code(s)

If multiple bar codes should be found within one image, the standard operator find_1d_bar_code can
no longer be used. In this case, find_1d_bar_code_region provides the appropriate functionality. It
will return multiple regions, one for each bar code. Here, we must consider two restrictions: First, all
bar codes must be of the same type and have the same orientation. If multiple codes and/or orientations
are needed, you must call find_1d_bar_code_region multiple times, possibly with an adapted region
of interest.

As a preparation for the decoding, you must extract the element widths of each region returned by
find_1d_bar_code_region. For this, you first apply select_obj and reduce_domain and then call
get_1d_bar_code.

3.10 1D Bar Code 129

Visualize Results

Finally, you might want to display the images, the bar code regions, and the decoded content.

For detailed information see the description of this method on page 173.

3.10.3 Industries

3.10.3.1 Printing

Bar codes are widely used in the printing industry, especially the EAN 13 with add-on used for books,
magazines and newspapers. For a corresponding example program see EAN13AddOn5.dev on page 208.

3.10.3.2 Electric Components And Equipment

On packaging, multiple bar codes are often used to identify information needed to describe the content,
the addressee, or other information. For a corresponding example program see multiple.dev on page
222.

3.10.4 Programming Examples

This section gives a brief introduction on the programming of the bar code reader.

3.10.4.1 Reading a Bar Code on a CD

Example: examples\hdevelop\Applications\Barcode\circular_barcode.dev

Figure 3.31 shows an image of a CD, on which a bar code is printed radially. The task is to read this
circular bar code. Because the bar code reader cannot read this kind of print directly, the image first must
be transformed such that the elements of the bar code are parallel.

The first step is to segment the dark ring on which the bar code is printed. This is performed using
bin_threshold followed by connection. This segmentation returns all dark areas in the image, in-
cluding the dark ring. To select the ring, select_shape is used with corresponding values for the
extent.

bin_threshold (Image, Region)

connection (Region, ConnectedRegions)

select_shape (ConnectedRegions, Ring, [’width’,’height’], ’and’, [550,550],

[750,750])

After that, the parameters of the outer and the inner circle are determined. The outer circle can be
determined directly using shape_trans. The inner circle is more complicated to extract. Here, it is
calculated by creating the complement region of the ring with appropriate dimensions and then selecting
its inner part. With smallest_circle, the parameters of the inner and outer circle are determined.

M
et

ho
ds

130 Machine Vision Methods

b)

a)

Figure 3.31: (a) Original image with segmented ring; (b) rectified ring with decoded bar code.

shape_trans (Ring, OuterCircle, ’outer_circle’)

complement (Ring, RegionComplement)

connection (RegionComplement, ConnectedRegions)

select_shape (ConnectedRegions, InnerCircle, [’width’,’height’], ’and’,

[450,450], [650,650])

smallest_circle (Ring, Row, Column, OuterRadius)

smallest_circle (InnerCircle, InnerRow, InnerColumn, InnerRadius)

The parameters for inner and outer circle are the input for the polar transform (po-
lar_trans_image_ext), which transforms the image inside the ring into a rectangular area. Then,
the image is inverted to obtain dark bar code elements on a bright background (see figure 3.31b).

WidthPolar := 1440

HeightPolar := round(OuterRadius-InnerRadius-10)

polar_trans_image_ext (Image, PolarTransImage, Row, Column, rad(360), 0,

OuterRadius-5, InnerRadius+5, WidthPolar, HeightPolar, ’bilinear’)

invert_image (PolarTransImage, ImageInvert)

Before reading the bar code, a description is generated with gen_1d_bar_code_descr by specifying the
type, here Code 128. For the actual reading, only two more operators are needed: find_1d_bar_code
and decode_1d_bar_code. The first one locates the bar code region and extracts the widths of the
elements. The second one decodes these values.

gen_1d_bar_code_descr (’Code 128’, 6, 20, BarCodeDescr)

find_1d_bar_code (ImageInvert, CodeRegion, BarCodeDescr,

[’amplitude_sobel’, ’min_size_element’, ’dilation_factor’,

’sigma_project’], [30, 5, 2, 0.8], BarcodeFound, BarCodeElements,

Orientation)

decode_1d_bar_code (BarCodeElements, BarCodeDescr, Characters, Reference,

IsCorrect)

3.10 1D Bar Code 131

3.10.4.2 Other Examples

HDevelop

• examples\application_guide\3d_machine_vision\hdevelop\
grid_rectification_ruled_surface.dev
Rectify an arbitrarily distorted image using a regular grid
→ description in the Application Note on 3D Machine Vision on page 127

• examples\hdevelop\Applications\Barcode\25Industry.dev
Reading a bar code of type 2/5 industrial

• examples\hdevelop\Applications\Barcode\25Interleaved.dev
Reading a bar code of type 2/5 interleaved

• examples\hdevelop\Applications\Barcode\bar_err.dev
Read a partially covered bar code of type EAN13

• examples\hdevelop\Applications\Barcode\Codabar.dev
Reading a bar code of type Codabar

• examples\hdevelop\Applications\Barcode\Code128.dev
Reading a bar code of type Code 128

• examples\hdevelop\Applications\Barcode\Code39.dev
Reading a bar code of type Code 39

• examples\hdevelop\Applications\Barcode\defect_barcode.dev
Shows the bar code reader’s ability to read defect bar codes

• examples\hdevelop\Applications\Barcode\EAN13.dev
Reading a bar code of type EAN13

• examples\hdevelop\Applications\Barcode\EAN13AddOn5.dev
Reading a bar code of type EAN13 Add-On 5
→ description here in the Quick Guide on page 208

• examples\hdevelop\Applications\Barcode\EAN8.dev
Reading a bar code of type EAN 8

• examples\hdevelop\Applications\Barcode\element_width.dev
Explains the requirements for reading bar codes with very narrow elements

• examples\hdevelop\Applications\Barcode\multiple.dev
Reading multiple bar codes of type Code 39
→ description here in the Quick Guide on page 222

• examples\hdevelop\Tools\Grid-Rectification\grid_rectification.dev
Rectifying an arbitrarily distorted image using a regular grid

C++

• examples\cpp\source\ean13.cpp
Reading a 1d bar code

M
et

ho
ds

132 Machine Vision Methods

Visual Basic

• examples\vb\Online\Barcode\barcode.vbp
Reading bar codes in a live image

3.10.5 Selecting Operators

Acquire Image(s)

Please refer to the operator list for the method Image Acquisition (see section 3.1.4 on page 25).

Preprocess Image(s)

Standard:

invert_image

Align ROIs Or Images

Operators for aligning ROIs or images are described in the Application Note on Shape-Based Matching.

Rectify Image(s)

Operators for rectifying images are described in the Application Note on 3D Machine Vision.

Create Bar Code Model

Standard:

gen_1d_bar_code_descr

Advanced:

gen_1d_bar_code_descr_gen

Segment Image(s)

Please refer to the detailed operator list for the step Segment Image(s) on page 50.

Read Bar Code(s)

Standard:

find_1d_bar_code

Advanced:

find_1d_bar_code_region, get_1d_bar_code

3.10 1D Bar Code 133

Decode Bar Code(s)

Standard:

decode_1d_bar_code

Visualize Results

Please refer to the operator list for the method Visualization (see section 3.14.5 on page 184).

3.10.6 Relation to Other Methods

3.10.6.1 Methods that are Useful for 1D Bar Code

1D Measuring (see description on page 53)
The measure tool can be used to extract the widths of the elements of the bar code using the operator
measure_pos. The output of the parameter Distance is almost what is needed for the decoding step.
What remains to be done is to negate the distance values for edges with a dark-to-light transition. Because
bar codes start with a light to dark transition, this means that all even values, i.e., the second, fourth, etc.,
must be negated. This transformed tuple can then be used as input for decode_1d_bar_code.

3.10.6.2 Alternatives to 1D Bar Code

OCR (see description on page 145)
With some bar codes, e.g., the EAN 13, the content of the bar code is printed in plain text below the
elements. Here, OCR can be used, e.g., to check the consistency of the reading process.

3.10.7 Tips & Tricks

Use of Domains (Regions of Interest)

The concept of domains (the HALCON term for a region of interest) is useful for bar code reading. With
domains, the processing can be focused to a certain area in the image and thus sped up. The smaller
the region in which the bar code is searched for, the faster and more robust the search will be. For an
overview on how to construct regions of interest and how to combine them with the image see the method
Region Of Interest on page 27.

M
et

ho
ds

134 Machine Vision Methods

3.11 2D Data Code

Data codes are a special kind of two-dimensional patterns that encode text and numbers. HALCON is
able to read the three most popular data codes: Data Matrix ECC 200, QR Code, and PDF417. These
codes consist of a so-called finder pattern, which is used to locate the pattern and get basic information
about the geometric properties. The code itself contains multiple dots or small squares. Because of the
special design of the codes, they can be decoded even if some parts are disturbed.

The advantage of the HALCON data code reader is its ease of use. No advanced experience in pro-
gramming or image processing is required. Only a few operators in a clear and simple order need to be
applied. Furthermore, the data code reader is very powerful and flexible. Examples for this are its ability
to read codes in many print styles and the possibility to automatically learn optimal parameters.

3.11.1 Basic Concept

Data code reading consists mainly of four steps:

Destroy Data Code Model

Read Data Code(s)

Create Data Code Model

Acquire Image(s)

Acquire Image(s)

For the online part, i.e., during reading, images are acquired.

For detailed information see the description of this method on page 22.

Create Data Code Model

First, you create a data code model with the operator create_data_code_2d_model. This model
provides the reader with all necessary information about the structure of the code. For normal printed
codes only the name needs to be provided and HALCON will select suitable default parameters. For
special cases, you can modify the model by passing specific parameters.

Read Data Code(s)

To read a data code, just one operator is needed: find_data_code_2d. It will locate one or more data
codes and decode the content.

3.11 2D Data Code 135

Destroy Data Code Model

When you no longer need the data code model, you destroy it with the operator
clear_data_code_2d_model.

A First Example

As an example for this basic concept, here a very simple program, which reads the data code on the chip
depicted in figure 3.32, is discussed.

Figure 3.32: Reading a data code.

After reading an image from file, the data code model is generated by calling cre-
ate_data_code_2d_model. As the only required parameter value, the code name ’ECC200’ is speci-
fied.

read_image (Image, ’datacode/ecc200/ecc200_cpu_003’)

create_data_code_2d_model (’ECC200’, [], [], DataCodeHandle)

Then, the data code is read with the operator find_data_code_2d.

find_data_code_2d (Image, SymbolXLDs, DataCodeHandle, [], [],

ResultHandles, DecodedDataStrings)

At the end of the program, the data code model is destroyed using clear_data_code_2d_model.

clear_data_code_2d_model (DataCodeHandle)

M
et

ho
ds

136 Machine Vision Methods

3.11.2 Extended Concept

In some cases, data code reading can be more advanced than in the example above. Reasons for this are,
e.g., parameter optimization for improved execution time. Furthermore, preprocessing like rectification
or the visualization of results might be required. The following sections give a brief overview. More
detailed information can be found in the Application Note on 2D Data Codes.

Destroy Data Code Model

Visualize Results

Inspect Data Code(s)

Read Data Code(s)

Train Model

Optimize Model

Create Data Code Model

Rectify Image(s)

Acquire Image(s)

Acquire Image(s)

Optionally, additional images can be acquired for parameter optimization (see the description of the step
Optimize Model).

For detailed information see the description of this method on page 22.

Rectify Image(s)

HALCON’s data code reader is robust against image distortions up to a certain limit. But if the data code
is printed on a cylindrical surface or if the camera is tilted relative to the surface, it might be necessary

3.11 2D Data Code 137

to rectify the image before applying the data code reader.

Detailed information about rectifying images can be found in the Application Note on 3D Machine
Vision in section 3.3 on page 49.

Create Data Code Model

The operator create_data_code_2d_model expects the name of the desired code and optionally pa-
rameters to specify the geometry and radiometry as input. By default, a parameter set is used that is
suitable for data codes that fulfill the following requirements:

• The code must be printed dark on light,

• the contrast must be bigger than 30,

• the size of symbol is smaller or equal to 48x48 modules,

• the width and the height of the modules are between 6 and 20 pixels, and

• there is no or only a small gap in between neighboring modules.

This parameter set is also used if you specify the value ’standard_recognition’ for the parameter
GenParamValues. In contrast, if you specify the value ’enhanced_recognition’, a parameter set
is used that detects codes that do not follow the rules given above. However, using this parameter set
possibly results in a longer processing time.

Optimize Model

Using the default parameters, the data code reader is able to read a wide range of codes. For non-standard
codes the parameters can be adapted accordingly. For this, the operator set_data_code_2d_param is
used.

The easiest way is to use the parameter value ’enhanced_recognition’, which uses a model that is
able to find a very wide range of print styles. An alternative is to specify parameter values separately to
adapt the model to the conditions of the used print style.

If a data code symbol is not detected although it is well visible in the image, check whether the symbol’s
appearance complies with the model. In particular, have a look at the polarity (’polarity’: dark-on-
light or light-on-dark), the module size (’module_size’ and ’module_shape’) and the minimum con-
trast (’contrast_min’). In addition, the parameters ’module_gap’ (allowed gap between modules),
’symbol_size’, and ’slant_max’ (angle variance of the legs of the finder pattern) should be checked.
The current settings of these values can be queried by the operator get_data_code_2d_param.

All possible parameter values can be checked in the Reference Manual. Besides this, they can also be
queried with the operator query_data_code_2d_params.

As an alternative, you can train the model (see below).

Train Model

Instead of modifying the model parameters manually as described above, you can also let HALCON
train the model automatically using the operator find_data_code_2d. All you need to do is to call

M
et

ho
ds

138 Machine Vision Methods

this operator with the parameter values ’train’ and ’all’. Then, HALCON will search for the best
parameters needed to extract the given code. It is recommended to apply this to multiple example images
to ensure that all variations are covered.

As an alternative, you can execute the finder with normal parameters and request the features of the
found symbols with get_data_code_2d_results. These values can then be used to change the model
with set_data_code_2d_param.

Read Data Code(s)

The operator find_data_code_2d returns for every successfully decoded symbol the surrounding
XLD contour in SymbolXLDs, a handle to a result structure, which contains additional information
about the symbol as well as about the search and decoding process (ResultHandles), and the string
that is encoded in the symbol (DecodedDataStrings). With the result handles and the operators
get_data_code_2d_results and get_data_code_2d_objects, additional data about the extraction
process can be accessed.

Inspect Data Code(s)

Using the handles of the successfully decoded symbols returned by find_data_code_2d, you
can request additional information about the symbol and the finding process using the operators
get_data_code_2d_results and get_data_code_2d_objects. This is useful both for process anal-
ysis and for displaying.

In addition, information about rejected candidates can also be queried by requesting the corresponding
handles with get_data_code_2d_results using, e.g., the parameter values ’all_undecoded’ and
’handle’.

The operator get_data_code_2d_results gives access to several alphanumerical results that were
calculated while searching and reading the data code symbols. Besides basic information like the dimen-
sions of the code, its polarity, or the found contrast, also the raw data can be accessed.

The operator get_data_code_2d_objects gives access to iconic objects that were created while
searching and reading the data code symbols. Possible return values are the surrounding contours or
the regions representing the foreground or background modules.

Visualize Results

Finally, you might want to display the images, the data code regions, and the decoded content.

For detailed information see the description of this method on page 173.

3.11.3 Industries

3.11.3.1 Semiconductors

Semiconductor industry is the typical application area for data code reading. Especially larger electronic
components like chips have a data code printed on them for identification purposes, used, e.g., during the
mounting process. For a corresponding example program see ecc200_optimized.dev on page 223.

3.11 2D Data Code 139

3.11.4 Programming Examples

This section gives a brief introduction to the programming of the data code reader.

3.11.4.1 Training a Data Code Model

Example: examples\quick_guide\hdevelop\ecc200_training_simple.dev

c)b)a)

Figure 3.33: (a) Dark training image; (b) bright training image; (c) read code with extracted modules.

In this example we show how easy it is to train a data code model, here to allow changes in the illumina-
tion of the images. To prepare the reading of the data codes, three major steps are performed: First, the
connection to an image sequence is established by calling open_framegrabber.

SequenceName := ’datacode/ecc200/ecc200_cpu_light.seq’

open_framegrabber (’File’, 1, 1, 0, 0, 0, 0, ’default’, -1, ’default’, -1,

’default’, SequenceName, ’default’, -1, -1, FGHandle)

Then, a model for an ECC 200 is created with create_data_code_2d_model.

create_data_code_2d_model (’ECC200’, [], [], DataCodeHandle)

To get the optimal parameters for finding the data code, two sample images are loaded and passed to
find_data_code_2d with the parameter value ’train’.

grab_image (Image, FGHandle)

find_data_code_2d (Image, SymbolXLDs, DataCodeHandle, ’train’, ’all’,

ResultHandles, DecodedDataStrings)

grab_image (Image, FGHandle)

find_data_code_2d (Image, SymbolXLDs, DataCodeHandle, ’train’, ’all’,

ResultHandles, DecodedDataStrings)

As a preparation for the detection loop, the settings for the find operator are changed with
set_data_code_2d_param to enable the saving of visual data.

M
et

ho
ds

140 Machine Vision Methods

set_data_code_2d_param (DataCodeHandle, ’persistence’, 1)

Inside the while-loop, images are grabbed and find_data_code_2d is applied to read the code from
the image. After that, iconic results and the read code are visualized. The regions with the foreground
and background modules are requested with get_data_code_2d_objects.

while (1)

grab_image (Image, FGHandle)

dev_display (Image)

find_data_code_2d (Image, SymbolXLDs, DataCodeHandle, [], [],

ResultHandles, DecodedDataStrings)

dev_set_color (’yellow’)

dev_display (SymbolXLDs)

set_tposition (WindowHandle, 430, 80)

write_string (WindowHandle, DecodedDataStrings)

get_data_code_2d_objects (Foreground, DataCodeHandle, ResultHandles[0],

’module_1_rois’)

get_data_code_2d_objects (Background, DataCodeHandle, ResultHandles[0],

’module_0_rois’)

dev_set_color (’cyan’)

dev_display (Foreground)

dev_set_color (’magenta’)

dev_display (Background)

endwhile

At the end of the program the model for the data code reader is destroyed and the connection to the image
sequence is closed.

clear_data_code_2d_model (DataCodeHandle)

close_framegrabber (FGHandle)

3.11.4.2 Other Examples

HDevelop

• examples\application_guide\2d_data_codes\hdevelop\
2d_data_codes_arbitrary_distortions.dev
Demonstrate distorted symbols of type ECC200
→ description in the Application Note on 2D Data Codes on page 37

• examples\application_guide\2d_data_codes\hdevelop\
2d_data_codes_data_access.dev
Access intermediate results when trying to read symbols of type ECC200
→ description in the Application Note on 2D Data Codes on page 26

• examples\application_guide\2d_data_codes\hdevelop\
2d_data_codes_enlarge_modules.dev
Increase the resolution of a symbol of type ECC200
→ description in the Application Note on 2D Data Codes on page 21

3.11 2D Data Code 141

• examples\application_guide\2d_data_codes\hdevelop\
2d_data_codes_first_example.dev
Reads symbols of type ECC200
→ description in the Application Note on 2D Data Codes on page 5

• examples\application_guide\2d_data_codes\hdevelop\
2d_data_codes_global_settings.dev
Switch between standard and enhanced mode for reading symbols of type ECC200
→ description in the Application Note on 2D Data Codes on page 8

• examples\application_guide\2d_data_codes\hdevelop\
2d_data_codes_manual_settings.dev
Sets parameters manually for reading symbols of type ECC200
→ description in the Application Note on 2D Data Codes on page 11

• examples\application_guide\2d_data_codes\hdevelop\
2d_data_codes_minimize_module_gaps.dev
Minimize large gaps from a symbol of type ECC200
→ description in the Application Note on 2D Data Codes on page 23

• examples\application_guide\2d_data_codes\hdevelop\
2d_data_codes_minimize_noise.dev
Minimize noise from a symbol of type ECC200
→ description in the Application Note on 2D Data Codes on page 23

• examples\application_guide\2d_data_codes\hdevelop\
2d_data_codes_rectify_symbol.dev
Rectify a slanted symbol of type ECC200
→ description in the Application Note on 2D Data Codes on page 21

• examples\application_guide\2d_data_codes\hdevelop\
2d_data_codes_training.dev
Train a 2d data code model for symbols of type ECC200
→ description in the Application Note on 2D Data Codes on page 10

• examples\application_guide\2d_data_codes\hdevelop\
read_2d_data_code_model.dev
Read a 2d data code model from file
→ description in the Application Note on 2D Data Codes on page 19

• examples\application_guide\2d_data_codes\hdevelop\
write_2d_data_code_model.dev
Train a 2d data code model and write it into a file
→ description in the Application Note on 2D Data Codes on page 19

• examples\hdevelop\Applications\Datacode\ecc200_optimized.dev
Reading 2d data codes of type ECC200
→ description here in the Quick Guide on page 223

• examples\hdevelop\Applications\Datacode\ecc200_simple.dev
Reading 2d data codes of type ECC200

M
et

ho
ds

142 Machine Vision Methods

• examples\hdevelop\Applications\Datacode\pdf417_optimized.dev
Optimizing parameters for reading of 2d data codes of type PDF417

• examples\hdevelop\Applications\Datacode\pdf417_simple.dev
Reading 2d data codes of type PDF417

• examples\hdevelop\Applications\Datacode\qrcode_optimized.dev
Reading 2d data codes of type QR code

• examples\hdevelop\Applications\Datacode\qrcode_simple.dev
Reading 2d data codes of type QR code

• examples\hdevelop\Tools\Datacode\ecc200_default_settings.dev
Reading a 2d data code of type ECC200

• examples\hdevelop\Tools\Datacode\ecc200_optimized_settings.dev
Optimizing parameters for reading a 2d data code of type ECC200

• examples\hdevelop\Tools\Datacode\ecc200_read_model.dev
Loading previously stored parameters for 2d data codes of type ECC200

• examples\hdevelop\Tools\Datacode\ecc200_training.dev
Training parameters for reading a 2d data code of type ECC200

• examples\hdevelop\Tools\Datacode\ecc200_write_model.dev
Storing parameters for 2d data codes of type ECC200

• examples\hdevelop\Tools\Datacode\pdf417_default_settings.dev
Reading various 2d data codes of type PDF417

• examples\hdevelop\Tools\Datacode\pdf417_optimized_settings.dev
Optimizing parameters for reading various 2d data codes of type PDF417

• examples\hdevelop\Tools\Datacode\qrcode_default_settings.dev
Reading a 2d data code of type QR Code

• examples\hdevelop\Tools\Datacode\qrcode_optimized_settings.dev
Optimizing parameters for reading a 2d data code of type QR Code

C++

• examples\cpp\source\ecc200.cpp
Reading 2d data codes of type ECC200

3.11.5 Selecting Operators

Acquire Image(s)

Please refer to the operator list for the method Image Acquisition (see section 3.1.4 on page 25).

Rectify Image(s)

Operators for rectifying images are described in the Application Note on 3D Machine Vision.

3.11 2D Data Code 143

Create Data Code Model

Standard:

create_data_code_2d_model

Optimize Model

Standard:

set_data_code_2d_param, get_data_code_2d_param

Advanced:

query_data_code_2d_params

Train Model

Standard:

find_data_code_2d

Advanced:

get_data_code_2d_results, set_data_code_2d_param

Read Data Code(s)

Standard:

find_data_code_2d

Inspect Data Code(s)

Standard:

get_data_code_2d_results, get_data_code_2d_objects

Visualize Results

Please refer to the operator list for the method Visualization (see section 3.14.5 on page 184).

Destroy Data Code Model

Standard:

clear_data_code_2d_model

M
et

ho
ds

144 Machine Vision Methods

3.11.6 Tips & Tricks

Use of Domains (Regions of Interest)

The concept of domains (the HALCON term for a region of interest) is useful for data code reading.
With domains, the processing can be focused to a certain area in the image and thus sped up. The more
the region in which the data code region is searched for can be restricted, the faster and more robust the
search. For an overview on how to construct regions of interest and how to combine them with the image
see the method Region Of Interest on page 27.

3.12 OCR 145

3.12 OCR

Optical Character Recognition (OCR) is the technical term for reading, i.e., identifying symbols. In
HALCON, OCR is defined as the task to assign an interpretation to regions of an image. These regions
typically represent single characters and therefore we consider this as reading single symbols.

In an offline phase, the characters are trained by presenting several samples for each character. In the
online phase, the image is segmented to extract the regions representing the characters and then the OCR
reader is applied to get the interpretation for each character.

Figure 3.34 shows the principal steps. The first part is offline and consists of collecting training samples
and, after that, applying the training. The online part consists of extracting the characters and then
reading them.

selection of training charactersimage

training of a font file

reading of charactersimage

creation of training files

Offline

Online

Figure 3.34: Main steps of OCR.

The advantage of OCR is the flexibility of the training, which allows to select features optimized for an
application. Furthermore, the used classifier is based on the latest neural network technology, providing
best possible performance.

As a further advantage, HALCON provides you with a set of pretrained fonts, which are based on a
large amount of training data from various application areas. These fonts allow you to read text in docu-
ments, on pharmaceutical or industrial products, dot prints, and even handwritten numbers. Furthermore,
HALCON includes pretrained fonts for OCR-A and OCR-B.

M
et

ho
ds

146 Machine Vision Methods

3.12.1 Basic Concept

The OCR is split into two major parts: training and reading. Each of these major parts requires additional
preparation steps:

Destroy Classifier

Read Symbol

Train OCR

Segment Image(s)

Acquire Image(s)

Acquire Image(s)

Both for the generation of training data and for the OCR itself images must be acquired.

For detailed information see the description of this method on page 22.

Segment Image(s)

Both for the training samples and for the online reading process, characters must be extracted
from the image. This step is called segmentation. This means that the OCR operators like
do_ocr_single_class_mlp do not search for the characters within a given region of interest, but
expect a segmented region, which then will be classified.

If the samples for training are taken from real application images, the same segmentation method will
be applied for both training and reading. If the training images are more “artificial”, a simpler method
might be used to segment the training images.

Train OCR

The training consists of two important steps: First, a number of samples for each character are selected
and stored in so-called training files. In the second step, these files are input for a newly created OCR
classifier.

As already noted, HALCON provides pretrained fonts, which already solve many OCR applications.
These fonts can be found in the subdirectory ocr of the folder where you installed HALCON.

3.12 OCR 147

Read Symbol

The only task that must be solved for the reading is the segmentation of the characters. The corresponding
regions will then be input for the trained classifier. The classifier will be read from disk beforehand.

Destroy Classifier

When you no longer need the classifier, you destroy it with the operator clear_ocr_class_mlp or
close_ocr.

3.12.2 Extended Concept

When we look more closely at the OCR, many possibilities for adaptation to specific applications become
apparent. For example, we have to consider an efficient way of collecting samples as well as correct
parameters for the training. In the online phase, an optimal segmentation method is required to extract
all characters in a robust manner.

Align ROIs Or Images

Because the reading of characters is not invariant to rotation, it may be necessary to correct the orientation
of the image. This is achieved by locating another object. Then, the part of the image containing the
characters is cropped and aligned using the orientation of the found object.

How to perform alignment using shape-based matching is described in the Application Note on Shape-
Based Matching in section 4.3.4 on page 36.

Rectify Image(s)

Similarly to alignment, it may be necessary to rectify the image, e.g., to remove perspective distortions.

Detailed information about rectifying images can be found in the Application Note on 3D Machine
Vision in section 3.3 on page 49.

Preprocess Image(s) (Filtering)

Sometimes, the characters may be difficult to extract because of noise, texture, or overlaid structures.
Here, operators like mean_image or gauss_image can be used to eliminate noise. median_image is
helpful for suppressing small spots or thin lines. The operator dots_image is optimized to emphasize
a dot-print while suppressing other structures in the image. Gray value morphology can be used to
eliminate noise structures and to adapt the stroke width of characters.

Extract Segmentation Parameters

Instead of using fixed threshold values, they can be extracted dynamically for each image. This approach
is identical to the one used for standard blob analysis. For more details, please refer to the description of
this step on page 42.

M
et

ho
ds

148 Machine Vision Methods

Destroy Classifier

Visualize Results

Read Symbol

Train OCR

Segment Image(s)

Extract Segmentation
Parameters

Preprocess Image(s)
(Filtering)

Rectify Image(s)

Align ROIs Or Images

Acquire Image(s)

Segment Image(s)

For the segmentation various methods can be used. The most simple method is the operator threshold,
with one or more gray value ranges specifying the regions that belong to the foreground objects. Another
very common method is dyn_threshold. Here, a second image is passed as a reference. With this
approach a local instead of a global threshold is used for each position.

Like the previous step, segmentation is described in more detail with the method blob analysis on page
42.

Train OCR

Figure 3.35 shows an overview on the generation of the training files: First, the characters from sample

3.12 OCR 149

images must be extracted using a segmentation method (see above). To each of the single characters a
name must be assigned. This can be done either by typing it in, by a programmed input in the case of a
well-structured image (having, e.g., multiple samples of each character in different lines), or by reading
the character names from file. Then, the regions together with their names are written into training
files. The most convenient operator to do this is append_ocr_trainf. Before applying the training,
we recommend to check the correctness of the training files. This can, e.g., be achieved by using the
operator read_ocr_trainf combined with visualization operators.

regions

segmentation

image

combination

training file (*.trf) training file inspection

character names programmed

user interaction

reading text file

Figure 3.35: Creating training files.

The actual training is depicted in figure 3.36. First, a new classifier is created using ei-
ther create_ocr_class_box or create_ocr_class_mlp. Then, the training is applied using
trainf_ocr_class_box or trainf_ocr_class_mlp, respectively. After the training, you typ-
ically save the classifier to disk for later use for the reading with the operators write_ocr or
write_ocr_class_mlp, respectively.

There are two different OCR tools available. The difference is very simple: The box classifier has the
advantage of step-by-step training. This means that single samples can be added to an already trained
classifier. This is very useful with interactive programs where an immediate improvement after showing
extra samples is required. The neural network classifier (multi-layer perceptron) has better classification
results but requires all samples simultaneously during the (single) training.

Read Symbol

Figure 3.37 shows an overview on the reading process. First, the characters must be extracted using an
appropriate segmentation method. Here, you must use a method that returns the characters in a form
similar to the ones used for training. After reading the classifier (font file) from file (read_ocr or
read_ocr_class_mlp), the classifier can be used for reading.

For reading multiple operators are provided: In the easiest case, multiple characters are passed to the
reading operators (do_ocr_multi or do_ocr_multi_class_mlp). Here, for each region the corre-
sponding name and the confidence are returned. Sometimes, it can be necessary not only to obtain the

M
et

ho
ds

150 Machine Vision Methods

training

saving

font file (*.fnt)

trained OCR classifier

testing

training file (*.trf) new OCR classifier

Figure 3.36: Training an OCR classifier.

segmentation

regionsfont file (*.trf)

classification

symbols grouping text

image

Figure 3.37: Reading characters.

characters with the highest confidence but also others with lower confidences. A zero, e.g., might easily
be mistaken for the character “O”. This information is returned by the operators do_ocr_single and
do_ocr_single_class_mlp.

As a final step it might be necessary to group digits to numbers or characters to words. This can be
realized with the region processing operators like those described for the method blob analysis on page
42.

3.12 OCR 151

Visualize Results

Finally, you might want to display the images, the blob (regions), and the result of the reading process.

For detailed information see the description of this method on page 173.

3.12.3 Industries

3.12.3.1 Food

A typical OCR application is to check the “best before” date. For a corresponding example see the
description of bottle.dev on page 193.

3.12.3.2 Machinery

A standard task in machinery is to read text that is engraved on metal surfaces. This task can be dif-
ficult because of textures and changing illumination conditions. For a corresponding example see the
description of engraved.dev on page 199.

3.12.3.3 Transport And Logistics

A typical but not easy task is the reading of forms. For the corresponding example see the description of
ocrcolor.dev on page 234.

3.12.4 Programming Examples

This section gives a brief introduction to using HALCON for OCR. All important steps from training file
generation over training to reading are presented.

3.12.4.1 Generating a Training File

Example: examples\quick_guide\hdevelop\gen_training_file.dev

Figure 3.38 shows a training image from which the characters in the fourth line are used as training
samples. For this example image, the segmentation is very simple because the characters are significantly
darker than the background. Therefore, threshold can be used.

The number of the line of characters that is used for training is specified by the variable TrainingLine.
To select this line, first the operator closing_rectangle1 is used to combine characters horizontally
into lines. These lines are then converted to their connected components with connection. Out of
all lines the relevant one is selected using select_obj. By using intersection with the original
segmentation and the selected line as input, the characters for training are returned. These are sorted
from left to right, using sort_region.

M
et

ho
ds

152 Machine Vision Methods

Figure 3.38: Collecting characters for a training file.

TrainingLine := 3

threshold (Image, Region, 0, 125)

closing_rectangle1 (Region, RegionClosing, 70, 10)

connection (RegionClosing, Lines)

Training := Lines[TrainingLine]

intersection (Training, Region, TrainingChars)

connection (TrainingChars, ConnectedRegions)

sort_region (ConnectedRegions, SortedRegions, ’first_point’, ’true’,

’column’)

Now, the characters can be stored in the training file. As a preparation step a possibly existing older
training file is deleted. Within a loop over all characters the single characters are selected. The variable
Chars contains the names of the characters as a tuple of strings. With the operator append_ocr_trainf
the selected regions, together with the gray values and the corresponding name, are added to the training
file.

Chars := [’0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’]

TrainFile := ’numbers.trf’

dev_set_check (’~give_error’)

delete_file (TrainFile)

dev_set_check (’give_error’)

for i := 1 to 10 by 1

TrainSingle := SortedRegions[i]

append_ocr_trainf (TrainSingle, Image, Chars[i-1], TrainFile)

endfor

3.12.4.2 Creating and Training an OCR Classifier

Example: examples\quick_guide\hdevelop\simple_training.dev

Having prepared the training file, the creation and training of an OCR classifier is very simple. First, the
names of the training file and the final font file are determined. Typically, the same base with different
extensions is used. We recommend to use “.trf” for training files and “.fnt” for font files, i.e., for OCR
classifiers.

To create an OCR classifier, some parameters need to be determined. The most important one is the

3.12 OCR 153

list of all possible character names. This list can easily be extracted from the training file by using the
operator read_ocr_trainf_names.

TrainFile := ’numbers.trf’

read_ocr_trainf_names (TrainFile, CharacterNames, CharacterCount)

Another important parameter is the number of nodes in the hidden layer of the neural network. In this
case, it is set to 20. As a rule of thumb, this number should be in the same order as the number of different
symbols. Besides these two parameters, here only default values are used for create_ocr_class_mlp.
The training itself is applied using trainf_ocr_class_mlp. We recommend to simply use the default
values here as well.

NumHidden := 20

create_ocr_class_mlp (8, 10, ’constant’, ’default’, CharacterNames,

NumHidden, ’none’, 1, 42, OCRHandle)

trainf_ocr_class_mlp (OCRHandle, TrainFile, 200, 1, 0.01, Error, ErrorLog)

Finally, the classifier is stored to disk and the memory is freed.

FontFile := ’numbers.fnt’

write_ocr_class_mlp (OCRHandle, FontFile)

clear_ocr_class_mlp (OCRHandle)

3.12.4.3 Reading Numbers

Example: examples\quick_guide\hdevelop\simple_reading.dev

Figure 3.39: Applying the classifier.

This example uses the font trained in the previous example to read the numbers in the images depicted
in figure 3.38. First, the trained font is read using read_ocr_class_mlp.

FontFile := ’numbers.fnt’

read_ocr_class_mlp (FontFile, OCRHandle)

M
et

ho
ds

154 Machine Vision Methods

Then, the numbers are segmented using threshold and connection. Because the order is irrelevant
here, no further processing is applied.

threshold (Image, Region, 0, 125)

connection (Region, Characters)

Finally, the numbers are read in a for-loop. The operator do_ocr_single_class_mlp takes the single
region, the image, and the OCR handle as input. As a result the best and the second best interpretation
together with the confidences are returned.

Number := |Characters|

for i := 1 to Number by 1

SingleChar := Characters[i]

do_ocr_single_class_mlp (SingleChar, Image, OCRHandle, 2, Class,

Confidence)

endfor

3.12.4.4 Other Examples

HDevelop

• examples\hdevelop\Applications\OCR\bottle.dev
Segmenting and reading numbers on a beer bottle
→ description here in the Quick Guide on page 193

• examples\hdevelop\Applications\OCR\bottlet.dev
Segmenting and training numbers on a beer bottle

• examples\hdevelop\Applications\OCR\dotprt.dev
Segmenting a dot print

• examples\hdevelop\Applications\OCR\engraved.dev
Segmenting and reading characters on a metal surface
→ description here in the Quick Guide on page 199

• examples\hdevelop\Applications\OCR\engravedt.dev
Segmenting and training characters on a metal surface

• examples\hdevelop\Applications\OCR\font.dev
Segmenting and reading printed characters

• examples\hdevelop\Applications\OCR\fontt.dev
Segmenting and training printed characters

• examples\hdevelop\Applications\OCR\letter.dev
Segmenting and reading printed characters

• examples\hdevelop\Applications\OCR\letters_mlp.dev
Trains an MLP OCR classifier and reclassifies the training samples

3.12 OCR 155

• examples\hdevelop\Applications\OCR\lettert.dev
Segmenting and training printed characters

• examples\hdevelop\Applications\OCR\ocrcolor.dev
Segmenting and reading numbers using color information
→ description here in the Quick Guide on page 234

• examples\hdevelop\Applications\OCR\ocrcolort.dev
Segmenting numbers using color information and training the OCR

• examples\hdevelop\Applications\OCR\rotchar.dev
Estimating small inclinations of text lines

• examples\hdevelop\Applications\OCR\stamp_catalogue.dev
Segmenting and grouping characters on a cluttered page

• examples\hdevelop\Filter\Points\dots_image.dev
Segmenting a dot print using dots_image

C++

• examples\cpp\source\bottle.cpp
Reads numbers on a beer bottle

• examples\cpp\source\engraved.cpp
Segmenting and reading characters on a metal surface

3.12.5 Selecting Operators

Acquire Image(s)

Please refer to the operator list for the method Image Acquisition (see section 3.1.4 on page 25).

Align ROIs Or Images

Operators for aligning ROIs or images are described in the Application Note on Shape-Based Matching.

Rectify Image(s)

Operators for rectifying images are described in the Application Note on 3D Machine Vision.

Preprocess Image(s) (Filtering)

Standard:

mean_image, gauss_image, median_image, gray_opening_shape, gray_closing_shape,
dots_image, gray_range_rect

Advanced:

gray_dilation_shape, gray_erosion_shape, anisotrope_diff

M
et

ho
ds

156 Machine Vision Methods

Extract Segmentation Parameters

Please refer to the detailed operator list for the step Extract Segmentation Parameters on page 49.

Segment Image(s)

Please refer to the detailed operator list for the step Segment Image(s) on page 50.

Train OCR

Standard:

read_string, append_ocr_trainf, delete_file, read_ocr_trainf,
create_ocr_class_box, trainf_ocr_class_box, write_ocr, create_ocr_class_mlp,
trainf_ocr_class_mlp, write_ocr_class_mlp

Advanced:

traind_ocr_class_box, get_prep_info_ocr_class_mlp

Read Symbol

Standard:

read_ocr, do_ocr_multi, do_ocr_single, close_ocr, read_ocr_class_mlp,
do_ocr_multi_class_mlp, do_ocr_single_class_mlp, clear_ocr_class_mlp

Advanced:

dilation_rectangle1, closing_circle, partition_rectangle, partition_dynamic

Visualize Results

Please refer to the operator list for the method Visualization (see section 3.14.5 on page 184).

Destroy Classifier

Standard:

clear_ocr_class_mlp, close_ocr

3.12.6 Relation to Other Methods

3.12.6.1 Alternatives to OCR

(see description on page ??)

3.12 OCR 157

As an alternative to classical OCR, matching can be used to read single characters or more complex
symbols. In this case, one model for each character must be generated. The advantage of matching
is the invariance to rotation. Furthermore, it is not necessary to segment the characters prior to the
classification. Therefore, the matching approach should be considered when there is no robust way to
separate the characters from the background.

Classification
You can consider the OCR tool as a convenient way of using a classifier. The OCR automatically derives
invariant features and passes them to the underlying classifier. If the features offered by the OCR do
not fulfill the needs of your application, you can create an “extended” OCR classifier by calculating
the features using normal HALCON feature extraction operators and then using them with one of the
two classifiers that HALCON offers (see the chapters “Regions . Features” and “Classification” in the
Reference Manual).

3.12.7 Tips & Tricks

Use of Domains (Regions of Interest)

The concept of domains (the HALCON term for a region of interest) is also useful for OCR. With
domains, the processing can be focused to a certain area in the image and thus sped up. The more the
region in which the characters are searched can be restricted, the faster and more robust the search will
be. For an overview on how to construct regions of interest and how to combine them with the image see
the method Region Of Interest on page 27.

Composed Symbols

Some characters and symbols are composed of multiple sub-symbols, like an “i”, “%”, or “!”. For the
OCR, these sub-symbols must be combined into a single region. This can be achieved by calling clos-
ing_rectangle1 after thresholding, typically using a small width but a larger height. After calling
connection to separate the characters, you use the operator intersection to get the original segmen-
tation (input parameter 2), while preserving the correct connected components from connection (input
parameter 1).

3.12.8 Advanced Topics

Line Scan Cameras

In general, line scan cameras are treated like normal area sensors. But in some cases, not single images
but an “infinite” sequence of images showing objects, e.g., on a conveyor belt, must be processed. In
this case, the end of one image is the beginning of the next one. This means that text or numbers, which
partially lie in both images, must be combined into one object. For this purpose, HALCON provides the
operator merge_regions_line_scan. This operator is called after the segmentation of one image, and
combines the current objects with those of previous images. For more information see the Application
Note on Image Acquisition.

M
et

ho
ds

158 Machine Vision Methods

Circular Prints

In some cases the symbols are not printed as straight lines but along arcs, e.g., on a CD. To read
these, the (virtual) center and radius of the corresponding circle are extracted. Using the operator po-
lar_trans_image_ext, the image is then unwrapped.

OCR Features

HALCON offers many different features for the OCR. Most of these are for advanced use only. In
most cases it is recommended to use the feature combination ’default’. This combination is based
on the gray values within the surrounding rectangle of the character. In case that the background of the
characters cannot be used, e.g., if it varies because of texture, the features ’pixel_binary’, ’ratio’,
and ’anisometry’ are good combinations. Here, only the region is used, the underlying gray values
are ignored.

3.12.9 Pretrained OCR Fonts

The following sections shortly introduce you to the pretrained OCR fonts provided by HALCON. You
can access them in the subdirectory ocr of the folder where you installed HALCON.

Nomenclature for the Ready-to-Use OCR Fonts

There are several groups of OCR fonts available. The members of each group differ as they contain
different symbol sets. The content of an OCR font is described by its name. For the names of the
pretrained OCR fonts the following nomenclature is applied:

The name starts with the group name, e.g., Document or DotPrint, followed by indicators for the set of
symbols contained in the OCR font. The meaning of the indicators is the following:

• 0-9: The OCR font contains the digits 0 to 9.

• A-Z: The OCR font contains the uppercase characters A to Z.

• + : The OCR font contains special characters. The list of special characters varies slightly over
the individual OCR fonts. It is given below for each OCR font separately.

If the name of the OCR font does not contain any of the above indicators, typically, the OCR font contains
the digits 0 to 9, the uppercase characters A to Z, the lowercase characters a to z, and special characters.
Some of the OCR fonts do not contain lowercase characters or the full set of uppercase characters (e.g.,
MICR). For these OCR fonts, the contained symbols are named explicitly.

Ready-to-Use OCR Font ’Document’

The OCR font Document can be used to read characters printed in fonts like Arial, Courier, or Times
New Roman. These are typical fonts for printing documents or letters.

Available special characters: - = + < > . # $ % & () @ * , § e

The following OCR fonts with different symbol sets are available:

3.12 OCR 159

• Document

• Document_0-9

• Document_0-9A-Z

Ready-to-Use OCR Font ’DotPrint’

The OCR font DotPrint can be used to read characters printed with dot printers (see figure 3.40).

It contains no lowercase characters.

Available special characters: - / . * , :

The following OCR fonts with different symbol sets are available:

• DotPrint

• DotPrint_0-9

• DotPrint_0-9+

• DotPrint_0-9A-Z

Figure 3.40: Examples for dot prints.

Ready-to-Use OCR Font ’HandWritten_0-9’

The OCR font HandWritten_0-9 can be used to read handwritten numbers (see figure 3.41).

It contains the digits 0-9.

Available special characters: none

Figure 3.41: Examples for handwritten numbers.

M
et

ho
ds

160 Machine Vision Methods

Ready-to-Use OCR Font ’Industrial’

The OCR font Industrial can be used to read characters printed in fonts like Arial, OCR-B, or other
sans-serif fonts (see figure 3.42). These fonts are typically used to print, e.g., labels.

Available special characters: - / + . $ % * , e

The following OCR fonts with different symbol sets are available:

• Industrial

• Industrial_0-9

• Industrial_0-9+

• Industrial_0-9A-Z

Figure 3.42: Examples for industrial prints.

Ready-to-Use OCR Font ’MICR’

The OCR font MICR can be used to read characters printed in the font MICR (see figure 3.43).

It contains the digits 0-9 and the characters A-D.

Available special characters: none

Figure 3.43: The MICR font.

Ready-to-Use OCR Font ’OCR-A’

The OCR font OCR-A can be used to read characters printed in the font OCR-A (see figure 3.44).

Available special characters: - ? ! / \{} = + < > . # $ % & () @ *

The following OCR fonts with different symbol sets are available:

• OCRA

3.12 OCR 161

• OCRA_0-9

• OCRA_0-9A-Z

Figure 3.44: The OCR-A font.

Ready-to-Use OCR Font ’OCR-B’

The OCR font OCR-B can be used to read characters printed in the font OCR-B (see figure 3.45).

Available special characters: - ? ! / \{} = + < > . # $ % & () @ *

The following OCR fonts with different symbol sets are available:

• OCRB

• OCRB_0-9

• OCRB_0-9A-Z

Figure 3.45: The OCR-B font.

Ready-to-Use OCR Font ’Pharma’

The OCR font Pharma can be used to read characters printed in fonts like Arial, OCR-B, and other fonts
that are typically used in the pharmaceutical industry (see figure 3.46).

M
et

ho
ds

162 Machine Vision Methods

This OCR font contains no lowercase characters.

Available special characters: - / . () :

The following OCR fonts with different symbol sets are available:

• Pharma

• Pharma_0-9

• Pharma_0-9A-Z

Figure 3.46: Examples for pharmaceutic labels.

3.13 Stereo 163

3.13 Stereo

The basic principle of binocular stereo is that 3D coordinates of object points are determined from two
images that are acquired simultaneously from different points of view. For example, the top row of
figure 3.47 shows the stereo image pair of a board. With binocular stereo, the heights of the individual
components of the board can be determined. The bottom row of figure 3.47 contains the height map for
the entire overlapping area of the stereo image pair. In addition, a part of the height map is shown as a
3D plot.

Figure 3.47: Basic principle of binocular stereo. Top: stereo image pair; bottom: height map.

The advantage of binocular stereo is that 3D information of the surface of arbitrarily shaped objects can
be determined from images. Binocular stereo can also be combined with other vision methods, e.g., as a
preprocessing step for blob analysis, which can then be used to extract objects from the depth image.

Note that this section describes the fully calibrated version of stereo vision. HALCON also provides an
uncalibrated version. Please refer to the Application Note on 3D Machine Vision, section 7.5 on page
108, for more information.

M
et

ho
ds

164 Machine Vision Methods

3.13.1 Basic Concept

The derivation of 3D information with a binocular stereo system consists of four main steps:

Obtain 3D Information

Rectify Image(s)

Acquire Image(s)

Calibrate Stereo Camera
System

Calibrate Stereo Camera System

First, the stereo camera system is calibrated. For this, a number of stereo calibration images must be
acquired, each showing the HALCON calibration plate in a different position and orientation. The object
coordinates of the calibration marks can be read from the calibration plate description file. The image
coordinates of the calibration marks must be extracted from the calibration images. Then, the parameters
of the stereo setup are determined. With this, the rectification maps for the rectification of the stereo
images can be determined.

The calibration process is described in detail in the Application Note on 3D Machine Vision in section 7.3
on page 93.

Acquire Image(s)

Stereo images are acquired with the calibrated stereo camera system.

Rectify Image(s)

Having obtained a pair of stereo images, they must be rectified such that corresponding points (conju-
gate points) lie on the same row in both rectified images. For this, the rectification map that has been
determined above must be used.

Obtain 3D Information

In the final step, for each point of the first rectified image the conjugate point in the second rectified
image will be determined (stereo matching). For these points, either the disparity or the distance to the
stereo camera system can be calculated and returned as a gray value image. The reference plane to which
these distances are related can be changed (see the Application Note on 3D Machine Vision, section 7.4.3
on page 104). It is also possible to derive the distance or the 3D coordinates for selected points for which
the disparity is known. What is more, 3D coordinates can be determined from the image coordinates of
each pair of conjugate points directly.

3.13 Stereo 165

3.13.2 Extended Concept

In many cases the derivation of 3D information with a binocular stereo system will involve more steps
than described above. Reasons for this are, e.g., the need to restrict the stereo reconstruction to an ROI.
Furthermore, postprocessing, like transforming the 3D coordinates into another coordinate system or
visualization of results, is often required.

Visualize Results

Transform Results Into
World Coordinates

Obtain 3D Information

Create ROI

Rectify Image(s)

Acquire Image(s)

Calibrate Stereo Camera
System

Create ROI

A region of interest can be created to reduce the image domain for which the stereo matching will be
performed. This will reduce the processing time.

For detailed information see the description of this method on page 27.

Transform Results Into World Coordinates

In some applications, the 3D coordinates must be transformed into a given world coordinate system.
For this, the relation between the given world coordinate system and the stereo camera system must be
determined. Then, the 3D coordinates can be transformed as requested.

How to transform results into world coordinates is described in detail in the Application Note on 3D
Machine Vision in section 3.2 on page 44.

M
et

ho
ds

166 Machine Vision Methods

Visualize Results

Finally, you might want to visualize the disparity or distance images, e.g., as a 3D plot or as contour
lines, or you may need to visualize the 3D coordinates.

For detailed information see the description of this method on page 173.

3.13.3 Industries

3.13.3.1 Semiconductors

Typical tasks where binocular stereo can be used comprise, but are not limited to, completeness checks
and the inspection of ball grid arrays.

3.13.3.2 Automobile Parts And Manufacturers

Binocular stereo can be used for the contact-free measurement of the 3D surface of arbitrarily shaped
objects.

3.13.3.3 Machinery

In this industry as well, binocular stereo can be used for the contact-free measurement of the 3D surface
of arbitrarily shaped objects.

3.13.4 Programming Examples

This section gives a brief introduction to using HALCON for binocular stereo.

3.13.4.1 Segment the Components of a Board

Example: examples\hdevelop\Applications\Stereo\board_components.dev

Figure 3.48 shows a stereo image pair of a board together with the result of a segmentation of raised
objects. The segmentation has been carried out based on the distance image that was derived with
binocular stereo.

3.13 Stereo 167

Figure 3.48: Segment board components based on their height.

First, the stereo camera system must be calibrated. For this, a number of calibration image pairs must be
acquired. The calibration plate must be completely visible in each calibration image. A subset of these
calibration images is shown in figure 3.49.

Figure 3.49: A subset of the calibration images that are used for the calibration of the stereo camera
system.

The approximate position of the calibration plate is determined and the image coordinates of the calibra-
tion marks are extracted from the individual calibration images. The coordinates and the initial values
for the poses of the calibration plates must be accumulated.

M
et

ho
ds

168 Machine Vision Methods

for imgnr := 1 to Number by 1

find_caltab (ImageL, CaltabL, CalDescrFile, SizeGauss, MarkThresh,

MinDiamMarks)

find_caltab (ImageR, CaltabR, CalDescrFile, SizeGauss, MarkThresh,

MinDiamMarks)

find_marks_and_pose (ImageL, CaltabL, CalDescrFile, StartCamParL,

StartThresh, DeltaThresh, MinThresh, Alpha, MinContLength,

MaxDiamMarks, RCoordL, CCoordL, StartPoseL)

find_marks_and_pose (ImageR, CaltabR, CalDescrFile, StartCamParR,

StartThresh, DeltaThresh, MinThresh, 0.7, MinContLength,

MaxDiamMarks, RCoordR, CCoordR, StartPoseR)

RowsL := [RowsL,RCoordL]

ColsL := [ColsL,CCoordL]

StartPosesL := [StartPosesL,StartPoseL]

RowsR := [RowsR,RCoordR]

ColsR := [ColsR,CCoordR]

StartPosesR := [StartPosesR,StartPoseR]

endfor

The object coordinates of the calibration marks can be read from the calibration plate description file.

caltab_points (CalDescrFile, X, Y, Z)

With this, the actual calibration of the stereo camera system can be performed.

binocular_calibration (X, Y, Z, RowsL, ColsL, RowsR, ColsR, StartCamParL,

StartCamParR, StartPosesL, StartPosesR, ’all’, CamParamL, CamParamR,

NFinalPoseL, NFinalPoseR, cLPcR, Errors)

Now, the rectification maps for the rectification of the stereo image pair can be generated.

gen_binocular_rectification_map (MapL, MapR, CamParamL, CamParamR, cLPcR,

1, ’geometric’, ’bilinear’, RectCamParL, RectCamParR, CamPoseRectL,

CamPoseRectR, RectLPosRectR)

Then, each stereo image pair acquired with the calibrated stereo camera system can be rectified. This
has the effect that conjugate points have the same row coordinate in both images. The rectified images
are displayed in figure 3.50

map_image (ImageL, MapL, ImageRectifiedL)

map_image (ImageR, MapR, ImageRectifiedR)

From the rectified images, a distance image can be derived in which the gray values represent the distance
of the respective object point to the stereo camera system. This step is the core of the stereo approach.
Here, the stereo matching, i.e., the determination of the conjugate points takes place.

3.13 Stereo 169

Figure 3.50: Rectified images.

binocular_distance (ImageRectifiedL, ImageRectifiedR, DistanceImage,

ScoreImageDistance, RectCamParL, RectCamParR, RectLPosRectR, ’ncc’,

MaskWidth, MaskHeight, TextureThresh, MinDisparity, MaxDisparity,

NumLevels, ScoreThresh, ’left_right_check’, ’interpolation’)

Finally, the distance image can, e.g., be corrected such that a given object plane receives a specified
distance value, e.g., zero. Objects that deviate from the given object plane can thus be segmented very
easily with a threshold operation.

threshold (HeightAboveReferencePlaneReduced, Range1, Height1_Min,

Height1_Max)

threshold (HeightAboveReferencePlaneReduced, Range2, Height2_Min,

Height2_Max)

threshold (HeightAboveReferencePlaneReduced, Range3, Height3_Min,

Height3_Max)

3.13.4.2 Other Examples

HDevelop

• examples\application_guide\3d_machine_vision\hdevelop\
3d_information_for_selected_points.dev
Calculating world coordinates for a point in a stereo image pair
→ description in the Application Note on 3D Machine Vision on page 106

• examples\application_guide\3d_machine_vision\hdevelop\
height_above_reference_plane_from_stereo.dev
Extracts chips using height information from binocular stereo
→ description in the Application Note on 3D Machine Vision on page 100

• examples\application_guide\3d_machine_vision\hdevelop\
stereo_calibration.dev

M
et

ho
ds

170 Machine Vision Methods

Calibrates a stereo system
→ description in the Application Note on 3D Machine Vision on page 95

• examples\hdevelop\Applications\Stereo\board_segmentation_uncalib.dev
Segmention of board components by height using uncalibrated binocular stereo

• examples\hdevelop\Applications\Stereo\disparity.dev
Shows disparity results for several stereo image pairs

• examples\hdevelop\Filter\Inpainting\harmonic_interpolation.dev
Fill up unreconstructed areas in a distance image created by stereo reconstruction

• examples\hdevelop\Filter\Inpainting\inpainting_aniso.dev
Fill up unreconstructed areas in a distance image created by stereo reconstruction

• examples\hdevelop\Filter\Inpainting\inpainting_ced.dev
Fill up unreconstructed areas in a distance image created by stereo reconstruction

• examples\hdevelop\Filter\Inpainting\inpainting_mcf.dev
Fill up unreconstructed areas in a distance image created by stereo reconstruction

• examples\hdevelop\Tools\Stereo\binocular_calibration.dev
Calibrating stereo systems and rectifying image pairs

• examples\hdevelop\Tools\Stereo\binocular_disparity.dev
Calculating disparities from epipolar image pairs

• examples\hdevelop\Tools\Stereo\binocular_disparity_segmentation.dev
Demonstrates stereo results using an artificial image pair

• examples\hdevelop\Tools\Stereo\disparity_to_point_3d.dev
Reconstructing 3D information from disparity

• examples\hdevelop\Tools\Stereo\intersect_lines_of_sight.dev
Reconstructing 3D information by intersecting lines of sight

• examples\hdevelop\Tools\Stereo\uncalib_stereo_boxes.dev
Determine the surfaces of boxes using uncalibrated binocular stereo.

3.13.5 Selecting Operators

Calibrate Stereo Camera System

Standard:

caltab_points, find_caltab, find_marks_and_pose, binocular_calibration,
gen_binocular_rectification_map

Acquire Image(s)

Please refer to the operator list for the method Image Acquisition (see section 3.1.4 on page 25).

3.13 Stereo 171

Rectify Image(s)

Standard:

map_image

Create ROI

Standard:

reduce_domain

Further operators can be found in the operator list for the method Region Of Interest (see section 3.2.5
on page 36).

Obtain 3D Information

Standard:

binocular_disparity, binocular_distance, disparity_to_distance,
disparity_to_point_3d, distance_to_disparity, intersect_lines_of_sight

Transform Results Into World Coordinates

Operators for transforming results into world coordinates are described in the Application Note on 3D
Machine Vision.

Visualize Results

Please refer to the operator list for the method Visualization (see section 3.14.5 on page 184).

3.13.6 Relation to Other Methods

3.13.6.1 Methods that are Using Stereo

Blob Analysis (see description on page 39)
The results of stereo can be used as the input for blob analysis. This may be useful if locally high
structures must be extracted that cannot be reliably detected from the original image. By applying blob
analysis to the distance image, such structures may be extracted very easily.

3.13.7 Tips & Tricks

Use of Domains (Regions of Interest)

The concept of domains (the HALCON term for a region of interest) is very important for stereo. With
domains, the processing can be focused to a certain area in the image and thus sped up. For example, you
can restrict the computation of 3D information to a certain region. For an overview on how to construct
regions of interest and how to combine them with the image, see the method Region Of Interest on page
27.

M
et

ho
ds

172 Machine Vision Methods

Speed Up

Many online applications require maximum speed. Although the stereo matching is a very complex task,
HALCON offers ways to speed up this process.

• Regions of interest are the standard method to increase the speed by processing only those areas
where objects must be inspected. This can be done by using pre-defined regions but also by an
online generation of the region of interest that depends on other objects found in the image.

• The use of image pyramids for the stereo matching reduces the processing time. The matching is
started on the specified level of the image pyramid. The respective results are used as initial values
for the matching on the next lower level of the image pyramid.

3.13.8 Advanced Topics

High Accuracy

Sometimes very high accuracy is required. To achieve a high distance resolution, i.e., a high accuracy
with which the distance of the object surface from the stereo camera system can be determined, special
care should be taken of the configuration of the stereo camera setup. The setup should be chosen such
that the distance between the cameras as well as the focal length are large, and that the stereo camera
system is placed as close as possible to the object. For more information, please refer to the Application
Note on 3D Machine Vision, section 7.2 on page 92.

3.14 Visualization 173

3.14 Visualization

Displaying data in HALCON is quite easy: In the graphics windows provided by HALCON, all sup-
ported data types can be visualized directly using specific display operators. Both the creation of these
windows and the displaying requires only little programming effort because the functionality is opti-
mized for the use in machine vision.

Making use of the HALCON visualization provides several advantages. First of all, it saves a lot of time
during the development because all important visualization methods are already predefined. Further-
more, the functionality is independent of the operating system: Writing a program under Windows using
the visualization of HALCON can be ported easily to Linux because the visualization operators behave
identically and therefore only user code making use of operating system functions needs to be rewritten.

3.14.1 Basic Concept

For visualization there are two important aspects to consider: The graphics windows and the data that
must be visualized.

Displaying

Handling Graphics
Windows

Handling Graphics Windows

HALCON provides an easy-to-use operator to create a graphics window for visualization:
open_window. This operator takes all necessary parameters to specify the dimensions, the mode, and the
relation to a potential parent window. As a result, a WindowHandle is returned with which you refer to
the window when displaying into it or when visualization parameters are changed. The most important
operators for controlling a window are clear_window to reset it to its background color, set_part to
specify the display coordinate system and close_window when the window is no longer needed.

Displaying

For each HALCON data type, specific operators for displaying are provided. The most convenient
operator for iconic data (images, regions, and XLD) is disp_obj. This operator automatically handles
gray or color images, regions, and XLDs. To control the way how data is presented in the window,
operators with the prefix set_ (or dev_set_ for the visualization in HDevelop) are used. They allow to
control the color, the draw mode, the line width, and many other parameters.

M
et

ho
ds

174 Machine Vision Methods

A First Example

An example for this basic concept is the following program, which shows how to visualize an image
overlaid with a segmentation result. Here, the visualization operators provided in HDevelop are used.

Figure 3.51: Visualizing the segmented clips.

After reading the image from file the dark clips are selected with bin_threshold, which automatically
selects the threshold value. After determining the connected components and selecting regions with
the appropriate size, the result is visualized. First, the image is displayed. After this, the parameters
for regions are set to multi-colors (12) and margin mode. Finally, the regions are displayed with these
settings.

read_image (Image, ’clip’)

bin_threshold (Image, Dark)

connection (Dark, Single)

select_shape (Single, Selected, ’area’, ’and’, 5000, 10000)

dev_display (Image)

dev_set_colored (12)

dev_set_draw (’margin’)

dev_display (Selected)

3.14 Visualization 175

3.14.2 Extended Concept

In advanced applications it is required to gain complete control over the visualization process. This can
include using graphics windows in programs developed with Microsoft Visual Basic or Microsoft C++,
changing the behavior of the graphics windows, making use of buffered output, or even using external
programs for the visualization. HALCON provides full control over all these topics to provide advanced
flexibility, in addition to the ease of use.

Gnuplot

Mouse Interaction

Displaying

Handling Graphics
Windows

Handling Graphics Windows

In this section we consider the concept of graphics windows in more detail.

• The graphics windows are designed such that each one stores all the corresponding parameters in
a kind of graphics context. Whenever an operator like set_draw is called, this context is modified
to be used for this window until the value is overwritten. All operators that modify the graphics
context start with the prefix set_. The current value of the context can be requested using the
corresponding operator with the prefix get_, e.g., get_draw.

• Besides display parameters, each graphics window has a coordinate system that can be defined with
set_part. The upper left corner of an image is (0,0), the lower right corner is (height-1,width-1).
The size of an image can be requested using get_image_pointer1. Please note that unlike in
HDevelop this coordinate system must be specified by calling set_part. Otherwise, the part of
the image that is visualized is undefined.

• The operator open_window has a parameter called Father. By default, the value 0 is used, which
means that the window has no parent and floats as an independent instance. You can construct
hierarchies of windows by passing the handle of one window as parent to the other. Besides this, it
is also possible to use the parent mechanism to embed the graphics windows into other forms (see
section 3.14.7 on page 185).

Displaying

After having opened a graphics window, the returned window handle is used to communicate with it.
Typically, first the visualization parameters are specified before data is displayed. To control images

M
et

ho
ds

176 Machine Vision Methods

only few operators are needed: set_paint (for profiles and 3D plots), set_lut (for look-up-tables), and
set_part_style (for the zooming interpolation). To specify the output for regions, many parameters
are available. The most important ones are set_draw (for filled or margin mode), set_color (for the
pen color), set_line_width (for the pen width), and set_colored (for multi-color modes). To display
XLD data, the same parameters (except set_draw) are used.

The visualization itself is performed with operators like disp_image, disp_color, disp_region, or
disp_xld. The most convenient way is to use disp_obj, which automatically uses the correct method.

For text output, you first specify the font with set_font. The desired position in the graphics window
is determined with set_tposition. Writing text into the window is performed with write_string

Mouse Interaction

The most important thing to know is that HALCON does not use an event-driven approach for mouse
handling. Each operator is designed such that the mouse interaction starts when the operator is called
and finishes when the operator returns. If an event-driven mode is needed one has to use the standard
mechanisms provided by the operating system.

Interacting with the mouse mainly involves two tasks:

• The first task is to request the position of the mouse. This can be achieved using get_mposition.
This operator returns immediately and has the position and the mouse button as result. An alterna-
tive is get_mbutton. This operator only returns when a mouse button has been clicked.

• The second important action is drawing shapes with the mouse. This is done with special operators
whose names start with draw_. Operators for many different shapes (like circles or rectangles)
are provided. Furthermore, different data types like regions or XLD contours can be used for the
result.

Gnuplot

To visualize numeric values, HALCON provides an interface to the public domain software Gnuplot.
This tool is especially useful to plot tuples of values like distributions and also provides extended versions
of 3D plots of images.

3.14.3 Industries

3.14.3.1 Semiconductors

The program pm_measure_board.dev on page 213 from a chip inspection application is a good exam-
ple to demonstrate the visualization of images, regions, XLD, and text.

3.14.3.2 Health Care And Life Science

The example lines_gauss.dev on page 196 from a medical application shows how to display XLD
data including its attribute values.

3.14 Visualization 177

3.14.3.3 Machinery

The example cbm_pipe_wrench.dev on page 201 shows how to handle visualization of complex data
like a component model and the matching results including text, symbolic data, and model contours.

3.14.4 Programming Examples

This section gives a brief introduction to using the visualization operators provided by HALCON.

3.14.4.1 Displaying HALCON data structures

Example: examples\quick_guide\hdevelop\display_operators.dev

The example program is designed to show the major features of displaying images, regions, XLD, and
text. It consists of a small main program that calls procedures handling the four different data types.
The program is written for HDevelop and uses its specific display operators. This is done in a way that
naturally ports (e.g., with the automatic export) to other language interfaces like C++, C#, or Visual
Basic.

The main procedure contains five procedures: open_graphics_window, display_image, dis-
play_regions, display_xld, and display_text. To switch between the programs of the individual
procedures you can use the combo box Procedures in the program window. Following, selected parts
of each procedure are explained.

read_image (Image, ’fabrik’)

open_graphics_window (Image, WindowHandle)

display_image (Image, WindowHandle)

regiongrowing (Image, Regions, 1, 1, 3, 100)

display_regions (Image, Regions, WindowHandle)

edges_sub_pix (Image, Edges, ’lanser2’, 0.5, 10, 30)

display_xld (Image, Edges, WindowHandle)

display_text (Image, Regions, WindowHandle)

open_graphics_window is a support procedure to open a graphics window that has the same size as
the image. This is done by calling get_image_pointer1 to access the image dimensions. Before
opening the new window, the existing window is closed. To adapt the coordinate system accordingly,
dev_set_part is called. This would be done automatically in HDevelop, but for the other programming
environments this step is necessary. Finally, the default behavior of HDevelop of displaying each result
automatically is switched off. This has the effect that only programmed output will be visible.

get_image_pointer1 (Image, _, _, Width, Height)

dev_close_window ()

dev_open_window (0, 0, Width, Height, ’white’, WindowHandle)

dev_set_part (0, 0, Height-1, Width-1)

dev_update_window (’off’)

Then, the display procedure for images is called: display_image. It has the Image and the Win-
dowHandle as input parameters. First, the window is activated, which again is not needed for HDevelop,

M
et

ho
ds

178 Machine Vision Methods

but is important for other programming environments. Now, the image is displayed in the graphics win-
dow. To change the look-up-table (LUT), dev_set_lut is called and the effect will become visible after
calling dev_display once again.

dev_set_window (WindowHandle)

dev_display (Image)

dev_set_lut (’temperature’)

dev_display (Image)

Next, a part of the image is displayed using a so-called 3D plot (see figure 3.52). Here, the gray values
are treated as height information. For this mode another LUT is used.

gen_rectangle1 (Rectangle, 358, 298, 387, 329)

dev_set_draw (’margin’)

dev_set_color (’yellow’)

dev_display (Rectangle)

dev_set_part (358, 298, 387, 329)

dev_set_lut (’twenty_four’)

dev_set_paint ([’3D-plot_hidden’,7,1,110,160,600,0,0])

dev_display (Image)

a) b)

Figure 3.52: (a) Original image with ROI; (b) 3D plot of image within the ROI.

The procedure to display regions is called display_regions. It first displays the image as background
and then sets the display parameters for the regions. dev_set_draw specifies that only the region border
is visualized. dev_set_colored activates the multi-color mode, where each region is displayed with
different colors (which change cyclically). As an alternative to simply showing the original shape of the
regions, HALCON enables you to modify the shape using dev_set_shape. In the given example the
equivalent ellipses are chosen. The result is depicted in figure 3.53.

3.14 Visualization 179

dev_display (Image)

dev_set_draw (’margin’)

dev_set_colored (6)

dev_display (Regions)

dev_display (Image)

dev_set_shape (’ellipse’)

dev_display (Regions)

a) b)

Figure 3.53: (a) Regions and (b) their equivalent ellipses.

The procedure display_xld first shows all contours overlaid on the image using the multi-color
mode. Then, a zoom is defined using dev_set_part. This zoom mode allows to inspect the sub-
pixel accurate contours easily. To give additional information, contours with a given size are selected
and for each of these the control points are extracted using get_contour_xld. The coordinates are
here returned as tuples of real values. For each of these control points, a cross is generated using
gen_cross_contour_xld, which is then overlaid onto the contour.

dev_display (Contours)

gen_rectangle1 (Rectangle, 239, 197, 239+17, 197+17)

dev_set_part (239, 197, 239+17, 197+17)

select_shape_xld (Contours, SelectedXLD, ’area’, ’and’, 2000, 3000)

for k := 1 to Number by 1

SingleContour := SelectedXLD[k]

get_contour_xld (SingleContour, Row, Col)

for i := 0 to |Row|-1 by 1

gen_cross_contour_xld (Cross, Row[i], Col[i], 0.8, rad(45))

dev_display (Cross)

endfor

endfor

The last part of the program is a procedure called display_text. It shows how to handle the mouse and
text output. The task is to click with the mouse into the graphics window to select a specific region and to
calculate features, which are then displayed in the graphics window. First, the font is selected. This is the

M
et

ho
ds

180 Machine Vision Methods

a) b)

Figure 3.54: Subpixel accurate contour control points: (a) original image; (b) zoomed image part.

only part of the visualization where the parameters differ between Linux/UNIX and Windows because
of the incompatible font name handling. However, as can be seen, the program can still be written so
that it ports without problems.

OpSystem := environment(’OS’)

if (OpSystem=’Windows_NT’)

set_font (WindowHandle, ’-Courier New-16-*-*-*-*-*-’)

else

set_font (WindowHandle,

’-*-courier-bold-r-normal--16-*-*-*-*-*-iso8859-1’)

endif

The rest of the program consists of a while-loop, which terminates as soon as the right mouse button is
pressed. The mouse operator get_mbutton waits until the user clicks with the mouse into the graphics
window and then returns the coordinate and the button value. This coordinate is used to select the
region that contains this point using select_region_point. For this region, the size and the center
of gravity are calculated with area_center. First, the text cursor is positioned with set_tposition
and the values are displayed using write_string. Here, it can be seen how conveniently strings can be
composed using the "+" operator.

Button := 0

while (Button # 4)

get_mbutton (WindowHandle, Row, Column, Button)

select_region_point (Regions, DestRegions, Row, Column)

area_center (DestRegions, Area, RowCenter, ColumnCenter)

if (|Area| > 0)

set_tposition (WindowHandle, Row, Column)

dev_set_color (’yellow’)

write_string (WindowHandle, ’(’+RowCenter+’,’+ColumnCenter+’) = ’+Area)

endif

endwhile

3.14 Visualization 181

Figure 3.55: Center of gravity and area of selected region.

3.14.4.2 Other Examples

HDevelop

• examples\application_guide\3d_machine_vision\hdevelop\
camera_calibration_multi_image.dev
Calibrates the camera and measures positions on a caliper rule
→ description in the Application Note on 3D Machine Vision on page 39

• examples\application_guide\3d_machine_vision\hdevelop\
handeye_movingcam_calibration.dev
Performs hand-eye calibration for a hand-eye system with a moving camera
→ description in the Application Note on 3D Machine Vision on page 112

• examples\application_guide\3d_machine_vision\hdevelop\
handeye_stationarycam_calibration.dev
Performs hand-eye calibration for a hand-eye system with a stationary camera
→ description in the Application Note on 3D Machine Vision on page 112

• examples\application_guide\3d_machine_vision\hdevelop\
handeye_stationarycam_grasp_nut.dev
Calculates pose for grasping a nut based on results of hand-eye calibration for a stationary camera
→ description in the Application Note on 3D Machine Vision on page 120

• examples\application_guide\3d_machine_vision\hdevelop\
height_above_reference_plane_from_stereo.dev
Extracts chips using height information from binocular stereo
→ description in the Application Note on 3D Machine Vision on page 100

• examples\application_guide\shape_matching\hdevelop\multiple_scales.dev
Searches for nuts of different sizes
→ description in the Application Note on Shape-Based Matching on page 44

• examples\hdevelop\Applications\FA\ball.dev

M
et

ho
ds

182 Machine Vision Methods

Inspection of ball bonding
→ description here in the Quick Guide on page 211

• examples\hdevelop\Applications\FA\cbm_caliper.dev
Measures the setting of a caliper using component-based matching in a perspectively distorted
image

• examples\hdevelop\Applications\FA\circles.dev
Fits circles into curved contour segments
→ description here in the Quick Guide on page 200

• examples\hdevelop\Applications\FA\clip.dev
Determines the orientation of clips

• examples\hdevelop\Applications\FA\pm_measure_board.dev
Locates IC on a board and measures pin distances
→ description here in the Quick Guide on page 213

• examples\hdevelop\Applications\FA\pm_multiple_models.dev
Finds multiple different models in a single pass using shape-based matching

• examples\hdevelop\Applications\FA\pm_world_plane.dev
Recognizes planar objects using shape-based matching in perspectively distorted images

• examples\hdevelop\Applications\Measure\fuzzy_measure_pin.dev
Measures pins of an IC using fuzzy measure
→ description here in the Quick Guide on page 212

• examples\hdevelop\Applications\Measure\measure_arc.dev
Measures width of object along circular arc
→ description here in the Quick Guide on page 197

• examples\hdevelop\Applications\Measure\measure_pin.dev
Measures pins of an IC
→ description here in the Quick Guide on page 226

• examples\hdevelop\Applications\Medicine\particle.dev
Extracts particles of varying sizes
→ description here in the Quick Guide on page 194

• examples\hdevelop\Applications\OCR\bottle.dev
Segmenting and reading numbers on a beer bottle
→ description here in the Quick Guide on page 193

• examples\hdevelop\Develop\dev_clear_window.dev
Clearing a graphics window in HDevelop

• examples\hdevelop\Develop\dev_close_window.dev
Closing graphics windows in HDevelop

• examples\hdevelop\Develop\dev_display.dev
Displaying image objects in a graphics windows in HDevelop

3.14 Visualization 183

• examples\hdevelop\Develop\dev_open_window.dev
Opening graphics windows in HDevelop

• examples\hdevelop\Develop\dev_set_paint.dev
Painting data using different representations into a graphics window in HDevelop

• examples\hdevelop\Develop\dev_set_part.dev
Setting the part of an image to be displayed (zoomed) in a graphics window in HDevelop

• examples\hdevelop\Develop\dev_set_window_extents.dev
Setting size and position of a graphics window in HDevelop

• examples\hdevelop\Filter\Geometric-Transformations\
projective_trans_image_reduced.dev
Applying projective transformations to an image and its domain

• examples\hdevelop\Filter\Lines\lines_color.dev
Extracting lines using color information
→ description here in the Quick Guide on page 191

• examples\hdevelop\Manuals\HDevelop\exception.dev
Querying the mouse position (with error handling)
→ description in the HDevelop User’s Manual on page 150

• examples\hdevelop\Regions\Geometric-Transformations\
projective_trans_region.dev
Applying projective transformations to regions

• examples\hdevelop\Tools\2D-Transformations\gen_projective_mosaic.dev
Combining several images of a PCB into a large mosaic image
→ description here in the Quick Guide on page 214

• examples\hdevelop\Tools\2D-Transformations\projective_trans_pixel.dev
Applying a projective transformation to rotate an image in 3D

• examples\hdevelop\Tools\2D-Transformations\projective_trans_point_2d.dev
Applying a projective transformation to rotate images and points in 3D

• examples\hdevelop\Tools\2D-Transformations\vector_to_proj_hom_mat2d.dev
Rectifies image of stadium to simulate overhead view

• examples\hdevelop\Tools\Datacode\ecc200_optimized_settings.dev
Optimizing parameters for reading a 2d data code of type ECC200

• examples\hdevelop\Tools\Datacode\pdf417_default_settings.dev
Reading various 2d data codes of type PDF417

• examples\hdevelop\Tools\Datacode\pdf417_optimized_settings.dev
Optimizing parameters for reading various 2d data codes of type PDF417

• examples\hdevelop\Tools\Datacode\qrcode_optimized_settings.dev
Optimizing parameters for reading a 2d data code of type QR Code

• examples\hdevelop\XLD\Transformation\projective_trans_contour_xld.dev

M
et

ho
ds

184 Machine Vision Methods

This program uses hom_mat3d_project and projective_trans_region to rotate an XLD contour in
3D

• examples\quick_guide\hdevelop\critical_points.dev
Locates saddle point markers in an image
→ description here in the Quick Guide on page 31

C++

• examples\mfc\Matching\Matching.cpp
Locating an IC using HALCON/C++ and MFC, creating a HALCON window

• examples\mfc\MatchingCOM\Matching.cpp
Locating an IC using HALCON/COM and MFC

• examples\mfc\MatchingExtWin\Matching.cpp
Locating an IC using HALCON/C++ and MFC, painting into an existing window

• examples\motif\Matching\matching.cpp
Locating an IC using HALCON/C++ and Motif

• examples\qt\Matching\matching.cpp
Locating an IC using HALCON/C++ and Qt

C#

• examples\c#\Matching\Matching.csproj
Locates an IC on a board and measures pin distances

Delphi

• examples\delphi\Matching\matching.dpr
Locates an IC on a board and measures pin distances

3.14.5 Selecting Operators

Handling Graphics Windows

Standard:

open_window, clear_window, close_window, open_window

Displaying

Standard:

set_paint, set_lut, set_part_style, set_draw, set_line_width, set_color, set_colored,
disp_obj, set_font, set_tposition, write_string

Advanced:

disp_image, disp_color, disp_region, disp_xld

3.14 Visualization 185

Mouse Interaction

Standard:

get_mposition, get_mbutton, draw_region, draw_circle

Gnuplot

Advanced:

gnuplot_open_file, gnuplot_open_pipe, gnuplot_plot_ctrl, gnuplot_plot_image

3.14.6 Tips & Tricks

Saving Window Content

HALCON provides an easy way to save the content of a graphics window to a file. This can, e.g., be
useful for documentation purposes. The corresponding operator is called dump_window. It takes the
window handle and the file name as input. The parameter Device allows to select amongst different file
formats.

Execution Time

One fact concerning visualization is often underestimated: the influence of the bit depth on the display
time. In most cases, 32 bits are chosen without giving any thoughts to it. However, depending on the
graphics card, the different bit depths often vary dramatically in the execution time. Therefore, it is
recommended to simply try different bit depths, to perform typical display operators like disp_image,
disp_color, disp_region, or disp_xld, and to measure the execution time with count_seconds.

3.14.7 Advanced Topics

Programming Environments

The handling of graphics windows differs in the different programming environments. Especially HDe-
velop has a specific way of working with the visualization.

• Because HDevelop is an interactive environment, the handling of windows must be as easy as
possible. In particular, it is important to display data without any need of programming. Therefore,
the concept of window handles is used only if needed. Normally, the window where the output
has to go to is not specified explicitly. Instead, HDevelop makes use of the activation status of the
graphics windows. As a consequence, the display operators of HDevelop do not have a parameter
for a window handle. Visualization operators in HDevelop look identical to their counterparts of
HALCON except that their name starts with dev_ and that the parameter for the window handle is
suppressed. When exporting the code, this missing handle will automatically be inserted.

M
et

ho
ds

186 Machine Vision Methods

The second difference is that the windows in HDevelop have a history to automatically redisplay
the data when the window has been resized. This is not the case with standard HALCON graphics
windows.

The last difference is that HDevelop automatically sets the coordinate system according to the
current image, whereas you must do this explicitly with programmed code when using HAL-
CON. To make an export to, e.g., C++, C#, or Visual Basic transparent, we recommend to use
dev_set_window when working with multiple graphics windows and to call dev_set_part to
specify the coordinate system.

• When using HALCON windows in MFC, the usual way is to use the windows as a subwindow of
a parent form. This can easily be achieved by using the window handle of the current form as the
father. The handle must be converted to a long value that can then be passed to open_window.
Note that set_check is needed to change to exception handling of HALCON in this context.

set_window_attr("border_width",0);

set_check("~father");

long lWWindowID = (long)m_hWnd;

open_window(0,0,640,480,lWWindowID,"visible","",&m_lWindowID);

set_check("father");

• Opening a HALCON window in Visual Basic is similar to the approach used for MFC. Here, you
use the memberhWnd of the form or of another subwindow like a picture box. As an alternative,
the HWindowXCtrl can be used.

Call sys.SetCheck("~father")

Call op.OpenWindow(8, 8, 320, 240, form.hWnd, "", "", WindowHandle)

Call sys.SetCheck("father")

Buffered Output

For a flicker-free visualization, a sequential call of display operators is not suitable, because after each
call the new data will immediately be flushed on the visible screen, which may cause flickering re-
sults. Under Windows, this can easily be fixed by calling set_system with the parameter value
’flush_graphic’ set to ’false’, then performing all display operators - except the last one - then
calling set_system again with ’flush_graphic’ set to ’true’, and finally the last display call of
the display sequence. This will have the effect that the whole data will become visible in one step when
applying the last display call. Under Linux/UNIX, for this purpose a buffer window must be used in
addition to the visible window. A buffer window is opened with open_window, while setting Mode to
’buffer’. Then, all drawing operations are performed into the buffer window. Finally, the buffer win-
dow contents are copied into the visible window using copy_rectangle. Of course, this mechanism
also works under Windows.

Remote Visualization

In some applications, the computer used for processing differs from the computer used for visualization.
Such applications can easily be created with HALCON using the socket communication. Operators like

3.14 Visualization 187

send_image or receive_tuple allow a transparent transfer of the relevant data to the control computer
to apply visualization there.

Programmed Visualization

Sometimes it might be necessary not to apply the standard HALCON visualization operators, but to use a
self-programmed version. This can be achieved by using the access functions provided for all data types.
Examples for these are get_image_pointer1, get_region_runs, or get_contour_xld. Operators
like these allow full access to all internal data types. Furthermore, they provide the data in various forms
(e.g., runlength encoding, points, or contours) to make further processing easier. Based on this data, a
self programmed visualization can be developed easily.

As an alternative, with set_window_type the window type ’pixmap’ can be chosen. In this case,
all displayed data is painted into an internal buffer that can be accessed with get_window_pointer3.
The returned pointers reference the three color channels of the buffer. This buffer can then easily be
transferred (e.g., to another system) and/or transformed into the desired format. One example for a
conversion is to call gen_image3 to create a HALCON color image.

M
et

ho
ds

188 Machine Vision Methods

Industries 189

Chapter 4

Industries

This chapter describes example programs from various industries.

4.1 Electric Components And Equipment . 190
4.2 Food . 193
4.3 Health Care And Life Science . 194
4.4 Iron, Steel And Metal . 197
4.5 Machinery . 199
4.6 Photogrammetry And Remote Sensing . 204
4.7 Printing . 208
4.8 Rubber, Synthetic Material, Foil . 209
4.9 Semiconductors . 211

In
du

st
ri

es

190 Industries

4.1 Electric Components And Equipment

4.1.1 Check the State of a Dip Switch

Example: examples\hdevelop\Applications\FA\cbm_dip_switch.dev

The task of this example is to check a dip switch, i.e., to determine the positions of the single switches
relative to the casing (see figure 4.1).

a) b)

Figure 4.1: (a) Model image of the dip switch with ROIs for the components; (b) located dip switch with
state of the switches.

The task is solved using component-based matching. The dip switch consists of 14 components: 12 for
the switches and two for the printed text on the casing (see figure 4.1a). The training is performed using
training images that show all possible positions of the switches. From this, the system learns the possible
movements of the switches relative to the casing.

train_model_components (ModelImage, InitialComponents, TrainingImages,

ModelComponents, 45, 45, 30, 0.95, -1, -1, rad(20), ’speed’,

’rigidity’, 0.2, 0.5, ComponentTrainingID)

To make the recognition more robust, small tolerances are added to the trained movements.

modify_component_relations (ComponentTrainingID, ’all’, ’all’, 0, rad(4))

Now, the model can be created.

create_trained_component_model (ComponentTrainingID, 0, rad(360), 10,

MinScoreComp, NumLevelsComp, ’auto’, ’none’, ’use_polarity’, ’false’,

ComponentModelID, RootRanking)

When searching for the dip switch, not only the casing but each single dip together with its relative
position is returned. Based on this information, the global status of the switch can easily be derived.

4.1 Electric Components And Equipment 191

find_component_model (SearchImage, ComponentModelID, RootRanking, 0,

rad(360), 0, 0, 0.5, ’stop_search’, ’prune_branch’, ’none’,

MinScoreComp, ’least_squares’, 0, 0.9, ModelStart, ModelEnd, Score,

RowComp, ColumnComp, AngleComp, ScoreComp, ModelComp)

4.1.2 Inspect Power Supply Cables

Example: examples\hdevelop\Filter\Lines\lines_color.dev

The task of this example is to locate and inspect the power supply cables depicted in figure 4.2.

a) b)

Figure 4.2: (a) Original color image with cable centers extracted using the color line extractor; (b) corre-
sponding results when using the gray value image.

The input for the program are sample images of colored power supply cables. The task is to extract the
centers of each cable together with the width. This is performed using the subpixel-precise color line
extractor. To remove irrelevant structures, contours that are too short are removed.

lines_color (Image, Lines, 3.5, 0, 12, ’true’, ’false’)

select_contours_xld (Lines, LongLines, ’contour_length’, 450, 100000, 0,

0)

The cable width is determined by accessing the line width attribute. For display purposes, a contour is
generated for each side.

In
du

st
ri

es

192 Industries

Number := |LongLines|

EdgesL := []

EdgesR := []

for K := 1 to Number by 1

Line := LongLines[K]

get_contour_xld (Line, Row, Col)

get_contour_attrib_xld (Line, ’angle’, Angle)

get_contour_attrib_xld (Line, ’width_right’, WidthR)

get_contour_attrib_xld (Line, ’width_left’, WidthL)

EdgeRR := Row+cos(Angle)*WidthR

EdgeRC := Col+sin(Angle)*WidthR

EdgeLR := Row-cos(Angle)*WidthL

EdgeLC := Col-sin(Angle)*WidthL

gen_contour_polygon_xld (EdgeR, EdgeRR, EdgeRC)

gen_contour_polygon_xld (EdgeL, EdgeLR, EdgeLC)

EdgesL := [EdgesL,EdgeL]

EdgesR := [EdgesR,EdgeR]

endfor

To compare this result with the classical approach, a line extractor is also applied to the gray value image.
The result is depicted in figure 4.2b. Here, it becomes obvious how hard it is to extract the cable using
the luminance only.

rgb1_to_gray (Image, GrayImage)

lines_gauss (GrayImage, LinesGray, 3.5, 0, 0.7, ’dark’, ’true’, ’true’,

’false’)

4.1.3 Other Examples

HDevelop

• examples\application_guide\1d_metrology\hdevelop\fuzzy_measure_switch.dev
Determine the width of and the distance between the pins of a switch with a fuzzy measure object
→ description in the Application Note on 1D Metrology on page 25

• examples\application_guide\1d_metrology\hdevelop\measure_switch.dev
Determine the width of and the distance between the pins of a switch with a measure object
→ description in the Application Note on 1D Metrology on page 4

• examples\hdevelop\Applications\Datacode\pdf417_optimized.dev
Optimizing parameters for reading of 2d data codes of type PDF417

• examples\hdevelop\Applications\Datacode\pdf417_simple.dev
Reading 2d data codes of type PDF417

• examples\hdevelop\Applications\FA\cbm_bin_switch.dev
Locates a switch and tests its state using component-based matching

• examples\hdevelop\Applications\FA\holes.dev
Extracts positions and radii of holes

4.2 Food 193

• examples\hdevelop\Filter\Inpainting\harmonic_interpolation.dev
Fill up unreconstructed areas in a distance image created by stereo reconstruction

• examples\hdevelop\Filter\Inpainting\inpainting_aniso.dev
Fill up unreconstructed areas in a distance image created by stereo reconstruction

• examples\hdevelop\Filter\Inpainting\inpainting_ced.dev
Fill up unreconstructed areas in a distance image created by stereo reconstruction

• examples\hdevelop\Filter\Inpainting\inpainting_mcf.dev
Fill up unreconstructed areas in a distance image created by stereo reconstruction

• examples\hdevelop\Regions\Features\rectangularity.dev
Calculating the rectangularity of regions

• examples\quick_guide\hdevelop\color_fuses.dev
Sort fuses by color
→ description here in the Quick Guide on page 116

• examples\quick_guide\hdevelop\color_simple.dev
Segment color image in HSV color space
→ description here in the Quick Guide on page 115

• examples\quick_guide\hdevelop\fuse.dev
Measures the thickness of a fuse wire
→ description here in the Quick Guide on page 57

4.2 Food

4.2.1 "Best Before" Date

Example: examples\hdevelop\Applications\OCR\bottle.dev

The task of this example is to inspect the "best before" date on the bottle depicted in figure 4.3.

a) b)

Figure 4.3: (a) Original image; (b) read date.

In
du

st
ri

es

194 Industries

The task is solved in multiple steps. First, dark areas are extracted and post-processed to eliminate
structures that are too thin.

threshold (Bottle, RawSegmentation, 0, 95)

fill_up_shape (RawSegmentation, RemovedNoise, ’area’, 1, 5)

opening_circle (RemovedNoise, ThickStructures, 2.5)

fill_up (ThickStructures, Solid)

Next, the region is split into the individual characters; even the characters that are so close that they touch
each other can be separated.

opening_rectangle1 (Solid, Cut, 1, 7)

connection (Cut, ConnectedPatterns)

intersection (ConnectedPatterns, ThickStructures, NumberCandidates)

select_shape (NumberCandidates, Numbers, ’area’, ’and’, 300, 9999)

sort_region (Numbers, FinalNumbers, ’first_point’, ’true’, ’column’)

Finally, the actual reading is performed.

read_ocr_class_mlp (FontName, OCRHandle)

do_ocr_multi_class_mlp (FinalNumbers, Bottle, OCRHandle, RecNum, Confidence)

4.2.2 Other Examples

HDevelop

• examples\hdevelop\Applications\OCR\bottlet.dev
Segmenting and training numbers on a beer bottle

C++

• examples\cpp\source\bottle.cpp
Reads numbers on a beer bottle

4.3 Health Care And Life Science

4.3.1 Analyzing Particles

Example: examples\hdevelop\Applications\Medicine\particle.dev

The task of this example is to analyze particles in a liquid. The main difficulty in this application is the
presence of two types of objects: big bright objects and small objects with low contrast. In addition, the
presence of noise complicates the segmentation.

The program segments the two classes of objects separately using two different methods: global and local
thresholding. With additional post-processing, the small particles can be extracted in a robust manner.

4.3 Health Care And Life Science 195

a) b)

Figure 4.4: Extracting the small particles: (a) original image, (b) result.

threshold (Image, Large, 110, 255)

dilation_circle (Large, LargeDilation, 7.5)

complement (LargeDilation, NotLarge)

reduce_domain (Image, NotLarge, ParticlesRed)

mean_image (ParticlesRed, Mean, 31, 31)

dyn_threshold (ParticlesRed, Mean, SmallRaw, 3, ’light’)

opening_circle (SmallRaw, Small, 2.5)

connection (Small, SmallConnection)

In
du

st
ri

es

196 Industries

4.3.2 Angiography

Example: examples\hdevelop\Filter\Lines\lines_gauss.dev

The task of this example is to extract the blood vessels in the X-ray image of the heart depicted in
figure 4.5. The vessels are emphasized by using a contrast medium. For the diagnosis it is important to
extract the width of the vessels to determine locally narrowed parts (stenoses).

a) b)

Figure 4.5: (a) X-ray image of the heart; (b) extracted blood vessels.

The vessels are extracted using lines_gauss. The result of this operator are the centers of the vessels in
the form of XLD contours. Besides this, attributes are associated with the contour points, one of which
is the local line width. This width is requested and displayed as contours.

lines_gauss (Angio, Lines, 2.2, 0, 0.8, ’dark’, ’true’, ’true’, ’true’)

Number := |Lines|

for I := 1 to Number by 1

Line := Lines[I]

get_contour_xld (Line, Row, Col)

get_contour_attrib_xld (Line, ’angle’, Angle)

get_contour_attrib_xld (Line, ’width_left’, WidthL)

get_contour_attrib_xld (Line, ’width_right’, WidthR)

RowR := Row+cos(Angle)*WidthR

ColR := Col+sin(Angle)*WidthR

RowL := Row-cos(Angle)*WidthL

ColL := Col-sin(Angle)*WidthL

disp_polygon (WindowID, RowL, ColL)

disp_polygon (WindowID, RowR, ColR)

endfor

4.4 Iron, Steel And Metal 197

4.3.3 Other Examples

HDevelop

• examples\hdevelop\Applications\Medicine\angio.dev
Extracts blood vessels and their diameters from an angiogram

• examples\hdevelop\Applications\Medicine\vessel.dev
Segmentation and measurement of a blood vessel

• examples\hdevelop\Manuals\HDevelop\particle.dev
Measures small particles
→ description in the HDevelop User’s Manual on page 136

• examples\hdevelop\Manuals\HDevelop\vessel.dev
Extracts a capillary vessel
→ description in the HDevelop User’s Manual on page 133

C++

• examples\cpp\source\example5.cpp
Analyzes the distribution of cell sizes

4.4 Iron, Steel And Metal

4.4.1 Inspect Cast Part

Example: examples\hdevelop\Applications\Measure\measure_arc.dev

The task of this example is to inspect the distance between elongated holes of a cast part after chamfering
(see figure 4.6). Note that to achieve best accuracy it would be recommended to use backlight combined
with a telecentric lens instead of the depicted setup.

Figure 4.6: Measuring the distance between the holes.

This task can be solved easily by using the measure tool with a circular measurement ROI. The center
of the ROI is placed into the center of the cast part; its radius is set to the distance of the elongated holes
from the center.

In
du

st
ri

es

198 Industries

Row := 275

Column := 335

Radius := 107

AngleStart := -rad(55)

AngleExtent := rad(170)

gen_measure_arc (Row, Column, Radius, AngleStart, AngleExtent, 10, Width,

Height, ’nearest_neighbor’, MeasureHandle)

Now, the distance between the holes can be measured with a single operator call:

measure_pos (Zeiss1, MeasureHandle, 1, 10, ’all’, ’all’, RowEdge,

ColumnEdge, Amplitude, Distance)

4.4.2 Other Examples

HDevelop

• examples\application_guide\shape_matching\hdevelop\align_measurements.dev
Inspects individual razor blades using shape-based matching to align ROIs for the measure tool
→ description in the Application Note on Shape-Based Matching on page 36

• examples\application_guide\shape_matching\hdevelop\multiple_models.dev
Searching for two types of objects simultaneously
→ description in the Application Note on Shape-Based Matching on page 25

• examples\application_guide\shape_matching\hdevelop\multiple_objects.dev
Searches for multiple instances of a security ring
→ description in the Application Note on Shape-Based Matching on page 34

• examples\application_guide\shape_matching\hdevelop\multiple_scales.dev
Searches for nuts of different sizes
→ description in the Application Note on Shape-Based Matching on page 44

• examples\application_guide\shape_matching\hdevelop\reuse_model.dev
Storing and reusing a shape model
→ description in the Application Note on Shape-Based Matching on page 46

• examples\hdevelop\Applications\Calibration\3d_position_of_circles.dev
Determine the pose of circles in 3D from their perspective 2D projections

• examples\hdevelop\Applications\FA\cbm_pipe_wrench.dev
Locates a pipe wrench that consists of two components
→ description here in the Quick Guide on page 201

• examples\hdevelop\Applications\FA\pm_multiple_models.dev
Finds multiple different models in a single pass using shape-based matching

• examples\hdevelop\Applications\FA\pm_world_plane.dev
Recognizes planar objects using shape-based matching in perspectively distorted images

4.5 Machinery 199

• examples\hdevelop\Applications\OCR\engraved.dev
Segmenting and reading characters on a metal surface
→ description here in the Quick Guide

• examples\hdevelop\Applications\OCR\engravedt.dev
Segmenting and training characters on a metal surface

• examples\hdevelop\Matching\Gray-Value-Based\best_match_mg.dev
Finding the best match of a gray value template in a pyramid

• examples\hdevelop\Tools\Geometry\distance_pc.dev
Calculating the distance between a point and a contour

• examples\quick_guide\hdevelop\measure_metal_part.dev
Inspects metal part by fitting lines and circles
→ description here in the Quick Guide on page 90

• examples\quick_guide\hdevelop\surface_scratch.dev
Detects scratches on a surface via local thresholding and morphology
→ description here in the Quick Guide on page 241

4.5 Machinery

4.5.1 Reading Engraved Text

Example: examples\hdevelop\Applications\OCR\engraved.dev

The task of this example is to read the engraved text on the metal surface depicted in figure 4.7.

b)a)

Figure 4.7: (a) Original image; (b) read characters.

The task is solved by using advanced blob analysis: The characters cannot simply be extracted by se-
lecting dark or light pixels. Instead, a simple segmentation would yield only fractions of the characters
together with noise objects. Preprocessing the image using gray value morphology allows to segment
the real characters.

In
du

st
ri

es

200 Industries

gray_range_rect (Image, ImageResult, 7, 7)

invert_image (ImageResult, ImageInvert)

threshold (ImageResult, Region, 128, 255)

connection (Region, ConnectedRegions)

select_shape (ConnectedRegions, SelectedRegions, ’area’, ’and’, 1000, 99999)

sort_region (SelectedRegions, SortedRegions, ’first_point’, ’true’,

’column’)

Finally, the actual reading is performed.

read_ocr_class_mlp (FontName, OCRHandle)

for i := 1 to Number by 1

ObjectSelected := SortedRegions[i]

do_ocr_single_class_mlp (ObjectSelected, ImageInvert, OCRHandle, 1,

Class, Confidence)

endfor

clear_ocr_class_mlp (OCRHandle)

4.5.2 Inspecting the Contours of a Tool

Example: examples\hdevelop\Applications\FA\circles.dev

The task of this example is to inspect the contours of the tool depicted in figure 4.8.

Figure 4.8: Fitting circles to the contours of the tool.

Because the subpixel-precise contour extraction is time-consuming, in a first step the edges are located
roughly based on standard blob analysis: With a threshold operator the object to be measured is extracted.
This region is converted to its boundary, omitting the pixels at the image border.

fast_threshold (Image, Region, 0, 120, 7)

boundary (Region, RegionBorder, ’inner’)

clip_region_rel (RegionBorder, RegionClipped, 5, 5, 5, 5)

4.5 Machinery 201

The result is a small region close to the edge of the object. The boundary of the region, i.e., the edge, is
dilated to serve as the region of interest for the edge extraction. Now, the suppixel-precise edge extractor
is called and the contour is segmented into straight lines and circular arcs.

dilation_circle (RegionClipped, RegionDilation, 2.5)

reduce_domain (Image, RegionDilation, ImageReduced)

edges_sub_pix (ImageReduced, Edges, ’lanser2’, 0.5, 40, 60)

segment_contours_xld (Edges, ContoursSplit, ’lines_circles’, 5, 4, 3)

For the segments that represent arcs, the corresponding circle parameters are determined. For inspection
purposes, circles with the same parameters are generated and overlaid on the image.

get_contour_global_attrib_xld (ObjectSelected, ’cont_approx’, Attrib)

if (Attrib > 0)

fit_circle_contour_xld (ObjectSelected, ’ahuber’, -1, 2, 0, 3, 2, Row,

Column, Radius, StartPhi, EndPhi, PointOrder)

gen_ellipse_contour_xld (ContEllipse, Row, Column, 0, Radius, Radius, 0,

rad(360), ’positive’, 1.0)

dev_display (ContEllipse)

endif

4.5.3 Locating a Pipe Wrench in Different States

Example: examples\hdevelop\Applications\FA\cbm_pipe_wrench.dev

The task of this example is to locate a pipe wrench based on four predefined ROIs, two for each rigid
part (see figure 4.9).

b)a)

Figure 4.9: (a) Model image with specified ROIs for the components; (b) located pipe wrench in another
state.

In
du

st
ri

es

202 Industries

Showing the system multiple example images trains the relative movements of the parts.

read_image (ModelImage, ’pipe_wrench/pipe_wrench_model’)

gen_rectangle2 (InitialComponentRegions, 212, 233, 0.62, 167, 29)

gen_rectangle2 (Rectangle2, 298, 363, 1.17, 162, 34)

gen_rectangle2 (Rectangle3, 63, 444, -0.26, 50, 27)

gen_rectangle2 (Rectangle4, 120, 473, 0, 33, 20)

InitialComponentRegions := [InitialComponentRegions,Rectangle2]

InitialComponentRegions := [InitialComponentRegions,Rectangle3]

InitialComponentRegions := [InitialComponentRegions,Rectangle4]

for i := 1 to 4 by 1

read_image (TrainingImage, ’pipe_wrench/pipe_wrench_training_’+i)

TrainingImages := [TrainingImages,TrainingImage]

endfor

train_model_components (ModelImage, InitialComponentRegions,

TrainingImages, ModelComponents, 22, 60, 30, 0.65, -1, -1, rad(60),

’speed’, ’rigidity’, 0.2, 0.4, ComponentTrainingID)

The components and their relations are displayed as follows:

get_training_components (ModelComponents, ComponentTrainingID,

’model_components’, ’model_image’, ’false’, RowRef, ColumnRef,

AngleRef, ScoreRef)

dev_display (ModelComponents)

get_component_relations (Relations, ComponentTrainingID, i, ’model_image’,

Row, Column, Phi, Length1, Length2, AngleStart, AngleExtent)

dev_display (Relations)

Based on the training, the actual component model is created. Component relations are represented in a
tree structure.

create_trained_component_model (ComponentTrainingID, rad(-90), rad(180),

10, 0.6, 4, ’auto’, ’none’, ’use_polarity’, ’false’,

ComponentModelID, RootRanking)

get_component_model_tree (Tree, Relations, ComponentModelID, RootRanking,

’model_image’, StartNode, EndNode, Row, Column, Phi, Length1,

Length2, AngleStart, AngleExtent)

dev_display (ModelImage)

dev_display (Tree)

dev_display (Relations)

Finally, test images are used to locate the pipe wrench. For each image, the model contours are overlaid
and the shift and opening angle of the pipe wrench is visualized.

4.5 Machinery 203

find_component_model (SearchImage, ComponentModelID, RootRanking,

rad(-90), rad(180), 0, 0, 1, ’stop_search’, ’prune_branch’, ’none’,

0.6, ’least_squares’, 0, 0.7, ModelStart, ModelEnd, Score, RowComp,

ColumnComp, AngleComp, ScoreComp, ModelComp)

dev_display (SearchImage)

NumFound := |ModelStart|

if (NumFound)

get_found_component_model (FoundComponents, ComponentModelID,

ModelStart, ModelEnd, RowComp, ColumnComp, AngleComp, ScoreComp,

ModelComp, 0, ’false’, RowCompInst, ColumnCompInst,

AngleCompInst, ScoreCompInst)

dev_display (FoundComponents)

visualize_pipe_wrench_match (AngleCompInst, WindowHandle, RowCompInst,

ColumnCompInst, RowRef, ColumnRef)

endif

4.5.4 Other Examples

HDevelop

• examples\application_guide\1d_metrology\hdevelop\measure_ring.dev
Determine the width of cogs with a circular measure object
→ description in the Application Note on 1D Metrology on page 22

• examples\application_guide\shape_matching\hdevelop\multiple_models.dev
Searching for two types of objects simultaneously
→ description in the Application Note on Shape-Based Matching on page 25

• examples\application_guide\shape_matching\hdevelop\multiple_objects.dev
Searches for multiple instances of a security ring
→ description in the Application Note on Shape-Based Matching on page 34

• examples\application_guide\shape_matching\hdevelop\multiple_scales.dev
Searches for nuts of different sizes
→ description in the Application Note on Shape-Based Matching on page 44

• examples\application_guide\shape_matching\hdevelop\reuse_model.dev
Storing and reusing a shape model
→ description in the Application Note on Shape-Based Matching on page 46

• examples\hdevelop\Applications\Calibration\3d_position_of_circles.dev
Determine the pose of circles in 3D from their perspective 2D projections

• examples\hdevelop\Applications\Measure\measure_arc.dev
Measures width of object along circular arc
→ description here in the Quick Guide on page 197

• examples\hdevelop\Applications\OCR\engravedt.dev
Segmenting and training characters on a metal surface

In
du

st
ri

es

204 Industries

• examples\hdevelop\XLD\Features\fit_ellipse_tooth_rim_xld.dev
Approximating the contour of a tooth rim with an ellipse to find its center.

4.6 Photogrammetry And Remote Sensing

4.6.1 Extracting Forest Features from Color Infrared Image

Example: examples\hdevelop\Applications\Aerial\forest.dev

The task of this example is to detect different object classes in the color infrared image depicted in
figure 4.10: trees (coniferous and deciduous), meadows, and roads.

a) b) c)

Figure 4.10: (a) Original image; (b) extracted trees and meadows; (c) extracted roads.

The image data is a color infrared image, which allows to extract roads very easily because of their
specific color.

read_image (Forest, ’forest_air1’)

decompose3 (Forest, Red, Green, Blue)

threshold (Blue, BlueBright, 80, 255)

connection (BlueBright, BlueBrightConnection)

select_shape (BlueBrightConnection, Path, ’area’, ’and’, 100, 100000000)

Beech trees are segmented in the red channel based on their intensity and minimum size.

4.6 Photogrammetry And Remote Sensing 205

threshold (Red, RedBright, 120, 255)

connection (RedBright, RedBrightConnection)

select_shape (RedBrightConnection, RedBrightBig, ’area’, ’and’, 1500,

10000000)

closing_circle (RedBrightBig, RedBrightClosing, 7.5)

opening_circle (RedBrightClosing, RedBrightOpening, 9.5)

connection (RedBrightOpening, RedBrightOpeningConnection)

select_shape (RedBrightOpeningConnection, BeechBig, ’area’, ’and’, 1000,

100000000)

select_gray (BeechBig, Blue, Beech, ’mean’, ’and’, 0, 59)

Meadows have similar spectral properties, but are slightly brighter.

union1 (Beech, BeechUnion)

complement (BeechUnion, NotBeech)

difference (NotBeech, Path, NotBeechNotPath)

reduce_domain (Red, NotBeechNotPath, NotBeechNotPathRed)

threshold (NotBeechNotPathRed, BrightRest, 150, 255)

connection (BrightRest, BrightRestConnection)

select_shape (BrightRestConnection, Meadow, ’area’, ’and’, 500, 1000000)

The coniferous trees are extracted using the watershed approach with an additional thresholding inside
the basins to get rid of the shadow areas.

union2 (Path, RedBrightClosing, BeechPath)

smooth_image (Red, RedGauss, ’gauss’, 4.0)

invert_image (RedGauss, Invert)

watersheds (Invert, SpruceRed, Watersheds)

select_shape (SpruceRed, SpruceRedLarge, ’area’, ’and’, 100, 5000)

select_gray (SpruceRedLarge, Red, SpruceRedInitial, ’max’, ’and’, 100, 200)

LocalThresh := []

NumSpruce := |SpruceRedInitial|

for i := 1 to NumSpruce by 1

SingleSpruce := SpruceRedInitial[i]

min_max_gray (SingleSpruce, Red, 50, Min, Max, Range)

reduce_domain (Red, SingleSpruce, SingleSpruceRed)

threshold (SingleSpruceRed, SingleSpruceBright, Min, 255)

connection (SingleSpruceBright, SingleSpruceBrightCon)

select_shape_std (SingleSpruceBrightCon, MaxAreaSpruce, ’max_area’, 70)

LocalThresh := [MaxAreaSpruce,LocalThresh]

endfor

opening_circle (LocalThresh, FinalSpruce, 1.5)

4.6.2 Segmenting a Color Image

Example: examples\hdevelop\Filter\Edges\edges_color.dev

The task of this example is to segment the color image depicted in figure 4.11.

In
du

st
ri

es

206 Industries

c)

b)

a)

Figure 4.11: (a) Original image; (b) extracted color edges, overlaid on the color image; (c) extracted gray
value edges, overlaid on the gray value image.

The example demonstrates the possibilities of a multi-channel edge filter. First, the gray value image is
derived from the color information to show that some object borders can no longer be seen. For example,
the (green) soccer field cannot be distinguished from the surrounding (red) track.

read_image (Image, ’olympic_stadium’)

rgb1_to_gray (Image, GrayImage)

The color edge filter is applied and the edge amplitude is displayed. If you compare this to the filter
result of the gray image the difference can be easily seen.

edges_color (Image, ImaAmp, ImaDir, ’canny’, 1, ’none’, -1, -1)

edges_image (GrayImage, ImaAmpGray, ImaDirGray, ’canny’, 1, ’none’, -1, -1)

Finally, the edge segments are extracted for both the color and the gray image and overlaid on the original
image.

edges_color (Image, ImaAmpHyst, ImaDirHyst, ’canny’, 1, ’nms’, 20, 40)

threshold (ImaAmpHyst, RegionColor, 1, 255)

skeleton (RegionColor, EdgesColor)

dev_display (Image)

dev_display (EdgesColor)

stop ()

edges_image (GrayImage, ImaAmpGrayHyst, ImaDirGrayHyst, ’canny’, 1, ’nms’,

20, 40)

threshold (ImaAmpGrayHyst, RegionGray, 1, 255)

skeleton (RegionGray, EdgesGray)

dev_display (GrayImage)

dev_display (EdgesGray)

4.6 Photogrammetry And Remote Sensing 207

4.6.3 Extract Roads

Example: examples\hdevelop\Applications\Aerial\roads.dev

The task of this example is to extract the roads in the aerial image depicted in figure 4.12

a) b) c)

Figure 4.12: (a) Original image; (b) zoomed image part; (c) extracted roads.

The programs starts by first extracting lines on a reduced scale. These lines correspond very well to
roads.

threshold (Mreut43, Bright, 160, 255)

reduce_domain (Mreut43, Bright, Mreut43Bright)

lines_gauss (Mreut43Bright, RoadCenters, 1.2, 5, 14, ’light’, ’true’,

’true’, ’true’)

To eliminate wrong candidates, edges are extracted on a higher scale. For the road extraction it is
assumed that a road consists of two parallel edges with homogeneous gray values and a line segment in
between. Using the contour processing operators, this model is refined step by step.

edges_image (Part, PartAmp, PartDir, ’mderiche2’, 0.3, ’nms’, 20, 40)

threshold (PartAmp, EdgeRegion, 1, 255)

clip_region (EdgeRegion, ClippedEdges, 2, 2, PartWidth - 3, PartHeight - 3)

skeleton (ClippedEdges, EdgeSkeleton)

gen_contours_skeleton_xld (EdgeSkeleton, RoadEdges, 1, ’filter’)

gen_polygons_xld (RoadEdges, RoadEdgePolygons, ’ramer’, 2)

gen_parallels_xld (RoadEdgePolygons, ParallelRoadEdges, 10, 30, 0.15,

’true’)

mod_parallels_xld (ParallelRoadEdges, Part, ModParallelRoadEdges,

ExtParallelRoadEdges, 0.3, 160, 220, 10)

combine_roads_xld (RoadEdgePolygons, ModParallelRoadEdges,

ExtParallelRoadEdges, RoadCenterPolygons, RoadSides, rad(40),

rad(20), 40, 40)

In
du

st
ri

es

208 Industries

4.6.4 Other Examples

HDevelop

• examples\hdevelop\Applications\Aerial\dem.dev
Extraction of high objects from a digital elevation model

• examples\hdevelop\Applications\Aerial\dem_trees.dev
Extraction of trees using texture and a digital elevation model

• examples\hdevelop\Applications\Aerial\high.dev
Different methods to extract high objects

• examples\hdevelop\Applications\Aerial\texture.dev
Find textured areas (trees and bushes)

• examples\hdevelop\Manuals\HDevelop\dtm.dev
Extracts high objects from a digital elevation model

4.7 Printing

4.7.1 Reading a Bar Code

Example: examples\hdevelop\Applications\Barcode\EAN13AddOn5.dev

The task of this example is to read the bar code depicted in figure 4.13.

Figure 4.13: Decoded bar code.

This example shows how easily bar codes - even compound bar codes - can be read with HALCON.
First, the bar code type is specified.

gen_1d_bar_code_descr (’EAN 13 Add-On 5’, 13, 13, BarCodeDescr)

After reading an image from file, the bar code finder is called. The result of this operator, i.e., the element
widths, are then passed to the decoding operator.

4.8 Rubber, Synthetic Material, Foil 209

read_image (image, ’barcode/ean13addon5/ean13addon5’+(i$’.2’))

find_1d_bar_code (image, CodeRegion, BarCodeDescr, ’dilation_factor’, 2,

BarcodeFound, BarCode, Orientation)

decode_1d_bar_code (BarCode, BarCodeDescr, Characters, Reference, IsCorrect)

4.7.2 Other Examples

HDevelop

• examples\application_guide\3d_machine_vision\hdevelop\
grid_rectification_arbitrary_distortion.dev
Determine differences between two printed pages, even if there are distortions in the vertical
direction
→ description in the Application Note on 3D Machine Vision on page 131

• examples\hdevelop\Applications\OCR\stamp_catalogue.dev
Segmenting and grouping characters on a cluttered page

• examples\hdevelop\Applications\OCV\adaption_ocv.dev
Analyzes impact of changes on reported character quality

• examples\hdevelop\Applications\OCV\print_quality.dev
Inspects quality of letter A in different images

• examples\hdevelop\Tools\OCV\write_ocv.dev
Writing OCV data to file (and reading it in again)

4.8 Rubber, Synthetic Material, Foil

4.8.1 Checking a Boundary for Fins

Example: examples\hdevelop\Applications\FA\fin.dev

The task of this example is to check the outer boundary of a plastic part. In this case, some objects show
fins that are not allowed for faultless pieces (see figure 4.14).

The program first extracts the plastic part and then forms the complement to extract the background
region (in which the fin appears as an indentation).

bin_threshold (Fin, Dark)

difference (Fin, Dark, Background)

This indentation in the background region is then closed using a morphological operator.

closing_circle (Background, ClosedBackground, 250)

In
du

st
ri

es

210 Industries

Figure 4.14: Boundary with extracted fin.

Significant differences between the closed region and the original region are production errors.

difference (ClosedBackground, Background, RegionDifference)

opening_rectangle1 (RegionDifference, FinRegion, 5, 5)

4.8.2 Other Examples

HDevelop

• examples\hdevelop\Applications\FA\hull.dev
Inspects an injection molded nozzle

C++

• examples\hdevengine\cpp\source\exec_extproc.cpp
Executes an external HDevelop procedure for fin detection using HDevEngine
→ description in the Programmer’s Guide on page 123

• examples\hdevengine\cpp\source\exec_program.cpp
Executes an HDevelop program for fin detection using HDevEngine
→ description in the Programmer’s Guide on page 121

Visual Basic

• examples\hdevengine\vb\ExecExtProc\ExecExtProc.vbp
Executes an external HDevelop procedure for fin detection using HDevEngine
→ description in the Programmer’s Guide on page 138

• examples\hdevengine\vb\ExecProgram\ExecProgram.vbp
Executes an HDevelop program for fin detection using HDevEngine
→ description in the Programmer’s Guide on page 136

4.9 Semiconductors 211

Visual Basic .NET

• examples\hdevengine\vb.net\ExecExtProc\ExecExtProc.vbproj
Executes an external HDevelop procedure for fin detection using HDevEngine
→ description in the Programmer’s Guide on page 138

• examples\hdevengine\vb.net\ExecProgram\ExecProgram.vbproj
Executes an HDevelop program for fin detection using HDevEngine
→ description in the Programmer’s Guide on page 136

4.9 Semiconductors

4.9.1 Bonding Balls

Example: examples\hdevelop\Applications\FA\ball.dev

The task of this example is to inspect the diameter of the ball bonds depicted in figure 4.15.

Figure 4.15: Measuring the diameter of ball bonds.

The extraction of the ball bonds is a two step approach: First, the die is located by segmenting bright
areas and transforming them into their smallest surrounding rectangle.

threshold (Bond, Bright, 100, 255)

shape_trans (Bright, Die, ’rectangle2’)

Now, the processing is focused to the region inside the die using reduce_domain. In this ROI, the
program checks for dark areas that correspond to wire material.

reduce_domain (Bond, Die, DieGrey)

threshold (DieGrey, Wires, 0, 50)

fill_up_shape (Wires, WiresFilled, ’area’, 1, 100)

In
du

st
ri

es

212 Industries

After removing irrelevant structures and arranging the bonds in a predefined order, the desired features
are extracted.

opening_circle (WiresFilled, Balls, 15.5)

connection (Balls, SingleBalls)

select_shape (SingleBalls, IntermediateBalls, ’circularity’, ’and’, 0.85,

1.0)

sort_region (IntermediateBalls, FinalBalls, ’first_point’, ’true’, ’column’)

smallest_circle (FinalBalls, Row, Column, Radius)

4.9.2 Inspecting an IC Using Fuzzy Measuring

Example: examples\hdevelop\Applications\Measure\fuzzy_measure_pin.dev

The task of this example is to inspect the lead width and the lead distance of the IC depicted in figure 4.16.

Figure 4.16: Measuring the width and distance of the leads.

The illumination conditions in this example are quite difficult. This has the effect that four edges are
visible for each lead. Fuzzy rules are used to restrict the measurement to the correct (outer) leads.

gen_measure_rectangle2 (305.5, 375.5, 0.982, 167, 7.5, Width, Height,

’nearest_neighbor’, MeasureHandle1)

create_funct_1d_pairs ([0.0, 0.3], [1.0,0.0], FuzzyAbsSizeDiffFunction)

set_fuzzy_measure_norm_pair (MeasureHandle1, 11.0, ’size_abs_diff’,

FuzzyAbsSizeDiffFunction)

fuzzy_measure_pairs (Image, MeasureHandle1, 1, 30, 0.5, ’positive’,

RowEdgeFirst1, ColumnEdgeFirst1, AmplitudeFirst1, RowEdgeSecond1,

ColumnEdgeSecond1, AmplitudeSecond1, RowEdgeMiddle1,

ColumnEdgeMiddle1, FuzzyScore1, IntraDistance1, InterDistance1)

4.9 Semiconductors 213

4.9.3 Measuring Leads of a Moving IC

Example: examples\hdevelop\Applications\FA\pm_measure_board.dev

The task of this example is to measure the positions of the leads of a chip (see figure 4.17). Because the
chip can appear at varying positions and angles, the regions of interest used for the measurement must
be aligned.

a) b)

Figure 4.17: (a) Model image with measurement ROIs; (b) measuring the leads in the aligned ROIs.

In this case, the alignment is achieved by searching for the print on the chip using the shape-based
matching.

gen_rectangle1 (Rectangle, Row1, Column1, Row2, Column2)

reduce_domain (Image, Rectangle, ImageReduced)

create_shape_model (ImageReduced, 4, 0, rad(360), rad(1), ’none’,

’use_polarity’, 30, 10, ModelID)

After the print has been found, the positions of the measurement ROIs are transformed relative to the
position of the print.

find_shape_model (ImageCheck, ModelID, 0, rad(360), 0.7, 1, 0.5,

’least_squares’, 4, 0.9, RowCheck, ColumnCheck, AngleCheck, Score)

hom_mat2d_identity (HomMat2DIdentity)

hom_mat2d_translate (HomMat2DIdentity, RowCheck, ColumnCheck,

HomMat2DTranslate)

hom_mat2d_rotate (HomMat2DTranslate, AngleCheck, RowCheck, ColumnCheck,

HomMat2DRotate)

affine_trans_pixel (HomMat2DRotate, Rect1Row, Rect1Col, Rect1RowCheck,

Rect1ColCheck)

Then, the measure tools are created and the measurement is applied.

In
du

st
ri

es

214 Industries

gen_measure_rectangle2 (Rect1RowCheck, Rect1ColCheck, AngleCheck,

RectLength1, RectLength2, Width, Height, ’bilinear’, MeasureHandle1)

measure_pairs (ImageCheck, MeasureHandle1, 2, 90, ’positive’, ’all’,

RowEdgeFirst1, ColumnEdgeFirst1, AmplitudeFirst1, RowEdgeSecond1,

ColumnEdgeSecond1, AmplitudeSecond1, IntraDistance1, InterDistance1)

4.9.4 Creating a Mosaic Image

Example: examples\hdevelop\Tools\2D-Transformations\gen_projective_mosaic.dev

The task of this example is to create an image of the elongated printed circuit board depicted figure 4.18.
Using standard image sizes, most of the image would be empty. The solution is to acquire images from
multiple viewpoints and then to create a mosaic image.

Figure 4.18: Creating a mosaic image from multiple overlapping images.

Multiple overlapping images of a printed circuit board are the input for the program. In a first step,
significant points are extracted in each of these images. These points are the input for the point-based
matching. In each step, two successive images are matched. The result of this process is a mapping from
one image to the next.

4.9 Semiconductors 215

points_foerstner (ImageF, 1, 2, 3, 200, 0.3, ’gauss’, ’false’,

RowJunctionsF, ColJunctionsF, CoRRJunctionsF, CoRCJunctionsF,

CoCCJunctionsF, RowAreaF, ColAreaF, CoRRAreaF, CoRCAreaF, CoCCAreaF)

points_foerstner (ImageT, 1, 2, 3, 200, 0.3, ’gauss’, ’false’,

RowJunctionsT, ColJunctionsT, CoRRJunctionsT, CoRCJunctionsT,

CoCCJunctionsT, RowAreaT, ColAreaT, CoRRAreaT, CoRCAreaT, CoCCAreaT)

proj_match_points_ransac (ImageF, ImageT, RowJunctionsF, ColJunctionsF,

RowJunctionsT, ColJunctionsT, ’ncc’, 21, 0, 0, 480, 640, 0, 0.5,

’gold_standard’, 1, 4364537, ProjMatrix, Points1, Points2)

ProjMatrices := [ProjMatrices,ProjMatrix]

These mappings are collected and finally used to construct a single high-resolution image of the complete
PCB.

gen_projective_mosaic (Images, MosaicImage, 2, From, To, ProjMatrices,

’default’, ’false’, MosaicMatrices2D)

4.9.5 Locating Board Components by Color

Example: examples\hdevelop\Applications\FA\ic.dev

The task of this example is to locate all components on the printed circuit board depicted in figure 4.19.

a) b)

Figure 4.19: (a) Original image; (b) extracted ICs, resistors, and capacitors.

The input data is a color image, which allows locating components like capacitors and resistors very
easily by their significant color: Using a color space transformation, the hue values allow the selection of
the corresponding components. The following code extracts the resistors; the extraction of the capacitors
is performed along the same lines.

In
du

st
ri

es

216 Industries

decompose3 (Image, Red, Green, Blue)

trans_from_rgb (Red, Green, Blue, Hue, Saturation, Intensity, ’hsv’)

threshold (Saturation, Colored, 100, 255)

reduce_domain (Hue, Colored, HueColored)

threshold (HueColored, Red, 10, 19)

connection (Red, RedConnect)

select_shape (RedConnect, RedLarge, ’area’, ’and’, 150.000000, 99999.000000)

shape_trans (RedLarge, Resistors, ’rectangle2’)

The extraction of the ICs is more difficult because of the bright imprints, which do not allow a simple
thresholding in one step. Instead of this, dark areas are selected first, which are then combined using a
dilation.

threshold (Intensity, Dark, 0, 50)

dilation_rectangle1 (Dark, DarkDilation, 14, 14)

connection (DarkDilation, ICLarge)

After this, the segmentation is repeated inside the thus extracted connected components.

add_channels (ICLarge, Intensity, ICLargeGray)

threshold (ICLargeGray, ICDark, 0, 50)

shape_trans (ICDark, IC, ’rectangle2’)

To locate the contact points, small ROIs are generated on the left and right side of each IC.

dilation_rectangle1 (IC, ICDilation, 5, 1)

difference (ICDilation, IC, SearchSpace)

dilation_rectangle1 (SearchSpace, SearchSpaceDilation, 14, 1)

union1 (SearchSpaceDilation, SearchSpaceUnion)

Inside these areas, locally bright spots are detected.

reduce_domain (Intensity, SearchSpaceUnion, SearchGray)

mean_image (SearchGray, SearchMean, 15, 15)

dyn_threshold (SearchGray, SearchMean, PinsRaw, 5.000000, ’light’)

connection (PinsRaw, PinsConnect)

fill_up (PinsConnect, PinsFilled)

select_shape (PinsFilled, Pins, ’area’, ’and’, 10, 100)

4.9.6 Other Examples

HDevelop

• examples\application_guide\1d_metrology\hdevelop\measure_ic_leads.dev
Measures leads of an IC
→ description in the Application Note on 1D Metrology on page 11

4.9 Semiconductors 217

• examples\application_guide\3d_machine_vision\hdevelop\
bundle_adjusted_mosaicking.dev
Uses bundle adjusted mosaicking to merge partial images of a BGA into one large image
→ description in the Application Note on 3D Machine Vision on page 82

• examples\application_guide\3d_machine_vision\hdevelop\
height_above_reference_plane_from_stereo.dev
Extracts chips using height information from binocular stereo
→ description in the Application Note on 3D Machine Vision on page 100

• examples\application_guide\3d_machine_vision\hdevelop\mosaicking.dev
Uses mosaicking to merge partial images of a BGA into one large image
→ description in the Application Note on 3D Machine Vision on page 70

• examples\application_guide\shape_matching\hdevelop\
first_example_shape_matching.dev
Introduces HALCON’s shape-based matching
→ description in the Application Note on Shape-Based Matching on page 4

• examples\application_guide\shape_matching\hdevelop\process_shape_model.dev
Creates a model ROI by modifying the result of inspect_shape_model
→ description in the Application Note on Shape-Based Matching on page 10

• examples\application_guide\shape_matching\hdevelop\synthetic_circle.dev
Uses a synthetic model (circle) to search for capacitors on a board
→ description in the Application Note on Shape-Based Matching on page 18

• examples\hdevelop\Applications\Datacode\pdf417_optimized.dev
Optimizing parameters for reading of 2d data codes of type PDF417

• examples\hdevelop\Applications\Datacode\pdf417_simple.dev
Reading 2d data codes of type PDF417

• examples\hdevelop\Applications\FA\ball_seq.dev
Inspection of ball bonding (multiple images)

• examples\hdevelop\Applications\FA\board.dev
Detection of missing solder

• examples\hdevelop\Applications\FA\cbm_dip_switch.dev
Locates dip switches and tests their state using component-based matching
→ description here in the Quick Guide on page 190

• examples\hdevelop\Applications\Measure\measure_pin.dev
Measures pins of an IC
→ description here in the Quick Guide on page 226

• examples\hdevelop\Applications\Stereo\board_components.dev
Segments board components by height using binocular stereo
→ description here in the Quick Guide on page 166

• examples\hdevelop\Applications\Stereo\board_segmentation_uncalib.dev
Segmention of board components by height using uncalibrated binocular stereo

In
du

st
ri

es

218 Industries

• examples\hdevelop\Filter\Inpainting\harmonic_interpolation.dev
Fill up unreconstructed areas in a distance image created by stereo reconstruction

• examples\hdevelop\Filter\Inpainting\inpainting_aniso.dev
Fill up unreconstructed areas in a distance image created by stereo reconstruction

• examples\hdevelop\Filter\Inpainting\inpainting_ced.dev
Fill up unreconstructed areas in a distance image created by stereo reconstruction

• examples\hdevelop\Filter\Inpainting\inpainting_mcf.dev
Fill up unreconstructed areas in a distance image created by stereo reconstruction

• examples\hdevelop\Manuals\HDevelop\ball.dev
Inspects bonding of balls
→ description in the HDevelop User’s Manual on page 141

• examples\hdevelop\Manuals\HDevelop\ic.dev
Combining different segmentation methods
→ description in the HDevelop User’s Manual on page 144

• examples\hdevelop\Matching\Component-Based\cbm_modules_simple.dev
Locates modules on a board using component-based matching
→ description here in the Quick Guide on page 235

• examples\hdevelop\Matching\Component-Based\cbm_sbm.dev
Compares component-based matching to shape-based matching

• examples\hdevelop\Morphology\Gray-Values\pcb_inspection.dev
Finds defects on a PCB using gray value morphology

• examples\hdevelop\Regions\Features\rectangularity.dev
Calculating the rectangularity of regions

• examples\hdevelop\Segmentation\Classification\class_2dim_sup.dev
Segmenting an image using two-dimensional pixel classification

• examples\hdevelop\Segmentation\Classification\class_ndim_box.dev
Classifying pixels using hyper-cuboids

• examples\hdevelop\Segmentation\Classification\class_ndim_norm.dev
Classifying pixels using hyper-spheres

• examples\hdevelop\XLD\Transformation\union_contours_xld.dev
Connecting collinear line segments

C++

• examples\cpp\source\fuzzy_measure_pin.cpp
Measures pins of an IC using fuzzy measure

• examples\mfc\Matching\Matching.cpp
Locating an IC using HALCON/C++ and MFC, creating a HALCON window

• examples\mfc\MatchingCOM\Matching.cpp
Locating an IC using HALCON/COM and MFC

4.9 Semiconductors 219

• examples\mfc\MatchingExtWin\Matching.cpp
Locating an IC using HALCON/C++ and MFC, painting into an existing window

• examples\motif\Matching\matching.cpp
Locating an IC using HALCON/C++ and Motif

• examples\qt\Matching\matching.cpp
Locating an IC using HALCON/C++ and Qt

Visual Basic

• examples\vb\Tools\Matching\matching.vbp
Locates an IC on a board and measures pin distances

• examples\vb\Tools\Measure\measure.vbp
Measuring pins with interactive control of parameters

Visual Basic .NET

• examples\vb.net\Matching\Matching.vbproj
Locates an IC on a board and measures pin distances

C#

• examples\c#\Matching\Matching.csproj
Locates an IC on a board and measures pin distances

C

• examples\c\example_multithreaded1.c
Using multiple threads with Parallel HALCON

Delphi

• examples\delphi\Matching\matching.dpr
Locates an IC on a board and measures pin distances

In
du

st
ri

es

220 Industries

Application Areas 221

Chapter 5

Application Areas

This chapter describes example programs from various application areas.

5.1 1D Bar Codes . 222
5.2 2D Data Codes . 223
5.3 Completeness Check . 224
5.4 Measuring And Comparison 2D . 226
5.5 Measuring And Comparison 3D . 231
5.6 Optical Character Recognition . 234
5.7 Position Recognition 2D . 235
5.8 Print Inspection . 237
5.9 Object Recognition 2D . 239
5.10 Surface Inspection . 241

A
pp

lic
at

io
n

A
re

as

222 Application Areas

5.1 1D Bar Codes

5.1.1 Reading Multiple Bar Codes on a Toner Cartridge

Example: examples\hdevelop\Applications\Barcode\multiple.dev

The task of this example is to read the two bar codes depicted in figure 5.1.

Figure 5.1: Detected bar codes.

In this example, the Code 39 is used, which is very popular on packages and other kind of product
descriptions. The task is solved by calling the HALCON operator that returns all bar codes of a given
type within the image. For each of the found regions, the decoding is called separately.

gen_1d_bar_code_descr (’code 39’, 6, 12, BarCodeDescr)

find_1d_bar_code_region (image, CodeRegion, BarCodeDescr, [], [],

Orientation)

for i := 1 to Number by 1

ObjectSelected := CodeRegion[i]

reduce_domain (image, ObjectSelected, ImageReduced)

get_1d_bar_code (ImageReduced, BarCodeDescr, [], [], Orientation[i-1],

BarCode)

decode_1d_bar_code (BarCode, BarCodeDescr, Characters, Reference,

IsCorrect)

endfor

5.1.2 Other Examples

Please refer to the list of examples for the method 1D Bar Code (see section 3.10.4.2 on page 131).

5.2 2D Data Codes 223

5.2 2D Data Codes

5.2.1 Reading 2D Data Codes on Chips

Example: examples\hdevelop\Applications\Datacode\ecc200_optimized.dev

This example program reads 2D data codes (type ECC200) engraved in chips (see figure 5.2).

Figure 5.2: Decoded data code.

The example shows how to set optimized parameters for efficient data code reading. The code printed
on a chip is always light on dark in this application and has a given size and number of modules. Also,
the contrast is within a predefined range. By specifying these values for the model, the execution time
can be sped up significantly.

create_data_code_2d_model (’Data Matrix ECC 200’, [], [], DataCodeHandle)

set_data_code_2d_param (DataCodeHandle,

[’module_size_min’,’module_size_max’], [4,7])

set_data_code_2d_param (DataCodeHandle, ’module_gap’, ’no’)

set_data_code_2d_param (DataCodeHandle, ’polarity’, ’light_on_dark’)

set_data_code_2d_param (DataCodeHandle, ’mirrored’, ’no’)

set_data_code_2d_param (DataCodeHandle, ’contrast_min’, 10)

set_data_code_2d_param (DataCodeHandle, ’symbol_size’, 18)

find_data_code_2d (Image, SymbolXLDs, DataCodeHandle, [], [],

ResultHandles, DecodedDataStrings)

5.2.2 Other Examples

Please refer to the list of examples for the method 2D Data Code (see section 3.11.4.2 on page 140).

A
pp

lic
at

io
n

A
re

as

224 Application Areas

5.3 Completeness Check

5.3.1 Inspect Razor Blades

Example: examples\application_guide\shape_matching\hdevelop\
align_measurements.dev

The task of this example is to check the razor blades depicted in figure 5.3. The program uses shape-
based matching to locate all blades and then uses metrology to inspect the blades. Missing parts are
detected and displayed. This example is described in more detail in the Application Note on Shape-
Based Matching on page 36.

Figure 5.3: Inspecting razor blades.

5.3.2 Other Examples

HDevelop

• examples\hdevelop\Applications\FA\ball.dev
Inspection of ball bonding
→ description here in the Quick Guide on page 211

• examples\hdevelop\Applications\FA\ball_seq.dev
Inspection of ball bonding (multiple images)

• examples\hdevelop\Applications\FA\board.dev
Detection of missing solder

5.3 Completeness Check 225

• examples\hdevelop\Applications\FA\ic.dev
Extracts resistors, capacitors and ICs from board using color information
→ description here in the Quick Guide on page 215

• examples\hdevelop\Applications\FA\pm_measure_board.dev
Locates IC on a board and measures pin distances
→ description here in the Quick Guide on page 213

• examples\hdevelop\Manuals\HDevelop\ball.dev
Inspects bonding of balls
→ description in the HDevelop User’s Manual on page 141

• examples\hdevelop\Manuals\HDevelop\ic.dev
Combining different segmentation methods
→ description in the HDevelop User’s Manual on page 144

• examples\hdevelop\Matching\Component-Based\cbm_modules_simple.dev
Locates modules on a board using component-based matching
→ description here in the Quick Guide on page 235

• examples\quick_guide\hdevelop\color_pieces.dev
Completeness check of colored game pieces using MLP classification
→ description here in the Quick Guide on page 118

• examples\quick_guide\hdevelop\color_pieces_euclid.dev
Completeness check of game color pieces using Euclidean classification

C++

• examples\mfc\Matching\Matching.cpp
Locating an IC using HALCON/C++ and MFC, creating a HALCON window

• examples\mfc\MatchingCOM\Matching.cpp
Locating an IC using HALCON/COM and MFC

• examples\mfc\MatchingExtWin\Matching.cpp
Locating an IC using HALCON/C++ and MFC, painting into an existing window

• examples\motif\Matching\matching.cpp
Locating an IC using HALCON/C++ and Motif

• examples\qt\Matching\matching.cpp
Locating an IC using HALCON/C++ and Qt

Visual Basic

• examples\vb\Tools\Matching\matching.vbp
Locates an IC on a board and measures pin distances

Visual Basic .NET

• examples\vb.net\Matching\Matching.vbproj
Locates an IC on a board and measures pin distances

A
pp

lic
at

io
n

A
re

as

226 Application Areas

C#

• examples\c#\Matching\Matching.csproj
Locates an IC on a board and measures pin distances

C

• examples\c\example_multithreaded1.c
Using multiple threads with Parallel HALCON

Delphi

• examples\delphi\Matching\matching.dpr
Locates an IC on a board and measures pin distances

5.4 Measuring And Comparison 2D

5.4.1 Inspect IC

Example: examples\hdevelop\Applications\Measure\measure_pin.dev

The task of this example is to inspect major dimensions of an IC (see figure 5.4).

a) b)

Figure 5.4: Measuring the dimensions of leads: (a) width of the leads and distance between them; (b)
length of the leads.

In the first step the extent of each lead and - more importantly - the distance between the leads is mea-
sured. For this, a rectangle that contains the leads is defined (see figure 5.4a), which is used to generate

5.4 Measuring And Comparison 2D 227

the measure object is generated. It is used to extract pairs of straight edges that lie perpendicular to the
major axis of the rectangle.

gen_measure_rectangle2 (Row, Column, Phi, Length1, Length2, Width, Height,

’nearest_neighbor’, MeasureHandle)

measure_pairs (Image, MeasureHandle, 1.5, 30, ’negative’, ’all’,

RowEdgeFirst, ColumnEdgeFirst, AmplitudeFirst, RowEdgeSecond,

ColumnEdgeSecond, AmplitudeSecond, PinWidth, PinDistance)

From the extracted pairs of straight edges, the number of leads, their average width, and the average
distance between them is derived.

numPins := |PinWidth|

avgPinWidth := sum(PinWidth)/|PinWidth|

avgPinDistance := sum(PinDistance)/|PinDistance|

The second part shows the power of the measure tool: The length of the leads are determined. This is
possible although each lead has a width of only a few pixels. For this, a new measure object is generated
based on a rectangle that contains the leads on two opposite sides of the IC (see figure 5.4b). The distance
between the first and the second found edge is the length of the upper leads, and the distance between
the third and the fourth edge is the length of the lower leads.

gen_measure_rectangle2 (Row, Column, Phi, Length1, Length2, Width, Height,

’nearest_neighbor’, MeasureHandle)

measure_pos (Image, MeasureHandle, 1.5, 30, ’all’, ’all’, RowEdge,

ColumnEdge, Amplitude, Distance)

5.4.2 Other Examples

HDevelop

• examples\application_guide\3d_machine_vision\hdevelop\
camera_calibration_exterior.dev
Measures positions on a caliper rule using camera calibration
→ description in the Application Note on 3D Machine Vision on page 41

• examples\application_guide\3d_machine_vision\hdevelop\
camera_calibration_multi_image.dev
Calibrates the camera and measures positions on a caliper rule
→ description in the Application Note on 3D Machine Vision on page 39

• examples\application_guide\3d_machine_vision\hdevelop\
height_displacement.dev
Calculating height displacements (for known heights)
→ description in the Application Note on 3D Machine Vision on page 57

• examples\application_guide\shape_matching\hdevelop\align_measurements.dev
Inspects individual razor blades using shape-based matching to align ROIs for the measure tool
→ description in the Application Note on Shape-Based Matching on page 36

A
pp

lic
at

io
n

A
re

as

228 Application Areas

• examples\hdevelop\Applications\Calibration\world_coordinates_line_scan.dev
Measures distances between the pitch lines of a caliper rule in a line scan image using camera
calibration

• examples\hdevelop\Applications\FA\circles.dev
Fits circles into curved contour segments
→ description here in the Quick Guide on page 200

• examples\hdevelop\Applications\FA\clip.dev
Determines the orientation of clips

• examples\hdevelop\Applications\FA\holes.dev
Extracts positions and radii of holes

• examples\hdevelop\Applications\FA\hull.dev
Inspects an injection molded nozzle

• examples\hdevelop\Applications\FA\pm_measure_board.dev
Locates IC on a board and measures pin distances
→ description here in the Quick Guide on page 213

• examples\hdevelop\Applications\Measure\fuzzy_measure_pin.dev
Measures pins of an IC using fuzzy measure
→ description here in the Quick Guide on page 212

• examples\hdevelop\Applications\Measure\measure_arc.dev
Measures width of object along circular arc
→ description here in the Quick Guide on page 197

• examples\hdevelop\Applications\Measure\measure_online.dev
Measures your object in a live image

• examples\hdevelop\Applications\Medicine\angio.dev
Extracts blood vessels and their diameters from an angiogram

• examples\hdevelop\Applications\Medicine\particle.dev
Extracts particles of varying sizes
→ description here in the Quick Guide on page 194

• examples\hdevelop\Applications\Medicine\vessel.dev
Segmentation and measurement of a blood vessel

• examples\hdevelop\Filter\Lines\lines_color.dev
Extracting lines using color information
→ description here in the Quick Guide on page 191

• examples\hdevelop\Image\Features\area_center_gray.dev
Analyzes the accuracy of calculating the gray area and center of gravity

• examples\hdevelop\Image\Features\elliptic_axis_gray.dev
Analyzes the accuracy of calculating the gray value moments (elliptic_axis_gray)

• examples\hdevelop\Manuals\HDevelop\particle.dev
Measures small particles

5.4 Measuring And Comparison 2D 229

→ description in the HDevelop User’s Manual on page 136

• examples\hdevelop\Manuals\HDevelop\wood.dev
Determines the age of a tree by counting its annual rings
→ description in the HDevelop User’s Manual on page 139

• examples\hdevelop\Manuals\HDevelop\wood_cells.dev
Analyzes the cell density during a tree’s growth
→ description in the HDevelop User’s Manual on page 147

• examples\hdevelop\Segmentation\Topography\saddle_points_sub_pix.dev
Detecting saddle points with subpixel accuracy

• examples\hdevelop\Tools\Calibration\camera_calibration.dev
Determining camera parameters using a special calibaration plate

• examples\hdevelop\Tools\Geometry\angle_ll.dev
Calculating the angle between two lines

• examples\hdevelop\Tools\Geometry\angle_lx.dev
Calculating the angle between a line and the vertical axis

• examples\hdevelop\Tools\Geometry\distance_cc_min.dev
Calculating the distance between two contours

• examples\hdevelop\Tools\Geometry\distance_lr.dev
Calculating the distance between a line and a region

• examples\hdevelop\Tools\Geometry\distance_pc.dev
Calculating the distance between a point and a contour

• examples\hdevelop\Tools\Geometry\distance_pl.dev
Calculating the distances between points and a line

• examples\hdevelop\Tools\Geometry\distance_pp.dev
Calculating the distance between two points

• examples\hdevelop\Tools\Geometry\distance_pr.dev
Calculating the distance between a point and a region

• examples\hdevelop\Tools\Geometry\distance_ps.dev
Calculating the distance between a point and a line segment

• examples\hdevelop\Tools\Geometry\distance_sl.dev
Calculating the distance between a line segment and a line

• examples\hdevelop\Tools\Geometry\distance_sr.dev
Calculating the distance between a line segment and a region

• examples\hdevelop\Tools\Geometry\distance_ss.dev
Calculating the distances between line segments

• examples\hdevelop\Tools\Measure\gen_measure_arc.dev
Measuring edges perpendicular to a given arc

A
pp

lic
at

io
n

A
re

as

230 Application Areas

• examples\hdevelop\Tools\Measure\gen_measure_rectangle2.dev
Measuring edges perpendicular to a given line

• examples\hdevelop\XLD\Features\fit_ellipse_tooth_rim_xld.dev
Approximating the contour of a tooth rim with an ellipse to find its center.

• examples\quick_guide\hdevelop\atoms.dev
Locates irregularities in an atomic grid structure
→ description here in the Quick Guide on page 45

• examples\quick_guide\hdevelop\critical_points.dev
Locates saddle point markers in an image
→ description here in the Quick Guide on page 31

• examples\quick_guide\hdevelop\crystal.dev
Extracts hexagonally shaped crystals via local thresholding and region post-processing
→ description here in the Quick Guide on page 44

• examples\quick_guide\hdevelop\fuse.dev
Measures the thickness of a fuse wire
→ description here in the Quick Guide on page 57

• examples\quick_guide\hdevelop\measure_metal_part.dev
Inspects metal part by fitting lines and circles
→ description here in the Quick Guide on page 90

C++

• examples\cpp\source\example5.cpp
Analyzes the distribution of cell sizes

• examples\cpp\source\fuzzy_measure_pin.cpp
Measures pins of an IC using fuzzy measure

• examples\mfc\Matching\Matching.cpp
Locating an IC using HALCON/C++ and MFC, creating a HALCON window

• examples\mfc\MatchingCOM\Matching.cpp
Locating an IC using HALCON/COM and MFC

• examples\mfc\MatchingExtWin\Matching.cpp
Locating an IC using HALCON/C++ and MFC, painting into an existing window

• examples\motif\Matching\matching.cpp
Locating an IC using HALCON/C++ and Motif

• examples\qt\Matching\matching.cpp
Locating an IC using HALCON/C++ and Qt

Visual Basic

• examples\vb\Online\Measure\measure.vbp
Measuring edge positions in a live image

5.5 Measuring And Comparison 3D 231

• examples\vb\Tools\Matching\matching.vbp
Locates an IC on a board and measures pin distances

• examples\vb\Tools\Measure\measure.vbp
Measuring pins with interactive control of parameters

Visual Basic .NET

• examples\vb.net\Matching\Matching.vbproj
Locates an IC on a board and measures pin distances

C#

• examples\c#\Matching\Matching.csproj
Locates an IC on a board and measures pin distances

Delphi

• examples\delphi\Matching\matching.dpr
Locates an IC on a board and measures pin distances

5.5 Measuring And Comparison 3D

5.5.1 Inspect IC

Example: examples\hdevelop\Applications\DFF\resistor.dev

The task of this example is to inspect a soldered component using depth-from-focus (see figure 5.5).

First, a sequence of images acquired with continuously varying focus (figure 5.5a) is read and stored into
a multi-channel image.

for i := 1 to 10 by 1

Names := [Names,’dff/focus_’+(i$’.2’)]

endfor

read_image (Image, Names)

Then, a depth image is derived with the depth-from-focus approach.

depth_from_focus (Image, Depth, Confidence, ’highpass’, ’next_maximum’)

From the smoothed depth image (figure 5.5b), the resistor and the solder can be segmented easily by
thresholding. The extracted outlines of the resistor and of the solder are overlaid to one of the input
images in figure 5.5c.

threshold (DepthMean, Resistor, 158, 255)

threshold (DepthMean, Solder, 125, 158)

A
pp

lic
at

io
n

A
re

as

232 Application Areas

b)

c)

a)

Figure 5.5: Depth-from-focus: (a) sequence of input images; (b) depth image; (c) segmentation of com-
ponents.

5.5.2 Other Examples

HDevelop

• examples\application_guide\3d_machine_vision\hdevelop\
3d_information_for_selected_points.dev
Calculating world coordinates for a point in a stereo image pair
→ description in the Application Note on 3D Machine Vision on page 106

• examples\application_guide\3d_machine_vision\hdevelop\
camera_calibration_exterior.dev
Measures positions on a caliper rule using camera calibration
→ description in the Application Note on 3D Machine Vision on page 41

• examples\application_guide\3d_machine_vision\hdevelop\
height_above_reference_plane_from_stereo.dev
Extracts chips using height information from binocular stereo
→ description in the Application Note on 3D Machine Vision on page 100

• examples\application_guide\3d_machine_vision\hdevelop\
height_displacement.dev
Calculating height displacements (for known heights)
→ description in the Application Note on 3D Machine Vision on page 57

• examples\application_guide\3d_machine_vision\hdevelop\
pose_of_known_3d_object.dev
Determines pose of object by extracting three or more reference points
→ description in the Application Note on 3D Machine Vision on page 84

5.5 Measuring And Comparison 3D 233

• examples\hdevelop\Applications\Aerial\dem.dev
Extraction of high objects from a digital elevation model

• examples\hdevelop\Applications\Calibration\3d_position_of_circles.dev
Determine the pose of circles in 3D from their perspective 2D projections

• examples\hdevelop\Applications\Calibration\world_coordinates_line_scan.dev
Measures distances between the pitch lines of a caliper rule in a line scan image using camera
calibration

• examples\hdevelop\Applications\FA\cbm_caliper.dev
Measures the setting of a caliper using component-based matching in a perspectively distorted
image

• examples\hdevelop\Applications\Stereo\board_components.dev
Segments board components by height using binocular stereo
→ description here in the Quick Guide on page 166

• examples\hdevelop\Applications\Stereo\board_segmentation_uncalib.dev
Segmention of board components by height using uncalibrated binocular stereo

• examples\hdevelop\Applications\Stereo\disparity.dev
Shows disparity results for several stereo image pairs

• examples\hdevelop\Filter\Inpainting\harmonic_interpolation.dev
Fill up unreconstructed areas in a distance image created by stereo reconstruction

• examples\hdevelop\Filter\Inpainting\inpainting_aniso.dev
Fill up unreconstructed areas in a distance image created by stereo reconstruction

• examples\hdevelop\Filter\Inpainting\inpainting_ced.dev
Fill up unreconstructed areas in a distance image created by stereo reconstruction

• examples\hdevelop\Filter\Inpainting\inpainting_mcf.dev
Fill up unreconstructed areas in a distance image created by stereo reconstruction

• examples\hdevelop\Manuals\HDevelop\dtm.dev
Extracts high objects from a digital elevation model

• examples\hdevelop\Tools\Calibration\get_circle_pose.dev
Determine the pose of circles in 3D from their perspective 2D projections

• examples\hdevelop\Tools\Shape-from\depth_from_focus.dev
Extracting depth using multiple focus levels

• examples\hdevelop\Tools\Shape-from\phot_stereo.dev
Reconstructing a surface by illuminating it from three different directions

• examples\hdevelop\Tools\Stereo\binocular_disparity.dev
Calculating disparities from epipolar image pairs

• examples\hdevelop\Tools\Stereo\uncalib_stereo_boxes.dev
Determine the surfaces of boxes using uncalibrated binocular stereo.

A
pp

lic
at

io
n

A
re

as

234 Application Areas

Visual Basic

• examples\vb\Tools\Calibration\calibration.vbp
Performing a camera calibration

5.6 Optical Character Recognition

5.6.1 Reading Forms

Example: examples\hdevelop\Applications\OCR\ocrcolor.dev

The task of this example is to extract the symbols in the form. A typical problem is that the symbols are
not printed in the correct place, as depicted in figure 5.6.

Figure 5.6: Example images for OCR.

To solve the problem of numbers printed on lines, color is used here: The hue value of the characters
differs from the hue of the form. The color classification method is a very simple way to save execution
time: In contrast to more difficult color processing problems, here it is sufficient to consider the difference
of the red and green channel combined with the intensity.

5.7 Position Recognition 2D 235

threshold (Green, ForegroundRaw, 0, 220)

sub_image (RedReduced, GreenReduced, ImageSub, 2, 128)

mean_image (ImageSub, ImageMean, 3, 3)

bin_threshold (ImageMean, Cluster1)

difference (Foreground, Cluster1, Cluster2)

Cluster := [Cluster1,Cluster2]

opening_circle (Cluster, Opening, 2.5)

The selected pixels are grouped and post-processed with morphological operators.

closing_rectangle1 (NumberRegion, NumberCand, 1, 20)

difference (Image, NumberCand, NoNumbers)

connection (NumberRegion, NumberParts)

intensity (NumberParts, Green, MeanIntensity, _)

expand_gray_ref (NumberParts, Green, NoNumbers, Numbers, 20, ’image’,

MeanIntensity, 48)

union1 (Numbers, NumberRegion)

connection (NumberRegion, Numbers)

For reading, it is important not to use the gray values of the background because of the changes in color.
To solve this, only region features are used for the font.

paint_region (NoNumbers, Green, ImageOCRRaw, 255, ’fill’)

paint_region (NumberRegion, ImageOCRRaw, ImageOCR, 0, ’fill’)

do_ocr_multi_class_mlp (FinalNumbers, ImageOCR, OCRHandle, RecChar,

Confidence)

5.6.2 Other Examples

Please refer to the list of examples for the method OCR (see section 3.12.4.4 on page 154).

5.7 Position Recognition 2D

5.7.1 Locate Components on a PCB

Example: examples\hdevelop\Matching\Component-Based\cbm_modules_simple.dev

The task of this example is to locate multiple components on a printed circuit board in one step (see
figure 5.7). On a printed circuit board, typically multiple different objects are mounted, whose positions
can vary because of the tolerances in the mounting process. To locate all objects quickly and in a robust
manner, the component-based matching is used.

In the training step, each object is marked with a region of interest (figure 5.7a). The possible movement
and rotation of the objects is known from the manufacturing process and is passed as a parameter to the
training.

A
pp

lic
at

io
n

A
re

as

236 Application Areas

a)

b)

Figure 5.7: Component-based matching: (a) training objects; (b) objects, located in different images where
the relation of the objects with respect to each other varies.

gen_rectangle2 (ComponentRegions, 318, 109, -1.62, 34, 19)

gen_rectangle2 (Rectangle2, 342, 238, -1.63, 32, 17)

gen_rectangle2 (Rectangle3, 355, 505, 1.41, 25, 17)

gen_rectangle2 (Rectangle4, 247, 448, 0, 14, 8)

gen_rectangle2 (Rectangle5, 237, 537, -1.57, 13, 10)

ComponentRegions := [ComponentRegions,Rectangle2]

ComponentRegions := [ComponentRegions,Rectangle3]

ComponentRegions := [ComponentRegions,Rectangle4]

ComponentRegions := [ComponentRegions,Rectangle5]

create_component_model (ModelImage, ComponentRegions, 20, 20, rad(25), 0,

rad(360), 15, 40, 15, 10, 0.8, [4,3,3,3,3], 0, ’none’,

’use_polarity’, ’true’, ComponentModelID, RootRanking)

Now, the component-based matching is able to find all objects in one step (figure 5.7a), returning the
relative positions of each object.

find_component_model (SearchImage, ComponentModelID, RootRanking, 0,

rad(360), 0.5, 0, 0.5, ’stop_search’, ’search_from_best’, ’none’,

0.8, ’interpolation’, 0, 0.8, ModelStart, ModelEnd, Score, RowComp,

ColumnComp, AngleComp, ScoreComp, ModelComp)

5.8 Print Inspection 237

5.8 Print Inspection

5.8.1 Inspect a Printed Logo

Example: examples\hdevelop\Applications\FA\print_check.dev

The task of this example is to inspect the logo printed on the pen clip depicted in figure 5.8. As an
additional difficulty, the pens move from image to image.

b) c)

a)

Figure 5.8: Inspection of the logo that is printed on the pen clip: (a) training images; (b) accepted images;
(c) rejected images.

To solve this task, a variation model is generated and trained with multiple images. For the training of
the variation model, the matching is used to locate the logo and to align the image appropriately. Then,
the variation model is prepared for the comparison with the images. A

pp
lic

at
io

n
A

re
as

238 Application Areas

create_shape_model (ImageReduced, 5, rad(-10), rad(20), ’auto’, ’none’,

’use_polarity’, 20, 10, ShapeModelID)

create_variation_model (Width, Height, ’byte’, ’standard’, VariationModelID)

for I := 1 to 15 by 1

read_image (Image, ’pen/pen-’+I$’02d’)

find_shape_model (Image, ShapeModelID, rad(-30), rad(60), 0.5, 1, 0.5,

’least_squares’, 0, 0.9, Row, Column, Angle, Score)

if (|Score| = 1)

vector_angle_to_rigid (Row, Column, Angle, RowRef, ColumnRef, 0,

HomMat2D)

affine_trans_image (Image, ImageTrans, HomMat2D, ’constant’, ’false’)

train_variation_model (ImageTrans, VariationModelID)

endif

endfor

prepare_variation_model (VariationModelID, 20, 3)

During the inspection phase, again the matching is used to align the image; then, the variation model is
applied to check the print for errors. Finally, the erroneous regions are displayed.

find_shape_model (Image, ShapeModelID, rad(-10), rad(20), 0.5, 1, 0.5,

’least_squares’, 0, 0.9, Row, Column, Angle, Score)

if (|Score| = 1)

vector_angle_to_rigid (Row, Column, Angle, RowRef, ColumnRef, 0,

HomMat2D)

affine_trans_image (Image, ImageTrans, HomMat2D, ’constant’, ’false’)

reduce_domain (ImageTrans, RegionROI, ImageReduced)

compare_variation_model (ImageReduced, RegionDiff, VariationModelID)

connection (RegionDiff, ConnectedRegions)

select_shape (ConnectedRegions, RegionsError, ’area’, ’and’, 20,

1000000)

dev_display (RegionsError)

endif

5.8.2 Other Examples

HDevelop

• examples\application_guide\3d_machine_vision\hdevelop\
grid_rectification_arbitrary_distortion.dev
Determine differences between two printed pages, even if there are distortions in the vertical
direction
→ description in the Application Note on 3D Machine Vision on page 131

• examples\hdevelop\Applications\OCR\rotchar.dev
Estimating small inclinations of text lines

• examples\hdevelop\Applications\OCV\adaption_ocv.dev
Analyzes impact of changes on reported character quality

5.9 Object Recognition 2D 239

• examples\hdevelop\Applications\OCV\print_quality.dev
Inspects quality of letter A in different images

• examples\hdevelop\Manuals\HDevelop\stamps.dev
Finds images in a document
→ description in the HDevelop User’s Manual on page 131

• examples\hdevelop\Tools\OCV\write_ocv.dev
Writing OCV data to file (and reading it in again)

C++

• examples\cpp\source\multi_chars.cpp
Inspecting the quality of printed characters

• examples\cpp\source\pen.cpp
Inspects the quality of print on a pen using the variation model of HALCON

5.9 Object Recognition 2D

5.9.1 Distinguishing coins

Example: examples\quick_guide\hdevelop\matching_coins.dev

The task of this application is to distinguish different types of Euro coins, depending on the country of
origin. The coins differ on one side, having a specific symbol for each country (see figure 5.9). The task
is solved by shape-based matching, using one model for each country symbol.

The program consists of multiple procedures for the different tasks. The main program simply defines
the working environment and calls these procedures. The first part is the creation of four models for the
four different types of 20 cent coins. Inside a for-loop, the training procedure train_model is called
with the corresponding training images, and the model IDs are collected in a tuple.

Names := [’german’,’italian’,’greek’,’spanish’]

Models := []

for i := 0 to 3 by 1

read_image (Image, ’coins/20cent_’+Names[i])

dev_display (Image)

train_model (Image, ModelID)

Models := [Models,ModelID]

endfor

In the second part of the main program, the created models are used to recognize the origin of a coin.
After applying the matching with the procedure find_coin, the result is visualized with the procedure
display_model.

A
pp

lic
at

io
n

A
re

as

240 Application Areas

Figure 5.9: Multiple coins that must be distinguished.

for i := 1 to 13 by 1

read_image (Image, ’coins/20cent_’+i$’.2’+’.png’)

find_coin (Image, Models, Row, Column, Angle, Score, Model)

display_model (Image, Model, Row, Column, Angle, Names, WindowHandle)

endfor

For the training, ROIs are generated automatically using the result of the procedure locate_coin. This
procedure applies threshold to extract all bright pixels in the image. From the connected components,
the largest one is select with select_shape_std. The selected region contains several holes, which are
filled with shape_trans using the parameter value ’convex’, thereby transforming the region to its
convex hull. Because only the inner part of the coins will be used as a template, a circle located in the
center of gravity with a fixed radius is generated.

threshold (Image, Region, 70, 255)

connection (Region, ConnectedRegions)

select_shape_std (ConnectedRegions, SelectedRegions, ’max_area’, 0)

shape_trans (SelectedRegions, RegionTrans, ’convex’)

area_center (RegionTrans, _, Row, Column)

gen_circle (Coin, Row, Column, 120)

What remains to do in train_model is to determine the contrast parameter and then to create the model
using create_shape_model. Note that the value ’ignore_local_polarity’ is used for the param-

5.10 Surface Inspection 241

eter Metric because the dark/light transitions can change locally due to the varying illumination.

Contrast := 20

HysteresisContrast := [Contrast/2,Contrast+6,10]

reduce_domain (Image, Coin, ImageReduced)

create_shape_model (ImageReduced, ’auto’, 0, rad(360), ’auto’, ’none’,

’ignore_local_polarity’, HysteresisContrast, 5, ModelID)

The procedure find_coin also first calls locate_coin to derive a region of interest that is as small as
possible. This will speedup the matching process significantly. A circle of radius 30 in the center of the
coin is used as the search ROI. Inside this region, find_shape_models is called to determine which
coin can be seen and to precisely determine its position and orientation.

locate_coin (Image, Coin)

area_center (Coin, _, Row, Column)

gen_circle (Circle, Row, Column, 30)

reduce_domain (Image, Circle, ImageReduced)

find_shape_models (ImageReduced, Models, 0, rad(360), 0.6, 1, 0,

’least_squares’, 0, 1, Row, Column, Angle, Score, Model)

The procedure display_model accesses the model edges and transforms them according to the found
position and orientation and displays them overlaid on the image. As additional feedback, the type of the
coin is displayed in the graphics window.

get_shape_model_contours (ModelContours, Model, 1)

vector_angle_to_rigid (0, 0, 0, Row, Column, Angle, HomMat2D)

affine_trans_contour_xld (ModelContours, ContoursAffinTrans, HomMat2D)

dev_display (Image)

dev_set_color (’green’)

dev_set_line_width (2)

dev_display (ContoursAffinTrans)

set_tposition (WindowHandle, 24, 12)

write_string (WindowHandle, Names[Model])

Finally, the model is destroyed.

for i := 0 to 3 by 1

clear_shape_model (Models[i])

endfor

5.10 Surface Inspection

5.10.1 Surface Scratches

Example: examples\quick_guide\hdevelop\surface_scratch.dev

This example detects scratches on a metal surface (see figure 5.10).

A
pp

lic
at

io
n

A
re

as

242 Application Areas

c)

a) b)

Figure 5.10: Detecting scratches on a metal surface: (a) original image, (b) extracted scratches still partly
fractioned, (c) final result with merged scratches.

The main difficulties for the segmentation are the inhomogenous background and the fact that the
scratches are thin structures. Both problems can be solved using a local threshold, i.e., the operators
mean_image and dyn_threshold. After connection, the small objects that are mainly noise are re-
moved (see figure 5.10b).

mean_image (Image, ImageMean, 7, 7)

dyn_threshold (Image, ImageMean, DarkPixels, 5, ’dark’)

connection (DarkPixels, ConnectedRegions)

select_shape (ConnectedRegions, SelectedRegions, ’area’, ’and’, 10, 1000)

The scratches are part of the selection, but if we look closely we see that they are partially fractioned. To
solve this problem we combine all fractions again into one big region. By applying dilation_circle,
neighboring parts with a given maximum distance are now combined. To finally get the correct shape of
the scratches - which are now too wide because of the dilation - skeleton is used to thin the shape to a
width of one pixel.

union1 (SelectedRegions, RegionUnion)

dilation_circle (RegionUnion, RegionDilation, 3.5)

skeleton (RegionDilation, Skeleton)

connection (Skeleton, Errors)

The last step is to distinguish between small dots and scratches on the surface. This is achieved with
select_shape, using the size as feature. Figure 5.10c depicts the result.

select_shape (Errors, Scratches, ’area’, ’and’, 50, 10000)

select_shape (Errors, Dots, ’area’, ’and’, 1, 50)

	1 Introducing HALCON
	1.1 Key Features
	1.2 Who Should Use HALCON?
	1.3 Required Knowledge
	1.4 Getting Started with HALCON
	1.4.1 How to Install the HALCON Demo Version from CD
	1.4.2 How to Install the HALCON Demo Version via WWW

	1.5 Where to Get More Information

	2 How to Develop Applications with HALCON
	2.1 A Look Under the Surface of HALCON: Architecture and Data Structures
	2.1.1 HALCON Operators
	2.1.2 Parameters and Data Structures
	2.1.3 Parallel HALCON
	2.1.4 Image Acquisition

	2.2 Quick Start with HDevelop
	2.3 Using HALCON Within Programming Languages
	2.3.1 C
	2.3.2 C++
	2.3.3 Visual Basic
	2.3.4 C#

	2.4 Extending HALCON
	2.4.1 Extension Packages (User-Defined Operators)
	2.4.2 Frame Grabber Interfaces

	2.5 Limitations

	3 Machine Vision Methods
	3.1 Image Acquisition
	3.1.1 Basic Concept
	3.1.2 Extended Concept
	3.1.3 Programming Examples
	3.1.4 Selecting Operators
	3.1.5 Tips & Tricks

	3.2 Region Of Interest
	3.2.1 Basic Concept
	3.2.2 Extended Concept
	3.2.3 Industries
	3.2.4 Programming Examples
	3.2.5 Selecting Operators
	3.2.6 Relation to Other Methods
	3.2.7 Tips & Tricks
	3.2.8 Advanced Topics

	3.3 Blob Analysis
	3.3.1 Basic Concept
	3.3.2 Extended Concept
	3.3.3 Industries
	3.3.4 Programming Examples
	3.3.5 Selecting Operators
	3.3.6 Relation to Other Methods
	3.3.7 Tips & Tricks
	3.3.8 Advanced Topics

	3.4 1D Measuring
	3.4.1 Basic Concept
	3.4.2 Extended Concept
	3.4.3 Industries
	3.4.4 Programming Examples
	3.4.5 Selecting Operators
	3.4.6 Relation to Other Methods
	3.4.7 Tips & Tricks
	3.4.8 Advanced Topics

	3.5 Edge Extraction (pixel-precise)
	3.5.1 Basic Concept
	3.5.2 Extended Concept
	3.5.3 Industries
	3.5.4 Programming Examples
	3.5.5 Selecting Operators
	3.5.6 Relation to Other Methods
	3.5.7 Tips & Tricks
	3.5.8 Advanced Topics

	3.6 Edge Extraction (subpixel-precise)
	3.6.1 Basic Concept
	3.6.2 Extended Concept
	3.6.3 Industries
	3.6.4 Programming Examples
	3.6.5 Selecting Operators
	3.6.6 Relation to Other Methods
	3.6.7 Tips & Tricks
	3.6.8 Advanced Topics

	3.7 Contour Processing
	3.7.1 Basic Concept
	3.7.2 Extended Concept
	3.7.3 Industries
	3.7.4 Programming Examples
	3.7.5 Selecting Operators
	3.7.6 Relation to Other Methods
	3.7.7 Advanced Topics

	3.8 Template Matching
	3.8.1 Basic Concept
	3.8.2 Extended Concept
	3.8.3 Industries
	3.8.4 Programming Examples
	3.8.5 Selecting Operators
	3.8.6 Relation to Other Methods
	3.8.7 Tips & Tricks
	3.8.8 Advanced Topics

	3.9 Color Processing
	3.9.1 Basic Concept
	3.9.2 Extended Concept
	3.9.3 Industries
	3.9.4 Programming Examples
	3.9.5 Selecting Operators
	3.9.6 Tips & Tricks
	3.9.7 Advanced Topics

	3.10 1D Bar Code
	3.10.1 Basic Concept
	3.10.2 Extended Concept
	3.10.3 Industries
	3.10.4 Programming Examples
	3.10.5 Selecting Operators
	3.10.6 Relation to Other Methods
	3.10.7 Tips & Tricks

	3.11 2D Data Code
	3.11.1 Basic Concept
	3.11.2 Extended Concept
	3.11.3 Industries
	3.11.4 Programming Examples
	3.11.5 Selecting Operators
	3.11.6 Tips & Tricks

	3.12 OCR
	3.12.1 Basic Concept
	3.12.2 Extended Concept
	3.12.3 Industries
	3.12.4 Programming Examples
	3.12.5 Selecting Operators
	3.12.6 Relation to Other Methods
	3.12.7 Tips & Tricks
	3.12.8 Advanced Topics
	3.12.9 Pretrained OCR Fonts

	3.13 Stereo
	3.13.1 Basic Concept
	3.13.2 Extended Concept
	3.13.3 Industries
	3.13.4 Programming Examples
	3.13.5 Selecting Operators
	3.13.6 Relation to Other Methods
	3.13.7 Tips & Tricks
	3.13.8 Advanced Topics

	3.14 Visualization
	3.14.1 Basic Concept
	3.14.2 Extended Concept
	3.14.3 Industries
	3.14.4 Programming Examples
	3.14.5 Selecting Operators
	3.14.6 Tips & Tricks
	3.14.7 Advanced Topics

	4 Industries
	4.1 Electric Components And Equipment
	4.1.1 Check the State of a Dip Switch
	4.1.2 Inspect Power Supply Cables
	4.1.3 Other Examples

	4.2 Food
	4.2.1 "Best Before" Date
	4.2.2 Other Examples

	4.3 Health Care And Life Science
	4.3.1 Analyzing Particles
	4.3.2 Angiography
	4.3.3 Other Examples

	4.4 Iron, Steel And Metal
	4.4.1 Inspect Cast Part
	4.4.2 Other Examples

	4.5 Machinery
	4.5.1 Reading Engraved Text
	4.5.2 Inspecting the Contours of a Tool
	4.5.3 Locating a Pipe Wrench in Different States
	4.5.4 Other Examples

	4.6 Photogrammetry And Remote Sensing
	4.6.1 Extracting Forest Features from Color Infrared Image
	4.6.2 Segmenting a Color Image
	4.6.3 Extract Roads
	4.6.4 Other Examples

	4.7 Printing
	4.7.1 Reading a Bar Code
	4.7.2 Other Examples

	4.8 Rubber, Synthetic Material, Foil
	4.8.1 Checking a Boundary for Fins
	4.8.2 Other Examples

	4.9 Semiconductors
	4.9.1 Bonding Balls
	4.9.2 Inspecting an IC Using Fuzzy Measuring
	4.9.3 Measuring Leads of a Moving IC
	4.9.4 Creating a Mosaic Image
	4.9.5 Locating Board Components by Color
	4.9.6 Other Examples

	5 Application Areas
	5.1 1D Bar Codes
	5.1.1 Reading Multiple Bar Codes on a Toner Cartridge
	5.1.2 Other Examples

	5.2 2D Data Codes
	5.2.1 Reading 2D Data Codes on Chips
	5.2.2 Other Examples

	5.3 Completeness Check
	5.3.1 Inspect Razor Blades
	5.3.2 Other Examples

	5.4 Measuring And Comparison 2D
	5.4.1 Inspect IC
	5.4.2 Other Examples

	5.5 Measuring And Comparison 3D
	5.5.1 Inspect IC
	5.5.2 Other Examples

	5.6 Optical Character Recognition
	5.6.1 Reading Forms
	5.6.2 Other Examples

	5.7 Position Recognition 2D
	5.7.1 Locate Components on a PCB

	5.8 Print Inspection
	5.8.1 Inspect a Printed Logo
	5.8.2 Other Examples

	5.9 Object Recognition 2D
	5.9.1 Distinguishing coins

	5.10 Surface Inspection
	5.10.1 Surface Scratches

