HALCON Application Note

The Art of Image Acquisition

Provided Functionality

> Connecting to simple and complex configurations of frame grabbers and cameras
> Acquiring images in various timing modes

> Configuring frame grabbers and cameras online

Involved Operators

open_framegrabber

info_framegrabber

grab_image, grab_image_async, grab_image_start
set_framegrabber_param, get_framegrabber_param
close_framegrabber, close_all_framegrabbers

gen_imagel, gen_image3, gen_imagel_extern

EC
Copyright (©) 2002-2008 by MVTec Software GmbH, Miinchen, Germany mviee sofware ombt

Overview

Obviously, the acquisition of images is a task to be solved in all machine vision applications. Unfor-
tunately, this task mainly consists of interacting with special, non-standardized hardware in form of the
frame grabber board. To let you concentrate on the actual machine vision problem, HALCON already
provides interfaces performing this interaction for a large number of frame grabbers (see section 1 on
page 4).

Within your HALCON application, the task of image acquisition is thus reduced to a few lines of code,
i.e., a few operator calls, as can be seen in section 2 on page 5. What’s more, this simplicity is not
achieved at the cost of limiting the available functionality: Using HALCON, you can acquire images
from various configurations of frame grabbers and cameras (see section 3 on page 7) in different timing
modes (see section 5 on page 16).

Unless specified otherwise, the example programs can be found in the subdirectory im-
age_acquisition of the directory HALCONROOT \examples\application_guide. Note that most
programs are preconfigured to work with a certain HALCON frame grabber interface; in this case,
the name of the program contains the name of the interface. To use the program with another frame
grabber, please adapt the parts which open the connection to the frame grabber. More example pro-
grams for the different HALCON frame grabber interfaces can be found in the subdirectory hde-
velop\Image\Framegrabber of the directory ,HALCONROOT%\examples.

Please refer to the Programmer’s Guide, chapter 6 on page 57 and chapter 14 on page 107, for information
about how to compile and link the C++ and C example programs; among other things, they describe how
to use the example UNIX makefiles which can be found in the subdirectories ¢ and cpp of the directory
%HALCONROOT%\examples. Under Windows, you can use Visual Studio workspaces containing the
examples, which can be found in the subdirectory 1586-nt4 parallel to the source files.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written
permission of the publisher.

Edition 1 June 2002 (HALCON 6.1)
Edition 2 December 2003 (HALCON 7.0)

Microsoft, Windows, Windows NT, Windows 2000, Windows XP, Visual Studio, and Visual Basic are either trade-
marks or registered trademarks of Microsoft Corporation.
Linux is a trademark of Linus Torvalds.

All other nationally and internationally recognized trademarks and tradenames are hereby recognized.

More information about HALCON can be found at:

http://www.halcon.com/

Contents

1 The Philosophy Behind the HALCON Frame Grabber Interfaces
2 A First Example

3 Connecting to Your Frame Grabber
3.1 Opening a Connection to a Specified Configuration
3.2 Connecting to Multiple Boards and Cameras

3.3 Requesting Information About the Frame Grabber Interface

4 Configuring the Acquisition
4.1 General Parameters e e e e e
4.2 Special Parameters e e

4.3 Fixed vs. Dynamic Parameters oo

5 The Various Modes of Grabbing Images
5.1 Real-Time Image Acquisition e
5.2 Usingan External Trigger. 0 0 i e e
5.3 Acquiring Images From Multiple Cameras

6 Miscellaneous
6.1 Acquiring Images From Unsupported Frame Grabbers
6.2 ErrorHandling

6.3 Line Scan Camerast i e e e e e e e

A HALCON Images
A.l1 The Philosophy of HALCONImages
A2 Image Tuples (Arrays) o o v i i i e e e e e
A.3 HALCON Operators for Handling Images

B Parameters Describing the Image
B.1 TImage Size e e e
B.2 Framesvs. Fields e
B.3 ImageData e e

12
13
14
15

16
16
25
27

29
29
30
34

37
37
38
38

Application Note on Image Acquisition

1 The Philosophy Behind the HALCON Frame Grabber Inter-
faces

From the point of view of a user developing software for a machine vision application, the acquisition
of images is only a prelude to the actual machine vision task. Of course it is important that images are
acquired at the correct moment or rate, and that the camera and the frame grabber are configured suitably,
but these tasks seem to be elementary, or at least independent of the used frame grabber.

The reality, however, looks different. Frame grabbers differ widely regarding the provided functionality,
and even if their functionality is similar, the SDKs (software development kit) provided by the frame
grabber manufacturers do not follow any standard. Therefore, switching to a different frame grabber
probably requires to rewrite the image acquisition part of the application.

HALCON’s answer to this problem are its frame grabber interfaces (HFGI) which are provided for
currently more than 50 frame grabbers in form of dynamically loadable libraries (Windows: DLLs;
UNIX: shared libraries). HALCON frame grabber interfaces bridge the gap between the individual
frame grabbers and the HALCON library, which is independent of the used frame grabber, computer
platform, and programming language (see figure 1). In other words, they

e provide a standardized interface to the HALCON user in form of 11 HALCON operators, and

e encapsulate details specific to the frame grabber, i.e., the interaction with the frame grabber SDK
provided by the manufacturer.

Therefore, if you decide to switch to a different frame grabber, all you need to do is to install the cor-
responding driver and SDK provided by the manufacturer and to use different parameter values when
calling the HALCON operators; the operators themselves stay the same.

camera /"7~~~ e HALCON application
computer o HDevelop / C / C++ / C# / Visual Basic

3

HALCON image processing library
halcon.dll & halconc/cpp/dotnet/x.dll

frame
-
grabber

HALCON xyz acquisition interface
hAcqgxyz.dil

,,,,, e . device driver & SDK

Figure 1: From the camera to a HALCON application.

In fact, the elementary tasks of image acquisition are covered by two HALCON operators:

e open_framegrabber connects to the frame grabber and sets general parameters, e.g., the type of
the used camera or the port the camera is connected to, then

e grab_image (or grab_image_async, see section 5.1 on page 16 for the difference) grabs images.

If a frame grabber provides additional functionality, e.g., on-board modification of the image signal, spe-
cial grabbing modes, or digital output lines, it is available via the operator set_framegrabber_param
(see section 4 on page 12).

2 A First Example

Figure 2: a) Acquired image; b) processed image (automatic segmentation).

Note, that for some frame grabbers the full functionality is not available within HALCON; please re-
fer to the corresponding online documentation which can be found in the directory %HALCONROOT?%
\doc\html\manuals or via the HALCON folder in the Windows start menu (if you installed the docu-
mentation). The latest information can be found under http://www.halcon.com/framegrabber.

If the frame grabber you want to use is not (yet) supported by HALCON, you can nevertheless use it
together with HALCON. Please refer to section 6.1 on page 29 for more details.

2 A First Example

In this section we start with a simple image acquisition task, which uses the frame grabber in its default
configuration and the standard grabbing mode. The grabbed images are then segmented. To follow the
example actively, start the HDevelop program hdevelop\first_example_acquisition_ids.dev,
then press Run once to initialize the application. Note that the program is preconfigured for the HALCON
frame grabber interface IDS; to use it with a different frame grabber, please adapt the parts which open
the connection.

Step 1: Connect to the frame grabber

open_framegrabber (FGName, 1, 1, 0, O, 0, O, ’default’, -1, ’gray’, -1,
’false’, ’ntsc’, ’default’, -1, -1, FGHandle)

When opening the connection to your frame grabber using the operator open_framegrabber, the main
parameter is the Name of the corresponding HALCON frame grabber interface. As a result, you obtain
a so-called handle (FGHandle), by which you can access the frame grabber, e.g., in calls to the operator
grab_image.

In the example, default values are used for most other parameters (’default’ or -1); section 4.1 on
page 13 takes a closer look at this topic. How to connect to more complex frame grabber and camera
configurations is described in section 3 on page 7.

2
o
£
c
x

L
-
7]

=

i

Application Note on Image Acquisition

Step 2: Grab an image
grab_image (Image, FGHandle)

After successfully connecting to your frame grabber you can grab images by calling the operator
grab_image with the corresponding handle FGHandle. More advanced modes of grabbing images are

described in section 5 on page 16.

Step 3: Grab and process images in a loop

while (Button # 1)

grab_image (Image, FGHandle)

auto_threshold (Image, Regions, 4)

connection (Regions, ConnectedRegions)

get_mposition (WindowHandleButton, Row, Column, Button)
endwhile

In the example, the grabbed images are then automatically segmented using the operator
auto_threshold (see figure 2). This is done in a loop which can be exited by clicking into a win-
dow with the left mouse button.

3 Connecting to Your Frame Grabber

3 Connecting to Your Frame Grabber

In this section, we show how to connect to different configurations of frame grabber(s) and camera(s),
ranging from the simple case of one camera connected to one frame grabber board to more complex
ones, e.g., multiple synchronized cameras connected to one or more boards.

3.1 Opening a Connection to a Specified Configuration

With the operator open_framegrabber you open a connection to a frame grabber, or to be more exact,
via a frame grabber to a camera. This connection is described by four parameters (see figure 3): First,
you select a frame grabber (family) with the parameter Name. If multiple boards are allowed, you can
select one with the parameter Device; depending on the frame grabber interface, this parameter can
contain a string describing the board or simply a number (in form of a string!).

Typically, the camera can be connected to the frame grabber at different ports, whose number can be
selected via the parameter Port (in rare cases LineIn). The parameter CameraType describes the
connected camera: For analog cameras, this parameter usually specifies the used signal norm, e.g.,
’ntsc’; more complex frame grabber interfaces use this parameter to select a camera configuration file.

As aresult, open_framegrabber returns a handle for the opened connection in the parameter FGHan—
dle. Note that if you use HALCON’s COM or C*™ interface and call the operator via the classes
HFramegrabberX or HFramegrabber, no handle is returned because the instance of the class itself acts
as your handle.

In HDevelop, you can quickly check an opened connection by double-clicking FGHandle in the Variable
Window as shown in figure 4. A dialog appears which describes the status of the connection. If you

- SDK & IAI A

|
|
|
|
|
|
|
:
|
i camera type abc
|
|
|
|
1

P

v which interface? which device? which port? which camera?
AcqHandle Name Port CameraType

Figure 3: Describing a connection with the parameters of open_framegrabber .

o
c
=
o
Q
c
c
o
o

Application Note on Image Acquisition

i HDevelop - first_example_acquisition_ids.dev

File Edit Egecute Visusleaion Operators Suggestions Window Help

D22 % E=le] | BUEEE] EPElE] =] m=]k]n]c
TFEHandle =

Clear active [e
: jeight: | 460
ALCON 6.0 —

hame: [IDE
SOFTWARE SOLUTION
[MACHINE VISION

Pixel |rob lﬂ_

Port: IU
Device: IW
Trigger: Ifabei

Criline:

A

check box to start online grabbing

I 5 i Status: |
i Variable Watch !
lcanic Variakles:

F i) double—click handle to open dialog

\m.age Region: Connecte~

Cortrol Variskizs”

T]:..A_.. nnnnnnnn | . -

Figure 4: Online grabbing in HDevelop .

check the corresponding box, images are grabbed online and displayed in the Graphics Window. This
mode is very useful to setup your vision system (illumination, focus, field of view).

3.2 Connecting to Multiple Boards and Cameras

Most HALCON frame grabber interfaces allow to use multiple frame grabber boards and cameras. How-
ever, there is more than one way to connect cameras and boards and to access these configurations from
within HALCON. Below, we describe the different configurations; please check the online documen-
tation of the HALCON interface for your frame grabber (see #HALCONROOTY \doc\html\manuals,
the HALCON folder in the Windows start menu, or http://www.halcon. com/framegrabber) which
configurations it supports.

3.2.1 Single Camera

Figure 5a shows the simplest configuration: a single camera connected to a single board, accessible
via a single handle. Some frame grabbers, especially digital ones, only support this configuration; as
described in the following section, you can nevertheless use multiple cameras with such frame grabbers
by connecting each one to an individual board.

3.2.2 Multiple Boards

a) b)
handle 0 | frame grabber m
board 0
handle0 | frame grabber M
board 0
handle1 | frame grabber m
board 1
c) d)
handle 0
---| frame grabber
--- board 0 port 1 M
handle 1 handle 0 frame grabber
port switch board 0 m g)
handle 2 frame grabber m 5
- (8]
board 1 8
c
(]
(&)
e) f)
_| frame grabber
1
handle0 | frame grabber handle 0 i
Himage([2] board 0 m Himage[3] |
:_ frame grabber m
board 1

Figure 5: a) single board with single camera; b) multiple boards with one camera each; ¢) multiple boards
with one or more cameras; d) single board with multiple cameras and port switching; e) single
board with multiple cameras and simultaneous grabbing; f) simultaneous grabbing with multiple
boards and cameras.

3.2.2 Multiple Boards

Figure 5b shows a configuration with multiple cameras, each connected to a separate board. In this case
you call the operator open_framegrabber once for each connection as in the HDevelop example pro-
gram hdevelop\multiple_boards_px.dev. Note that the program is preconfigured for the HALCON
PX interface; to use it with a different frame grabber, please adapt the parts which open the connection.

10

Application Note on Image Acquisition

open_framegrabber (FGName, 1, 1, 0, 0, 0, O, ’default’, -1, ’default’, -1,
’default’, ’default’, Board0O, -1, -1, FGHandleO)

open_framegrabber (FGName, 1, 1, 0, 0, 0, O, ’default’, -1, ’default’, -1,
’default’, ’default’, Boardl, -1, -1, FGHandlel)

In this example, the two calls differ only in the value for the parameter Device (°0’ and ’17); of course,
you can use different values for other parameters as well, and even connect to different frame grabber
interfaces.

To grab images from the two cameras, you simply call the operator grab_image once with the two
handles returned by the two calls to open_framegrabber:

grab_image (ImageO, FGHandleO)
grab_image (Imagel, FGHandlel)

3.2.3 Multiple Handles Per Board

Many frame grabbers provide multiple input ports and thus allow to connect more than one camera to the
board. Depending on the HALCON frame grabber interface, this configuration is accessed in different
ways which are described in this and the following sections.

The standard HALCON method to connect to the cameras is depicted in figure 5c: Each connection
gets its own handle, i.e., open_framegrabber is called once for each camera with different values
for the parameter Port, like in the HDevelop example program hdevelop\multiple_ports_px.dev
(preconfigured for the HALCON PX interface, please adapt the parts which open the connection for your
own frame grabber):

open_framegrabber (FGName, 1, 1, 0, O, 0, O, ’default’, -1, ’default’, -1,
’default’, ’default’, ’default’, PortO, -1, FGHandleO)

open_framegrabber (FGName, 1, 1, 0, 0, 0, O, ’default’, -1, ’default’, -1,
’default’, ’default’, ’default’, Portl, -1, FGHandlel)

grab_image (ImageO, FGHandleO)

grab_image (Imagel, FGHandlel)

As figure Sc shows, you can also use multiple boards with multiple connected cameras.

3.2.4 Port Switching

Some frame grabber interfaces do not access the cameras via multiple handles, but by switching the
input port dynamically (see figure 5d). Therefore, open_framegrabber is called only once, like in
the HDevelop example program hdevelop\port_switching_inspecta.dev (preconfigured for the
HALCON INSPECTA interface, please adapt the parts which open the connection for your own frame
grabber):

open_framegrabber (FGName, 1, 1, 0, 0, 0, O, ’default’, -1, ’default’, -1,
’default’, MyCamType, ’default’, O, -1, FGHandle)

Between grabbing images you switch ports using the operator set_framegrabber_param (see sec-
tion 4.2 on page 14 for more information about this operator):

3.2,5 Simultaneous Grabbing

11

set_framegrabber_param (FGHandle, ’port’, PortO0)
grab_image (ImageO, FGHandle)
set_framegrabber_param (FGHandle, ’port’, Portl)
grab_image (Imagel, FGHandle)

Note that port switching only works for compatible (similar) cameras because open_framegrabber
is only called once, i.e., the same set of parameters values is used for all cameras. In contrast, when
using multiple handles as described above, you can specify different parameter values for the individual
cameras (with some board-specific limitations).

3.2.,5 Simultaneous Grabbing

In the configurations described above, images were grabbed from the individual cameras by multiple
calls to the operator grab_image. In contrast, some frame grabber interfaces allow to grab images
from multiple cameras with a single call to grab_image, which then returns a multi-channel image (see
figure Se; appendix A.1 on page 37 contains more information about multi-channel images). This mode
is called simultaneous grabbing (or parallel grabbing); like port switching, it only works for compatible
(similar) cameras. For example, you can use this mode to grab synchronized images from a stereo camera
system.

In this mode, open_framegrabber is called only once, as can be seen in the HDevelop example program
hdevelop\simultaneous_grabbing_inspecta.dev (preconfigured for the HALCON INSPECTA in-
terface, please adapt the parts which open the connection for your own frame grabber):

open_framegrabber (FGName, 1, 1, 0, 0, 0, O, ’default’, -1, ’default’, -1,
’default’, MyCamType, ’default’, 0, -1, FGHandle)

You can check the number of returned images (channels) using the operator count_channels

grab_image (SimulImages, FGHandle)
count_channels (SimulImages, num_channels)

and extract the individual images, e.g., using decompose2, decompose3 etc., depending on the number
of images:

if (num_channels = 2)
decompose2 (SimulImages, ImageO, Imagel)

Alternatively, you can convert the multi-channel image into an image array using image_to_channels
and then select the individual images via select_obj.

Note that some frame grabber interfaces allow simultaneous grabbing also for multiple boards (see fig-
ure 5f). Please refer to section 5.3.2 on page 28 for additional information.

3.3 Requesting Information About the Frame Grabber Interface

As mentioned already, the individual HALCON frame grabber interfaces are described in detail on
HTML pages which can be found in the directory ¥HALCONROOTY, \doc\html\manuals orin the HAL-
CON folder in the Windows start menu (if you installed the documentation). Another way to access
information about a frame grabber interface is to use the operator info_framegrabber.

o
c
=
o
Q
c
c
o
(&)

12

Application Note on Image Acquisition

1 Wariable Walch Hi=] E3
lzonic Yariahles:
Cortrol Variahles:
Generallnfa: ‘HALCOM interface for IDS FALCON/EAGLE frame grabber boards.” =]
GeneralValue:]
Revisioninfo: ‘Current interface revision.'
Revisionvalue: 2.3
Boardsinfo: Info about installed IDS boards.’
BoardsWalue: ‘device:1, port:0, board_type: EAGLE'
Partsinfo: FALCOM: port 0,1 (Compaosite), port 2 (5-Video) - FALCONplus/dun/quattro; port 0,123 (Composite) - EAGLE(L
Portsvalue: [0,1,2,3]
CamTypelnfo: ‘Specify the video signal of the used camera.’
CamTypevalue: [ntsc’, pal’, 'secam’, 'auto’, 's-ntsc’, 's-pal’, 's-secam’, 's-auto’] |
Defaultsinfa: ‘Default values (as used for open_framegrabber).'
Defaultsalue: [1,1,0,0,0,0, intedlaced’, 8, rgb’, 1, false', 'aute’, ‘default’, 0, 1] _|LI
1 | »

Figure 6: An example result of the operator info_framegrabber .

In the HDevelop example program hdevelop\info_framegrabber_ids.dev (preconfigured for the
HALCON 1IDS interface, please adapt the interface name for your own frame grabber) this operator is
called multiple times to query the version number of the interface, the available boards, port numbers,
camera types, and the default values for all parameters of open_framegrabber; the result, i.e., the
values displayed in the HDevelop Variable Windows, is depicted in figure 6.

info_framegrabber (FGName, ’general’, GeneralInfo, GeneralValue)
info_framegrabber (FGName, ’revision’, RevisionInfo, RevisionValue)
info_framegrabber (FGName, ’info_boards’, BoardsInfo, BoardsValue)
info_framegrabber (FGName, ’ports’, PortsInfo, PortsValue)
info_framegrabber (FGName, ’camera_types’, CamTypeInfo, CamTypeValue)
info_framegrabber (FGName, ’defaults’, DefaultsInfo, DefaultsValue)

The operator info_framegrabber can be called before actually connecting to a frame grabber with
open_framegrabber. The only condition is that the HALCON frame grabber interface and the frame
grabber SDK and driver have been installed.

4 Configuring the Acquisition

As explained in section 1 on page 4, the intention of HALCON’s frame grabber interfaces is to provide
the user with a common interface for many different frame grabbers. This interface is kept as simple
as possible; as shown, you can connect to your frame grabber and grab a first image using only two
operators.

However, HALCON’s second goal is to make the full functionality of a frame grabber available to the
user. As frame grabbers differ widely regarding the provided functionality, this is a difficult task to realize

4.1 General Parameters

13

within a simple, common interface. HALCON solves this problem by dividing the task of configuring
a frame grabber connection into two parts: Those parameters which are common to most frame grabber
interfaces (therefore called general parameters) are set when calling the operator open_framegrabber.
In contrast, the functionality which is not generally available can be configured by setting so-called
special parameters using the operator set_framegrabber_param.

4.1 General Parameters

When opening a connection via open_framegrabber, you can specify the following general parame-
ters:

HorizontalResolution, spatial resolution of the transferred image in relation to the
VerticalResolution original size (see appendix B.1 on page 40)

ImageWidth, ImageHeight, size and upper left corner of the transferred image in relation
StartRow, StartColumn to the original size (see appendix B.1 on page 40)

Field grabbing mode for analog cameras, e.g., interlaced-scan,

progressive-scan, field grabbing (see appendix B.2 on page 41)

BitsPerChannel, ColorSpace data contained in a pixel (number of bits, number of channels,
color encoding, see appendix B.3 on page 44)

Gain amplification factor for the video amplifier on the frame grab-
ber board (if available)

ExternalTrigger hooking the acquisition of images to an external trigger signal
(see also section 5.2 on page 25)

CameraType, Device, Port, configuration of frame grabber(s) and camera(s) from which

Lineln images are to be acquired (see section 3.1 on page 7)

In section 3.1 on page 7, we already encountered the parameters describing the frame grabber / camera
configuration. Most of the other parameters of open_framegrabber specify the image format; they are
described in more detail in appendix B on page 40. The parameter ExternalTrigger activates a special
grabbing mode which is described in detail in section 5.2 on page 25. Finally, the parameter Gain can be
used to manipulate the acquired images on the frame grabber board by configuring the video amplifier.

Note that when calling open_framegrabber you must specify values for all parameters, even if your
frame grabber interface does not support some of them or uses values specified in a camera configuration
file instead. To alleviate this task, the HALCON frame grabber interfaces provide suitable default values
which are used if you specify ’default’ or -1 for string or numeric parameters, respectively. The actu-
ally used default values can be queried using the operator info_framegrabber as shown in section 3.3
on page 11.

After connecting to a frame grabber, you can query the current value of general parameters using the
operator get_framegrabber_param; some interfaces even allow to modify general parameters dynam-
ically. Please refer to section 4.3 on page 15 for more information about these topics.

(2}
c
=
3
2
Y
=
O
o

14

Application Note on Image Acquisition

4.2 Special Parameters

Even the functionality which is not generally available for all frame grabber can be accessed and
configured with a general mechanism: by setting corresponding special parameters via the operator
set_framegrabber_param. Typical parameters are, for example:

’grab_timeout’ timeout after which the operators grab_image and
grab_image_async stop waiting for an image and return
an error (see also section 5.2.1 on page 27 and section 6.2

on page 30)

’volatile’ enable volatile grabbing (see also section 5.1.3 on page
18)

’continuous_grabbing’ switch on a special acquisition mode which is necessary

for some frame grabbers to achieve real-time performance
(see also section 5.1.5 on page 22)

’trigger_signal’ signal type used for external triggering, e.g., rising or
falling edge

’image_width’, image_height’, “duplicates” of some of the general parameters described

’start_row’, ’start_column’, in section 4.1 on page 13, allowing to modify them dy-

’gain’, ’external_trigger’, namically, i.e., after opening the connection (see also sec-

’port’ tion 4.3)

Depending on the frame grabber, various other parameters may be available, which allow, e.g., to add
an offset to the digitized video signal or modify the brightness or contrast, to specify the exposure time
or to trigger a flash. Some frame grabbers also offer special parameters for the use of line scan cameras
(see also section 6.3 on page 34), or parameters controlling digital output and input lines.

Which special parameters are provided by a frame grabber interface is described in the already mentioned
online documentation. You can also query this information by calling the operator info_framegrabber
as shown below; figure 7 depicts the result of double-clicking ParametersValue in the Variable Win-
dow after executing the line:

info_framegrabber (FGName, ’parameters’, ParametersInfo, ParametersValue)

To set a parameter, you call the operator set_framegrabber_param, specifying the name of the pa-
rameter to set in the parameter Param and the desired value in the parameter Value. For example, in
section 3.2.4 on page 10 the following line was used to switch to port O:

set_framegrabber_param (FGHandle, ’port’, PortO)

You can also set multiple parameters at once by specifying tuples for Param and Value as in the follow-
ing line:

set_framegrabber_param (FGHandle, [’image_width’,’image_height’], [256,
256])

For all parameters which can be set with set_framegrabber_param, you can query the current value
using the operator get_framegrabber_param. Some interfaces also allow to query additional infor-

4.3 Fixed vs. Dynamic Parameters

15

i Parameters¥alue
0 ‘wolstile' s
1 ‘revision' —
2 Choard'

3 'agc

4 'krightness'

5 'contrast'

E 'gamma'

7 ‘horfiter'

G 'wertfiter'

9 ‘show_internal_srrors'

10 ‘hue'

11 ‘'synclevel

12 ‘trigger_signal'

13 'orab_timeout' ﬂ

Figure 7: Querying available special parameters via info_framegrabber .
mation like minimum and maximum values for the parameters. For example, the HALCON Fire-i
interface allows to query the minimum and maximum values for the brightness:

get_framegrabber_param (FGHandle, ’brightness_min_value’, MinBrightness)
get_framegrabber_param (FGHandle, ’brightness_max_value’, MaxBrightness)

Thus, you can check a new brightness value against those boundaries before setting it:

get_framegrabber_param (FGHandle, ’brightness’, CurrentBrightness)

NewBrightness := CurrentBrightness + 10

if (NewBrightness > MaxBrightness)
NewBrightness := MaxBrightness

endif

set_framegrabber_param (FGHandle, ’brightness’, NewBrightness)

4.3 Fixed vs. Dynamic Parameters

The distinction between fixed and dynamic parameters is made relating to the lifetime of a frame
grabber connection. Fixed parameters, e.g., the CameraType, are set once when opening the
connection with open_framegrabber. In contrast, those parameters which can be modified via
set_framegrabber_param during the use of the connection are called dynamic parameters.

As already noted in section 4.2 on page 14, some frame grabber interfaces allow to modify general
parameters like ImageWidth or ExternalTrigger dynamically via set_framegrabber_param, by
providing a corresponding special parameter with the same name but written with small letters and
underscores, €.g., >image_width’ or ’external_trigger’.

Independent of whether a general parameter can be modified dynamically, you can query its current value
by calling the operator get_framegrabber_param with its “translated” name, i.e., capitals replaced by
small letters and underscores as described above.

(2}
c
=
3
2
Y
=
O
o

16

Application Note on Image Acquisition

5 The Various Modes of Grabbing Images

Section 2 on page 5 showed that grabbing images is very easy in HALCON - you just call grab_image!
But of course there’s more to image grabbing than just to get an image, e.g., how to assure an exact
timing. This section therefore describes more complex grabbing modes.

5.1 Real-Time Image Acquisition

As atechnical term, the attribute real-time means that a process guarantees that it meets given deadlines.
Please keep in mind that none of the standard operating systems, i.e., neither Windows nor Linux,
are real-time operating systems. This means that the operating system itself does not guarantee that
your application will get the necessary processing time before its deadline expires. From the point of
view of a machine vision application running under a non-real-time operating system, the most you can
do is assure that real-time behavior is not already prevented by the application itself.

In a machine vision application, real-time behavior may be required at multiple points:

Image delay: The camera must “grab” the image, i.e., expose the chip, at the correct moment, i.e., while
the part to be inspected is completely visible.

Frame rate: The most common real-time requirement for a machine vision application is to “reach
frame rate”, i.e., acquire and process all images the camera produces.

Processing delay: The image processing itself must complete in time to allow a reaction to its results,
e.g., to remove a faulty part from the conveyor belt. As this point relates only indirectly to the
image acquisition it is ignored in the following.

5.1.1 Non-Real-Time Grabbing Using grab_image

Figure 8 shows the timing diagram for the standard grabbing mode, i.e., if you use the operator
grab_image from within your application. This operator call is “translated” by the HALCON frame
grabber interface and the SDK into the corresponding signal to the frame grabber board (marked with
’Grab’).

The frame grabber now waits for the next image. In the example, a free-running analog progressive-scan
camera is used, which produces images continuously at a fixed frame rate; the start of a new image is
indicated by a so-called vertical sync signal. The frame grabber then digitizes the incoming analog image
signal and transforms it into an image matrix. If a digital camera is used, the camera itself performs the
digitizing and transfers a digital signal which is then transformed into an image matrix by the frame
grabber. Please refer to appendix B.2 on page 41 for more information about interlaced grabbing.

The image is then transferred from the frame grabber into computer memory via the PCI bus using DMA
(direct memory access). This transfer can either be incremental as depicted in figure 8, if the frame
grabber has only a FIFO buffer, or in a single burst as depicted in figure 9 on page 19, if the frame
grabber has a frame buffer on board. The advantage of the incremental transfer is that the transfer is
concluded earlier. In contrast, the burst mode is more efficient; furthermore, if the incremental transfer
via the PCI bus cannot proceed for some reason, a FIFO overflow results, i.e., image data is lost. Note

5.1.1 Non-Real-Time Grabbing Using grab_image

17

T
T

original original original
Yo e raig R pe frame rate »$

camera expose expose expose I expose t
et [AMNAAN AN Y
(analog) L] @]

wait for wait for
frame vsync vsync ;
grabber A 5 @ N
transfer IEENEENEEE LLLLLELLL] K
(DMA)

Grab Grab
wait for create wait for create
image Himage image Himage
IAI & SDK :
software grab_image grab_image A4
process process t

application] > >

AR » i delay image frame rate i

delay v processing T >

image

T

T

Figure 8: Standard timing using grab_image (configuration: free-running progressive-scan camera, frame
grabber with incremental image transfer).

that in both modes the transfer performance depends on whether the PCI bus is used by other devices as
well!

When the image is completely stored in the computer memory, the HALCON frame grabber interface
transforms it into a HALCON image and returns the control to the application which processes the image
and then calls grab_image again. However, even if the processing time is short in relation to the frame
rate, the camera has already begun to transfer the next image which is therefore “lost”; the application
can therefore only process every second image.

You can check this behavior using the HDevelop example program hde-
velop\real_time_grabbing_ids.dev (preconfigured for the HALCON IDS interface, please
adapt the parts which open the connection for your own frame grabber), which determines achievable
frame rates for grabbing and processing (here: calculating a difference image) first separately and then
together as follows:

Grabbing

18

Application Note on Image Acquisition

grab_image (BackgroundImage, FGHandle)
count_seconds (Secondsl)
for i :=1 to 20 by 1
grab_image (Image, FGHandle)
sub_image (BackgroundImage, Image, DifferenceImage, 1, 128)
endfor
count_seconds (Seconds2)
TimeGrabImage := (Seconds2-Secondsl)/20
FrameRateGrabImage := 1 / TimeGrabImage

To see the non-deterministic image delay, execute the operator grab_image in the step mode by pressing
Step; the execution time displayed in HDevelop’s status bar will range between once and twice the
original frame period. Please note that on UNIX systems, the time measurements are performed with a
lower resolution than on Windows systems.

5.1.2 Grabbing Without Delay Using Asynchronously Resettable Cameras

If you use a free-running camera, the camera itself determines the exact moment an image is acquired
(exposed). This leads to a delay between the moment you call grab_image and the actual image ac-
quisition (see figure 8 on page 17). The delay is not deterministic, but at least it is limited by the frame
rate; for example, if you use an NTSC camera with a frame rate of 30 Hz, the maximum delay can be 33
milliseconds.

Of course, such a delay is not acceptable in an application that is to inspect parts at a high rate. The
solution is to use cameras that allow a so-called asynchronous reset. This means that upon a signal
from the frame grabber, the camera resets the image chip and (almost) immediately starts to expose it.
Typically, such a camera does not grab images continuously but only on demand.

An example timing diagram is shown in figure 9. In contrast to figure 8, the image delay is (almost) zero.
Furthermore, because the application now specifies when images are to be grabbed, all images can be
processed successfully; however, the achieved frame rate still includes the processing time and therefore
may be too low for some machine vision applications.

5.1.3 Volatile Grabbing

As shown in figure 8 on page 17, after the image has been transferred into the computer memory, the
HALCON frame grabber interface needs some time to create a corresponding HALCON image which is
then returned in the output parameter Image of grab_image. Most of this time (about 3 milliseconds on
a 500 MHz Athlon K6 processor for a gray value NTSC image) is needed to copy the image data from
the buffer which is the destination of the DMA into a newly allocated area.

You can switch off the copying by using the so-called volatile grabbing, which can be enabled via the
operator set_framegrabber_param (parameter ’volatile’):

set_framegrabber_param (FGHandle, ’volatile’, ’enable’)

Then, the time needed by the frame grabber interface to create the HALCON image is significantly
reduced as visualized in figure 9. Note that usually volatile grabbing is only supported for gray value
images!

5.1.3 Volatile Grabbing

19

T

original
e frame rate T »$
camera expose expose ;
ranmor (AN A (AN t
>
(analog) \
Expose Expose
I I
wait for wait for
frame vsync digitize vsync digitize t
grabber >
transfer t
>
(DMA)
Grab Grab
wait for Y create wait for ¥ create
image Himage image Himage t
IAl & SDK >
software grab_image grab_image \ 4
process process t
application >
A frame rate A
delay e processing T v
image

=0

T

. £

Figure 9: Using a asynchronously resettable camera together with grab_image (configuration:
progressive-scan camera, frame grabber with burst transfer, volatile grabbing).

The drawback of volatile grabbing is that grabbed images are overwritten by subsequent grabs. To be
more exact, the overwriting depends on the number of image buffers allocated by the frame grabber inter-
face or SDK. Typically, at least two buffers exist; therefore, you can safely process an image even if the
next image is already being grabbed as in figure 11 on page 23. Some frame grabber interfaces allow to
use more than two buffers, and even to select their number dynamically via set_framegrabber_param
(parameter ’num_buffers’).

You can check this behavior using the HDevelop example program hde-
velop\volatile_grabbing_ids.dev (preconfigured for the HALCON 1IDS interface, please
adapt the parts which open the connection for your own frame grabber). After grabbing a first image
and displaying it via

grab_image (FirstImage, FGHandle)

dev_open_window (0, O, Width/2, Height/2, ’black’, FirstWindow)

dev_display (FirstImage)

change the scene and grab a second image which is displayed in an individual window:

)
£
=)
)
©
B
o

20

Application Note on Image Acquisition

grab_image (SecondImage, FGHandle)
dev_open_window (0, Width/2 + 8, Width/2, Height/2, ’black’, SecondWindow)
dev_display (SecondImage)

Now, images are grabbed in a loop and displayed in a third window. The two other images are also
displayed each time. If you change the scene before each grab you can see how the first two images are
overwritten in turn, depending on the number of buffers.

dev_open_window (Height/2 + 66, Width/4 + 4, Width/2, Height/2, ’black’,
ThirdWindow)

for i :=1 to 10 by 1
grab_image (CurrentImage, FGHandle)
dev_set_window (ThirdWindow)
dev_display (CurrentImage)
dev_set_window (FirstWindow)
dev_display (FirstImage)
dev_set_window (SecondWindow)
dev_display (SecondImage)

endfor

5.1.4 Real-Time Grabbing Using grab_image _async

The main problem with the timing using grab_image is that the two processes of image grabbing and
image processing run sequentially, i.e., one after the other. This means that the time needed for process-
ing the image is included in the resulting frame rate, with the effect that the frame rate provided by the
camera cannot be reached by definition.

This problem can be solved by using the operator grab_image_async. Here, the two processes are
decoupled and can run asynchronously, i.e., an image can be processed while the next image is already
being grabbed. Figure 10 shows a corresponding timing diagram: The first call to grab_image_async
is processed similar to grab_image (compare figure 8 on page 17). The difference becomes apparent
after the transfer of the image into computer memory: Almost immediately after receiving the image,
the frame grabber interface automatically commands the frame grabber to acquire a new image. Thus,
the next image is grabbed while the application processes the previous image. After the processing, the
application calls grab_image_async again, which waits until the already running image acquisition is
finished. Thus, the full frame rate is now reached. Note that some frame grabbers fail to reach the full
frame rate even with grab_image_async; section 5.1.5 on page 22 shows how to solve this problem.

In the HDevelop example program hdevelop\real_time_grabbing_ids.dev, which was already
described in section 5.1.1 on page 16, the reached frame rate for asynchronous processing is determined
as follows:

5.1.4 Real-Time Grabbing Using grab_image_async

21

T
T

original original original
Yo e raie pe e rae rde famerate »$

camera expose expose expose
transfer
(analog)
1 - wait for _|__ wait for @
i vsync . vsync
wait for '
frame syl digitize
grabber ZE @
transfer LLLLLLL]]
(DMA)
Grab Grab Grab Grab
wait for create wait for create wait for create
image Himage Image Himage Image Himage t
IAl & SDK 7
software grab_image_async grab_image_async grab_image_async Y
process process process t
application >
tl' I B¢ fv ';;; """"" frame rate R 4
elay LT L rocessing =’ v v
image delay .-* o P 9 =
image = = =
"negative” B B égi

Figure 10: Grabbing and processing in parallel using grab_image_async .

grab_image (BackgroundImage, FGHandle)
count_seconds (Secondsl)
for i :=1 to 20 by 1
grab_image_async (Image, FGHandle, -1)
sub_image (BackgroundImage, Image, DifferenceImage, 1, 128)
endfor
count_seconds (Seconds2)
TimeGrabImageAsync := (Seconds2-Secondsl)/20
FrameRateGrabImageAsync := 1 / TimeGrabImageAsync

As can be seen in figure 10, the first call to grab_image_async has a slightly different effect than
the following ones, as it also triggers the first grab command to the frame grabber. As an alternative,
you can use the operator grab_image_start which just triggers the grab command; then, the first call
to grab_image_async behaves as the other ones. This is visualized, e.g., in figure 11; as you can
see, the advantage of this method is that the application can perform some processing before calling
grab_image_async.

In the example, the processing was assumed to be faster than the acquisition. If this is not the case,
the image will already be ready when the next call to grab_image_async arrives. In this case, you can
specify how “old” the image is allowed to be using the parameter MaxDelay. Please refer to section 5.1.7
on page 24 for details.

Grabbing

22

Application Note on Image Acquisition

Please note that when using grab_image_async it is not obvious anymore which image is returned by
the operator call, because the call is decoupled from the command to the frame grabber! In contrast
to grab_image, which always triggers the acquisition of a new image, grab_image_async typically
returns an image which has been exposed before the operator was called, i.e., the image delay is negative
(see figure 10)! Keep this effect in mind when changing parameters dynamically; contrary to intuition,
the change will not affect the image returned by the next call of grab_image_async but by the following
ones! Another problem appears when switching dynamically between cameras (see section 5.3.1 on page
28).

5.1.5 Continuous Grabbing

For some frame grabbers, grab_image_async fails to reach the frame rate because the grab command
to the frame grabber comes too late, i.e., after the camera has already started to transfer the next image
(see figure 11a).

As a solution to this problem, some frame grabber interfaces provide the so-called continuous grabbing
mode, which can be enabled only via the operator set_framegrabber_param (parameter ’continu-
ous_grabbing’):

set_framegrabber_param (FGHandle, ’continuous_grabbing’, ’enable’)

In this mode, the frame grabber reads images from a free-running camera continuously and transfers
them into computer memory as depicted in figure 11b. Thus, the frame rate is reached. If your
frame grabber supports continuous grabbing, you can test this effect in the example program hde-
velop\real_time_grabbing_ids.dev, which was already described in the previous sections; the
program measures the achievable frame rate for grab_image_async without and with continuous grab-
bing.

We recommend to use continuous grabbing only if you want to process every image; otherwise, images
are transmitted over the PCI bus unnecessarily, thereby perhaps blocking other PCI transfers.

Note that some frame grabber interfaces provide additional functionality in the continuous grabbing
mode, e.g., the HALCON BitFlow interface. Please refer to the corresponding documentation for more
information.

5.1.6 Using grab_image_async Together With Asynchronously Resettable Cameras

As described in section 5.1.2 on page 18, you can acquire images without delay by using an asyn-
chronously resettable camera. Figure 12 shows the resulting timing when using such a camera together
with grab_image_async. When comparing the diagram to the one in figure 9 on page 19, you can see
that a higher frame rate can now be reached, because the processing time is not included anymore.

5.1.6 Using grab_image_async Together With Asynchronously Resettable Cameras

a)

camera

T

transfer
(analog)

frame
grabber

T

transfer
(DMA)

IAl & SDK
software

application

b
"y

transfer
(analog)

frame
grabber

f

transfer
(DMA)

IAl & SDK
software

application

T

T

original original original
S tramerate dde e rate pde e ate 3
expose expose expose I expose t
NAMNYA, Y
L] ["
wait for wait for
vsync vsync t
o
>
Grab Grab Grab
wait for create wait for create
image Himage image Himage

A
: “grabimageasync

grab_image_async

process

Y
process |t

grab_image_start

TITTTTTT

frame rate
processing

%
%
|

digitize

digitize

digitize

set "continuous_grabbing’

Figure 11: a) grab_image_async fails to reach frame rate; b) problem solved using continuous grabbing.

T

T

Grab Grab Grab Grab
=P
3 wait for create wait for create wait for create
| . image Himage image Himage mage Himage t
LA N . N
Ll grab_image_async grab_image_async grab_image_async ¥
i ' n process process process | t
| grab_image_start 4. . Tramerate o4 4
3 v processing v v

: £

Grabbing

24

Application Note on Image Acquisition

T
T

expose expose t
camera P p I
>
(analog) ‘
oo | b o] g
wait for '

frame vsync t
>

grabber N
transfer 1

(DMA)
Grab Grab Grab
wait for ¥ create wait for % create

image Himage image Himage {
IAl & SDK A >

software grab_image_async grab_image_async v
process process t
application >

A frame rate A

delay v processing T >

image

T
T
[T
m)

Figure 12: Using a asynchronously resettable camera together with grab_image_async (configuration as
in figure 9 on page 19.

5.1.7 Specifying a Maximum Delay

In contrast to grab_image, the operator grab_image_async has an additional parameter MaxDelay,
which lets you specify how “old” an already grabbed image may be in order to be accepted. Figure 13 vi-
sualizes the effect of this parameter. There are two cases to distinguish: If the call to grab_image_async
arrives before the next image has been grabbed (first call in the example), the parameter has no effect.
However, if an image has been grabbed already (second and third call in the example), the elapsed time
since the last grab command to the frame grabber is compared to MaxDelay. If it is smaller (second call
in the example), the image is accepted; otherwise (third call), a new image is grabbed.

Please note that the delay is not measured starting from the moment the image is exposed, as you might
perhaps expect! Currently, only a few frame grabber SDKs provide this information; therefore, the last
grab command from the interface to the frame grabber is used as the starting point instead.

5.2 Using an External Trigger

25

T
T

£ =

$

camera expose expose expose expose
transfer W

A

Ve

(analog)

frame - digitize - digitize
grabber AN @ VA @ A
transfer [[[‘ t
(DMA) -
""" > MaxDelay? NO ---» |4 --------
wait for create create
image
1Al & SDK £ Himage Himage
software Y . 4 “ s
process | | process ' process : process | t
application L ' o
. ' A A
grab_image_async v v

-
v

T
T

Figure 13: Specifying a maximum delay for grab_image_async (using continuous grabbing).

5.2 Using an External Trigger

In the previous section, the software performing the machine vision task decided when to acquire an
image (software trigger). In industrial applications, however, the moment for image acquisition is typ-
ically specified externally by the process itself, e.g., in form of a hardware trigger signal indicating the
presence of an object to be inspected. Most frame grabber boards are therefore equipped with at least
one input line for such signals, which are called external triggers.

From HALCON’s point of view, external triggers are dealt with by the frame grabber board, the only
thing to do is to inform the frame grabber to use the trigger. You can do this simply by setting the param-
eter ExternalTrigger of open_framegrabber to ’true’. Some frame grabber interfaces also allow
to enable or disable the trigger dynamically using the operator set_framegrabber_param (parameter
’external_trigger’).

Figure 14a shows the timing diagram when using an external trigger together with grab_image and a
free-running camera. After the call to grab_image, the frame grabber board waits for the trigger signal.
When it appears, the procedure described in the previous section follows: The frame grabber waits for
the next image, digitizes it, and transfers it into computer memory; then, the HALCON frame grabber
interface transforms it into a HALCON image and returns the control to the application which processes
the image and then calls grab_image again, which causes the frame grabber board to wait for the next
trigger signal.

)]
£
)
)
©
B
o

26 Application Note on Image Acquisition

a)
camera expose expose expose expose 1
wanster (WM (WA .
(analog) L] @ L] L]
wait for wait for wait for
frame trigger vsync trigger t
grabber N A >
transfer t
(DMA)
Grab Grab

wait for create wait for
image Himage image t
IAl & SDK 1y

software grab_image grab_image
process t
application >

Trigger Trigger Trigger
trigger 1 1 [
PR »
delay
image

b)

——— expose expose expose ! t

rantor (AN PWAAY | WY \
(analog)
Expose | __|{wait for@ Expose _ wait for@ Expose _ wait for@ Expose
i | vsync vsync vsync
v'vz_lit for i
rigger
frame : —_ !
grabber N
transfer g
(DMA)
Grab
wait for create wait for create wait for
image Himage image Himage image
IAl & SDK A
Py _ A A
software hie grab_image_async]]
3 etc I process | ! process | ! t
application T T - : >
' Trigger Trigger ' Trigger ' Trigger
trigger 1 | ; : ; L >
o : i grab_image_async i grab_image_async
grab_image_start delay delay delay
image image image
=0 =0 =0

Figure 14: Using an external trigger together with: a) free-running camera and grab_image; b) asyn-
chronously resettable camera and grab_image_async .

The (bad) example in figure 14a was chosen on purpose to show an unsuitable configuration for using
an external trigger: First of all, because of the free-running camera there is a non-deterministic delay

5.2.1 Special Parameters for External Triggers

27

between the arrival of the trigger signal and the exposure of the image, which may mean that the object
to be inspected is not completely visible anymore. Secondly, because grab_image is used, trigger
signals which arrive while the application is processing an image are lost.

Both problems can easily be solved by using an asynchronously resettable camera together with the
operator grab_image_async as depicted in figure 14b.

The C++ example program cpp\error_handling_timeout_picport.cpp (preconfigured for the
HALCON Leutron interface) shows how simple it is to use an external trigger: The connection is
opened with ExternalTrigger setto ’true’:

HFramegrabber framegrabber;

framegrabber.OpenFramegrabber (fgname, 1, 1, 0, 0, 0, 0, "default", -1,
"gray", -1, "true", camtype, device,
-1, -1);

Then, images are grabbed:

HImage image;

do
{

image = framegrabber.GrabImageAsync(-1);
} while (button == 0);

The example contains a customized error handler which checks whether there is an external trigger; this
part is described in detail in section 6.2.3 on page 32.

5.2.1 Special Parameters for External Triggers

Most frame grabber interfaces allow to further configure the use of external triggering via the operator
set_framegrabber_param. As mentioned in section 4.2 on page 14, some interfaces allow to enable
and disable the external trigger dynamically via the parameter ’external_trigger’. Another useful
parameter is > grab_timeout’, which sets a timeout for the acquisition process (some interfaces provide
an additional parameter ’trigger_timeout’ just for triggered grabbing). Without such a timeout, the
application would hang if for some reason no trigger signal arrives. In contrast, if a timeout is specified,
the operators grab_image and grab_image_async only wait the specified time and then return an error
code or raise an exception, depending on the programming language used. Section 6.2 on page 30 shows
how to handle such errors.

Other parameters allow to further specify the form of the trigger signal (’trigger_signal’), e.g.,
whether the falling or the rising edge is used as the trigger, select between multiple trigger input lines,
or even filter trigger signals. Some frame grabber interfaces also allow to influence the exposure via the
trigger signal.

5.3 Acquiring Images From Multiple Cameras

The timing diagrams shown in the previous sections depicted the case of a single camera. Below we
discuss some issues which arise when acquiring images from multiple cameras (see section 3.2 on page
8 for possible configurations).

)
£
=)
)
©
B
o

28

Application Note on Image Acquisition

5.3.1 Dynamic Port Switching and Asynchronous Grabbing

If you switch dynamically between multiple cameras connected to a single board as described in sec-
tion 3.2.4 on page 10, you must be careful when using grab_image_async: By default, the frame
grabber interface commands the frame grabber board to grab the next image automatically after it re-
ceived the current image — but before the next call of grab_image_async! If you switched to another
camera before this call, the frame grabber might already be busy grabbing an image from the first camera.

Some frame grabber interfaces solve this problem by providing the parameter
’start_async_after_grab_async’ for the operator set_framegrabber_param which allows
to disable the automatic grab command to the frame grabber board.

5.3.2 Simultaneous Grabbing

Some frame grabber interfaces provide special functionality to grab images simultaneously from mul-
tiple (synchronized) cameras. Typically, the cameras are connected to a single frame grabber board;
the Leutron interface also allows to grab simultaneously from cameras connected to multiple boards.
As described in section 3.2.5 on page 11, the images are grabbed by a single call to grab_image
or grab_image_async, which return them in form of a multi-channel image. Depending on the
frame grabber interface, it may be necessary to switch on the simultaneous grabbing via the operator
set_framegrabber_param.

Please keep in mind that even if a HALCON frame grabber interface supports simultaneous grabbing,
this might not be true for every frame grabber board the interface supports! In order to grab multiple
images simultaneously, a frame grabber board must be equipped with multiple “grabbing units”; for
example, an analog frame grabber board must be equipped with multiple A/D converters. Please check
this in the documentation of your frame grabber board.

Even if a HALCON frame grabber interface does not provide the special simultaneous grabbing mode,
you can realize a similar behavior “manually”, e.g., by connecting each (asynchronously resettable)
camera to a single frame grabber board and then using a common external trigger signal to synchronize
the grabbing.

6 Miscellaneous

29

6 Miscellaneous

6.1 Acquiring Images From Unsupported Frame Grabbers

If you want to use a frame grabber that is currently not supported by HALCON, i.e., for which no HAL-
CON interface exists, there exist two principal ways: First, you can create your own HALCON frame
grabber interface; how to do this is described in detail in the Frame Grabber Integration Programmer’s
Manual.

As an alternative, you can pass externally created images, i.e., the raw image matrix, to HALCON
using the operators gen_imagel, gen_image3, or gen_imagel_extern, which create a corresponding
HALCON image. The main difference between the operators gen_imagel and gen_imagel_extern is
that the former copies the image matrix when creating the HALCON image, whereas the latter doesn’t,
which is useful if you want to realize volatile grabbing as described in section 5.1.3 on page 18.

The C example program c\use_extern_image . c shows how to use the operator gen_imagel_extern
to pass standard gray value images to HALCON. In this case, the image matrix consists of 8 bit pixels
(bytes), which can be represented by the data type unsigned char. At the beginning, the program
calls a procedure which allocates memory for the images to be “grabbed”; in a real application this
corresponds to the image buffer(s) used by the frame grabber SDK.

unsigned char *image_matrix_ptr;
long width, height;

InitializeBuffer(&image_matrix_ptr, &width, &height);

The example program “simulates” the grabbing of images with a procedure which reads images from
an image sequence and copies them into the image buffer. Then, the content of the image buffer is
transformed into a HALCON image (type byte) via gen_imagel_extern. The parameter ClearProc
is set to O to signal that the program itself takes care of freeing the memory. The created HALCON
image is then displayed. The loop can be exited by clicking into the HALCON window with any mouse
button.

Hobject image;

long window_id;

open_window (0, O, width, height, O, "visible", "", &window_id);
while (!ButtonPressed(window_id))

{

MyGrabImage ((const unsigned char **) &image_matrix_ptr);
gen_imagel_extern(&image, "byte", width, height,

(long) image_matrix_ptr, (long) 0);
disp_obj(image, window_id);

}

If your frame grabber supplies images with more than 8 bit pixels, you must adapt both the
data type for the image matrix and the type of the created HALCON image (parameter Type of
gen_imagel_extern). In case of color images HALCON expects the image data in form of three
separate image matrices. You can create a HALCON image either by calling the operator gen_image3
with the three pointers to the matrices, or by calling the operator gen_imagel_extern three times and

()
=]
o
o
c
S
(]
o
2
s

30

Application Note on Image Acquisition

Emror

° ermor in operator grab_image: Frame grabber: timeout

Figure 15: Popup dialog in HDevelop signaling a timeout.

then using the operator channels_to_image to combine the three images into a multi-channel image.
Please refer to appendix A on page 37 for more information about HALCON images in general.

6.2 Error Handling

Just as the HALCON frame grabber interfaces encapsulate the communication with a frame grabber
board, they also encapsulate occurring errors within the HALCON error handling mechanism. How to
catch and react to these errors is described below for HDevelop programs and also for programs using
HALCON’s programming language interfaces.

Some HALCON frame grabber interfaces provide special parameters for set_framegrabber_param
which are related to error handling. The most commonly used one is the parameter ’grab_timeout’
which specifies when the frame grabber should quit waiting for an image. The examples described in the
following sections show how to handle the corresponding HALCON error.

Note that all example programs enable the signaling of low level errors via the operator set_system,
e.g., in HDevelop syntax via

set_system (’do_low_error’, ’true’)

In this mode, low level errors occurring in the frame grabber SDK (or in the HALCON interface) are
signaled by a message box.

6.2.1 Error Handling in HDevelop

The HDevelop example hdevelop\error_handling_timeout_picport.dev shows how to handle
HALCON errors in a HDevelop program. To “provoke” an error, open_framegrabber is called with
ExternalTrigger = ’true’. If there is no trigger, a call to grab_image results in a timeout; HDevelop
reacts to this error with the popup dialog shown in figure 15 and stops the program.

open_framegrabber (FGName, 1, 1, 0, O, 0, O, ’default’, -1, ’default’, -1,
’true’, CameraType, Device, -1, -1, FGHandle)

set_framegrabber_param (FGHandle, ’grab_timeout’, 2000)

grab_image (Image, FGHandle)

HALCON lets you modify the reaction to an error with the operator set_check (in HDevelop:
dev_set_check). If you set it to > “give_error’, the program does not stop in case of an error but
only stores its cause in form of an error code. To access this error code in HDevelop, you must define

6.2.2 Error Handling Using HALCON/C 31

a corresponding variable using the operator dev_error_var. Note that this variable is updated after
each operator call; to check the result of a single operator we therefore recommend to switch back to the
standard error handling mode directly after the operator call as in the following lines:

dev_error_var (ErrorNum, 1)
dev_set_check (’~give_error’)
grab_image (Image, FGHandle)
dev_error_var (ErrorNum, 0)
dev_set_check (’give_error’)

To check whether a timeout occurred, you compare the error variable with the code signaling a timeout
(5322); a list of error codes relating to image acquisition can be found in the Frame Grabber Integration
Programmer’s Manual, appendix B on page 69. In the example, the timeout is handled by disabling the
external trigger mode via the operator set_framegrabber_param (parameter ’external_trigger’).
Then, the call to grab_image is tested again.

if (ErrorNum = 5322)
set_framegrabber_param (FGHandle, ’external_trigger’, ’false’)
dev_error_var (ErrorNum, 1)
dev_set_check (’~give_error’)
grab_image (Image, FGHandle)
dev_error_var (ErrorNum, 0)
dev_set_check (’give_error’)
endif

Now, the error variable should contain the value 2 signaling that the operator call succeeded; for this
value, HDevelop provides the constant H_MSG_TRUE. If you get another error code, the program accesses
the corresponding error text using the operator get_error_text.

if (ErrorNum # H_MSG_TRUE)
get_error_text (ErrorNum, ErrorText)
endif

If your frame grabber interface does not provide the parameter ’external_trigger’, you can realize
a similar behavior by closing the connection and then opening it again with ExternalTrigger set to
’false’.

6.2.2 Error Handling Using HALCON/C

The mechanism for error handling in a program based on HALCON/C is similar to the one in HDevelop;
in fact, it is even simpler, because each operator automatically returns its error code. However, if a
HALCON error occurs in a C program, the default error handling mode causes the program to abort.

The C example program c\error_handling_timeout_picport.c performs the same task as the
HDevelop program in the previous section; if the call to grab_image succeeds, the program grabs and
displays images in a loop, which can be exited by clicking into the window. The following lines show
how to test whether a timeout occurred:

()
=]
o
o
c
S
(]
o
2
s

32

Application Note on Image Acquisition

set_check ("“give_error");

error_num = grab_image (&image, fghandle);
set_check ("give_error");

switch (error_num)

{
case H_ERR_FGTIMEQUT:

As you see, in a C program you can use predefined constants for the error codes (see the Frame Grabber
Integration Programmer’s Manual, appendix B on page 69, for a list of image acquisition error codes and
their corresponding constants).

6.2.3 Error Handling Using HALCON/C++

If your application is based on HALCON/C++, there are two methods for error handling: If you use
operators in their C-like form, e.g., grab_image, you can apply the same procedure as described for
HALCONY/C in the previous section.

In addition, HALCON/C++ provides an exception handling mechanism based on the class HException,
which is described in the Programmer’s Guide, section 4.3 on page 26. Whenever a HALCON error
occurs, an instance of this class is created. The main idea is that you can specify a procedure which
is then called automatically with the created instance of HException as a parameter. How to use this
mechanism is explained in the C++ example program cpp\error_handling_timeout_picport.cpp,
which performs the same task as the examples in the previous sections.

In the example program cpp\error_handling_timeout_picport.cpp (preconfigured for the HAL-
CON Leutron interface), the procedure which is to be called upon error is very simple: It just raises a
standard C++ exception with the instance of HException as a parameter.

void MyHalconExceptionHandler (const Halcon::HException& except)

{
throw except;

}

In the program, you “install” this procedure via a class method of HException:

int main(int argc, char *argv[])
{
using namespace Halcon;
HException: :InstallHHandler (&MyHalconExceptionHandler) ;

Now, you react to a timeout with the following lines:

try
{
image = framegrabber.GrabImage();

}
catch (HException except)

{
if (except.err == H_ERR_FGTIMEOUT)
{

framegrabber.SetFramegrabberParam("external_trigger", "false");

6.2.4 Error Handling Using HALCON/COM 33

As already noted, if your frame grabber interface does not provide the parameter ’external _trigger’,
you can realize a similar behavior by closing the connection and then opening it again with External-
Trigger setto *false’:

if (except.err == H_ERR_FGTIMEQOUT)
{
framegrabber.OpenFramegrabber (fgname, 1, 1, 0, 0, 0, O, "default",
-1, "gray", -1, "false", camtype,
"default", -1, -1);

Note that when calling OpenFramegrabber via the class HFramegrabber as above, the operator checks
whether it is called with an already opened connection and automatically closes it before opening it with
the new parameters.

6.2.4 Error Handling Using HALCON/COM

The HALCON/COM interface uses the standard COM error handling technique where every
method call passes both a numerical and a textual representation of the error to the call-
ing framework. How to use this mechanism is explained in the Visual Basic example pro-
gram vb\error_handling_timeout_picport\error_handling_timeout_picport.vbp, which
performs the same task as the examples in the previous sections.

For each method, you can specify an error handler by inserting the following line at the beginning of the
method:

On Error GoTo ErrorHandler

At the end of the method, you insert the code for the error handler. If a runtime error occurs, Visual
Basic automatically jumps to this code, with the error being described in the variable Err. However, the
returned error number does not correspond directly to the HALCON error as in the other programming
languages, because low error numbers are reserved for COM. To solve this problem HALCON/COM
uses an offset which must be subtracted to get the HALCON error code. This offset is accessible as a
property of the class HSystemX:

ErrorHandler:
Dim sys As New HSystemX
ErrorNum = Err.Number - sys.ErrorBaseHalcon

The following code fragment checks whether the error is due to a timeout. If yes, the program disables
the external trigger mode and tries again to grab an image. If the grab is successful the program continues
at the point the error occurred; otherwise, the Visual Basic default error handler is invoked. Note that in
contrast to the other programming languages HALCON/COM does not provide constants for the error
codes.

(2}
=]
o
o
c
S
(]
(5]
2
s

If (ErrorNum = 5322) Then
Call FG.SetFramegrabberParam("external_trigger", "false")
Set Image = FG.GrabImage
Resume Next

If the error is not caused by a timeout, the error handler raises it anew, whereupon the Visual Basic
default error handler is invoked.

34

Application Note on Image Acquisition

Else
Err.Raise (Err.Number)
End If

If your frame grabber interface does not provide the parameter ’external_trigger’, you can realize
a similar behavior by closing the connection and then opening it again with ExternalTrigger set to
’false’. Note that the class HFramegrabberX does not provide a method to close the connection;
instead you must destroy the variable with the following line:

Set FG = Nothing

6.3 Line Scan Cameras

From the point of view of HALCON there is no difference between area and line scan cameras: Both
acquire images of a certain width and height; whether the height is 1, i.e., a single line, or larger does
not matter. In fact, in many line scan applications the frame grabber combines multiple acquired lines to
form a so-called page which further lessens the difference between the two camera types.

The main problem is therefore whether your frame grabber supports line scan cameras. If yes, you can
acquire images from it via HALCON exactly as from an area scan camera. With the parameter Im-
ageHeight of the operator open_framegrabber you can sometimes specify the height of the page;
typically, this information is set in the camera configuration file. Some HALCON frame grabber inter-
faces allow to further configure the acquisition mode via the operator set_framegrabber_param.

The images acquired from a line scan camera can then be processed just like images from area scan
cameras. However, line scan images often pose an additional problem: The objects to inspect may
be spread over multiple images (pages). To solve this problem, HALCON provides special opera-
tors: tile_images allows to merge images into a larger image, merge_regions_line_scan and
merge_cont_line_scan_x1d allow to merge the (intermediate) processing results of subsequent im-
ages.

How to use these operators is explained in the HDevelop example program hdevelop\line_scan.dev.
The program is based on an image file sequence which is read using the HALCON virtual frame grabber
interface File; the task is to extract paper clips and calculate their orientation. Furthermore, the gray
values in a rectangle surrounding each clip are determined.

An important parameter for the merging is over how many images an object can be spread. In the
example, a clip can be spread over 4 images:

MaxImagesRegions := 4

The continuous processing is realized by a simple loop: At each iteration, a new image is grabbed, and
the regions forming candidates for the clips are extracted using thresholding.

while (1)
grab_image (Image, FGHandle)
threshold (Image, CurrRegions, 0, 80)

The current regions are then merged with ones extracted in the previous image using the operator
merge_regions_line_scan. As aresult, two sets of regions are returned: The parameter CurrMerge-
dRegions contains the current regions, possibly extended by fitting parts of the previously extracted
regions, whereas the parameter PrevMergedRegions contains the rest of the previous regions.

6.3 Line Scan Cameras 35

Clips processed so far. 0

a)
B G -
Clips processed so far: 0
Y G .~
U
5 QA A~

S -

)

Ry
Y

Figure 16: Merging regions extracted from subsequent line scan images: state after a) 2, b) 3, ¢) 4 images
(large coordinate system: tiled image; small coordinate systems: current image or most recent
image).

merge_regions_line_scan (CurrRegions, PrevRegions, CurrMergedRegions,
PrevMergedRegions, ImageHeight, ’top’,
MaxImagesRegions)

connection (PrevMergedRegions, ClipCandidates)

select_shape (ClipCandidates, FinishedClips, ’area’, ’and’, 4500, 7000)

The regions in PrevMergedRegions are “finished”; from them, the program selects the clips via their
area and further processes them later, e.g., determines their position and orientation. The regions in
CurrMergedRegions are renamed and now form the previous regions for the next iteration.

copy_obj (CurrMergedRegions, PrevRegions, 1, -1)
endwhile

(7]
=]
o
o
c
S
(]
o
2
=

Note that the operator copy_obj does not copy the regions themselves but only the corresponding HAL-
CON objects, which can be thought of as references to the actual region data.

36

Application Note on Image Acquisition

Before we show how to merge the images let’s take a look at figure 16, which visualizes the whole
process: After the first two images CurrMergedRegions contains three clip parts; for the first one a
previously extracted region was merged. Note that the regions are described in the coordinate frame of
the current image; this means that the merged part of clip no. 1 has negative coordinates.

In the next iteration (figure 16b), further clip parts are merged, but no clip is finished yet. Note that the
coordinate frame is again fixed to the current image; as a consequence the currently merged regions seem
to move into negative coordinates.

After the fourth image (figure 16¢), clips no. 1 and 2 are completed; they are returned in the parameter
PrevMergedRegions. Note that they are still described in the coordinate frame of the previous image
(depicted with dashed arrow); to visualize them together with CurrMergedRegions they must be moved
to the coordinate system of the current image using the operator move_region:

move_region (FinishedClips, ClipsInCurrentImageCoordinates,
-ImageHeight, 0)

Let’s get back to the task of merging images: To access the gray values around a clip, one must merge
those images over which the PrevMergedRegions can be spread. At the beginning, an empty image is
created which can hold 4 images:

gen_image_const (TiledImage, ’byte’, ImageWidth,
ImageHeight * MaxImagesRegions)

At the end of each iteration, the “oldest” image, i.e., the image at the top, is cut off the tiled image using
crop_part, and the current image is merged at the bottom using tile_images_offset:

crop_part (TiledImage, TiledImageMinusOldest, ImageHeight, O,
ImageWidth, (MaxImagesRegions - 1) * ImageHeight)
ImagesToTile := [TiledImageMinusOldest,Image]
tile_images_offset (ImagesToTile, TiledImage, [O,
(MaxImagesRegions-1)*ImageHeight], [0, 0], [-1,
-11, [-1, -11, [-1, -1, [-1, -1], ImageWidth,
MaxImagesRegions * ImageHeight)

As noted above, the regions returned in PrevMergedRegions are described in the coordinate frame of
the most recent image (depicted with dashed arrows in figure 16¢); to extract the corresponding gray val-
ues from the tiled image, they must first be moved to its coordinate system (depicted with longer arrows)
using the operator move_region. Then, the surrounding rectangles are created using shape_trans, and
finally the corresponding gray values are extracted using add_channels:

move_region (FinishedClips, ClipsInTiledImageCoordinates,
(MaxImagesRegions-1) * ImageHeight, 0)

shape_trans (ClipsInTiledImageCoordinates, AroundClips, ’rectanglel’)

add_channels (AroundClips, TiledImage, GrayValuesAroundClips)

A HALCON Images

37

Appendix

A HALCON Images

In the following, we take a closer look at the way HALCON represents and handles images. Of course,
we won’t bother you with details about the low-level representation and the memory management; HAL-
CON takes care of it in a way to guarantee optimal performance.

A.1 The Philosophy of HALCON Images

There are three important concepts behind HALCON’s image objects:

1.

Multiple channels

Typically, one thinks of an image as a matrix of pixels. In HALCON, this matrix is called a
channel, and images may consist of one or more such channels. For example, gray value images
consist of a single channel, color images of three channels.

The advantage of this representation is that many HALCON operators automatically process all
channels at once; for example, if you want to subtract gray level or color images from another,
you can apply sub_image without worrying about the image type. Whether an operator pro-
cesses all channels at once can be seen in the parameter description in the reference manual:
If an image parameter is described as (multichannel-)image or (multichannel-) image (-
array) (e.g., the parameter ImageMinuend of sub_image), all channels are processed; if it is
described as image or image (-array) (e.g., the parameter Image of threshold), only the first
channel is processed.

For more information about channels please refer to appendix A.3.2.

Various pixel types

Besides the standard 8 bit (type byte) used to represent gray value image, HALCON allows
images to contain various other data, e.g. 16 bit integers (type int2 or uint2) or 32 bit floating
point numbers (type real) to represent derivatives.

Most of the time you need not worry about pixel types, because HALCON operators that output
images automatically use a suitable pixel type. For example, the operator derivate_gauss
creates a real image to store the result of the derivation. As another example, if you connect
to a frame grabber selecting a value > 8 for the parameter BitsPerChannel, a subsequent
grab_image returns an uint2 image.

Arbitrarily-shaped region of interest

Besides the pixel information, each HALCON image also stores its so-called domain in form of a
HALCON region. The domain can be interpreted as a region of interest, i.e., HALCON operators
(with some exceptions) restrict their processing to this region.

The image domain inherits the full flexibility of a HALCON region, i.e., it can be of arbitrary
shape and size, can have holes, or even consist of unconnected points. For more information
about domains please refer to appendix A.3.3 on page 39.

0
)
=)
@

E

=

o)

(&)

|

<

I

38

Application Note on Image Acquisition

The power of HALCON’s approach lies in the fact that it offers full flexibility but does not require you
to worry about options you don’t need at the moment. For example, if all you do is grab and process
standard 8 bit gray value images, you can ignore channels and pixel types. At the moment you decide
to use color images instead, all you need to do is to add some lines to decompose the image into its
channels. And if your camera / frame grabber provides images with more than 8 bit pixel information,
HALCON is ready for this as well.

A.2 Image Tuples (Arrays)

Another powerful mechanism of HALCON is the so-called fuple processing: If you want to process
multiple images in the same way, e.g., to smooth them, you can call the operator (e.g., mean_image) once
passing all images as a tuple (array), instead of calling it multiple times. Furthermore, some operators
always return image tuples, e.g., gen_gauss_pyramid or inspect_shape_model.

Whether an operator supports tuple processing can be seen in the parameter description in the reference
manual: If an input image parameter is described as image (-array) or (multichannel-)image (-
array) (e.g., the parameter Image of mean_image), it supports tuple processing; if it is described as
image or (multichannel-)image (e.g., the parameter Image of find_1d_bar_code), only one image
is processed.

For information about creating or accessing image tuples please refer to appendix A.3.6.

A.3 HALCON Operators for Handling Images

Below you find a brief overview of operators that allow to create HALCON images or to modify “tech-
nical aspects” like the image size or the number of channels.

A.3.1 Creation

HALCON images are created automatically when you use operators like grab_image or read_image.
You can also create images from scratch using the operators listed in the HDevelop menu Operators
> Image > Creation, e.g., gen_image_const or gen_imagel_extern (see also section 6.1 on page
29).

A.3.2 Channels

Operators for manipulating channels can be found in the HDevelop menu Operators > Image > Chan-
nel. You can query the number of channels of an image with the operator count_channels. Channels
can be accessed using access_channel (which extracts a specified channel without copying), im-
age_to_channels (which converts a multi-channel image into an image tuple), or decompose?2 etc.
(which converts a multi-channel image into 2 or more single-channel images). Vice versa, you can cre-
ate a multi-channel image using channels_to_image or compose?2 etc., and add channels to an image
using append_channel.

A.3.3 Domain

39

A.3.3 Domain

Operators for manipulating the domain of an image can be found in the HDevelop menu Operators >
Image > Domain. Upon creation of an image, its domain is set to the full image size. You can set it to
a specified region using change_domain. In contrast, the operator reduce_domain takes the original
domain into account; the new domain is equal to the intersection of the original domain with the specified
region. Please also take a look at the operator add_channels, which can be seen as complementary to
reduce_domain.

A.3.4 Access

Operators for accessing information about a HALCON image can be found in the HDevelop menu Op-
erators > Image > Access. For example, get_image_pointerl returns the size of an image and a
pointer to the image matrix of its first channel.

A.3.5 Manipulation

You can change the size of an image using the operators change_format or crop_part, or other op-
erators from the HDevelop menu Operators > Image > Format. The menu Operators > Image >
Type-Conversion lists operators which change the pixel type, e.g., convert_image_type. Opera-
tors to modify the pixel values, can be found in the menu Operators > Image > Manipulation, e.g.,
paint_gray, which copies pixels from one image into another.

A.3.6 Image Tuples

Operators for creating and accessing image tuples can be found in the HDevelop menu Operators
> Object > Manipulation. Image tuples can be created using the operators gen_empty_obj and
concat_obj, while the operator select_obj allows to access an individual image that is part of a
tuple.

0
)
=)
@

E

=

o)

(&)

|

<

I

40

Application Note on Image Acquisition

B Parameters Describing the Image

When opening a connection with open_framegrabber, you can specify the desired image format, e.g.,
its size or the number of bits per pixel, using its nine parameters, which are described in the following.

B.1 Image Size

The following 6 parameters influence the size of the grabbed images: HorizontalResolution and
VerticalResolution specify the spatial resolution of the image in relation to the original size. For
example, if you choose VerticalResolution =2, you get an image with half the height of the original
as depicted in figure 17b. Another name for this process is (vertical and horizontal) subsampling.

With the parameters ImageWidth, ImageHeight, StartRow, and StartColumn you can grab only a
part of the (possibly subsampled) image; this is called image cropping. In figure 17, the image part to
be grabbed is marked with a rectangle in the original (or subsampled) image; to the right, the resulting
image is depicted. Note that the resulting HALCON image always starts with the coordinates (0,0),
i.e., the information contained in the parameters StartRow and StartColumn cannot be recovered from
the resulting image.

Depending on the involved components, both subsampling and image cropping may be executed at dif-
ferent points during the transfer of an image from the camera into HALCON: in the camera, in the frame
grabber, or in the software. Please note that in most cases you get no direct effect on the performance in
form of a higher frame rate; exceptions are CMOS cameras which adapt their frame rate to the requested
image size. Subsampling or cropping on the software side has no effect on the frame rate; besides, you
can achieve a similar result using reduce_domain. If the frame grabber executes the subsampling or
cropping you may get a positive effect if the PCI bus is the bottleneck of your application and prevents

a) c) SOFTWARE SOLUTION

ACHINE VISION APPUCAT
o

b) d)

Figure 17: The effect of image resolution (subsampling) and image cropping (ImageWidth = 200,
ImageHeight = 100, StartRow = 50, StartColumn = 100): a) HorizontalResolution (HR)
=VerticalResolution (VR)=1;b)HR=1,VR=2;c)HR=2,VR=1;d) HR=VR = 2.

B.2 Frames vs. Fields

41

you from getting the full frame rate. Some frame grabber interfaces allow dynamic image cropping via
the operator set_framegrabber_param.

Note that HALCON itself does not differentiate between area and line scan cameras as both produce
images — the former in form of frames, the latter in form of so-called pages created from successive
lines (number specified in the parameter ImageHeight). Section 6.3 on page 34 contains additional
information regarding the use of line scan cameras.

B.2 Frames vs. Fields

The parameter Field is relevant only for analog cameras that produce signals following the video stan-
dards originally developed for TV, e.g., NTSC or PAL. In these standards, the camera transmits images
(also called frames) in form of two so-called fields, one containing all odd lines of a frame, the other
all even lines of the next frame. On the frame grabber board, these two fields are then interlaced; the
resulting frame is transferred via the PCI bus into the computer memory using DMA (direct memory
access).

Figure 18 visualizes this process and demonstrates its major drawback: If a moving object is observed
(in the example a dark square with the letter *T”), the position of the object changes from field to field,
the resulting frame shows a distortion at the vertical object boundaries (also called picket-fence effect).
Such a distortion seriously impairs the accuracy of measurements; industrial vision systems therefore
often use so-called progressive scan cameras which transfer full frames (see figure 19). Some cameras
also “mix” interlacing with progressive scan as depicted in figure 20.

You can also acquire the individual fields by specifying VerticalResolution = 2. Via the parameter
Field you can then select which fields are to be acquired (see also figure 21): If you select *first’ or

comera =] = E .
]
odd fleld even field odd fleld even field odd fleld

vV~

to frame grabber
(analog signal)

frame grabber

%GB interlacing %Gp interlacing

transfer frame J J
grabber to
software (DMA)

v~

software —

Figure 18: Interlaced grabbing (Field = ’interlaced’).

42

Application Note on Image Acquisition

camera

full frame full frame full frame

transfer camera
to frame grabber
(analog signal)

frame grabber

transfer frame
grabber to
software (DMA)

—_

software

Figure 19: Progressive scan grabbing (Field = ’progressive’).

—

] —
odd field even field odd field even field odd field

camera

transfer camera t

to frame grabber

(analog signal)
L 4 interlacing I interlacing

q' \

frame grabber

—_

transfer frame
grabber to
software (DMA)

software

Figure 20: Special form of interlaced grabbing supported by some cameras.

’second’, you get all odd or all even fields, respectively; if you select next’, you get every field. The

latter mode has the advantage of a higher field rate, at the cost, however, of the so-called vertical jitter:
Objects may seem to move up and down (like the square in figure 21), while structures that are one pixel
wide appear and disappear (like the upper part of the *T").

B.2 Frames vs. Fields 43

a)
camera —

[[[[[
odd field even field odd field even field odd field

transfer camera
to frame grabber
(analog signal)

frame grabber

—

transfer frame
grabber to
software (DMA)

'ﬂf

software

b)

= ==

frame grabber

transfer frame
grabber to
software (DMA)

—_

=

software

c)

L

frame grabber

transfer frame
grabber to
software (DMA)

—_

T

R

'ﬂf

software

Figure 21: Three ways of field grabbing: a) *first’; b) *second’; C) *next’ .

By specifying Field = *first’, ’second’, or *next’ for a full resolution image (VerticalResolu-
tion = 1), you can select with which field the interlacing starts.

Figure 22 shows a timing diagram for using grab_image together with an interlaced-scan camera. Here,
you can in some cases increase the processing frame rate by specifying ’next’ for the parameter Field.
The frame grabber then starts to digitize an image when the next field arrives; in the example therefore
only one field is lost.

44

Application Note on Image Acquisition

AT
T
T
T
[T

= - =

= -F
! !

i " “original ~"v frame rate " i i i
camera ! p ! p ! p ! expose ! expose ! expose ! expose t
T odd field even field odd field even field odd field even field odd field
(analog) L @ H] H] "
wait for wait for
frame vsync vsync digitize digitize t
RV USRI '
transfer HENEEREREEN HENEEREREEN K
(DMA)
Grab Grab
wait for create | wait for create
image HI image HI t
IAI & SDK mage mage >
software grab_image grab_image Y
process process t
application >
A frame rate A
v processing T >y

T

Figure 22: Grabbing interlaced images starting with the *next’ field.

B.3 Image Data

The parameters described in the previous sections concentrated on the size of the images. The image
data, i.e., the data contained in a pixel, is described with the parameters BitsPerChannel and Col-
orSpace. To understand these parameters, a quick look at HALCON’s way to represent images is nec-
essary: A HALCON image consists of one or more matrices of pixels, which are called channels. Gray
value images are represented as single-channel images, while color images consist of three channels,
e.g., for the red, green, and blue part of an RGB image. Each image matrix (channel) consists of pixels,
which may be of different data types, e.g., standard 8 bit (type byte) or 16 bit integers (type int2 or
uint?2) or 32 bit floating point numbers (type real). For detailed information about HALCON images
please refer to appendix A on page 37.

The two parameters correspond to the two main aspects of HALCON images: With the parameter Col-
orSpace, you can select whether the resulting HALCON image is to be a (single-channel) gray value
image (value ’gray’) or a (multi-channel) color image (e.g., value ’rgb’). The parameter BitsPer-
Channel specifies how many bits are transmitted per pixel per channel from the frame grabber to the
computer; the pixel type of the HALCON image is then chosen to accommodate the transmitted number
of pixels.

For example, if a frame grabber is able to transmit 10 bit gray value images, select ColorSpace =
’gray’ and BitsPerChannel = 10 and you will get a single-channel HALCON image of the type

B.3 Image Data 45

’uint2’, i.e., 16 bit per channel. Another example concerns RGB images: Some frame grabbers allow
the values 8 and 5 for BitsPerChannel. In the first case, 3 x 8 = 24 bit are transmitted per pixel, while
in the second case only 3 x 5 = 15 (padded to 16) bit are transmitted; in both cases, a three-channel
’byte’ image results.

46 Application Note on Image Acquisition

	1 Application Note on Image Acquisition
	1 The Philosophy Behind the HALCON Frame Grabber Interfaces
	2 A First Example
	3 Connecting to Your Frame Grabber
	3.1 Opening a Connection to a Specified Configuration
	3.2 Connecting to Multiple Boards and Cameras
	3.2.1 Single Camera
	3.2.2 Multiple Boards
	3.2.3 Multiple Handles Per Board
	3.2.4 Port Switching
	3.2.5 Simultaneous Grabbing

	3.3 Requesting Information About the Frame Grabber Interface

	4 Configuring the Acquisition
	4.1 General Parameters
	4.2 Special Parameters
	4.3 Fixed vs. Dynamic Parameters

	5 The Various Modes of Grabbing Images
	5.1 Real-Time Image Acquisition
	5.1.1 Non-Real-Time Grabbing Using grab_image
	5.1.2 Grabbing Without Delay Using Asynchronously Resettable Cameras
	5.1.3 Volatile Grabbing
	5.1.4 Real-Time Grabbing Using grab_image_async
	5.1.5 Continuous Grabbing
	5.1.6 Using grab_image_async Together With Asynchronously Resettable Cameras
	5.1.7 Specifying a Maximum Delay

	5.2 Using an External Trigger
	5.2.1 Special Parameters for External Triggers

	5.3 Acquiring Images From Multiple Cameras
	5.3.1 Dynamic Port Switching and Asynchronous Grabbing
	5.3.2 Simultaneous Grabbing

	6 Miscellaneous
	6.1 Acquiring Images From Unsupported Frame Grabbers
	6.2 Error Handling
	6.2.1 Error Handling in HDevelop
	6.2.2 Error Handling Using HALCON/C
	6.2.3 Error Handling Using HALCON/C++
	6.2.4 Error Handling Using HALCON/COM

	6.3 Line Scan Cameras

	A HALCON Images
	A.1 The Philosophy of HALCON Images
	A.2 Image Tuples (Arrays)
	A.3 HALCON Operators for Handling Images
	A.3.1 Creation
	A.3.2 Channels
	A.3.3 Domain
	A.3.4 Access
	A.3.5 Manipulation
	A.3.6 Image Tuples

	B Parameters Describing the Image
	B.1 Image Size
	B.2 Frames vs. Fields
	B.3 Image Data

