
Building Vision for BusinessMVTec Software GmbH

HDevelop User's Manual

HDevelop, the integrated development environment of HALCON, Version 7.1.4

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without prior written permission of the publisher.

Edition 1 July 1997
Edition 2 November 1997
Edition 3 March 1998 (HALCON 5.1)
Edition 4 April 1999 (HALCON 5.2)
Edition 5 October 2000 (HALCON 6.0)
Edition 6 June 2002 (HALCON 6.1)
Edition 6a December 2002 (HALCON 6.1.1)
Edition 7 December 2003 (HALCON 7.0)
Edition 7a July 2004 (HALCON 7.0.1)
Edition 8 July 2005 (HALCON 7.1)
Edition 8a April 2006 (HALCON 7.1.1)
Edition 8b December 2006 (HALCON 7.1.2)
Edition 8c August 2007 (HALCON 7.1.3)

Copyright c© 1997-2008 by MVTec Software GmbH, München, Germany MVTec Software GmbH

Microsoft, Windows, Windows NT, Windows 2000, Windows XP, and Visual Basic are either trademarks
or registered trademarks of Microsoft Corporation.

All other nationally and internationally recognized trademarks and tradenames are hereby recognized.

More information about HALCON can be found at:

http://www.halcon.com/

About This Manual

This manual is a guide to HDevelop – the integrated development environment (IDE) for HALCON.
HDevelop facilitates rapid prototyping by offering a highly interactive programming environment for
designing and testing machine vision applications. Together with the HALCON library, it is a sophis-
ticated machine vision package suitable for product development, research, and education. HALCON
provides operators covering a wide range of applications: Factory automation, quality control, remote
sensing, aerial image interpretation, medical image analysis, and surveillance tasks.

This manual provides all necessary information to understand HDevelop’s basic philosophy and to use
HDevelop.

This manual is intended for all new users of HALCON. It does not assume that you are an expert in
image processing. Regardless of your skills, it is quite easy to work with HDevelop. Nevertheless, it is
helpful to have an idea about the functionality of graphical user interfaces (GUI)1, and about some basic
image processing aspects.

The manual is divided into the following chapters:

• Introducing HDevelop
This chapter explains the basic concepts of HDevelop and contains a first example that illustrates
how to work with HDevelop.

• Graphical User Interface
This chapter explains the graphical user interface of HDevelop and how to interact with it.

• Language
This chapter explains syntax and semantics of the language used in HDevelop programs.

• Code Generation
This chapter explains the export of a HDevelop program to C, C++, Visual Basic, Visual Basic
.NET, or C#.

• Program Examples
This chapter contains example programs for typical image processing tasks.

• Tips & Tricks
This chapter explains how to start HDevelop and describes keycodes, warning and error windows,
and restrictions.

1Consult your platform’s documentation for general information.

Contents

1 Introducing HDevelop 1
1.1 Facts about HDevelop . 1
1.2 HDevEngine . 2
1.3 HDevelop Procedures . 3
1.4 Example Session . 3

2 Graphical User Interface 11
2.1 Interacting with HDevelop . 11
2.2 Procedures in HDevelop . 12
2.3 Main Window . 14

2.3.1 Title Bar . 15
2.3.2 Menu Bar . 15
2.3.3 Menu ’File’ . 16
2.3.4 Menu ’Edit’ . 25
2.3.5 Menu ’Execute’ . 28
2.3.6 Menu ’Visualization’ . 32
2.3.7 Menu ’Procedures’ . 47
2.3.8 Menu ’Operators’ . 53
2.3.9 Menu ’Suggestions’ . 60
2.3.10 Menu ’Window’ (Windows only) . 62
2.3.11 Menu ’Help’ . 63
2.3.12 Tool Bar . 65
2.3.13 Window Area (Windows) . 65
2.3.14 Status Bar . 65

2.4 Program Window . 66
2.4.1 The Program Area . 67
2.4.2 Program Counter, Insertion Cursor, and Break Points 67
2.4.3 Creating and Editing Procedures . 69

2.5 Operator Window . 77
2.5.1 Operator Name Field . 78
2.5.2 Parameter Display . 78
2.5.3 Control Buttons . 80

2.6 Variable Window . 82
2.6.1 Area for Iconic Data . 82
2.6.2 Area for Control Data . 84

2.7 Graphics Window . 84

3 Language 89
3.1 Basic Types of Parameters . 89
3.2 Control Types and Constants . 90
3.3 Variables . 92
3.4 Operations on Iconic Objects . 93
3.5 Expressions for Input Control Parameters . 93

3.5.1 General Features of Tuple Operations . 93
3.5.2 Assignment . 95
3.5.3 Basic Tuple Operations . 96
3.5.4 Tuple Creation . 97
3.5.5 Simple Arithmetic Operations . 99
3.5.6 Bit Operations . 100
3.5.7 String Operations . 100
3.5.8 Comparison Operators . 103
3.5.9 Boolean Operators . 103
3.5.10 Trigonometric Functions . 104
3.5.11 Exponential Functions . 105
3.5.12 Numerical Functions . 105
3.5.13 Miscellaneous Functions . 106
3.5.14 Operator Precedence . 107

3.6 Reserved Words . 108
3.7 Control Structures . 109
3.8 Limitations . 111

4 Code Export 113
4.1 Code Generation for C++ . 113

4.1.1 Basic Steps . 113
4.1.2 Optimization . 114
4.1.3 Used Classes . 115
4.1.4 Limitations and Troubleshooting . 115

4.2 Code Generation for Visual Basic 6 . 117
4.2.1 Basic Steps . 117
4.2.2 Program Structure . 118
4.2.3 Limitations and Troubleshooting . 119

4.3 Code Generation for Visual Basic .NET . 120
4.3.1 Basic Steps . 120
4.3.2 Program Structure . 120
4.3.3 Limitations and Troubleshooting . 122

4.4 Code Generation for C# . 123
4.4.1 Basic Steps . 123
4.4.2 Program Structure . 123
4.4.3 Limitations and Troubleshooting . 124

4.5 Code Generation for C . 125
4.5.1 Basic Steps . 125

4.6 General Aspects of Code Generation . 126

4.6.1 User-Defined Code Blocks . 126
4.6.2 Assignment . 127
4.6.3 ’for’ Loops . 127
4.6.4 Protected External Procedures . 128
4.6.5 System Parameters . 128
4.6.6 Graphics Windows . 128

5 Program Examples 131
5.1 Stamp Segmentation . 131
5.2 Capillary Vessel . 133
5.3 Particles . 136
5.4 Annual Rings . 139
5.5 Bonding . 141
5.6 Calibration Plate . 143
5.7 Devices . 144
5.8 Cell Walls . 147
5.9 Region Selection . 149
5.10 Exception Handling . 150
5.11 Road Scene . 151

6 Tips & Tricks 155
6.1 Keycodes . 155
6.2 Interactions During Program Execution . 156
6.3 Online Help . 156
6.4 Warning and Error Windows . 156
6.5 Restrictions . 156

A Glossary 159

Index 161

Introducing HDevelop 1

Chapter 1

Introducing HDevelop

In fact, HDevelop is more than a graphical user interface to HALCON: It is a highly interactive integrated
development environment (IDE) for the development of machine vision applications.

There are four basic ways to develop machine vision applications using HDevelop:

• Rapid prototyping in the interactive environment HDevelop.
You can use HDevelop to find the optimal operators or parameters to solve your machine vision
task, and then (re)build the application using the programming languages C, C++, or COM (Visual
Basic, Visual Basic .NET, C#, Delphi).

• Development of an application that runs within HDevelop.
Using HDevelop, you can also develop a complete machine vision application and run it within the
HDevelop environment.

• Run HDevelop programs or procedures from a programming language using HDevEngine.
A way lying in between the two ones described above is to develop the machine vision part of
an application in HDevelop and then use HDevEngine to execute it from the (main) part of the
application, which is written in a programming language.

• Export of an application as C, C++, Visual Basic, Visual Basic .NET, or C# source code.
As an alternative to HDevEngine, you can export an application developed in HDevelop as C,
C++, Visual Basic, Visual Basic .NET, or C# source code. This program can then be compiled and
linked with the HALCON library so that it runs as a stand-alone (console) application. Of course,
you can also extend the generated code or integrate it into existing software.

Let’s start with some facts describing the main characteristics of HDevelop, followed by an example
session in section 1.4 on page 3.

1.1 Facts about HDevelop

While developing programs, HDevelop actively supports the user in different ways:

In
tr

od
uc

tio
n

2 Introducing HDevelop

2 With the graphical user interface of HDevelop operators and iconic objects can be directly se-
lected, analyzed, and changed within one environment.

2 HDevelop suggests operators for specific tasks. In addition, a thematically structured operator
list helps you to find an appropriate operator quickly.

2 An integrated online help contains information about each HALCON operator, such as a detailed
description of the functionality, typical successor and predecessor operators, complexity of the
operator, error handling, and examples of application. The online help is based on an internet
browser such as Netscape Navigator or Microsoft Internet Explorer.

2 HDevelop comprises a program interpreter with edit and debug functions. It supports standard
programming features, such as procedures, loops, or conditions. Parameters can be changed even
while the program is running.

2 HDevelop immediately displays the results of operations. You can try different operators and/or
parameters, and immediately see the effect on the screen. Moreover, you can preview the results
of an operator without changing the program.

2 Several graphical tools allow to examine iconic and control data online. For example, you can
extract shape and gray value features by simply clicking onto the objects in the graphics window,
or inspect the histogram of an image interactively and apply real-time segmentation to select
parameters.

2 Variables with an automatic garbage collection are used to manage iconic objects or control
values.

1.2 HDevEngine

As the name suggests, HDevEngine is the “engine” of HDevelop, which is provided in form of a separate
C++ or COM library. With it, you can execute complete HDevelop programs or individual procedures
from a C++ application or an application that can integrate COM objects, e.g., Visual Basic, Visual Basic
.NET, or C#. Thus, you can use HDevelop not only for prototyping, but also to completely develop and
run the machine vision part of your application.

Because HDevEngine acts as an interpreter, you can modify the HDevelop program or procedure with-
out needing to compile and link the application, as would be necessary if you export the program or
procedure and integrate the code.

Note that HDevEngine does not provide the complete functionality of HDevelop, only those operators
that are necessary to execute programs and procedures. In particular, it does not implement the display
of variables and results in the graphics window, i.e., internal operators like dev_display. However, you
can “redirect” these operators to your own implementation. Thus, you can decide which visualization
step is important and where and how it is to take place.

For detailed information about using HDevEngine, please refer to the Programmer’s Guide, part V on
page 117.

1.3 HDevelop Procedures 3

1.3 HDevelop Procedures

HDevelop offers a mechanism for the creation and execution of procedures. Procedures are meant to
increase the readability and modularity of HDevelop programs by encapsulating functionality of multiple
operator calls in one or more procedure calls. It also makes it easier to reuse program code in other
HDevelop programs by storing repeatedly used functionality in separate procedures.

A HDevelop procedure consists of an interface and a program body. Procedure interfaces resemble the
interfaces of HALCON operators, i.e. they contain parameter lists for iconic and control input and output
parameters. A procedure body contains a list of operator and procedure calls.

Every HDevelop program is made up of one or more procedures. It always contains the main procedure,
which has a special status inside the program, because it is always the top-most procedure in the calling
hierarchy and cannot be deleted from the program.

HDevelop offers all necessary mechanisms for creating, loading, deleting, copying, modifying, saving,
and exporting procedures. Once a procedure is created, it can basically be used like an operator: Calls to
the procedure can be added to any program body and be executed with the appropriate calling parameters.
Generally, the concept of using procedures inside HDevelop is an extension to the concept of calling
HALCON operators since procedure and operator interfaces have the same parameter categories and the
same rules apply for passing calling parameters.

Since HALCON 7.1, local and external procedures are differentiated. Local procedures are stored inside
the HDevelop program and correspond to the procedures of the former versions of HALCON. External
procedures are stored separately and therefore can be shared between different HDevelop programs and,
what is most advantageous, the modification of an external procedure immediatly affects all HDevelop
programs using it. Additionally, the procedures now can be ordered in a hierarchical way, i.e., similar
to the storing of operators thematically ordered chapters and sections can be composed. Further, since
HALCON 7.1.1, external procedures can be protected by passwords, so that they can be applied but not
viewed or modified by unauthorized users.

1.4 Example Session

To get a first impression how to use HDevelop, you may have a look at the following example session.
Every important step during the image processing session is explained in detail. Thus, having read this
chapter thoroughly, you will understand the main HALCON ideas and concepts. Furthermore, you will
learn the main aspects of HDevelop’s graphical user interface (for more details see chapter 2 on page
11).

In this example, the task is to detect circular marks attached to a person’s body in a gray value image.
The program can be found in the file

%HALCONROOT%\examples\HDevelop\Manuals\HDevelop\marks.dev

You start HDevelop under Windows by calling

Start . Programs . MVTec HALCON . HDevelop

In
tr

od
uc

tio
n

4 Introducing HDevelop

Under UNIX, HDevelop is started from the shell like any other program1. Optionally, an application
name can be specified as a parameter:

hdevelop <File>.dev

This application is then loaded. This is identical to an invocation of HDevelop without any parameter
and a subsequent loading of the application. If you want to run the application immediately after it has
been loaded, invoke HDevelop as follows:

hdevelop -run <File>.dev

This is equivalent to starting HDevelop, loading the application, and then selecting Execution . Run in
the menu bar of HDevelop.

After starting HDevelop, your first step is to load the image marks.tif from the directory
%HALCONROOT%\images. You may perform this step in three different ways:

• First, you may specify the operator name read_image in the operator window’s input text field.

• Secondly, you may select this operator via the menu item Operators . File . Images.

• The most often used and most convenient way is the third one. Here, you open the image se-
lection box pressing menu item File . Read Image. This menu contains several predefined di-
rectories, one of which is %HALCONROOT%\images. Usually, this directory will be C:\Program
Files\MVTec\Halcon\images. Select this directory by pressing the appropriate menu button.
Now you can browse to your target directory and choose a file name. By clicking the button Open,
a dialog window appears, in which you may specify a (new) name for the iconic variable which
contains the image you are about to load. The variable will be used later in the program to access
this image.

To facilitate the specification process, HDevelop offers you a default variable name, which is de-
rived from the image’s file name. Pressing the button Ok transfers the operator into the program
window and inserts a first program line, similar to the following line, into your program:

read_image (Marks,’C:\\Program Files\\MVTec\\Halcon\\images\\marks.tif’)

This new program line is executed immediately and the loaded image is displayed in the active
graphics window. Please note the double backslashes, which are necessary since a single backslash
is used to quote special characters (see table 3.2 on page 91). In our example we change the default
for the name from Marks to Christof.

Using this selection box, you are able to search images rapidly without knowing their exact file names.
In contrast to the two other possibilities, the parameters of operator read_image are specified auto-
matically. Thus, an explicit input of path and file name is not necessary in this case. An icon with an
appropriate variable name is created in the iconic variable area of the variable window. Double-clicking
on such an icon displays its contents in the currently active graphics window. Figure 1.1 shows a com-
plete configuration of HDevelop for the explained scenario. In addition, a new window is opened —
after closing the default window — to display the image in its original size.

1The necessary settings for the operating system are described in the Installation Guide, section A.2 on page 52.

1.4 Example Session 5

Figure 1.1: Screen configuration after image loading.

If you take a closer look at the image in figure 1.1, you will see the typical temporal offset between two
half images that occurs when taking images with a video camera. This temporal offset is 20 ms for PAL
systems and 16.6 ms for NTSC systems. HALCON offers an algorithm that computes an interpolated
full image from such a video image. The name of the appropriate operator is fill_interlace (see the
HALCON Reference Manual). The next step is to specify this name in the operator window’s operator
name field. If it is indicated completely, HDevelop shows the operator immediately in the operator
window. Now you have to specify the variable name of your image. For this you put in the name
Christof in the parameter field ImageCamera. To do so you have two possibilities:

• Direct input via the keyboard.

• Using the combo box that is associated with the parameter text field, you may choose an appropriate
name.

The system’s suggestion for the interpolated image is ImageFilled. By clicking button OK you insert
this operator into the program and execute it immediately. The computed image is displayed automati-
cally in the active graphics window.

In
tr

od
uc

tio
n

6 Introducing HDevelop

Figure 1.2: With the help of the opened combo box you may specify a reasonable filter size for the operator
mean_image.

In the next step you try to separate bright from dark pixels in the image using a thresholding operation.
In this case, a segmentation using the simple thresholding operator threshold does not result in a satis-
fying output. Hence you have to use the dynamic thresholding operator dyn_threshold. For execution
you need the original image (i.e., the interpolated full image) and an image to compare (containing the
thresholds). You obtain this image by using the smoothing filter, e.g., mean_image. As input image you
choose your original image ImageFilled. After estimating the marks’ size in pixels, you specify a filter
size which is approximately twice the marks’ size (compare the HALCON Reference Manual entry for
dyn_threshold).

To choose the operator mean_image, you traverse the menu hierarchy to Operators . Filter .
Smoothing. It will be displayed in the operator window immediately. Now you specify the image
variable names ImageFilled in the text field called Image and ImageMean in the output text field. The
filter matrix size is chosen by opening the combo boxes of the corresponding text fields (MaskWidth,
MaskHeight). These combo boxes contain a selection of reasonable input values which is offered by
HDevelop. In our example the size is set to 29 (see figure 1.2).

1.4 Example Session 7

By clicking the button OK you insert the operator mean_image in the program and execute it. Now
you have to search for the name of the dynamic thresholding. For this you specify a substring that
is included in the operator name in the operator window’s operator name text field. Three letters are
already sufficient to produce a result. You will notice the open combo box that presents all HALCON
and/or HDevelop operators containing the first three specified letters. Now you are able to select the
operator dyn_threshold and to specify its input parameters. The value ImageFilled is used for
OriginalImage. ImageMean is used as the component to compare (here ThresholdImage). For the
output parameter RegionDynThresh the variable name remains unchanged (see figure 1.3).

Figure 1.3: The displayed image is the threshold operation result.

Image pixels touching each other and remaining above the given threshold have to be merged to sin-
gle regions. The computation of these connected components is realized by operator connection
(menu item Operators . Regions . Transformations). The input region RegionDynThresh is
specified in the text field Region. The output variable’s default name ConnectedRegions is changed
to ConnectedRegionsDynThresh. After the operator’s execution all resulting regions are stored in
this output variable. This shows a great advantage of HALCON’s tuple philosophy: although you have
several different results you do not have to worry how to handle them. This is done transparently by
HALCON. HALCON operators recognize a tuple type variable and process it accordingly. This results

In
tr

od
uc

tio
n

8 Introducing HDevelop

in more compact programs because you may combine several similar operator calls in one operator.

To obtain a better visualization of the results after calling connection you select the menu
Visualization . Colored. Here you specify the 12 predefined color presentation. Now every com-
puted region receives one of the 12 colors. This presentation mode is very useful to indicate each region
with a different color. If there are more than 12 regions the system uses the same color for several dif-
ferent regions. With dev_display of the image ImageFilled you refresh the graphics window to see
the results of next step much better. Select the operator dev_display from the menu Operators .
Develop.

Figure 1.4: Region selection based on shape features.

In the next step we want to select the regions which correspond to the circular marks of the indicated per-
son in shape and size. This can be achieved with the operator select_shape in the menu Operators .
Regions . Features. This operator lets you specify a set of conditions, which the regions have to ful-
fill in order to be selected. In our case, the circular marks can be selected by specifying two conditions:
First, their size is about 15× 15 = 225 pixels. Secondly, they have a circular shape, which corresponds
to a compactness close to 1.0 (see the operator compactness for more information about this feature).

1.4 Example Session 9

Thus, after choosing select_shape you specify the parameters as depicted in figure 1.4:

1. The input region is ConnectedRegionsDynThresh.

2. The output variable name is SelectedRegionsDynThresh.

3. The features are specified as the tuple ’area’, ’compactness’.

4. The value for the operation (’and’) remains unchanged, as both conditions must be satisfied in
order for a region to be selected.

5. The region’s minimum size should be 150, its minimum compactness 1.0 (Min).

6. The region’s size should not exceed 500, its maximum compactness should be 1.4 (Max).

As you can see in figure 1.4, all circular marks are now extracted correctly; however, one additional
region is selected as well. Thus, we add a selection of regions based on gray value features using the
operator select_gray. Here, the mean gray value is used to discriminate the objects; it must lie between
120 and 255 in order for a region to be selected. excent shows the effect: Now, only the circular marks
are selected.

Finally, we want to obtain some numerical information about the matched marks. For example, we
might want to compute three shape features of the marks. They are derived from the regions’ geometric
moments. The calculation is done by the operator eccentricity. The input parameters are all regions
of the variable Marks. The computed values Anisometry, Bulkiness, and StructureFactor are
displayed as a list (a tuple in HALCON terminology) in the variable window. Figure 1.5 shows the
example session’s result.

In
tr

od
uc

tio
n

10 Introducing HDevelop

Figure 1.5: After calling the operator eccentricity the output parameters are displayed in the variable
window in tuple notation.

Graphical User Interface 11

Chapter 2

Graphical User Interface

HDevelop is an integrated development environment (IDE) to create machine vision applications. It com-
prises an editor, an interpreter with debug functions, a management unit for variables (iconic and control
data) and extensive possibilities to visualize iconic data. You may use HDevelop for rapid prototyping as
well as for developing complete programs. You create a program by choosing operators and specifying
their parameters. To do so, you may use default values or values proposed by HDevelop. After having
selected the appropriate parameters, you execute the operator and insert it into the program text (i.e., the
program window). You can modify and verify your generated program interactively. All intermediate
results (variables) are displayed graphically (images, regions and polygons (XLD)) or textually (numbers
and strings).

After starting the HDevelop as described in section 1.4 on page 3, the main window will appear on your
screen (see also figure 2.1 on page 15). It includes the following windows:

• a program window

• an operator window

• a variable window, and

• a graphics window.

In the following you will learn the functionality of these windows and their use while creating HDevelop
programs.

Please note that in the UNIX environment the main window, the program window, and the operator
window are combined into one window. Thus, there are only three windows.

2.1 Interacting with HDevelop

You interact with HDevelop through its graphical user interface. With the mouse you can manipulate
visual controls such as menus or buttons in the HDevelop windows.

G
U

I

12 Graphical User Interface

You can use the mouse as follows:

• Clicking the left mouse button once,
you are able to select window-specific components, such as menu items, iconic variables, control
variables, action buttons, checkboxes, and you give the insertion focus to a specific text field.
Some of these text fields comprise a combo box which you may open in the same way.

Furthermore, you select (invert) text in certain windows, e.g., in the program window. With this
you are able to perform the general editor functions like cut, copy and paste (see section 2.3.4
on page 25 and section 2.3.12 on page 65).

In the program window there is an extended mode to select lines by pressing the <Shift> or the
<Ctrl> key during the mouse click. More than one line can be activated using the <Shift> key:
All lines between the last activation and the new one will become activated. The <Ctrl> key is
used to activate or deactivate more than one line using single mouse clicks.

Clicking at an item for the second time (after a short pause) will deactivate it (e.g., lines in the
program window or variables in the variable window). Similarly, the activation passes to another
item by clicking at it.

Very important is the possibility to set the program counter (PC) at the left side of the program
window (see section 2.4 on page 66 for detailed information). By combining a mouse click with
special keys you can activate further functions:

– Clicking the left mouse button once while pressing the <Shift> key:
This places the insert cursor in the program window.

– Clicking the left mouse button once while pressing the <Ctrl> key:
A break point will be set in the program window. By performing this action once more, the
break point will disappear.

• Clicking the left mouse button twice
results in an action that will be performed with the activated item. In the program window the op-
erator or procedure call corresponding to the program line together with its parameters is displayed
directly in the operator window and can then be modified.

Iconic and control variables are displayed in the graphics window or in specific dialogs.

2.2 Procedures in HDevelop

As already mentioned in section 1.3 on page 3, every HDevelop program consists of one or more proce-
dures; it always contains a main procedure. Once a procedure, local or external, is created, calls to the
procedure can be added to any program body just like operator calls. HDevelop has a runtime engine
that makes it possible to execute procedure calls. HDevelop’s runtime engine executes procedure calls
as follows:

• When a procedure is called, an instance of that procedure or procedure call is created and pushed
on the HDevelop internal call stack. If the called procedure has input parameters, its values are
copied from the calling procedure, initializing the corresponding variables in the called procedure.

2.2 Procedures in HDevelop 13

• Program execution is then continued at the first executable program line in the called procedure
body and proceeds until the first return operator in the called procedure body is reached.

• By executing the return line, program execution returns to the calling procedure. If the called
procedure has output parameters, they are copied to the corresponding variables of the calling
procedure.

The mechanism of calling procedures in HDevelop works recursively, i.e., a procedure can call any other
procedure, including itself. The main procedure has a special status inside the HDevelop runtime engine:
it is called only once and automatically at the start of HDevelop and cannot be called by other procedures
(including itself). This implies that the main procedure is always the top-most procedure in the procedure
calling hierarchy and that it cannot be returned from.

The static part of an HDevelop program is defined by its procedures, with a procedure itself being de-
scribed by its interface and program body plus its lists of local procedure body variables and procedure
parameters. Additionally, the current status of the HDevelop runtime engine is defined by the call stack,
which contains all procedure calls in reversed order, with a call to the main procedure always being the
first procedure call on the stack. Program execution is generally continued in the top-most procedure call
on the stack, which belongs to the last called procedure. Every procedure call is defined by the program
counter or PC and by the values of the variables of the called procedure.

The HDevelop GUI is designed to display one procedure and procedure call at a time. The rest of this
manual will refer to the currently displayed procedure and procedure call as to the current procedure and
procedure call, respectively. The procedure or program body of the current procedure is always displayed
in HDevelop’s program window, while the interface of the current procedure can be viewed optionally
in the procedure interface dialog (see section 2.4.3.1 on page 69). The current procedure variables are
displayed in the variable window with procedure interface parameters being specially marked.

There are multiple ways how the current procedure and procedure call can change, all of which are
going to be explained in more detail in the following sections. Here, it should only be mentioned that the
current procedure can be changed directly through the corresponding GUI control elements as well as
programmatically when program execution is stopped in a procedure, which then automatically becomes
the current procedure. Depending on whether the current procedure has no, one, or multiple calls on the
stack, certain features of the HDevelop GUI may be enabled or disabled. In case the current procedure is
not called, i.e., has no procedure call on the stack, execution inside the procedure is not allowed and its
variables are always uninitialized. If the current procedure has multiple calls on the stack, it cannot be
edited in order to avoid inconsistent states of the call stack. Keep in mind that a procedure call is defined
by its PC and variable instances, which most likely will differ if the current procedure has multiple calls
on the stack. Relating to the HDevelop GUI, the static parts of the current procedure, which are the
program body, insert cursor and variable lists, are displayed independently of the state of the procedure,
whereas the displayed PC and variable values depend on the current procedure call.

The introduction of external procedures in HALCON 7.1 involves some new characteristics concerning
the different processing of local and external procedures:

• For the creation of an external procedure, a path where external procedures are stored must be
specified. You can set this path or a selection of several paths by the menu item Procedures .
Edit External Procedure Paths (for details see section 2.3.7.11 on page 50). In the paths
listed there, all available external procedures are searched for automatically. A list of them is

G
U

I

14 Graphical User Interface

displayed in addition to the local procedures of the current program at the bottom of the menu
item Procedures.

• Sometimes, procedures with the same name exist. If there is a local procedure with the name of an
external procedure, the local procedure is applied. If different external procedures with the same
name exist in different paths, the name is searched for in all paths following the sequence of their
listing. The procedure found first is applied. You can create a procedure with the same name of an
already existing procedure only, if the existing procedure does not belong to the program, e.g., if
its path is not already included or if it is temporarily deleted. After creating the procedure, the path
of the redundant procedure can be set again. This way, the accidental creation of name ambiguities
is prevented.

• Local procedures are saved by using Procedures . Save Current As and are stored as ex-
ecutable .dev files, which can be used by other programs via File . Insert Procedures.
External procedures are stored automatically after being modified as non-executable .dvp files.
These files cannot be loaded as a program and therefore cannot be inserted by File . Insert
Procedures. They are applied by selecting their names in the list at the bottom of the menu
Procedures or by using the combo box Operator/Procedure of the operator window. Note
that the name of an external procedure and the name of the file it is stored in are coupled. I.e.,
if you change the name of the .dvp file, you automatically change the name of the procedure as
well.

• Since HALCON 7.1.1, you can assign passwords to your external procedures to prevent them from
being viewed or modified by unauthorized users. These so called protected procedures are stored
also as .dvp files, but in a binary format. As the program body of a protected procedure may not
be displayed, it never becomes the current procedure.

2.3 Main Window

On a Windows system, the main window contains the other four HDevelop windows and possibly addi-
tional graphics windows and dialogs. In contrast, on a UNIX system, the main window comprises the
program window and the operator window.

The main window can handle HDevelop programs, manipulate the graphics output, offer all HALCON
and HDevelop operators and procedures, give suggestions and help on choosing operators and man-
age the HDevelop windows. After starting HDevelop (on a Windows system), you will see a window
configuration similar to figure 2.1.

The main window comprises five areas:

• a title bar,

• a menu bar,

• a tool bar,

• a window area, and

• a status bar.

In the following sections you will find all necessary information to interact with this window.

2.3.1 Title Bar 15

Figure 2.1: The main window (Windows).

2.3.1 Title Bar

Your HDevelop main window is identified by the title HDevelop in the window’s title bar. After loading
or saving a file, the file name will be displayed in the title bar. Additionally, it offers three buttons on the
right hand side to iconify and to maximize the window, and to exit the HDevelop session.

2.3.2 Menu Bar

In the menu bar of the main window HDevelop functionality is offered. Here, you may perform the
important actions to solve your image processing tasks, i.e., choose HALCON or HDevelop operators or
procedures or manipulate the graphical output. Every menu item opens a pull-down menu (henceforth
abbreviated as menu) with optional submenus. You open a menu by clicking a menu item (inside the
appropriate text) or via the keyboard (by pressing the key <Alt> in combination with the underlined
letter of the menu item). All menu items are going to be explained in the following.

G
U

I

16 Graphical User Interface

2.3.3 Menu File

In the menu File you will find all functions to load an image and existing programs and to save recently
created or modified programs, respectively. Furthermore, you may export HDevelop programs to C++,
C, Visual Basic, Visual Basic .NET, or C#, and also print them. Figure 2.2 shows all the functions in this
menu.

Figure 2.2: The menu File.

2.3.3.1 File . New

The menu item File . New (keyboard shortcut <Ctrl> N) deletes the current program including all local
procedures. The contents of variables are deleted before removing them. In addition, all graphics win-
dows except one are closed. The last window will be cleared. The display parameters for the remaining
graphics window are identical to those when starting HDevelop. The first four parameters of the menu
File . Options are reset to their initial state: The update of windows, variables, PC, and time is on.

A security check prevents you from deleting the current program accidentally if the program has not
been saved. A dialog box appears and asks whether you want to save the HDevelop program before its
dismissal. If you choose to do so and a file name is already specified, the current program is saved to
that file, otherwise a file selection dialog is invoked where you can determine a corresponding file. You
can also choose to dismiss the current program without saving the changes, or cancel the action.

2.3.3.2 File . Open, File . Insert

By clicking on the menu File . Open (keyboard shortcut <Ctrl> O), you can load an existing HDevelop
program. Alternatively, you can select File . Insert to insert a file into the current program body at
the line in which the insert cursor is located. In both cases, a dialog window pops up and waits for your

2.3.3 Menu ’File’ 17

Figure 2.3: The dialog window to open an HDevelop file.

input (see figure 2.3). It is called Open HDevelop Program File. Please note that text, C, C++, Visual
Basic, Visual Basic .NET, and C# versions of a file cannot be loaded.

In the top-most text field you may specify a directory which contains your HDevelop programs. A combo
box at the right hand side helps you browsing your directories. To move one directory level up, you press
the button on the right hand side of this text field. The next button creates a new folder to store HDevelop
programs. By pressing the last button you can activate or deactivate the option to see more details about
your HDevelop programs, i.e., the program size, the program type, the date when the most recent user
update occurred, and file attributes.

The middle text area displays all available HDevelop files to choose from. By clicking the left mouse
button on a file name you select it. Double-clicking a file name opens the file immediately and displays
it in the program window (see section 2.4 on page 66).

Furthermore, you may specify the file name in the text field below. The combo box for file type has no
effect because only HDevelop programs with the extension .dev can be loaded. If you want to open
your file with a write protection, choose the checkbox at the bottom of this dialog window. To open your
specified file, you press the button Open. This action deletes an already loaded HDevelop program and
all created variables. The same actions as with File . New are performed. Now you can see the main
procedure body of your new program in the program window. The file name is displayed in the title bar
of the main window. All its (uninstantiated) variables are shown in the variable window. To indicate
that they do not have any computed values, the system provides the iconic and control variables with a
question mark. The program counter is placed on top of the program body and you are ready to execute
the program. The visualization and options will be reset after loading (same as File . New).

You can cancel this task by pressing the corresponding button. By using one of the two buttons Open or
Cancel the dialog window disappears.

After you have loaded a program, the corresponding file name will be appended at the bottom of the

G
U

I

18 Graphical User Interface

menu File, in the file history. This allows you to switch between recently loaded files quickly. The most
recently loaded file is always listed first.

2.3.3.3 File . Insert Procedures

Via this menu item you can add local procedures from an HDevelop program file to the current program.
All local procedures except the main procedure are loaded from the selected file (see figure 2.3). If
the current program already contains a local procedure with the same name, the newly added procedure
will be renamed by appending a suffix to its name. If the current program already contains an external
procedure with the same name, the newly added local procedure replaces the external procedure.

2.3.3.4 File . Open Example Program

Selecting this menu item opens a dialog that allows you to load HDevelop example programs grouped
by different topics and categories (see figure 2.4). The dialog is made up of three separate list boxes.
The left list contains the three available topics ’Industry’, ’Application Area’ and ’Method’. If you select
a topic all categories of that topic are listed in the middle part of the window. If you select one of the
categories all corresponding example programs belonging to the topic and category are displayed in the
right subwindow. Single clicking on an example program in the right list displays a short information in
HDevelop’s status bar, while double clicking or clicking OK will load the selected program and close the
dialog. An HDevelop example program can appear under different topics and categories.

Figure 2.4: HDevelop example programs grouped by topics and categories.

2.3.3.5 File . Save

The menu item File . Save (keyboard shortcut <Ctrl> S) saves the current program to a file. If no
file name has been specified so far, the dialog corresponding to File . Save As will be activated. Local
procedures are saved with the HDevelop program. External procedures are saved automatically after
being modified in the path specified during their creation.

2.3.3 Menu ’File’ 19

2.3.3.6 File . Save As

The menu item File . Save As saves the current program to a file. The type of file (HDevelop, text, C,
C++, Visual Basic, Visual Basic .NET, or C#) can be selected (see figure 2.5).

Figure 2.5: The dialog window to save a program to a file.

A dialog box (similar to the window described in menu item File . Open) is opened, in which you can
specify the appropriate settings. You may specify a new file name and a directory where to locate this
file. By clicking the combo box of the text field called Files of type, you may indicate whether the
HDevelop program remains an HDevelop program or is exported as a C, C++ , Visual Basic , Visual
Basic .NET , or C# program, or is transformed into an ASCII file. In UNIX you select the file type by
entering the corresponding file extension manually. For C++ code you have to add .cpp to the file name,
for C code .c, and for ASCII .txt. The extension is .bas for Visual Basic, .vb for Visual Basic .NET,
and .cs for C#. Default type is the HDevelop type (extension .dev). The details of code generation are
described in chapter 4 on page 113.

If you export an HDevelop program to a type of file different from the default type, external proce-
dures are exported as well. If the option Export All External Procedures is switched on (see
section 2.3.3.11 on page 21), all external procedures available are exported. Otherwise, only external
procedures used by the program are exported. External procedures that are protected by a password
(see section 2.4.3.3 on page 74) are not exported. Internal procedures are always exported completely,
regardless if they are used or not.

Similar to loading, the file name of the program you save is appended at the end of the menu File.

2.3.3.7 File . Print

The menu item File . Print (keyboard shortcut <Ctrl> P) enables you to print the current program.
Upon selecting the menu item, a dialog appears in which you can configure the printing process. Besides

G
U

I

20 Graphical User Interface

the local procedures, all used external procedures are printed. If the option Export All External
Procedures is activated (see section 2.3.3.11 on page 21), not only the used ones but all available
external procedures are printed. External procedures that are protected by a password (see section 2.4.3.3
on page 74) are not printed.

2.3.3.8 File . Print Selection

In contrast to the menu item File . Print, the menu item File . Print Selection prints only the
selected part of the current procedure body.

2.3.3.9 File . Read Image

The menu item File . Read Image contains several directories from which images are usually loaded.
The first entry of this menu always is the directory from which the most recent image was loaded. This
is useful when several images from a non-standard directory must be read. The remaining entries except
the last one are the directories contained in the environment variable HALCONIMAGES. The final directory,
denoted by ’.’, is the current working directory of the HDevelop program. Under Windows, ’.’ is by
default set to %HALCONROOT%\examples\hdevelop. Under UNIX, ’.’ corresponds to the directory in
which HDevelop was started.

Figure 2.6: The menu item File . Read Image.

When any of the directories is selected, an image file selection box appears. Again, its functionality is
similar to the dialog described in menu item File . Open. Figure 2.7 shows an example of this dialog.

After selecting a file name, the name of the variable for the image in the current HDevelop procedure has
to be selected. To do this, a small dialog appears after pressing Open or double clicking a file. For easy
handling, HDevelop suggests a name derived from the selected file name. You may adopt or edit this
name. If you want to use a name of an already created iconic variable, a combo box offers you all iconic
variable names. To do so, you click the button on the right side of the text field. Note that the reuse of a
variable name deletes the old content and replaces it with the new image.

2.3.3 Menu ’File’ 21

Figure 2.7: The dialog window to load an image.

2.3.3.10 File . Cleanup

The menu item File . Cleanup deletes all unused variables (iconic and control data) from the current
procedure. These are variables in the variable window that are no longer used in any operator or pro-
cedure call in the current procedure body. This can happen after the deletion of program lines or after
editing variable names, because the corresponding variables are not deleted automatically. You may use
this menu item during a longer editing process to reorganize your variable window (see also section 2.6
on page 82).

2.3.3.11 File . Options

The menu item File . Options opens a control window, which you can use to modify output behavior
during runtime (see figure 2.8).

• Update PC
The first item (see page 66) concerns the display of the current position while running the program.
The so called PC (program counter) always indicates the line of the currently executing operator
or procedure call or the line before the next operator or procedure call to execute. Using the PC in
this way is time consuming. Therefore, you may suppress this option after your test phase or while
running a program with a lot of “small” operators inside a loop.

• Update Variables
This checkbox concerns the execution of a program: Every variable (iconic and control) is updated
by default in the variable window (see page 82). This is very useful in the test phase, primarily
to examine the values of control data, since iconic data is also displayed in the graphics window.
If you want to save time while executing a program with many operator calls you may suppress
this output. Independent of the selected mode, the display of all variables will be updated after the
program has stopped.

G
U

I

22 Graphical User Interface

Figure 2.8: The options window.

• Sort Variables
This checkbox determines whether the iconic and control variables displayed in the variable win-
dow will be sorted by name.

• Update Window
This item concerns the output of iconic data in the graphics window after the execution of a
HALCON operator. With the default settings, all iconic data computed in the run mode (see sec-
tion 2.3.5.1 on page 28) is displayed in the current graphics window. You may want to suppress
this automatic output, e.g., because it slows down the performance. If the output is suppressed you
have the same behavior as exported C, C++, Visual Basic, Visual Basic .NET, or C# code, where
automatic output of data is not supported.

• Show Processing Time
This checkbox indicates whether the required runtime of the last operator or procedure call should
be displayed after the execution has stopped. It is a measurement of the needed time for the current
operator or procedure call (without output and other management tasks of HDevelop). Along with
the required runtime, the name of the operator or procedure is displayed in the status bar at the
bottom of the main window. Please note that the displayed runtime can vary considerably. This is
caused by the inaccuracy of the operating system’s time measurement procedure.

• Insert Interactions
Sometimes it is very helpful to record user interactions as a sequence of operators in the program.
To do so, you select this option. From now on interactions are inserted as a program line in the
program window. For example, selecting the graphic color red by choosing the appropriate menu

2.3.3 Menu ’File’ 23

inserts the program line

dev_set_color(’red’)

into the program window.

• Show Variable Usage
If you activate a variable (by single-clicking on it) all lines in the program that contain the variable
are marked on the left with a black frame. This works with iconic and control variables. You can
activate one iconic and one control variable simultaneously. Each activated variable is marked by
a black background for the name in the variable window.

• Show Low Level Errors
Low-level errors of HALCON are normally invisible for the user because they are transferred into
more comprehensive error messages or simply ignored. Activating this item generates a message
box each time a low-level error occurs.

• Automatic Program Save
If you activate this option, the program is automatically saved before each execution of the pro-
gram, i.e., before a Run or Step operation. The file name the program is saved to is the file name
of the current program. Therefore, if you create a new program you must first select File . Save
As manually to give the program a file name.

• Experienced Programmer
If this option is activated, the internal temporary memory usage of the last operator or procedure
call is displayed next to the required runtime. Also, the lists of the parameter combo boxes in the
operator window are extended so that they include variables whose semantic types do not match
the semantic types of the corresponding parameters of the selected operator. This option is more
suitable for experienced HDevelop users.

The following elements concern HDevelop procedures. Detailed information can be found in sec-
tion 2.4.3 on page 69:

• Show Only Used Procedures
If this option is selected, in the combo box Procedures of the program window only procedures
used by the program are listed. The list of used local procedures and all external procedures, i.e.,
also the unused external procedures, still remains at the bottom of the menu Procedures.

• Export All External Procedures
If this option is activated, all external procedures are exported when exporting the program to C,
C++ , Visual Basic , Visual Basic .NET , C# program, or as ASCII file (see section 2.3.3.6 on page
19), and all external procedures are printed when using File . Print (see section 2.3.3.7 on page
19). Otherwise, only the used procedures are exported and printed. External procedures that are
protected by a password (see section 2.4.3.3 on page 74) are neither exported nor printed.

Please note that internal procedures are always exported completely, regardless if they are used in
the program or not.

• Show Procedure Calls
If this option is selected, calls to local procedures are marked in the program window with a green
bar and calls to external procedures are marked with a dark green bar.

• Replace Selection By Call

G
U

I

24 Graphical User Interface

If this option is switched on, selected program lines, from which a procedure is created, are auto-
matically replaced by a call to the created procedure.

• Parameters
Via this combo box you can choose between different modes for the automatic creation of a proce-
dure interface.

The final elements customize the display of the program and of numeric variables:

• Syntax
Using a combo box, you may specify the output mode inside the program window. Depending on
the mode, each HALCON or HDevelop operator or procedure call is shown in a specific syntax
like HalconDevelop (default syntax) or C.

• Digits
With this checkbox, you can control how many digits of floating point numbers are displayed in
the variable window. The selected number is the total number of digits displayed. Therefore, if
you have selected four digits, the result of the following assignment

assign (4*atan(1), PI)

is displayed as 3.142. Note that the changes do not take effect until the values of the variables are
actually updated by running the program, i.e., the variables are not redisplayed automatically.

Before continuing your HDevelop session, you have to close the option window by pressing the button
Ok or by cancelling the action. If Insert Interactions is activated, the changes applied inside the
dialog will result in automatic operator insertion after pressing Ok.

HDevelop saves the current selections for the options “Show Variable Usage”, “Show Low
Level Errors”, “Automatic Program Save”, “Experienced Programmer”, “Show Only Used
Procedures”, “Export All External Procedures”, “Syntax”, and “Digits”, and restores them
upon start. Under Windows, the options are stored in the registry; under UNIX, the options are stored in
the subdirectory .hdevelop of the directory referenced by the environment variable $HOME.

2.3.3.12 File . Modules

The menu item File . Modules opens a window, in which the HALCON modules used by the current
program are displayed (see figure 2.9). This window allows you to get an estimate of how many mod-
ules your application would need in a runtime license. Please refer to the Installation Guide, section 3.4
on page 30, for more information about modules and runtime licenses.

By default only the modules actually used by the current program are determined. However, when Check
only used procedures is not ticked, the used modules are calculated from all available procedures
(internal and external).

By clicking Save, the modules required by the current program are saved in a file with the extension
_modules.txt in the currently used directory.

2.3.3.13 File . Quit

The menu item File . Quit terminates HDevelop.

2.3.4 Menu ’Edit’ 25

Figure 2.9: The modules window.

2.3.3.14 File . History

At the bottom, the menu File displays the most recently loaded files.

2.3.4 Menu Edit

In this menu you find all necessary functions to modify the current HDevelop procedure body displayed
in the program window (see section 2.4 on page 66).

Figure 2.10: The menu item Edit.

G
U

I

26 Graphical User Interface

2.3.4.1 Edit . Undo

You may undo your previous activities via the menu item Edit . Undo. For example, by selecting
it three times you cancel the last three user actions. The procedure to which the last undo belongs
becomes the current procedure. The undo item does not work for the password assignment for external
procedures (see section 2.4.3.3 on page 74). To undo the password assignment you either have to remove
the password as long as you can edit the procedure, or you quit HDevelop without saving the current
program.

2.3.4.2 Edit . Redo

You can also revoke undo activities by selecting Edit . Redo. This is a quick way to restore the state
before the last undo operation.

2.3.4.3 Edit . Cut

You may use the items Edit . Cut, Edit . Copy, and Edit . Paste for changing the procedure body
contents. First you have to select the part of the program (at least one program line) that has to be
changed (use the left mouse button). To delete this part, select the item Edit . Cut (keyboard shortcut
<Ctrl> X).

The deleted program part is stored in an internal buffer. By using the item Edit . Paste (keyboard
shortcut <Ctrl> V), the buffer remains unchanged.

2.3.4.4 Edit . Copy

By selecting Edit . Copy (keyboard shortcut <Ctrl> C), you store the selected program lines directly
in an internal buffer. Additionally, for every procedure call line the corresponding procedure and all
procedures that can be reached from it are copied to the buffer. This is necessary in order to obtain a con-
sistent program when pasting procedure call lines to a program in which the corresponding procedures
might not exist.

2.3.4.5 Edit . Paste

To insert this buffer in the current HDevelop procedure body you place the insertion cursor at the de-
sired position and then select the menu item Edit . Paste (keyboard shortcut <Ctrl> V). If the buffer
contains procedures that do not exist they are added to the current program. The mechanism of copying
and pasting procedure call lines together with the corresponding procedures is an easy way to transfer
procedures between different HDevelop programs.

2.3.4.6 Edit . Delete

The menu item Edit . Delete deletes all selected program lines without storing them in an internal
buffer. The only way to get the deleted lines back in your procedure body is to use the item Edit . Undo.

2.3.4 Menu ’Edit’ 27

Figure 2.11: Searching for an operator.

2.3.4.7 Edit . Find Operator

The menu item Edit . Find Operator (keyboard shortcut <Ctrl> F) allows to search for the appear-
ance of an operator or procedure call in the current procedure body. Figure 2.11 depicts the corresponding
dialog: Specify an operator or procedure name in the text field, then find the next appearance by clicking
the button Find, or the previous one by checking the box Find Backwards. The figure shows the result
of clicking Mark All. If you check the box Edit, the operator window pops up and lets you edit the
found operator or procedure calls.

2.3.4.8 Edit . Find Again

The menu item Edit . Find Again (keyboard shortcut <Ctrl> G) repeats the search specified via the
menu item Edit . Find Operator.

2.3.4.9 Edit . Replace Variables

The menu item Edit . Replace Variables (keyboard shortcut <Ctrl> H) allows to search and re-
place variable names in the current procedure body. Figure 2.12 depicts the corresponding dialog: After
specifying the variable name to find and the name to replace it by, you can let HDevelop replace all

G
U

I

28 Graphical User Interface

Figure 2.12: Replacing variables.

instances of the variable by clicking Replace All. If you click Find, the next instance of variable is
displayed in the program window; you can then replace its name by clicking Replace.

2.3.5 Menu Execute

In this menu item you find all necessary functions to execute an HDevelop program. As mentioned in
section 2.2 on page 12, program execution is always continued at the top-most procedure call, which
in most cases corresponds to the current procedure call. The procedure body displayed in the program
window (see section 2.4 on page 66) belongs to the current procedure.

Figure 2.13: The menu item Execute.

2.3.5.1 Execute . Run

If you select Execute . Run (keyboard shortcut F5), HDevelop executes your program starting at the
PC’s position in the program window. All following program lines are going to be performed until the
end of the current program. After the execution is finished, the main procedure becomes the current
procedure. Note that a break point, stop instruction, or runtime error may interrupt the execution of your
program.

2.3.5 Menu ’Execute’ 29

During the execution of operator or procedure calls the following special behavior occurs:

• Although the mouse pointer indicates that HDevelop is not ready to handle user input (clock-shaped
mouse pointer), you may initiate limited activities. For example, if you double-click variables in the
variable window (see section 2.6 on page 82) they will be visualized; you may modify parameters
for the graphics windows as described in section 2.3.6 on page 32; you may even modify the current
procedure body. Note that all user interaction except Execute . Stop is disabled during program
execution in case the latter was not started in the main procedure. HDevelop may be slow to react
to your actions while the program is running. This is caused by the fact that HALCON reacts to
user input only between calls to operators.

• A variable window update during runtime will only be performed if it has not been suppressed
(see section 2.3.3.11 on page 21). In any case, the values of all variables are shown in the variable
window after the execution’s termination.

While the program is running, the menu items Execute . Run, Execute . Step, Execute . Step
Into, and Execute . Step Out (and the corresponding toolbar buttons) are grayed out, i.e., you cannot
execute them.

You have the following possibilities to stop your HDevelop program:

1. The program runs until the last operator or procedure call in the current program (i.e. the main
procedure body) has been called. The PC is positioned behind this operator. This is the usual
way to terminate a program.

2. The menu Execute . Stop (or the corresponding toolbar button) has been pressed.

3. A break point has been set (see section 2.4 on page 66). In this case, the last operator or procedure
call that will be executed is the one before the break point.

4. Menu item File . Quit has been executed (see section 2.3.3.13 on page 24).

5. A runtime error occurred. An input variable without a value or values outside a valid range might
be typical reasons. In this case the PC remains in the line of the erroneous operator or procedure
call.

6. A stop instruction is executed. The PC remains on the next executable line after the stop in-
struction. Note that stop instructions are ignored inside protected external procedures (see sec-
tion 2.4.3.3 on page 74).

The procedure and procedure call in which program execution was stopped automatically become the
current procedure and procedure call.

2.3.5.2 Execute . Step

Selecting Execute . Step (keyboard shortcut F6) enables you to execute a program (even if it is not
complete) step by step. HDevelop executes the operator or procedure call directly to the right of the
program counter (PC, indicated by a green arrow, see section 2.4 on page 66). The mouse pointer
changes its shape to a clock. This indicates that HDevelop is active and not available for any user input.
After the operator or procedure call has terminated, all computed values are assigned to their respective
variables that are named in the output parameter positions. Their graphical or textual representation in
the variable window is also updated. If iconic data has been computed, you will see its presentation in

G
U

I

30 Graphical User Interface

the current graphics window. In the status bar of the program window the runtime of the operator or
procedure call is indicated (if the time measurement has not been deactivated).

The PC is then moved to the next operator or procedure call to execute. If the operators or procedure calls
are specified in a sequential order, this is the textual successor. In case of control statements (e.g., if
... endif or for ... endfor), the PC is set on the end marker (e.g., endif or endfor) after the
execution of the last operator or procedure call inside the statement’s body. After endfor and endwhile,
the PC is always set on the beginning of the loop. If a condition (as if or while) evaluates to FALSE,
the PC is set behind the end marker.

Suggestions in the menu Suggestions are determined for the recently executed operator. Finally, the
mouse pointer’s shape switches to the arrow shape and HDevelop is available for further transactions.
Any user input which has been made during execution is handled now.

2.3.5.3 Execute . Step Into

Execute . Step Into (keyboard shortcut F7) allows you to step into procedure calls, as long as they
are not protected by a password. Executing Execute . Step Into with the PC on a procedure call line
causes the corresponding procedure and procedure call to become the current procedure and procedure
call, respectively. The PC is set on the first executable program line in the new current procedure.
Execute . Step Into has the same effect as Execute . Step if the program line to be executed is not
a procedure call.

2.3.5.4 Execute . Step Out

Selecting Execute . Step Out (keyboard shortcut F8) steps out of the current procedure call. Program
execution is continued until the first executable program line after the previous procedure call in the
calling procedure is reached. The previous calling procedure becomes the current procedure. Execute
. Step Out has no effect when called in the main procedure.

2.3.5.5 Execute . Stop

You may terminate the execution of a program by selecting Execute . Stop (keyboard shortcut F9).
If you do so, HDevelop continues processing until the current operator has completed its computations.
This may take a long time if the operator is taking a lot of time to execute. There is no way of interrupt-
ing a HALCON operator. The procedure and procedure call in which program execution was stopped
becomes the current procedure and procedure call, respectively. After interrupting a program you may
continue it by selecting Execute . Run or Execute . Step. You may also edit the program before
continuing it (e.g., by parameter modification, by exchanging operators with alternatives, or by inserting
additional operators). For protected procedures, the procedure is also terminated but does not become
the current procedure. Thus, when continuing the program, the protected procedure is not continued but
restarted.

2.3.5 Menu ’Execute’ 31

2.3.5.6 Execute . Call Stack

Selecting this item depicts a dialog (see figure 2.14) that contains a list of the names of all procedures that
are currently called on HDevelop’s internal call stack. The top-most procedure call belongs to the most
recently called procedure, the bottom-most procedure call always belongs to the main procedure. Double
clicking on a procedure call in the dialog makes the selected procedure call the current procedure call
and thus the procedure belonging to the selected procedure call the current procedure. Double-clicking
on a procedure call that belongs to a protected external procedure (for protected external procedures
see section 2.4.3.3 on page 74), you can only make the procedure the current procedure by entering the
correct password in the password window.

Figure 2.14: Callstack dialog.

2.3.5.7 Execute . Deactivate, Execute . Activate

During testing, it is often useful to prevent some lines of the program from being executed. This can
be achieved by selecting the appropriate lines in the program window and then selecting Execute .
Deactivate. Then, an asterisk is placed on the beginning of the selected lines, i.e., the lines appear as
comments in the program window and have no influence on the program during runtime.

The deactivated lines are still part of the program, i.e., they are stored like all other lines and their
variables are still needed like all other variables. To reverse this action, select Execute . Activate.

Note that you can insert a ’real’ comment into your program by using the operator comment.

2.3.5.8 Execute . Set Break Point, Execute . Clear Break Point

These menu items set or clear a break point on the line(s) that are currently selected in the program. In
most cases, however, it is easier to set and clear individual break points pressing the left mouse button
and the <Ctrl> key in the left column of the program window as described in section 2.4 on page 66.

2.3.5.9 Execute . Clear All Break Points

With this menu item you can clear all break points in the current HDevelop program.

G
U

I

32 Graphical User Interface

2.3.5.10 Execute . Reset Program

With the menu item Execute . Reset Program, you can reset the current HDevelop program to its
initial state. The main procedure becomes the current procedure and the call stack is cleared of all
procedure calls except the main procedure call. The latter is reset, i.e. all variables have undefined
values and the program counter is set to the first executable line of the main procedure. The break
points, however, are not cleared. This menu item is useful for testing and debugging programs.

2.3.6 Menu Visualization

Via this menu, you can open or close graphics windows and clear their displays. Furthermore, you may
specify their output behavior during runtime. All items which can be selected are shown in figure 2.15.

Figure 2.15: The menu Visualization.

2.3.6.1 Visualization . Open Window

By using this menu item, you open an additional1 graphics window.

For this, a dialog window pops up (see figure 2.16). Here, you may specify some graphics windows
attributes. The position, size and background color of the new graphics window can be specified. For
example, it is more convenient to have a white background while building graphics for slides or reports

1Normally upon starting, HDevelop automatically opens one graphics window.

2.3.6 Menu ’Visualization’ 33

Figure 2.16: Dialog window of menu item Visualization . Open Window.

(see the HALCON operator dump_window). If the window height and width are set to -1, the window has
the same size as the largest image in the current session. A position value of -1 specifies that the window
position is determined by the window manager (UNIX). If you have not already created an image, the
size 512× 512 is used.

The handling of graphics windows is described in more detail in section 2.7 on page 84.

2.3.6.2 Visualization . Reset Parameters

Here, the display parameters of the active graphics window are set to their initial state (the state after
starting the program). The only exception is the size of the window. To clear the history of previously
displayed objects you can use Visualization . Clear Window, to set the size Visualization .
Size Window.

2.3.6.3 Visualization . Close Window

Selecting this item closes the active graphics window.

2.3.6.4 Visualization . Clear Window

Via this menu item the active graphics window is cleared. The history (previously displayed objects) of
the window is also removed.

2.3.6.5 Visualization . Pixel Info

Here, you can open an inspection display as depicted in figure 2.17. This is used for interactive exam-
ination of gray values of images. Apart from this, the size, pixel type, and the number of channels are
displayed.

The upper part of the dialog contains a gauge to display the gray value graphically. The range goes from
0 (left) to 255 (right). Normally, the gray value of the first channel is displayed with a black bar. For

G
U

I

34 Graphical User Interface

Figure 2.17: Online gray value inspection and basic image features.

color images in RGB-space (three channels with red, green, and blue values) three colored bars are used.
If the gray value is below 1, the gauge is white (background). If the value is above 255, the gauge is
black or colored for RGB images.

Below the gauge, the gray values are displayed as numbers. If more than three channels are present, only
the gray value of the first channel is displayed.

Below the gray values, the coordinates of the mouse position is displayed. Below these, the size, pixel
type, and the number of channels are shown.

2.3.6.6 Visualization . Zooming

With this menu item, a tool for real-time viewing of zoomed parts of an image object is opened. Fig-
ure 2.18 shows the layout of the real-time zooming window.

Figure 2.18: Real-time zooming.

The upper part of the tool contains a window of fixed size 256 × 256, in which the part of the graphics
window, over which the mouse pointer is located, is displayed enlarged. In the zooming window, this

2.3.6 Menu ’Visualization’ 35

pixel is marked by a red square; its coordinates are displayed at the bottom of the zooming window.

The factor, by which the enlargement is done can be adjusted with the combo box Zooming factor.
A zooming factor of 0 corresponds to displaying the contents of the graphics window in to normal
resolution, i.e., one pixel in the image object corresponds to one pixel in the zooming window. Increasing
the zooming factor by 1 roughly increases the enlargement by a factor of 2.2

You can select a particular pixel by single-clicking on it with the left mouse button. The zooming tool
stores this position internally, and will redisplay the thus selected part of the image object when you
leave the graphics window. This enables you to have a meaningful display in the zooming tool whenever
you want to do actions outside of the graphics window.

2.3.6.7 Visualization . Gray Histogram Info

This menu item opens a sophisticated tool for the inspection of gray value histograms, which can also
be used to select thresholds interactively and to set the range of displayed gray values dynamically.
Figure 2.19 shows the layout of the gray histogram inspection window.

When opening the tool, the histogram of the image shown in the currently active graphics window is
displayed. When the tool is already open, four modes of sending new image data to the tool are avail-
able:

1. The simplest mode is to display an image in the active graphics window. Whenever you do so,
the histogram of this image is computed and drawn, and the tool records the graphics window
from which the image was sent.

2. Another simple method to send new data to the tool is to single-click into an image that is
displayed in a graphics window.

3. Whenever image data is displayed overlaid with region data in a graphics window (the graphics
window does not need to be active for this), you can click into any of the segmented regions, and
the histogram of the image within that region will be computed and shown. If you click into a
part of the image that is not contained in any of the overlaid regions, the histogram of the entire
image will be displayed.

4. The same mechanism is used for regions that have gray value information, e.g., image objects
created by reduce_domain or add_channels. Here, the histogram of the image object you
click into will be displayed.

Note that when the graphics window the image was sent from is cleared, the histogram is not reset.

When a multi-channel image, e.g., a RGB color image, is sent to the tool, by default the histogram of the
first channel is displayed. The combo box Channel lets you select the channel from which to compute
the histogram.

The radio box in the upper center of the tool lets you select whether to display the histogram with relative
or absolute frequencies. When you select Rel, the frequencies of individual gray values are displayed as

2Yes, only roughly by a factor of 2, since the image is scaled such that the red square that indicates the mouse pointer position
is located in the middle of the zooming window. Therefore, the zoom factor is adjusted to display one pixel more than the power
of 2 indicated by the zooming factor. The width and height of the zoomed part of the image hence are 28−f + 1, where f is the
zooming factor.

G
U

I

36 Graphical User Interface

Figure 2.19: Online gray histogram inspection.

percentages; when you select Abs, they are displayed as the actual number of pixels having a particular
gray value. See the operator gray_histo in the HALCON Reference Manuals for details.

Sometimes, it is desirable to suppress the updating of the histogram when new image data is available,
e.g., if you want to select thresholds for a gradient image, but want to visualize the original image along
with the segmentation (see below). To do so, you can deselect the checkbox Accept.

The main part of the tool is the area, in which the histogram of the image is displayed in blue. This area
contains static parts and parts that can be interactively manipulated. The first static part is the horizontal
coordinate axis, which displays the gray values in the image. For byte images, this range is always
0 . . . 255. For all other image types, e.g., real images, the horizontal axis runs from the minimum to the
maximum gray value of the image, and the labeling of the axis is changed accordingly. To the left of
the display, the vertical axis representing the frequency of the gray values is drawn in white. The final
static parts of the display are three cyan arrows. The two upward pointing arrows denote the maximum
and minimum gray value of the image. The downward pointing arrow denotes the gray value that occurs

2.3.6 Menu ’Visualization’ 37

most frequently, i.e., the peak of the histogram. These data are displayed in textual form within the
Static data area of the display.

The dynamic parts of the histogram area are the three colored lines, which can be manipulated. The
dashed horizontal yellow line can be dragged vertically. The label on this line indicates the frequency
of gray values below this line. It can be used to interactively measure the frequency of gray values at
different parts of the histogram. The vertical green and red lines denote the minimum and maximum
selected gray value of the histogram, respectively. The selected range is drawn as a white bar below the
horizontal gray value axis. The gray values on which the two vertical lines lie are displayed next to the
lines in the same color. The frequency of the respective gray values is displayed within the Dynamic
data area of the display. Initially, the histogram is displayed at full vertical range, i.e., up to the peak
value, denoted by the label on the dashed white line. The scrollbar to the left allows to scale the histogram
vertically. The label on the dashed white line will be updated accordingly.

The selected range of gray values can be used for two major purposes: thresholding (segmentation) and
scaling the gray values:

Automatic segmentation (thresholding)

If the combo box Display is set to threshold, the image from which the histogram was computed is
segmented with a threshold operation with the selected minimum and maximum gray value. Depend-
ing on the setting of the combo box Send, the segmentation result is either displayed in the graphics
window, from which the image was originally sent (Send = back), or in the active graphics window
(Send = to active). With the three combo boxes Color, Draw, and Width, you can specify how the
segmentation results are displayed (see also Visualization . Color, Visualization . Draw, and
Visualization . Line Width below).

If you want to select threshold parameters for a single image, display the image in the active graphics
window and open the histogram tool. For optimum visualization of the segmentation results, it is best to
set the visualization color to a color different from black or white. Now, set Display to threshold and
interactively drag the two vertical bars until you achieve the desired segmentation result. The parameters
of the threshold operation can now be read off the two vertical lines.

If you want to select threshold parameters for an image which is derived from another image, but want
to display the segmentation on the original image, e.g., if you want to select thresholds for a gradient
image, two different possibilities exist. First, you can display the derived image, open the histogram
tool, deselect Accept, display the original image, and then select the appropriate thresholds. This way,
only one window is needed for the visualization. For the second possibility you can display the derived
image in one window, activate another window or open a new window, display the original image there,
activate the first window again, open the histogram tool, activate the second window again, set Send to
to active, and select your thresholds. Although in this case it is not necessary to deselect Accept,
it is advantageous to do so, because this prevents the histogram from being updated if you click into a
graphics window accidentally.

Scaling the gray values

If Display is set to scale, the gray values of the image are scaled such that the gray value 0 of the
scaled image corresponds to the minimum selected gray value and the gray value 255 to the maximum
selected gray value. Again, the combo box Send determines the graphics window, in which the result is
displayed. This mode is useful to interactively set a “window” of gray values that should be displayed
with a large dynamic range.

G
U

I

38 Graphical User Interface

2.3.6.8 Visualization . Feature Histogram Info

This menu item opens a sophisticated tool for the inspection of feature histograms. In contrast to the
gray value histogram described above, this tool does not inspect individual pixels, but regions or XLDs;
for these iconic objects, it displays the distribution of values of a selected feature, e.g., the area of an
XLD or the mean gray value of the pixels within a region. The feature histogram can also be used to
select suitable thresholds for the operators select_shape and select_shape_xld interactively.

Figure 2.20: Selecting clips with a certain angle using the region feature histogram.

Figure 2.20 shows the feature histogram window together with the graphics window. Upon opening,
the tool displays the histogram of the area (default feature selection) of the regions or XLDs that were
displayed most recently in the currently active graphics window. You can select various features in the
combo box Feature; the status bar displays additional information about the select feature, e.g., which
operator is used to calculate it. Further information about region features can be found in the description
of the menu item Visualization . Region Info.

Most parts of the tool are built up similarly to the gray value histogram, which is described in detail above
(menu entry Visualization . Gray Histogram Info); in the following, we concentrate on points

2.3.6 Menu ’Visualization’ 39

specific to the feature histogram. An important point regards the “source” of the regions or XLDs: The
feature histogram is calculated for the regions or XLDs that were displayed most recently in the graphics
window. Thus, if you display an image, there are no regions or XLDs, therefore the histogram remains
“empty”. As soon as you display regions or XLDs on top of an image, the histogram is calculated. If you
display regions or XLDs without an image, you can still calculate feature histograms, but only for shape
features. Please keep in mind that only the most recently displayed regions or XLDs are the source of
the histogram, not all objects currently displayed in the graphics window!

The histogram itself is displayed with the horizontal axis corresponding to the feature values and the
vertical axis corresponding to the frequency of the values, i.e., to the number of regions or XLDs with
a certain feature value. In figure 2.20, the histogram of the orientation of the clips is displayed. When
comparing the histogram to the gray value histogram in figure 2.19 on page 36, you will note a typical
difference: Because in most cases the overall number of regions or XLDs is much smaller than the overall
number of pixels, feature histograms often consist of individual lines, most of them having the height
1 (when displaying absolute frequencies). Of course, this effect depends on the selected feature: For
features with floating-point values, e.g., the orientation, the probability that two regions or XLDs have
the same feature value is very small, in contrast to features with integer values, e.g., the number of holes.

If you click on the button Set, a dialog that lets you modify the displayed range of feature values appears.

You can influence the calculation of the histogram with the slider Tolerance. The selected value is used
to discretize the horizontal axis: Instead of determining the frequency of an “exact” feature value, regions
with feature values falling within discrete intervals are summed. Graphically speaking, the horizontal
axis is subdivided into “bins” with a width equal to the value selected with the slider Tolerance.

Automatic selection

As already noted, the region feature histogram facilitates the task of finding suitable threshold parameters
for the operators select_shape, select_gray, and select_shape_xld: Select the entry selected
in the combo box Display, choose suitable visualization parameters in the three combo boxes Color,
Draw, and Width, and then position the two vertical lines such that the desired regions are highlighted.
For example, in figure 2.20 the three clips pointing upwards and to the right were selected. The values
displayed next to the vertical lines can then directly be used for the parameters Min and Max, the feature
name selected in the combo box Feature for the parameter Features.

2.3.6.9 Visualization . Region Info

This menu item opens a tool for the convenient inspection of shape and gray value features of individual
regions. It can, for instance, be used to determine thresholds for operators that select regions based on
these features, e.g., select_shape or select_gray. Figure 2.21 shows the layout of the region feature
inspection window.

The strategy to determine the data from which to compute the features is very similar to that of the gray
histogram inspection window (see section 2.3.6.7 on page 35). You can display an image or region by
double-clicking on it in the variable window or you can select a region or an image which is already
displayed by single-clicking it. If you display or click into an image, the gray value features of the entire
image will be calculated. If you click into a region that is not underlaid with an image, only the shape
features of this region will be displayed. If you click into a region that is underlaid with an image or into
a region that has gray value information (e.g., from reduce_domain or add_channels), both the shape

G
U

I

40 Graphical User Interface

Figure 2.21: Online region feature inspection.

and gray value features of that region will be displayed. Finally, if you have overlaid an image with a
region, but click into a part of the image that is outside the region, only the gray value features of the
entire image will be calculated.

Analogously to the gray histogram inspection window, the gray value features of a multi-channel image
are calculated from the first channel by default. You can use the combo box Channel to select the desired
channel.

Shape features

The shape features on the left side of the region inspection window are grouped into seven categories,
which correspond roughly to individual HALCON shape feature operators. The top-most of the dis-
plays shows the most basic region features, namely the area and center of gravity of the region (see
area_center in the Reference Manual) and the width and height of the smallest axis-parallel rectangle
of the region. The latter is computed from the output of the operator smallest_rectangle1.

The second display contains information about the orientation (angle) and size of the region along

2.3.6 Menu ’Visualization’ 41

the two principal directions (ra and rb) of the region. With the combo box shape, you can select
by what means the size is computed. If you select ellipse, the size is computed with the operator
elliptic_axis. This means that the parameters ra and rb are the major and minor axis of an ellipse
that has the same moments as the selected region. Note that this ellipse need not enclose the region.
If you set shape to rectangle, the size is computed with the operator smallest_rectangle2. This
means, that ra and rb are half the width and height of the smallest rectangle with arbitrary orientation
that completely contains the selected region. The orientation of the region is computed in both cases with
the operator orientation_region to get the full range of 360◦ for the angle. You can select whether
to display the angle in degrees or radians with the corresponding combo box.

The next three displays show simpler shape features of the selected region. The first of these dis-
plays shows the contour length of the region, i.e., the euclidean length of its boundary (see the oper-
ator contlength). The second one shows the compactness of the region, i.e., the ratio of the contour
length of the region and the circumference of a circle with the same area as the region (see the operator
compactness). The compactness of a region is always larger than 1. The compacter the region, the
closer the value of the compactness is to 1. The third display shows the convexity of the selected region,
i.e., the ratio of the area of the region and the area of the convex hull of the region (see the operator
convexity). The convexity of a region is always smaller than 1. Only convex regions will reach the
optimum convexity of 1.

The last but one display shows shape features derived from the ellipse parameters of the selected region,
which are calculated with the operator eccentricity. The anisometry of the region is the ratio of the
major and minor axis of the ellipse (i.e., the ratio of ra and rb in the second display if you set shape
to ellipse). This feature measures how elongated the region is. Its value is always larger than 1,
with isometric regions having a value of 1. The definition of the more complex features bulkiness and
structure factor (abbreviated as structure in the display) can be obtained from the HALCON Reference
Manual.

The final shape feature display shows the connected components and number of holes of the selected
region, as computed by the operator connect_and_holes.

Gray value features

The gray value features are grouped into five displays on the right side of the region inspection window.
Again, they correspond roughly to individual HALCON operators. The first display shows the mean gray
value intensity and the corresponding standard deviation of the selected region. These are computed with
the operator intensity.

The second display shows the output of the operator min_max_gray. This operator computes the dis-
tribution (histogram) of gray values in the image and returns the gray values corresponding to an upper
and lower percentile of the distribution. This percentile can be selected with the slider at the top of the
display. For a percentile of 0 (the default), the minimum and maximum gray values of the region are
returned. The display also shows the range of gray values in the region, i.e., the difference between the
maximum and minimum gray values.

In the third display, the gray value entropy of the selected region is displayed (see the operator
entropy_gray). Again, this is a feature derived from the histogram of gray values in the region. The
feature entropy measures whether the gray values are distributed equally within the region. This measure
is always smaller than 8 (for byte images — the only supported image type for this operator). Only im-
ages with equally distributed gray values reach this maximum value. The feature anisometry measures

G
U

I

42 Graphical User Interface

the symmetry of the distribution (see the operator anisometry. Perfectly symmetric histograms will
have an anisometry of -0.5.

The fourth display contains gray value features derived from the coocurrence matrix of the selected
region are displayed (see the operator cooc_feature_image). The combo box ld can be used to select
the number of gray values to be distinguished (2ld). The combo box dir selects the direction in which
the coocurrence matrix is computed. The resulting features — energy, correlation, homogeneity, and
contrast — have self-explanatory names. A detailed description can be found in the reference of the
operator cooc_feature_matrix.

The final display contains the output of the operator moments_gray_plane. These are the angles of the
normal vector of a plane fit through the gray values of the selected region.

Figure 2.22: Configuration dialog for single region features.

Each of the gauges corresponding to a display can be configured to set the minimum and maximum
values for each gauge. Furthermore, the scaling function of the gauge can be determined. This can be
used to make the relation of the features of different regions more intuitive. For example, features that
depend on the area of the region are more intuitively grasped when the scaling is set to sqrt(x). The
configuration dialog is the same for all gauges, and is shown in figure 2.22. It can be brought up by
pressing the button next to each gauge.

2.3.6.10 Visualization . Size Window

There are convenient methods to change the size of the active graphics window dependent on the size
of the previously displayed image. Using the submenu Original, the window is set to the same size
as the most recently displayed image, that means, for each pixel of the image one pixel on the screen is
used for displaying. Similar to this, you can select Original half or Original quarter to make the
window half or a quarter as big as the displayed image. The submenus Half and Double change the size
of the graphics window to half and double its current size, respectively, independent of the size of the
previously displayed image. You can combine Double with Original. The submenu Aspect changes
the aspect ratio of the graphics window, so that pixels are displayed as squares on the screen. For this
operation, again the size of the previously displayed image is used.

2.3.6.11 Visualization . Zooming

This is a convenient menu for manipulation of the zooming mode. The submenu Reset switches zoom-
ing off, i.e., an image will be displayed so that it fills the graphics window completely. The submenus

2.3.6 Menu ’Visualization’ 43

Zoom In and Zoom Out apply a zooming “in” and “out” to the image or region by a factor of two. Fi-
nally, there are two interactive modes to control zooming: Draw Rectangle allows the specification
of a rectangular part of the window to be zoomed while Draw Center allows the definition of a pixel
coordinate that should be at the center of the window (e.g., for a successive Zoom In).

For more information see the menu Visualization . Set Parameters. Zoom.

2.3.6.12 Visualization . Colored

This is an easy way to display multiple regions or XLDs. Each region is displayed in a different color,
where the number of different colors is specified in the submenu. You can choose between 3, 6 and 12
colors. If all regions are displayed with one color, you have to use the operator connection beforehand.
You can check this also with the operator count_obj.

2.3.6.13 Visualization . Color

This item allows you to choose a color for displaying segmentation results (regions and XLDs), text
(write_string) and general line drawings (e.g., 3D plots, contour lines, and bar charts). The number
of colors which are available in the submenu depends on the graphics display (i.e., the number of bits
used for displaying). After selecting a color, the previously displayed region or XLD object will be
redisplayed with this color. The default color is white.

2.3.6.14 Visualization . Draw

Here, you can select a visualization mode to display regions. It can either be filled (item fill) or the
borders are displayed only (item margin). The border line thickness of the displayed regions is specified
using the menu item Line Width (see figure 2.24 on page 45).

2.3.6.15 Visualization . Line Width

Here, you determine the line width for painting XLDs, borders of regions or other types of lines. You
can select between a wide range of widths using the submenu.

2.3.6.16 Visualization . Shape

Here, you specify the representation shape for regions. Thus you are able to display not only the region’s
original shape but also its enclosing rectangle or its enclosing circle.

2.3.6.17 Visualization . Lut

This menu item activates different look-up tables, which can be used to display gray value images and
color images in different intensities and colors. In the case of a true color display the image has to be
redisplayed due to the missing support of a look-up-table in the graphics hardware. For color images
only the gray look-up-tables can be used, which change each channel (separately) with the same table.

G
U

I

44 Graphical User Interface

Figure 2.23: Settings of parameter paint.

2.3.6.18 Visualization . Paint

This menu item defines the mode to display gray value images. For more information see the menu item
Visualization . Set Parameters below.

2.3.6.19 Visualization . Set Parameters

By using this menu item, a dialog called Visualization Parameters is opened, which handles more
complex parameter settings. Select one setting with your left mouse button and the window brings up
the according parameter box. Each box contains different buttons, text fields, or check boxes to modify
parameters.

Each box has an Update button. If this button is pressed, every change of a parameter will immediately
lead to a redisplay of the image, regions, or XLD in the graphics window. If the button is “off” the
parameters become active for the next display of an object (double click on an icon or execution of an
operator). By default the update is deactivated for the boxes Lut and Paint.

You may specify the following parameter settings.

Paint
Here, you can select between several graphical presentations for images. Examples are
contourline and 3D-plot. In the default mode the image will be displayed as a picture (see
figure 2.23).

If you have chosen a presentation mode, the window displays all possible parameters you may
modify. For example, after selecting the item 3D-plot you have to specify the following parame-
ters:

• Step (the distance of plot lines in pixels),

2.3.6 Menu ’Visualization’ 45

Figure 2.24: Settings of parameter pen.

• Colored (use the gray value of a pixel to draw a line segment instead of one graphic color),

• Eye height,

• Eye distance (view point),

• Scale (height of 3D plot),

• Row and

• Column (position of the center).

Pen
Here, the display modes display for regions and XLDs are specified. You can select the color
(single or multiple), the drawing mode (filled or border), the line width, and the shape of the
regions.

You can select up to 12 colors by clicking the appropriate checkbox. They are used to empha-
size the connectivity of different regions in the graphics window. If you choose a single color
presentation you may specify this color by selecting it in the list box (see figure 2.24).

With the parameter shape (default is original), you may specify the presentation shape for
regions. Thus you are able to display not only the region’s original shape but also its enclosing
rectangle or its enclosing circle, etc.

The line width of the presented regions, XLDs, or lines is specified with help of the menu item
border width.

For regions the draw mode can be specified: Either it might be filled (item fill) or the borders
are displayed (item margin) only.

Zoom
The menu item specifies which part of an image, region, XLD, or other graphic item is going

G
U

I

46 Graphical User Interface

to be displayed (see figure 2.25). The upper left four text fields specify the coordinate system.
left/upper defines the pixel which will be displayed at the upper left corner of the window.
lower/right defines the pixel which will be displayed at the lower right side of the window.
By selecting the upper button Interactive... you specify a rectangular part in the graphics
window interactively. For this, you press the left mouse button to indicate the rectangle’s upper
left corner. Hold the button and drag the mouse to the lower right corner’s position. Release the
button and correct the size by grabbing the borders or corners of the rectangle. By pressing the
right mouse button inside your specified rectangle you display the objects inside the rectangle in
the graphics window.

You can also enter the coordinates of the desired clipping manually by specifying the coordinates
of the upper left corner and the lower right corner in the respective text fields. Please note that the
text fields sometimes behave unexpectedly.

Figure 2.25: Settings of parameter zoom.

Below the coordinates of the rectangle, you see its center. This center can also be specified inter-
actively using the button Interactive.... Activating this mode, you first have to click with the
left button into the active graphics window. Now you can correct this position by again pressing
the left mouse button. To quit, press the right mouse button.

The buttons Zoom Out and Zoom In activate a zooming with factor 2 or 0.5, respectively.

To get the image’s full view back on your graphics window you simply click the checkbox Reset.

Lut
Using Lut you are able to load different look-up-tables for visualization (see figure 2.26). With the
help of a false color presentation you often get a better impression of the gray values of an image.
In the case of a true color display, the image has to be redisplayed due to the missing support of
a look-up-table in the graphics hardware. For color images only the gray look-up-tables can be
used, which change each channel (separately) with the same table.

2.3.7 Menu ’Procedures’ 47

Figure 2.26: Settings of parameter lut.

2.3.7 Menu Procedures

The menu Procedures contains all functionality that is needed to create, modify, copy, delete, or save
HDevelop procedures. At the bottom of this menu all available procedures except the main procedure,
i.e., the local procedures of the current program as well as all external procedures found in the procedure
paths (see section 2.3.7.11 on page 50), are appended in an alphabetical order. The menu items that can
be selected are shown in figure 2.27.

2.3.7.1 Procedures . Create

This menu item is used to create a new HDevelop procedure and corresponds to the button Create in the
program window. Selecting this item opens the procedure interface dialog, which, if necessary, replaces
the operator dialog, i.e., only one of the two dialogs can be open at a time. The procedure interface dialog
and the mechanism of creating procedures are described in section 2.4.3 on page 69.

2.3.7.2 Procedures . Edit Interface

This menu item opens the procedure interface dialog and displays the interface of the current procedure.
Procedures . Edit Interface has no effect if the current procedure is the main procedure. The menu
item has the same effect as the button Interface in the program window (compare section 2.4.3 on page
69). Note that the interface can only be edited for procedures that are not protected by a password (for
protected external procedures see section 2.4.3.3 on page 74).

2.3.7.3 Procedures . Delete Current

If the current procedure is a local procedure, it is deleted from the program and the main procedure
becomes the current procedure. All calls to the local procedure in the current program are replaced by

G
U

I

48 Graphical User Interface

Figure 2.27: The menu Procedures.

comments. This item is disabled if the current procedure has a procedure call on the call stack, if it is the
main procedure, or if it is an external procedure.

2.3.7.4 Procedures . Delete All Unused

All local procedures that cannot be reached by any procedure call from the main procedure are deleted
from the program. If the current procedure is among the deleted procedures, the main procedure becomes
the current procedure.

2.3.7.5 Procedures . Copy

Selecting this menu item opens a dialog with which it is possible to copy existing procedures (see fig-
ure 2.28). The dialog offers a combo box in which you can select the procedure that is to be copied,
either by typing the procedure name in the text field or by selecting a procedure from the combo box list,
which contains all procedures in the program. In the target text field the name of the target procedure can
be entered. Activating the Copy button creates a copy of the source procedure and adds it to the current

2.3.7 Menu ’Procedures’ 49

program. Cancel dismisses the dialog. The copy item does not work for procedures that are protected
by a password (for protected external procedures see section 2.4.3.3 on page 74).

Figure 2.28: Copy procedures.

2.3.7.6 Procedures . Replace Procedure Call

The menu item Procedures . Replace Procedure Call enables you to replace procedure calls with
other procedures having the same interface, e.g., in order to adapt programs to a renaming of an external
procedure. If you select a procedure in the upper combo box, a selection of suited replacement candidates
is shown in the lower combo box (see figure 2.29). As this works only for procedures having the same
interface, in case you want to change the interface of a procedure, it is recommended to rename it first,
then replace it, and finally change the interface. When changing the interface of an external procedure
you should be aware that for external procedures the changings are applied in all programs using it. As
inside another program using the same external procedure no information about the changes exist, when
loading it, HDevelop issues a warning and disables the procedure calls. The replacement of procedures
works only for procedures that are not protected by a password. For a protected procedure an error
message is raised and the old procedure call is retained. Generally, when a procedure is replaced by
another procedure, both procedures are still available, but in case of local procedures only as long as no
Procedures . Delete Current or Procedures . Delete All Unused is applied.

Figure 2.29: Replace procedure calls.

2.3.7.7 Procedures . Save Current As

HDevelop allows you to save or export the current procedure to a file, if it is a local procedure. For
external procedures the menu entry is disabled. A file selection dialog similar to the one of File .
SaveAs (see section 2.3.3.6 on page 19) is opened and after selecting a file, the current procedure is

G
U

I

50 Graphical User Interface

saved together with all procedures that can be called directly or indirectly from the procedure. If the
selected file format is of type HDevelop, an empty main procedure is added to the file. Note that if
the selected file format corresponds to one of the supported HDevelop export languages C, C++, Visual
Basic, Visual Basic .NET, or C#, the exported file will not contain a main or similar function, and the
exported file will not work as a standalone application. If the current procedure is the main procedure,
Procedures . Save Current As has the same effect as File . Save As.

2.3.7.8 Procedures . Print Current

The menu item Procedures . Print Current enables you to print the current procedure’s program
body. Upon selecting the menu item, a dialog appears in which you can configure the printing process.

2.3.7.9 Procedures . Make All Local

With this menu item, you can change all of your procedures to become local. If your program contains
protected external procedures, HDevelop issues a warning and modifies only the procedures that are not
protected. Individual procedures can be made local (or external) via the check box local in the proce-
dures interface (see section 2.4.3.1 on page 69). For changing the edit status of an external procedure see
section 2.4.3.3 on page 74.

2.3.7.10 Procedures . Make All External

Similar to the menu item Procedures . Make All Local, with Procedures . Make All External
you can make all procedures external. The formally local procedures are now stored as external proce-
dures in the first path of the list of external procedure paths (see section 2.3.7.11). For changing the edit
status of an external procedure see section 2.4.3.3 on page 74.

2.3.7.11 Procedures . Edit External Procedure Paths

When you select this menu item, the dialog depicted in figure 2.30 appears. With it, you can define
one or more paths where external procedures are stored and searched for. Please note that by default no
path is defined. Inside the defined paths, also the contained subdirectories are scanned. Therefore, it is
recommended to select directories with a restricted depth in order to speed up the search process. A new
path is added by Add New and selected paths can be deleted from the list by Delete (see figure 2.30).
Every modification has to be confirmed by Ok and the dialog is dismissed by Cancel. If you change the
list of paths, the list of all available external procedures is updated.

2.3.7.12 Procedures . Edit External Procedure Passwords

This menu item allows you to change the edit states of your external procedures. When selecting the
menu item, the dialog depicted in figure 2.31 appears. It consists of two lists of external procedures. The
right list contains the editable external procedures, which comprise procedures that are not protected as
well as procedures that are protected by a password but made temporarily (for the duration of the current

2.3.7 Menu ’Procedures’ 51

Figure 2.30: Edit external procedure paths.

Figure 2.31: Edit external procedure passwords.

HDevelop session) editable. The latter are marked with a (P). The left list contains the locked external
procedures, i.e., the protected procedures that remain not editable. To change the status of an external
procedure several buttons and text fields are provided. Changes can only be applied to procedures you
are authorized to access. Thus, a password dialog with the text fields Password and Confirm is available
to access protected external procedures you are authorized to access or to assign a new password to an
external procedure that is not yet protected. A new password is confirmed by the Set button and an
already existing password is removed by the Clear button. If you are authorized to access a procedure,
you can use the two arrow buttons between the procedure lists to move the procedure from one list into
the other and thus change its edit status. To leave the dialog, press the Close button.

In detail, you can do the following actions:

G
U

I

52 Graphical User Interface

• Protect an external procedure with a password:

– Select the not yet protected procedure from the list of editable procedures,

– enter the same password at Password and Confirm,

– press the Set button to assign the password to the procedure (the procedure then is marked
with a (P) in the dialog),

– press the Close button to close the dialog,

– and save the program.

As long as HDevelop is not restarted the procedure is still temporarily editable. The protection
is automatically activated after restarting HDevelop. If you want to activate the protection also
for the current session, you have to save the program and then change the temporarily editable
procedure into a locked procedure like described below.

• Make a protected procedure temporarily editable (for the duration of the current HDevelop ses-
sion):

– Select the protected procedure from the list of locked procedures,

– enter the password at Password,

– press the button with the rightwards pointing arrow (the procedure then moves into the list of
editable procedures and is marked with a (P)),

– and press the Close button to close the dialog.

The procedure can now be edited via the program window like described in section 2.4.3 on page
69. After restarting HDevelop, the protection is automatically reactivated.

• Change a protected but temporarily editable procedure into a locked procedure:

– Either restart HDevelop, or

– select the protected but temporarily editable procedure from the list of editable procedures,

– press the button with the leftwards pointing arrow (the procedure then moves into the list of
locked procedures),

– and press the Close button to close the dialog.

The next time you try to edit the procedure, the password dialog asks you to enter the correct
password.

Note that the procedure is only saved as long as it is editable. When trying to lock an external
procedure that was not saved after being modified, a dialog appears that asks you to save the
program first. Be aware also that after locking a procedure, no undo or redo can be applied to the
preceding user actions anymore.

• Permanently remove the protection from a protected external procedure:

– If not already done, change the procedure into a temporarily editable procedure like described
above,

– select the procedure from the list of editable procedures,

2.3.8 Menu ’Operators’ 53

– press the Clear button to remove the password (the (P) behind the procedure name is then
removed as well),

– press the Close button to close the dialog,

– and save the program.

The procedure can now be edited via the program window and remains editable also after saving
the program and restarting HDevelop.

For an alternative approach to change the edit status of an external procedure and further information
about protected procedures see section 2.4.3.3 on page 74.

2.3.8 Menu Operators

This menu item comprises all HALCON and HDevelop operators including the HDevelop control con-
structs.

2.3.8.1 Operators . Control

Here, you may select control structures for the program. This involves the execution of a program
segment (henceforth named body) depending on a test (if and ifelse) and the repetition of a program
segment (for, while, and break). Furthermore, you may stop the program’s execution at any position
(stop) or terminate HDevelop (exit). The operators assign and insert do not influence the execu-
tion, but serve to specify values for control data (assignment). The operator comment is used to add a
comment, that means any sequence of characters, to the program. The operator return terminates
the current procedure call and returns to the calling procedure (see section 2.2 on page 12 for more
information about HDevelop procedures).

The corresponding menu is shown in figure 2.32.

Selecting a menu item displays the corresponding control construct in the operator window, where you
can set the necessary parameters. After specifying all parameters you may transfer the construct into
your program. A direct execution for loops and conditions is not possible, in contrast to other HDevelop
and HALCON operators, because you have to specify the loop’s and condition’s body first to obtain
useful semantics. If necessary, you may execute the program after the input with Step or Run. The
insertion cursor is positioned after the construct head to ensure the input of the construct’s body occurs
in the correct place. This body is indented to make the nesting level of the control constructs visible,
and thus to help you in understanding the program structure (see figure 2.33). To get an idea how to use
loops, you may look at the example session in section 1.4 on page 3, and at the programs in section 5.3 on
page 136, section 5.8 on page 147 and section 5.9 on page 149. The semantics for loops and conditions
are shown in section 3.7 on page 109.

Assignment

The operator assign serves as an assignment operator for control variables (numbers and strings). Anal-
ogously to “normal” operators the input is made in the operator window by specifying both “parameters”
Input and Result (i.e., right and left side of the assignment). An instruction in C, e.g.,

G
U

I

54 Graphical User Interface

Figure 2.32: Menu item Operators . Control.

x = y + z;

is declared inside the operator window as

assign(y + z,x)

and displayed in the program window by

x := y + z

The operator insert implements the assignment of a single value (tuple of length 1) at a specified index
position of a tuple. Thus an array assignment (here in C syntax)

a[i] = v;

is entered as

insert(a,v,i,a)

in the operator window, and is displayed as

a[i] := v

2.3.8 Menu ’Operators’ 55

Figure 2.33: Example for using a for loop.

in the HDevelop program window.

Program termination

The operators stop and exit are used to terminate the program. More precisely, stop interrupts an exe-
cution and exit terminates HDevelop. Having interrupted the execution you may continue the program
by pressing Step or Run. This is useful, e.g., in demo programs to install defined positions for program
interruption. Under UNIX, you can use exit in combination with a startup file and the option -run (see
section 1.4 on page 3). Thus, HDevelop will not only load and run your application automatically, but
also terminate when reaching exit.

Comments

The operator comment allows to add a line of text to the program. This text has no effect on the execution
of the program. A comment may contain any sequence of characters.

2.3.8.2 Operators . Develop

This menu contains several operators that help to adapt the user interface. These operators offer the
same functionality that you have using mouse interaction otherwise. They are used to configure the

G
U

I

56 Graphical User Interface

environment from within a program. Using these operators, the program performs actions similar to the
setting of a color in the parameter window, opening a window in the menu bar, or iconifying the program
window with the help of the window manager.

All operators in this menu start with the prefix dev_. It has been introduced to have a distinction to
the underlying basic HALCON operators (e.g., dev_set_color and set_color). You can find the
complete listing in figure 2.34.

Figure 2.34: Operators in menu item Operators . Develop.

The effects of each operator are described as follows:

• dev_open_window, dev_close_window, dev_clear_window
The operators dev_open_window and dev_close_window are used to open and to close a graph-
ics window, respectively. During opening, the parameterization allows you to specify the window’s
size and position. The operator dev_clear_window clears the active window’s content and its
history. This corresponds to the usage of the button Clear in the graphics window. Please note
that dev_open_window and dev_close_window are not supported for Visual Basic, Visual Basic
.NET, and C# export because here one HWindowXCtrl is used.

• dev_set_window_extents
With this operator, you can set the size and position of the active HDevelop graphics window.

• dev_set_window

2.3.8 Menu ’Operators’ 57

This operator activates the graphics window containing the given ID. This ID is an output parameter
of dev_open_window. After the execution, the output is redirected to this window. This operator
is not needed for exported code in C++ or C, because here every window operation uses the ID as
a parameter. The operator has no effect for exported code in Visual Basic, Visual Basic .NET, and
C#.

• dev_set_color, dev_set_colored
dev_set_color has the same effects as the menu item Visualization . Color (see sec-
tion 2.3.6.13 on page 43). dev_set_colored is equal to the menu item Visualization .
Colored (see section 2.3.6.13 on page 43).

• dev_set_draw
This operator has the same effects as the menu item Visualization . Draw (see section 2.3.6.14
on page 43).

• dev_set_line_width
For an explanation see the menu item Visualization . Line Width (see section 2.3.6.15 on
page 43).

• dev_set_lut
For an explanation see the menu item Visualization . Lut (see section 2.3.6.17 on page 43).

• dev_set_paint
For an explanation see the menu item Visualization . Paint (see section 2.3.6.18 on page 44).
If you want to specify all possible parameters of a given paint mode, you have to specify them as a
tuple, analogously to the HALCON operator set_paint.

• dev_set_shape
For an explanation see the menu item Visualization . Shape (see section 2.3.6.16 on page 43).

• dev_set_part
This operator adjusts the coordinate system for image, region, XLD and other graphic output.
This is done by specifying the upper left and the lower right corner coordinates. This specified
part is shown in the entire graphics window. If the width or height of the specified rectangle has a
negative value (e.g., Row1> Row2) the result is equivalent to the menu Visualization . Zooming
. Reset (see section 2.3.6.11 on page 42): the zoom mode is switched off, i.e., the most recently
displayed image fills the whole graphics window. This feature of dev_set_part is not supported
for exported C, C++, Visual Basic, Visual Basic .NET, and C# code.

• dev_display
Iconic variables are displayed in the active graphics window by this operator. It is reasonable to
do this when the automatic output is suppressed (see dev_update_window and File . Options
(see section 2.3.3.11 on page 21)).

• dev_clear_obj
This operator deletes the iconic object stored in the HDevelop variable that is passed as the input
parameter. In the variable window, the object is displayed as undefined (with a ? as its icon).

• dev_inspect_ctrl
This operator opens an inspection window displaying the values of the variable passed to the op-
erator. In most cases a list dialog is opened, which shows all values of the variable. In the case of

G
U

I

58 Graphical User Interface

a frame grabber handle, a description of this frame grabber is opened. In addition, this dialog al-
lows online grabbing of images. This operator is not supported for exported C, C++, Visual Basic,
Visual Basic .NET, and C# code.

• dev_close_inspect_ctrl
This is the opposite operator to dev_inspect_ctrl, and closes the inspect window. This operator
is not supported for exported C, C++, Visual Basic, Visual Basic .NET, and C# code.

• dev_map_par, dev_unmap_par
These operators open and close the parameter dialog, which can also be opened using the menu
Visualization . Set Parameters (see section 2.3.6.19 on page 44). This operator is not sup-
ported for exported C, C++, Visual Basic, Visual Basic .NET, and C# code.

• dev_map_var, dev_unmap_var
These operators iconify the variable window (dev_unmap_var), and retransform the iconified win-
dow to the normal visualization size, respectively (dev_map_var). This means that the variable
window always remains visible on the display in one of the two ways of visualization. These oper-
ators can be executed with the help of the window manager. These operators are not supported for
exported C, C++, Visual Basic, Visual Basic .NET, and C# code.

• dev_map_prog, dev_unmap_prog
Analogously to dev_map_var and dev_unmap_var, these operators iconifyiconify or deiconify
the program window. These operators are not supported for exported C, C++, Visual Basic, Visual
Basic .NET, and C# code.

• dev_update_window, dev_update_var, dev_update_time, dev_update_pc
Using these operators, you may configure the output at runtime. It corresponds to the settings in
menu File . Options (see section 2.3.3.11 on page 21). These operators are not supported for
exported C, C++, Visual Basic, Visual Basic .NET, and C# code.

• dev_set_check
This operator is equivalent to set_check of the HALCON library. It is used to handle runtime
errors caused by HALCON operators that are executed inside HDevelop. The parameter value
’give_error’, which is the default, leads to a stop of the program together with an error dialog
if a value not equal to H_MSG_TRUE is returned. Using the value ’~give_error’, errors or other
messages are ignored and the program can continue. This mode is useful in connection with
operators like get_mposition, file_exists, read_image, or test_region_point, which can
return H_MSG_FAIL. An example can be found in section 5.10 on page 150.

• dev_error_var
This operator specifies a variable that contains the return value (error code) of an operator after
execution. This value can be used to continue, depending on the given value. dev_error_var
is normally used in connection with dev_set_check. Note that, as the procedure concept in
HDevelop only allows for local variables, the variable set by dev_error_var will only be valid
in calls to the relevant procedure. Furthermore, every corresponding procedure call will have
an own instance of the variable, i.e. the variable might have different values in different proce-
dure calls. For an example how to use dev_error_var in connection with dev_set_check see
%HALCONROOT%\examples\hdevelop\Graphics\Mouse\get_mposition.dev.

Please note that operations concerning graphics windows and their corresponding operators have addi-
tional functionality as HALCON operators with corresponding names (without dev_): graphics windows

2.3.8 Menu ’Operators’ 59

in HDevelop are based on HALCON windows (see open_window in the HALCON reference manual),
but in fact, they have an enhanced functionality (e.g., history of displayed objects, interactive modifica-
tion of size, and control buttons). This is also true for operators that modify visualization parameters
(dev_set_color, dev_set_draw, etc.). For example, the new visualization parameter is registered
in the parameter window when the operator has been executed. You can easily check this by opening
the dialog Visualization . Set Parameters . Pen and apply the operator dev_set_color. Here
you will see the change of the visualization parameters in the dialog box. You have to be aware of this
difference if you export dev_* to C, C++, Visual Basic, Visual Basic .NET, and C# code.

In contrast to the parameter dialog for changing display parameters like color, the corresponding oper-
ators (like dev_set_color) do not change to contents of the graphics window (i.e., they don’t cause a
redisplay). They are used to prepare the parameters for the next display action.

Figure 2.35: Menu hierarchy of all HALCON operators.

2.3.8.3 Operators . Classification, File, ...

In the following items, you can find all HALCON operators, arranged in chapters and subchapters.
This set of machine vision operators forms the most important part of HALCON: the HALCON library.
HALCON operators implement the different machine vision tasks such as preprocessing, filtering, or
measurement (see figure 2.35).

G
U

I

60 Graphical User Interface

You may look for a detailed description of each operator in the HALCON reference manual.3

The menu has a cascade structure, according to the chapter structure of the HALCON reference manual.
As this menu has to be built up after opening the program window, it might take some time until it is
available. During the build-up time the menu is “grayed out”. Selecting a chapter of the menu opens a
pulldown menu with the corresponding subchapters or operators, respectively.

This operator hierarchy is especially useful for novices because it offers all operators sorted by thematic
aspects. This might be interesting for an experienced user, too, if he wants to compare, e.g., different
smoothing filters, because they reside in the same subchapter. To get additional information, a short
description of an operator (while activating its name in the menu) is displayed in the status bar (see
figure 2.35).

Note, that some operators are visible in the menus but cannot be selected, e.g., open_window (in
Operators . Graphics . Window) or reset_obj_db (in Operators . System . Database) .
In the case of most of these operators, you should use the corresponding Develop operator (e.g.,
dev_open_window instead of open_window) within HDevelop. Some operators, e.g. reset_obj_db,
cannot be called at all within HDevelop.

2.3.9 Menu Suggestions

This menu shows you another possibility how to select HALCON operators. But here they are proposed
to you in a different manner. It is assumed that you have already selected or executed an operator in
a previous step. Depending on this operator, five different suggestions are offered. Figure 2.36 shows
possible successor suggestions for operator read_image.

Figure 2.36: Suggestions to select a successor of HALCON operator read_image.

Suggestions are separated into groups as described below.
3Operators of the menus Control and Develop are special operators of HDevelop. Thus you will not find them in the reference

manuals for HALCON/C, HALCON/C++, or HALCON/COM.

2.3.9 Menu ’Suggestions’ 61

2.3.9.1 Suggestions . Predecessor

Many operators require a reasonable or necessary predecessor operator. For example, before comput-
ing junction points in a skeleton (junctions_skeleton), you have to compute this skeleton itself
(skeleton). To obtain a threshold image you have to use a lowpass filter before executing a dynamic
threshold (dyn_threshold). Using the watershed algorithms (watersheds), it is reasonable to apply a
smoothing filter on an image first, because this reduces runtime considerably.

2.3.9.2 Suggestions . Successor

In many cases the task results in a “natural” sequence of operators. Thus as a rule you use a thresholding
after executing an edge filter or you execute a region processing (e.g., morphological operators) after a
segmentation. To facilitate a reasonable processing all the possible operators are offered in this menu
item.

2.3.9.3 Suggestions . Alternatives

Since HALCON includes a large library, this menu item suggests alternative operators. Thus, you
may, for example, replace mean_image with operators such as gauss_image, sigma_image, or
smooth_image.

2.3.9.4 Suggestions . See also

Contrary to Suggestions . Alternatives, operators are offered here which have some connection
to the current operator. Thus, the median filter (median_image) is not a direct alternative to the mean
filter (mean_image). Similarly, the regiongrowing operator (regiongrowing) is no alternative for a
thresholding. In any case, they offer another approach to solve a task. References might consist of
pure informative nature, too: the operator gen_lowpass, which is used to create a lowpass filter in the
frequency domain, is a reasonable reference to a Gaussian filter.

2.3.9.5 Suggestions . Keywords

This menu item gives access to HALCON operators by using keywords which are associated with each
operator. You get a window, divided into two parts, which contains all keywords on the left hand side
and the selected operators on the right (see figure 2.37).

After the suggestions for an operator have been generated, all keywords belonging to this operator are
marked (reversed) on the left hand side of the window4. On the right side you will find all operators
associated with at least one of these keywords. Clicking a keyword on the left list causes the addition of
operators belonging to this keyword. If you want to transfer one of these operators to the operator dialog
area, you click one of them with the left mouse button. Afterwards the selection window is closed.

4Because there are many entries in the left keyword list, you may see all marked keywords only by scrolling it.

G
U

I

62 Graphical User Interface

Figure 2.37: Operator suggestions according to keyword “Clipping”.

2.3.10 Menu Window (Windows only)

On a Windows system, this menu offers support to manage the sub-windows of the main window, i.e.,
the program, operator, variable, graphics window(s), and possibly other dialogs. You see the provided
menu items in figure 2.38.

Note that this menu is not supported in a UNIX environment, because here the main window has a
reduced functionality.

2.3.10.1 Window . Cascade

By selecting this item, HDevelop arranges the program, operator, variable, and graphics window in a
cascade as you can see in figure 2.38.

2.3.10.2 Window . Tile

When selecting this item, you see the program, operator, variable, and graphics window inside the main
window. They have the same size and fit exactly in the main window. Thus, you get a global view of the
windows’ contents at once. Notice that the four windows may shrink depending on their size to fit in the
main window. Figure 2.39 shows you the effect using this item.

2.3.10.3 Window . Arrange icons

As in every system using windows, you are able to iconify and deiconify your windows. You may even
move your icons on the display. This might create a confusing working environment if you are handling
several graphics tools simultaneously. To get the HDevelop icons back on top of the main window’s
status bar, you just have to press this button.

2.3.11 Menu ’Help’ 63

Figure 2.38: Window management functions.

2.3.10.4 Window . Next

By using this item you move the top window in the background. Hence, it looses its window focus.
Instead, the window that was only hidden by the former top window becomes the top window and gets
the window focus.

2.3.10.5 Window . others

If you select one of the other entries, the specified window will become the top window and gets the
window focus.

2.3.11 Menu Help

Here you may query information about HALCON itself and all HALCON and HDevelop operators.

2.3.11.1 Help . About

This menu item delivers information about the current HALCON version (see figure 2.40). Furthermore,
it lists host IDs detected by the license manager (see the Installation Guide, section 3.1 on page 19, for
more information).

G
U

I

64 Graphical User Interface

Figure 2.39: The window management function Tile.

Figure 2.40: Information about the current HALCON version.

2.3.12 Tool Bar 65

2.3.11.2 Help . HALCON Operators

This online help is based on an HTML browser (see section 6.3 on page 156). The browser will display
the main page of all HALCON and HDevelop operators. It is quite easy for you to browse through this
operator menu and to find the desired operator.

Another possibility of requesting information about the current operator is pressing the button Help
inside the operator window (see page 77).

2.3.11.3 Help . HDevelop Language

This menu item starts the HTML browser with a description of the language, similar to chapter 3 on page
89 of this manual.

2.3.11.4 Help . HALCON News (WWW)

This menu item lets you check for the latest news about HALCON on MVTec’s WWW server, e.g.,
whether new extension packages, frame grabber interfaces, or HALCON versions are available.

2.3.12 Tool Bar

You use most icons in this tool bar to accelerate accessing important HDevelop features. These are
features which you are performing many times while working with HDevelop. Hence, there are buttons
to handle your HDevelop programs and to edit them. The most important buttons are used to start and to
stop a program (or parts of a program). These icons are explained in figure 2.41

2.3.13 Window Area (Windows)

On Windows systems, the window area of the main window contains all necessary windows to show
your HDevelop programs, to visualize your iconic and control results, and to specify any operator’s
parameters. Additionally, you may open as many graphics windows as you want to get a detailed view
of your iconic results.

You are free to move the windows according to your needs and preferences inside this area. You may
iconify and/or deiconify them. To handle these windows in a comfortable way, HDevelop supports you
with some window management functions (see section 2.3.10 on page 62).

2.3.14 Status Bar

The status bar at the bottom of the program window shows you information that is important while
working with HALCON, e.g., context sensitive information about a specific user action or the operator
or procedure call runtime (if time measurement has not been deactivated via the menu item File .
Options (see section 2.3.3.11 on page 21)).

G
U

I

66 Graphical User Interface

These icons are shortcuts for the following menu items:
File . New, File . Load, File . Save.
For a detailed description see section 2.3.3 on page 16.

These icons are shortcuts for the following menu items:
Edit . Cut, Edit . Copy, Edit . Paste, Edit . Undo, Edit .
Redo.
For a detailed description see section 2.3.4 on page 25.

These icons are shortcuts for the following menu items:
Execute . Run, Execute . Step, Execute . Step Into,
Execute . Step Out, Execute . Stop.
For a detailed description see section 2.3.5 on page 28.

These icons are shortcuts for the following menu items:
Execute . Activate, Execute . Deactivate,
Execute . Reset Program.
For a detailed description see section 2.3.5 on page 28.

This icon is a shortcut for the menu item
Visualization . Set Parameters.
For a detailed description see section 2.3.6 on page 32.

These icons are shortcuts for the following menu items:
Visualization . Pixel Info, Visualization . Zooming,
Visualization . Gray Histogram Info,
Visualization . Feature Histogram Info,
Visualization . Region Info.
For a detailed description see section 2.3.6 on page 32.

Figure 2.41: The HDevelop tool bar.

2.4 Program Window

The program window is divided into three areas:

• At the top, you find elements for selecting or creating procedures.

• Below this, the column at the left side contains the program counter, the insertion cursor, and
optionally, one or more break points.

• The main part of the program window contains the program code of the current HDevelop proce-
dure.

These three parts are described in the following sections, but in the reverse sequence.

2.4.1 The Program Area 67

2.4.1 The Program Area

The main part of the program window contains the program code of the current HDevelop procedure.
Here, the user has the possibility to obtain information about the inserted operators or procedure calls.
A program is built up such that every line contains exactly one operator or procedure call with its pa-
rameters, or an assignment. An exception are the conditional constructs if and ifelse, respectively,
and the loop constructs while and for. They contain two, and in case of ifelse three, program lines,
which enclose the body. Every line starts with an operator or procedure name, which is indented, if nec-
essary, to highlight the structure created by the above mentioned control structures. After the operator or
procedure name the parameters are displayed in parentheses. Parameters are separated by commas.

The program window is used to visualize program lines, but not to modify them. You cannot change
a program body by modifying the text directly. Editing the program text in HDevelop is done in the
operator window (see section 2.5 on page 77). The main reason for this principle is the advantage that it
facilitates providing sophisticated help. Thus, many input errors can be avoided.

To edit a line of a program, you double-click it with the left mouse button. In case of conditions and
loops it is unimportant which lines (e.g., for or endfor) are selected. In any case, the head with its
parameters is selected. You may edit only one operator or procedure call at a time.

Besides editing the parameters of a single operator or procedure call, single and multiple lines can be
deleted, cut, or pasted in one step using simple mouse functions. To use this feature, one has to select
one or more lines using the mouse:

• The selection of one line is done by clicking on it. Previously activated lines will then become
deactivated.

• To activate more than one line you have to press the <Ctrl> key while clicking on the line. If
the line is already activated it will become deactivated, while the state of all other lines remains
unchanged.

• The <Shift> key is used to activate a sequence of lines using one mouse click: All lines between
the most recent activation and the new one will become activated.

After the selection of lines, the edit function can be activated by either using the menu Edit (see sec-
tion 2.3.4 on page 25), or the tool bar (see section 2.3.12 on page 65), or via the context menu of the
column to the left (see below). Further information on the use of the mouse can be found in section 2.1
on page 11.

2.4.2 Program Counter, Insertion Cursor, and Break Points

The column to the left of the displayed program body contains the program counter (PC), represented as
a green arrow pointing to a program line, the insertion cursor (a triangle between two program lines) and
optionally one or more break points (BP — a red STOP sign).

The program counter resides in the line of the next operator or procedure call to execute. The insertion
cursor indicates the position to insert a new program line. A break point shows the program line on
which the program is stopped. In figure 2.42 you see a program and the column with the PC (indicated
as an arrow), a BP, and the insertion cursor.

You may position or activate these three labels as follows:

G
U

I

68 Graphical User Interface

Figure 2.42: Program example with the PC (the arrow pointing to the right), insertion cursor and a break
point (BP).

• The PC is set by pressing the left mouse button only.

• The insertion cursor is set by pressing the left mouse button and the <Shift> key.

• A BP is set by pressing the left mouse button and the <Ctrl> key. Clicking on a break point again
while pressing the <Ctrl> key deletes it.

Furthermore, in the column local procedure calls are marked by green and external procedures by dark
green bars (if you did not disable the marking in the menu item File . Options as described in sec-
tion 2.3.3.11 on page 21). See section 2.4.3 for an example.

By clicking into the column on the left with the right mouse button you can open a context menu, which
contains shortcuts to some of the actions of the menus Edit, e.g., copy and paste lines, and Execute, e.g.,
activate and deactivate lines or set and clear break points. Please note that these actions behave slightly
differently than their counterparts in the main menus: When called via the main menus, the actions are
performed only on the selected part of the program; if nothing is selected, no action is performed. In
contrast, when an action is called via the context menu and no line is selected in the program, the action
is performed for the line onto which you clicked with the right mouse button.

Note that any actions that modify the position of the PC will cause the call stack to pop all procedure
calls until the current procedure call remains on top. This is relevant in case the current procedure call is
not the top-most procedure call and is necessary to secure the consistency of the call stack. Modification

2.4.3 Creating and Editing Procedures 69

of the PC can happen as well directly as described above or indirectly by e.g. inserting a program line
above the PC in the current procedure body.

2.4.3 Creating and Editing Procedures

HDevelop always displays one procedure, the current procedure, at a time. The combo box Procedures
on top of the program window displays the name of the current procedure and enables it to be changed
directly by the user. It contains a list of all HDevelop procedures in the current program, with the main
procedure always being the first element in the list, while the other procedures are sorted alphabetically.
After being selected from the list, a procedure, as long as it is not protected by a password (for protected
external procedures see section 2.4.3.3 on page 74), becomes the current procedure and the correspond-
ing procedure call becomes the current procedure call. If the selected procedure has multiple calls on
the stack, the last of the procedure calls is displayed. If the option Show Only Used Procedures is
activated in File . Options (see section 2.3.3.11 on page 21), only the procedures used by the program
are displayed in the combo box Procedures.

While the body of the current procedure is visualized in the program window, the procedure interface
can optionally be viewed or modified in the procedure interface dialog displayed in the operator window.
The buttons Create and Interface at the top of the program window perform the same action as the
menu items Procedures . Create and Procedures . Interface, respectively. Activating one of
these buttons invokes the procedure interface dialog.

2.4.3.1 Procedure Interface Dialog

The procedure interface dialog enables you to view and edit the interface of HDevelop procedures. If it is
opened in order to create a new procedure (see figure 2.44), it contains a text field for the procedure name
to be entered. If you edit an existing procedure (see figure 2.43), the name of the procedure is displayed
in the combo box Procedures on top of the dialog. The check box to the right of the combo box
determines whether the procedure is a local or external procedure. For external procedures additionally
the edit status can be specified that determines if the procedure can be viewed and modified by all users
or if it is protected by a password (see section 2.4.3.3 on page 74). The text field below the combo box
can be used to enter an optional short description for the procedure. The short description of a procedure
is treated like the short information of an HALCON operator, i.e., it is displayed in HDevelop’s status
bar when double clicking on a procedure call in the program window or selecting a procedure from the
menu. The next text field can be used to specify chapter and section, separated by a slash (’/’), so that
your procedures can be displayed thematically ordered in the list at the bottom of the menu Procedures.
Next, the path is displayed where the procedure is stored if it is an external procedure. When storing the
external procedure for the first time, this path corresponds always to the first path in the list of external
procedure paths in the dialog Procedures . Edit External Procedure Paths (see section 2.3.7.11
on page 50). Therefore, the structure created by chapters and sections in the text field before, does not
correspond to the automatically created directory structure. At least for the external procedures, you can
create the corresponding directory structure afterwards, outside of HDevelop. The recognition of the
procedures in HDevelop is still ensured, as all subdirectories of the external procedure paths are scanned
as well. When editing already existing external procedures the changed procedures are stored in the
paths they were found in.

G
U

I

70 Graphical User Interface

The next part of the dialog is used for the procedure interface parameters. As mentioned earlier, HDe-
velop procedure interfaces have the same structure as HALCON operator interfaces, that is, they may
contain parameters of the four categories iconic input, iconic output, control input, and control output in
this order. The procedure interface dialog contains four separate areas that offer the necessary functional-
ity for manipulating parameters. These areas correspond to above parameter classes and are independent
of each other. Every area is marked with a label that describes the parameter class. It contains a button
for inserting new parameters, which are always appended at the end of the parameter list. The latter is
displayed by an array of text fields containing the parameters’ names. At the right of every parameter
field is a button with which the corresponding parameter can be deleted from the list. If there exist two or
more parameters in a particular parameter category, the dialog contains exchange buttons between every
two neighboring parameters, with which their positions in the interface can be swapped.

Activating the button Ok on bottom of the dialog either creates a new procedure or commits the changes
made in the procedure interface, depending on whether the interface dialog was invoked in order to cre-
ate a new procedure or to modify the interface of an existing procedure. In the latter case not only the
interface itself might be changed but also the procedure’s program body and variable lists, as new vari-
ables might have been added or existing variables might have been removed or renamed. Additionally,
all calls to the procedure in the current program are checked for consistency and updated if necessary.
Note that if new parameters are added to an existing procedure interface, the corresponding procedure
calls are modified by adding new variables as input parameters, which most likely will not be initialized
at the time of the procedure call. If you change the interface of an external procedure, be aware of the

Figure 2.43: Procedure interface of an existing procedure.

2.4.3 Creating and Editing Procedures 71

fact that other programs containing it do not update the procedure calls. When loading these programs,
you get a warning and the procedure calls are disabled. If the changes were applied to a procedure that is
called from inside a protected external procedure, that procedure call is not even updated in the current
program.

Cancel dismisses the dialog.

2.4.3.2 Creating Procedures

Depending on the corresponding procedure options and a possible selection of lines in the program
window, there are different ways on how a procedure can be created. When activating the button Create,
the program lines marked in the program window are copied and inserted in the program body of the
new procedure. If the last selected program line is not a return operator, a return call is added at the end
of the procedure body. If no lines are selected in the program window, the newly created procedure body
contains the return operator.

By default, a local procedure is created. If you want to create an external procedure instead, you have to
disable the check box local and optionally specify chapter and section. Additionally, you get informa-
tion about the path the procedure is stored in, which is the first path you determined in Procedures .
Edit External Procedure Paths (see section 2.3.7.11 on page 50). Further, section 2.4.3.3 on page
74 shows how to protect an external procedure by a password so that only authorized persons can view
and modify it.

When creating a new procedure from selected program lines, HDevelop automatically determines suit-
able interface parameters for the procedure from the usage of the variables in the selected code. The
following different options (set in File . Options) can be used to determine the procedure parameters:

• Only In Only Out: Variables that are exclusively input and output variables become input and
output procedure parameters, respectively.

• Only In All Out: Variables that are exclusively input variables become input parameters, while
all output variables become output parameters. This is the default option in HDevelop.

• All In Only Out: This setting is symmetrical to the previous setting.

• All In All Out: All input and output variables become input and output procedure parameters,
respectively.

The classification of variables in the selected program lines is performed separately for iconic and control
variables. If a variable is an input as well as an output variable, it is assigned to the first category, i.e.,
the corresponding procedure parameter becomes an input parameter (see figure 2.44).

After the procedure is created and added to the program there exist two ways on how to proceed: If the
option Replace Selection By Call (see menu item File . Options (see section 2.3.3.11 on page
21)) is not activated, the newly created procedure becomes the current procedure. Otherwise, the operator
dialog is opened and a suggested call to the new procedure is displayed (see figure 2.45). The variables
that were used to determine the procedure interface parameters are now being offered as input parameters
for the procedure call. Selecting Ok or Enter in the operator dialog replaces the selected program lines
in the current procedure with a call to the newly created procedure (see figure 2.46). Selecting Cancel
dismisses the operator dialog and the current procedure remains unchanged.

G
U

I

72 Graphical User Interface

Figures 2.44, 2.45, and 2.46 show an example of how a new procedure is created from a selection
of lines in the program window. In the example the options Replace Selection By Call and
Parameters:Only In All Out are activated (see menu item File . Options (see section 2.3.3.11
on page 21)). Figure 2.44 shows HDevelop after pressing the button Create in the program window.
In the procedure interface dialog the name of the new procedure and the optional short description have
already been entered and the name of the output object parameter has been changed from ’MVTecLogo’
to ’Image’.

Figure 2.44: Creating the (local) procedure init_image_visualization from a selection of program lines.

2.4.3 Creating and Editing Procedures 73

Figure 2.45 shows the next step after activating the button Ok in the procedure interface dialog. By now,
the new procedure has been created and added to the program and a call to the procedure is now displayed
in the operator window. Note that all GUI functionality except the parameter fields and the buttons Ok,
Enter, and Cancel in the operator dialog is disabled. Finally, in figure 2.46 the selected program lines
in the current procedure have been replaced by a call to the new procedure after pressing Enter in the
operator dialog. The content of the operator window has been cleared and the HDevelop GUI returned
to its default state.

Figure 2.45: Operator window with a suggested call to the newly created procedure.

G
U

I

74 Graphical User Interface

Figure 2.46: Selected program lines are replaced by a call to the newly created procedure
init_image_visualization.

2.4.3.3 Edit Status of External Procedures

Since HALCON 7.1.1, external procedures with different edit states are provided, i.e., you can choose
between common external procedures that can be viewed and modified by all users and protected ex-
ternal procedures that can be applied by all users but viewed and modified only by authorized per-
sons who know the password. The edit status of an external procedure can be changed via the proce-

2.4.3 Creating and Editing Procedures 75

dure interface dialog or since HALCON 7.1.2 also via Procedures . Edit External Procedure
Passwords (see section 2.3.7.12 on page 50). The main differences of both approaches will be summa-
rized later in this section.

By default, a procedure is created as a local procedure inside the procedure interface dialog (see fig-
ure 2.47).

Figure 2.47: For a local procedure the check box local is activated.

There, to make it external the check box local has to be disabled. Now the Enter Edit Password
button appears (see figure 2.48). Ignoring it leads to a common external procedure that is not protected.

Figure 2.48: After disabling the check box local, the procedure becomes an external procedure.

If you want to protect the procedure by a password, press the Enter Edit Password button. Then, a
separate window appears and the password must be entered twice (see figure 2.49). If both times the
same password is used, a confirmation of the password by the Ok button of the password window is
successful. Otherwise, an error message is raised and you have to repeat the password assignment.

After the password was confirmed, the Enter Edit Password button of the procedure interface dialog
changes into the Change Edit Status button (see figure 2.50).

The final assignment of the password to the procedure is done after submitting the changes of the !
procedure via the Ok button of the procedure interface dialog and saving the program. By saving
the program, the protected procedure is saved in a binary format in the directory it was found in or, if
saved as an external procedure for the first time, in the first path specified in the list of external procedure

G
U

I

76 Graphical User Interface

Figure 2.49: After pressing Enter Edit Password, a password can be assigned via the password window.

Figure 2.50: After confirming the password, the procedure is a protected external procedure. To change
the password or the edit status of the procedure press the Change Edit Status button.

paths in the dialog Procedures . Edit External Procedure Paths (see section 2.3.7.11 on page
50).

When you start HDevelop the next time, the procedure is protected, i.e., when trying to edit the procedure,
e.g., by selecting it from the combo box Procedures in the program window, a separate window appears
that asks for the password. Entering the correct password, the procedure and all procedures having the
same password are temporarily not protected and stay not protected as long as you do not close HDevelop
or reactivate the protection via Procedures . Edit External Procedure Passwords. Note that
you must enter the password in the password window only once to make all procedures having the same
password temporarily not protected. But you must assign the password to each procedure separately in
order to make it a protected procedure.

To change the status of a protected procedure with the procedure interface dialog, you first must make the
procedure temporarily not protected by entering the password. Then, you can use the procedure interface
dialog to change the password or remove the password to turn the protected external procedure into a not
protected external or even a local procedure. To change the password, press the Change Edit Status
button (see figure 2.50). The password window appears and you assign the new password by the same
process you used for the old one. To remove the password and thus turn the protected external procedure
into a not protected external procedure, again press the Change Edit Status button and thus activate
the password window. This time you do not assign any password but press first the Clear and then the
Ok button. For turning a protected external procedure into a local procedure it is sufficient to activate
the check box local. Again, changes only become valid by submitting them by the Ok button of the
procedure interface dialog and saving the program.

2.5 Operator Window 77

To change the status of external procedures with Procedures . Edit External Procedure
Passwords instead, follow the instructions given in section 2.3.7.12 on page 50.

To choose the approach suited best for your task, have a look at the main differentiating characteristics
of both approaches:

• Procedures . Edit External Procedure Passwords is restricted to the handling of exter-
nal procedures. To change a procedure from local to external or vice versa you have to use the
procedure interface dialog.

• An external procedure has to be created inside the procedure interface dialog. So, during the
creation of the procedure, it is recommended to use the procedure interface dialog to define its
first edit status. Edit External Procedure Passwords is then suited to easily change the edit
status and password afterwards.

• When entering the password in the separate password window after trying to edit a protected pro-
cedure, all procedures with the same password are made temporarily editable. Using Procedures
. Edit External Procedure Passwords instead, the same action is restricted to the selected
external procedure.

• Procedures . Edit External Procedure Passwords provides the only means to reactivate
the protection of a protected but temporarily editable external procedure for the current session.

When working with protected procedures, be aware, that the password cannot be reconstructed, so be !
very careful not to forget it and not to repeat a typing error when assigning it! Further, in some situations
protected external procedures behave different from common external or local procedures. In particular,
as they can not be viewed and modified by unauthorized users, they also can not be copied, printed,
or exported to any programming language. Moreover, procedure calls of protected external procedures
can not be replaced by other procedure calls. Additionally, if a protected external procedure contains a
call to another procedure for which the interface was changed, the procedure call is not adapted to the
changes but is disabled for the current program. At last, if a protected external procedure contains any
stop instructions, they are ignored.

2.5 Operator Window

This window is mainly used to edit and display an operator or procedure call with all its parameters.
Here you will obtain information about the number of the parameters of the operator or procedure, the
parameter types, and parameter values. You are able to modify the parameter values according to your
image processing tasks. For this you may use the values proposed by HDevelop or specify your own
values.

The operator window consists of the following three parts:

• At the top you find the operator name field, with which you can select operators or procedures.

• The large area below the operator name field is called the parameter display; it is used to edit the
parameters of an operator or procedure.

• The row of buttons at the bottom allows to control the parameter display.

G
U

I

78 Graphical User Interface

Note that the operator window is also used to edit the interface of a procedure. This is described in
section 2.4.3 on page 69.

2.5.1 Operator Name Field

The operator name field allows to select operators or procedures by specifying a substring of its name.
After pressing <Return> or pressing the button of the combo box, the system is looking for all operators
or procedures that contain the user-specified substring.

If there is an unambiguous search result, the operator or procedure is displayed immediately in the
operator window. If there are several matching results, a combo box opens and displays all operators or
procedures containing the specified substring (see figure 2.51). By clicking the left mouse button you
select one operator and the combo box disappears. Now, the operator’s parameters are shown in the
operator window.

Figure 2.51: Operator selection in the operator name field.

If you are already more familiar with HDevelop, it is useful to select an operator or procedure in the
operator name field. However, in order to do so, you obviously have to be familiar with the operator
names.

2.5.2 Parameter Display

The parameter display is the main part of the operator window. It is empty in its initial state. If you have
selected an operator or procedure call, HDevelop displays its parameter data, i.e., name, number, type,
and default values, in the display.

2.5.2 Parameter Display 79

• In the first column of the operator window you find the parameter names.

• The second column consists of the text fields, which contain variable names in case of iconic
and control output parameters and expressions in case of control input parameters. If you want
to change the suggestions offered by the system (variable names or default values) you may do
so either manually or by pressing the arrow button connected with the respective text field. This
opens a list containing a selection of already defined variables and other reasonable values from
the operator knowledge base. By clicking the appropriate item you set the text field and the list
disappears.

• The third column indicates the parameter’s default type in parentheses.

Please refer to the following rules on how parameters obtain their values and how you may specify them:

Iconic input parameters:
Possible inputs for these parameters are iconic variables of the corresponding list. If there is no
need to execute the operator or procedure call immediately, you may even specify new variable
names, i.e., names, that do not already exist in the variable window, but will be instantiated later by
adding further operators or procedure calls to the program body. In any case, you have to specify
iconic parameters exclusively with variable names. It is not possible to use expressions.

Iconic output parameters:
These parameters contain default variables, which have the same names as the parameters them-
selves. If a variable with the same name as the output parameter is already being used, a number
is added to the name to make it unique. Because the parameter names characterize the computed
result very well, you may adopt these default names in many cases. Besides this, you are free to
choose arbitrary names either by yourself or by opening the list (see above). If you use a vari-
able that already has a value, this value is deleted during execution before overwriting it with new
results. It is possible to specify a variable both in an input and output position.

Control input parameters:
These parameters normally possess a default value. As an alternative, you may use the text field’s
button to open a combo box and to select a value suggestion. In addition, this combo box contains
a list of variables that contain values of the required type. A restriction of proposed variables is
especially used for parameters that contain data like file, frame grabber, or OCR handles.

Input control parameters may contain constants, variables, and expressions. Common types are
integer numbers (integer), floating-point numbers (real), boolean values (true and false),
and character strings (string).

You can also specify multiple values of these types at once by using tuples. This is an array of
values, separated by commas and enclosed in brackets. Furthermore, you may build up expressions
with these values. The possibilities of using tuples are very extensive. You may use expressions
in HDevelop similar to the use of expressions in C or in Pascal. You will find a more detailed
description in section 3.5 on page 93.

Control output parameters:
These parameters are handled in the same way as output object parameters. Their defaults are
named as their parameter names. Other possibilities to obtain a control output variable name are
either using the combo box or specifying variable names manually. You cannot use any expressions
for these parameters, either.

G
U

I

80 Graphical User Interface

After discussing what can be input for different parameters, it is explained how this is done. Nevertheless,
you have to keep in mind that you need to modify a parameter only if it contains no values or if you are
not satisfied with the HALCON default values.

Text input:
To specify a parameter using your keyboard is the simplest but not the most often used method.
Here you have to click into a text field with the left mouse button. This activates the field and
prepares it for user input. Simultaneously, the writing position is marked by a vertical bar. Now
you may input numbers, strings, expressions, or variables. There are some editing functions to
help you doing input: <Backspace> deletes the character to the left and <Delete> deletes the
one to the right. You may also select (invert) a sequence of characters in the text field using the
mouse. If there is a succeeding input, the marked region is going to be deleted first and afterwards
the characters are going to be written in the text field. You can find additional editing functions in
section 6.1 on page 155.

Combo box selection:
Using this input method, you can obtain rapid settings of variables and constants. To do so, you
have to click the button on the text field’s right side. A combo box is opened, in which you
may select an item. Thus, you are able to choose a certain variable or value without risking
erroneous typing. This item is transferred to the operator name field. Previous entries are deleted.
Afterwards, the combo box is closed. If there are no variables or appropriate values, the combo
box remains closed.

Drag and drop from variable window
You can also select a variable from the variable window as follows: Click onto the variable with
the right mouse button. A context menu opens which lists the parameters for which the variable
can be used as a value. Input parameters are marked by a ’<’, output parameter by a ’>’. If you
select a menu item, the variable is automatically entered in the corresponding parameter field.

2.5.3 Control Buttons

Below the parameter edit fields, you find four buttons that comprise the following functions (see fig-
ure 2.52):

Ok
By clicking Ok you execute the operator or procedure call with the specified parameters. When
doing so, the execution mode depends on the position of the program counter (PC): If the PC
is placed above the insertion position, the system executes the program from the PC until the
insertion position first. Then, the operator or procedure call that has been edited in the operator
window is executed. The reason for this is that the parameter values that are used as input values
for the currently edited operator or procedure call have to be calculated. If the PC is placed at or
after the insertion position, only the currently edited operator or procedure call is executed.

The operator or procedure call is entered into the program window before it is executed. After the
execution, the PC is positioned on the next executable program line after the edited operator or
procedure call.

2.5.3 Control Buttons 81

Figure 2.52: Operator window with operator select_shape.

The computed output parameter values are displayed in the variable window. Iconic variables
are shown in the current graphics window if you haven’t suppressed this option (compare sec-
tion 2.3.3.11 on page 21). Afterwards, the operator window is cleared. If you did not specify all
parameters or if you used wrong values, an error dialog is raised and execution is canceled. In this
case, the operator window remains open to allow appropriate changes.

Enter
By clicking the button Enter, the currently edited operator or procedure call is transferred into the
program window without being executed.

Apply
If you click Apply the operator is executed with the specified parameters, but not entered into
or changed in the program. This enables you to determine the optimum parameters rapidly since
the operator dialog remains open, and hence you can change parameters quickly. Note that this
functionality is not available for procedure calls, and thus the button is grayed out in this case.

Unlike the button Ok, only the single line you edit or enter is executed, no matter where the PC
is located. Thus, you have to ensure that all the input variables contain meaningful values. By
pressing Apply, the corresponding output variables are changed or created, if necessary, to allow
you to inspect their values. If you decide not to enter the line into the program body, some unused
variables may thus be created. You can easily remove them by selecting File . Cleanup.

Cancel
Clicking Cancel clears the contents of the operator window. Thus, there are neither changes in
the program nor in any variables.

Help
Clicking Help invokes an appropriate help text for the selected operator. For this the system

G
U

I

82 Graphical User Interface

activates an HTML browser (see section 6.3 on page 156). Note that this functionality is not
available for procedure calls, and thus the button is grayed out in this case.

2.6 Variable Window

There are two kinds of variables in HALCON, corresponding to the two parameter types of HALCON:
iconic objects (images, regions, and XLDs) and control data (numbers, strings). The corresponding vari-
ables are called iconic and control variables. These variables may possess a value or may be undefined.
An undefined variable is created, for example, when loading a program or after inserting an operator
with a new variable that is not executed immediately into a program. You may access these undefined
variables only by writing them. If you try to read such a variable, a runtime error occurs. If a variable ob-
tains a value, the variable type is specified more precisely. A control variable that contains, for example,
an integer is of type integer. This type might change to real or a tuple of integer after specifying
new values for this variable. But it always remains a control variable. Similarly, this is the case for
iconic variables, which may contain regions, images, or XLDs. You may assign new values to an iconic
variable as often as you want to, but you cannot change its type so that it becomes a control variable.

In addition to classifying HDevelop variables by whether they are iconic or control variables, they can
also be distinguished by whether they are interface parameters of the current procedure or local variables.
Generally, both kinds of variables are treated equally, except that interface parameters in the variable
window are marked by the prefixes ’<’ and ’>’ for input and output parameters, respectively.

New variables are created in the operator dialog area during specification of operator or procedure call
parameters. Here, every sequence of characters without single quotation marks is interpreted as a variable
name. If this name did not exist before, the variable is created in the operator dialog area by pressing
Ok or Enter. The variable type is specified through the type of the parameter where it was used for the
first time: Variables that correspond to an iconic object parameter create an iconic variable; variables for
a control parameter create a control variable. Every time an operator or procedure call is executed, the
results are stored in variables connected to its output parameters. This is achieved by first deleting the
contents of the variable and then assigning the new value to it.

The variable window is a kind of watch window used in window-oriented debuggers. Inside this window
you are able to keep track of variable values. Corresponding to the two variable types, there are two
areas in the variable window. One for iconic data (above) and the other for control data (below) (see
figure 2.53).

All computed variables are displayed showing their iconic or control values (if the automatic update has
not been switched off, see section 2.3.3.11 on page 21). The sorting order of the variable names can
be set as described in section 2.3.3.11 on page 21. In case of a tuple result which is too long, the tuple
presentation is shortened, indicated by three dots.

2.6.1 Area for Iconic Data

Here you can see iconic variables. They are represented by icons, which contain an image, a region or
an XLD, depending on the current value. The icons are created depending on the type of data according
the following rules:

2.6.1 Area for Iconic Data 83

Figure 2.53: Variable window for both iconic and control data.

• For images the icon contains a zoomed version of them, filling the icon completely. Due to the
zooming onto the square shape of the icon, the aspect ratio of the small image might be wrong. If
there is more than one image in the variable, only the first image is used for the icon. Similarly,
for multi-channel images only the first channel is used. The domain of the image is ignored.

• Regions are displayed by first calculating the smallest surrounding rectangle and then zooming it
so that it fills the icon using a border of one pixel. In contrast to images, the aspect ratio is always
correct. This can lead to black bars at the borders. The color used to draw the region is always
white without further modifications (except zooming).

• XLD data is displayed using the coordinate system of the largest image used so far. The color used
for XLD objects is white on black background.

Because of the different ways of displaying objects, you have to be aware that the coordinates cannot be
compared. The variable name is positioned below each icon. They are displayed in the variable window
in the order of creation from left to right. If there is not enough space, a horizontal scrollbar is created,
which you can use to scroll the icons.

Clicking on an icon with the mouse will select this icon. This is indicated by the black background for
the icon name. For an activated icon all operators or procedure calls that use the corresponding variable
are marked in the program area with a black rectangle on the left.

Double-clicking with the left mouse button on an icon displays the data in the active graphics window.
If you use images of different sizes in a program, the system uses the following output strategy for an
automatic adaption of the zooming: Every window keeps track of the size of the most recently displayed
image. If you display an image with a different size, the system modifies the graphics window coordinate
system in a way that the image is visible completely in the graphics window. If a partial zooming has
been activated before (see section 2.7), it is going to be suppressed.

G
U

I

84 Graphical User Interface

Normally, regions, images, and XLDs are represented in variable icons. Besides this there are three
exceptions, which are shown by special icons:

• Undefined variables are displayed as a question mark (?) icon. You may to write but not read them,
because they do not have any values.

• Brackets ([]) are used if a variable is instantiated but does not contain an iconic object (empty
tuple). This may be the case using operators like select_shape with “wrong” specified thresh-
olds or using operator gen_empty_obj. Such a value might be reasonable if you want to collect
iconic objects in a variable gradually in a loop using concat_obj. Here, an empty tuple is used
as starting value for the loop.

• A last exception is an empty region. This is one region that does not contain any pixels (points),
i.e., the area (number of points) is 0. You must not confuse this case with the empty tuple, because
there the area is not defined. The empty region is symbolized by an empty set icon (∅).

2.6.2 Area for Control Data

To the right of the variable name you find their values in the default representation5. If you specify more
than one value for one variable (tuple), they are separated by commas and enclosed by brackets. If the
number of values exceeds an upper limit, the output is clipped. This is indicated by three dots at the end
of the tuple. For undefined variables, their name and a ? are shown in the variable field. An empty tuple
is represented by []. Both exceptions use the same symbols as the corresponding cases for the iconic
variables.

Clicking on a variable will select it. Similarly to iconic variables, all program lines that use this variable
are then marked with a black rectangle on the left.

Double-clicking a control variable opens a window that displays all its values. In most cases this will
be a dialog containing a scrolled list. This is helpful if you have tuple variables with a large number of
values that you want to inspect.

For a frame grabber handle, a dialog representing basic frame grabber parameters is opened (see fig-
ure 2.54). Here you find the size, name, device, port, and other features of the frame grabber. The toggle
button Online allows to grab images continuously and to display them in the active graphics window.
If an error occurs during grabbing, it is displayed in the status bar of the dialog. At most one of these
frame grabber dialogs can be opened at the same time.

2.7 Graphics Window

This window displays iconic data. It has the following properties:

• The user may open several graphics windows.

• The active graphics window is shown by the green dot in the Active button.
5You have to keep in mind that a floating point number without significant fractional part is represented as an integer (e.g., 1.0

is represented as 1).

2.7 Graphics Window 85

Figure 2.54: Variable inspection for frame grabber handles.

• Pressing the Clear button clears the graphics window content and the history of the window.

• You close a graphics window using the close button of the window frame.

Figure 2.55 shows an example for a graphics window.

Every HDevelop graphics windows has its own visualization parameters. Thus, modifying the parame-
ters (see section 2.3.6 on page 32) applies to the currently active graphics window only, i.e. the parameter
settings of all other open graphics windows remain unchanged. Additionally, the new parameter settings
are used as the default settings in all graphics windows yet to be opened.

The origin of the graphics window is the upper left corner with the coordinates (0,0). The x values
(column) increase from left to right, the y values increase from top to bottom. Normally, the coordinate
system of the graphics window corresponds to the the most recently displayed image, which is auto-
matically zoomed so that every pixel of the image is visible. The coordinate system can be changed
interactively using the menu Visualization . Set Parameters... . Zoom (see section 2.3.6 on
page 32) or with the operator dev_set_part (see section 2.3.8.2 on page 55). Every time an image with
another size is displayed, the coordinate system will be adapted automatically.

Each window has a history that contains all

• objects and

• display parameters

that have been displayed or changed since the most recent Clear or display of an image. This history
is used for redrawing the contents of the window. The history is limited to a maximum number of 30
“redraw actions”, where one redraw action contains all objects of one displayed variable.

Other output like text or general graphics like disp_line or disp_circle or iconic data that displayed
using HALCON operators like disp_image or disp_region are not part of the history, and are not

G
U

I

86 Graphical User Interface

Figure 2.55: HDevelop’s graphics window.

redrawn. Only the object classes image, region, and XLD that are displayed with the HDevelop operator
dev_display or by double clicking on an icon are part of the history.

You may change the size of the graphics window interactively by “gripping” the window border with the
mouse. Then you can resize the window by dragging the mouse pointer. After this size modification the
window content is redisplayed. Now you see the same part of the window with changed zoom.

The menu area of the graphics window has an additional function: If the mouse cursor is in this area the
look up table of the window is reactivated. This is necessary if other programs use their own look up
table. Thus if there is a “strange” graphics window presentation, you may load the proper look up table
by placing the mouse near the buttons.

If you want to specify display parameters for a window you may select the menu item Visualization in
the menu bar. Here you can set the appropriate parameters by clicking the desired item (see section 2.3.6
on page 32). The parameters you have set this way are used for the active window. The effects of the

2.7 Graphics Window 87

new parameters will be applied directly to the last object of the window history and alter its parameters
only.

For further information on parameter effects please refer to the appropriate HALCON operators in the
reference manual.

G
U

I

88 Graphical User Interface

Language 89

Chapter 3

Language

The following chapter introduces the syntax and the semantics of the HDevelop language. In other
words, it illustrates what you can enter into a parameter slot of an operator or procedure call. In the
simplest case this is the name of a variable, but it might also be an expression like sqrt(A). Besides,
control structures (like loops) and the semantics of parameter passing are described.

Chapter 5 on page 131 explains the application of this language in image analysis. Note that the
HALCON operators themselves are not described in this chapter. For this purpose refer to the HAL-
CON reference manual. All program examples used in this chapter can also be found in the directory
%HALCONROOT%\examples\hdevelop\Manuals\HDevelop.

3.1 Basic Types of Parameters

HALCON distinguishes two kinds of data: control data (numerical/string) and iconic data (images, re-
gions, etc.).

By further distinguishing input from output parameters, we get four different kinds of parameters. These
four kinds always appear in the same order in the HDevelop parameter list. Table 3.1 shows their order
of appearance.

iconic input
iconic output
control input
control output

Table 3.1: Order of appearance of the four basic parameter types.

As you see, iconic input objects are always passed as the first parameter(s), followed by the iconic output
objects. The iconic data is followed by the control data, and again, the input parameters succeed the
output parameters. Each parameter is separated from its neighbours by a comma:

La
ng

ua
ge

90 Language

read_image (Image, ’Name’)

area_center (Region, Area, Row, Column)

mean_image (Image, Mean, 11, 11)

In the above example the operator read_image has one output parameter for iconic objects (Image) and
one input control parameter (filename). area_center accepts regions as input (iconic) and three control
parameters as output (Area, Row, Column). The filter operator mean_image has one iconic parameter as
input and one as output. Its two input control parameters specify the size of the filter mask.

Input control parameters can either be variables, constants or even complex expressions. An expression
is evaluated before it is passed to a parameter that receives the result of the evaluation. Since iconic
objects always are represented by variables all iconic parameters only accept variables. Control output
parameters must always contain variables, too, as they store the results of an operator evaluation.

3.2 Control Types and Constants

All non-iconic data is represented by so called control data (numerical/string) in HDevelop. The name is
derived from their respective functions within HALCON operators where they control the behaviour (the
effect) of image processing operators (e.g., thresholds for a segmentation operator). Control parameters
in HDevelop may contain arithmetic or logical operations. A control data item can be of one of the
following types: integer, real, string, and boolean.

integer and real
The types integer and real are used under the same syntactical rules as in C. Integer numbers
can be input in the standard decimal notation, in hexadecimal by prefixing the number with 0x,
and in octal by prefixing the number with 0. For example:

4711
-123
0xfeb12
073421
73.815
0.32214
.56
-17.32e-122
32E19

Data items of type integer or real are converted to their machine-internal representations: real
becomes the C-type double (8 bytes) and integer becomes the C-type long (4 or 8 bytes).

string
A string (string) is a sequence of characters that is enclosed in single quotes (’). The maximum
string length is limited to 1024 characters. Special characters, like the line feed, are represented in
the C-like notation, as you can see in table 3.2 (see the reference of the C language for comparison).

3.2 Control Types and Constants 91

Meaning Abbreviation Notation
line feed NL (LF) \n
horizontal tabulator HT \t
vertical tabulator VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
bell BEL \a
backslash \ \\
single quote ’ \’

Table 3.2: Surrogates for special characters.

Examples of strings are shown in table 3.3.

String Meaning
’Hugo’ letters
’10.9’ numbers (not real)

’Text...\n’ NL at the end of the string
’\t Text1 \t Text2’ two tabs in a text

’Sobel\’s edge-filter’ single quote within the text
’c:\\Programs\\MVTec\\Halcon\\images’ Directory

Table 3.3: String examples.

boolean
The constants true and false belong to the type boolean. The value true is internally repre-
sented by the number 1 and the value false by 0. This means, that in the expression Val :=
true the effective value of Val is set to 1. In general, every integer value 6= 0 means true.
Please note that some HALCON operators take logical values for input (e.g., set_system). In
this case the HALCON operators expect string constants like ’true’ or ’false’ rather than the
represented values true or false.

In addition to these general types, there are special constants and the type tuple, which are specific to
HALCON or HDevelop, respectively.

constants
There are constants for the return value (result state) of an operator. The constants can be used
together with the operator dev_error_var and dev_set_check. These constants represent the
normal return value of an operator, so called messages. For errors no constants are available1.

In table 3.4 all return messages can be found.

1There exist more than 400 error numbers internally (see the Extension Package Programmer’s Manual, appendix A on page
113.

La
ng

ua
ge

92 Language

Constant Meaning Value
H_MSG_TRUE No error; for tests: (true) 2
H_MSG_FALSE For tests: false 3
H_MSG_VOID No result could be computed 4
H_MSG_FAIL Operator did not succeed 5

Table 3.4: Return values for operators.

tuple
The control types are only used within the generic HDevelop type tuple. A tuple of length 1 is
interpreted as an atomic value. A tuple may consist of several numerical data items with different
types. The standard representation of a tuple is a listing of its elements included into brackets (see
figure 3.1).

,

boolean

[]

string

integer

real

Value

Value

ValueTuple constant

Figure 3.1: The syntax of tuple constants.

[] specifies the empty tuple. A tuple with just one element is to be considered as a special case,
because it can either be specified in the tuple notation or as an atomic value: [55] defines the same
constant as 55. Examples for tuples are:

[]
4711
0.815
’Text’
[16]
[100.0,100.0,200.0,200.0]
[’FileName’,’Extension’]
[4711,0.815,’Hugo’]

3.3 Variables

Names of variables are built up as usual by composing letters, digits and the underscore ’_’. The
maximum length of a variable name is limited to 256 characters. The kind of a variable (iconic or
control variable) depends on its position in the parameter list in which the variable identifier is used for
the first time (see also section 3.1 on page 89). The kind of the variable is determined during the input

3.4 Operations on Iconic Objects 93

of the operator parameters: whenever a new identifier appears, a new variable with the same identifier
is created. Control and iconic variables must have different names. The value of a variable (iconic or
control) is undefined until the first assignment defines it (the variable hasn’t been instantiated yet). A
read access to an undefined variable leads to a runtime error (Variable <x> not instantiated).

HDevelop provides a pre-defined variable named _ (single underscore). You can use this variable for
output control parameters whose value you are not interested in. Please note that it is not allowed to
use this variable for HDevelop-specific operators (chapters Control and Develop in the HALCON
reference manual).

Instantiated variables contain tuples of values. Depending on the kind of the variable the data items are
either iconic objects or control data. The length of the tuple is determined dynamically by the performed
operation. A variable can get new values any number of times, but once a value has been assigned
the variable will always keep being instantiated, unless you select the menu item Execute . Reset
Program. The content of the variable is deleted before the variable is assigned with new values.

The concept of different kinds of variables allows a first (“coarse”) typification of variables (control or
iconic data), whereas the actual type of the data (e.g., real, integer, string, etc.) is undefined until
the variable gets assigned with a concrete value. Therefore, it is possible that the type of a new data item
differs from that of the old.

3.4 Operations on Iconic Objects

Iconic objects are exclusively processed by HALCON operators. HALCON operators work on tuples of
iconic objects, which are represented by their surrogates in the HALCON data management. The results
of those operators are again tuples of iconic objects or control data elements. For a detailed description
of the HALCON operators refer to the HALCON reference manual and the remarks in section 3.5.3 on
page 96.

3.5 Expressions for Input Control Parameters

In HDevelop, the use of expressions like assignments or arithmetic operations is limited to control input
parameters; all other kinds of parameters must be assigned by variables.

3.5.1 General Features of Tuple Operations

This section intends to give you a short overview over the features of tuples and their operations. A more
detailed description of each operator mentioned here is given in the following sections.

Please note that in all following tables variables and constants have been substituted by letters. These
letters give information about possible limitations of the areas of definition. A single letter (inside these
tables) represents a data type. Operations on these symbols can only be applied to parameters of the
indicated type or to expressions that return a result of the indicated type. To begin with, table 3.5 specifies
the names and types of the symbolic names. The symbol names i, a, l, and s can denote atomic tuples
(tuples of length 1) as well as tuples with arbitrary length.

La
ng

ua
ge

94 Language

Symbol Types
i integer
a arithmetic, that is: integer or real
l boolean
s string
v all types (atomic)
t all types (tuple)

Table 3.5: Symbolic variables for the operation description.

Operators are normally described assuming atomic tuples. If the tuple contains more than one element,
most operators work as follows:

• If one of the tuples is of length one, all elements of the other tuples are combined with that single
value for the chosen operation.

• If both tuples have a length greater than one, both tuples must have the same length (otherwise a
runtime error occurs). In this case, the selected operation is applied to all elements with the same
index. The length of the resulting tuples is identical to the length of the input tuples.

• If one of the tuples is of length 0 ([]), a runtime error occurs.

In table 3.6 you can find some examples for arithmetic operations with tuples. In this example you should
pay special attention to the order in which the string concatenations are performed.

Input Result
5 * 5 25
[5] * [5] 25
[1,2,3] * 2 [2,4,6]
[1,2,3] * 2.1 + 10 [12.1,14.2,16.3]
[1,2,3] * [1,2,3] [1,4,9]
[1,2,3] * [1,2] runtime error
’Text1’ + ’Text2’ ’Text1Text2’
17.23 + ’ Text’ ’17.23 Text’
’Text1 ’ + 99 + ’ Text2’ ’Text1 99 Text2’
’Text ’ + 3.1 * 2 ’Text 6.2’
3.1 * (2 + ’ Text’) runtime error
3.1 + 2 + ’ Text’ ’5.1 Text’
3.1 + (2 + ’ Text’) ’3.12 Text’
’Text ’ + 2.1 + 3 ’Text 2.13’

Table 3.6: Examples for arithmetic operations with tuples and strings.

3.5.2 Assignment 95

3.5.2 Assignment

In HDevelop, an assignment is treated like an operator. To use an assignment you have to select the op-
erator assign(Input, Result). This operator has the following semantics: It evaluates Input (right
side of assignment) and stores it in Result (left side of assignment). However, in the program text the
assignment is represented by the usual syntax of the assignment operator: ’:=’. The following example
outlines the difference between an assignment in C syntax and its transformed version in HDevelop:

The assignment in C syntax

u = sin(x) + cos(y);

is defined in HDevelop using the assignment operator as

assign(sin(x) + cos(y), u)

which is displayed in the program window as:

u := sin(x) + cos(y)

If the result of the expression does not need to be stored into a variable, the expression can directly be
used as input value for any operator. Therefore, an assignment is necessary only if the value has to be
used several times or if the variable has to be initialized (e.g., for a loop).

A second assignment operator is available: insert(Input,Value,Index,Result). It is used to assign
tuple elements. If the first input parameter and the first output parameter are identical, the call:

insert (Areas, Area, Radius-1, Areas)

is not presented in the program text as an operator call, but in the more intuitive form as:

Areas[Radius-1] := Area.

To construct a tuple with insert, normally an empty tuple is used as initial value and the elements are
inserted in a loop:

Tuple := []

for i := 0 to 5 by 1

Tuple[i] := sqrt(real(i))

endfor

As you can see from this example, the indices of a tuple start at 0.

An insertion into a tuple can generally be performed in one of the following ways:

1. In case of appending the value at the ’back’ or at the ’front’, the concatenation can be used. Here
the operator assign is used with the following parameters:

La
ng

ua
ge

96 Language

assign([Tuple,NewVal],Tuple)

which is displayed as

Tuple := [Tuple,NewVal]

2. If the index position is somewhere in between, the operator insert has to be used. It takes the
following arguments as input: first the tuple in which the new value should be inserted; then the
new value and after that the index position as the third input parameter. The result (the fourth
parameter) is almost identical with the input tuple, except of the new value at the defined index
position.

In the following example regions are dilated with a circle mask and afterwards the areas are stored into
the tuple Areas. In this case the operator insert is used.

read_image (Mreut, ’mreut’)

threshold (Mreut, Region, 190, 255)

Areas := []

for Radius := 1 to 50 by 1

dilation_circle (Region, RegionDilation, Radius)

area_center (RegionDilation, Area, Row, Column)

Areas[Radius-1] := Area

endfor

Please note that first the variable Areas has to be initialized in order to avoid a runtime error. In the
example Areas is initialized with the empty tuple ([]). Instead of insert the operator assign with
tuple concatenation

Areas := [Areas,Area]

could be used, because the element is appended at the back of the tuple.

More examples can be found in the program assign.dev.

3.5.3 Basic Tuple Operations

A basic tuple operation may be selecting one or more values, combining tuples (concatenation) or reading
the number of elements (see table 3.7 for operarations on tuples containing control data).

The concatenation accepts one or more variables or constants as input. They are all listed between the
brackets, separated by commas. The result again is a tuple.

[t1,t2] is the concatenation of tuple t1 and t2. Example:

[[5,’Text’],[5.9]] 7→ [5,’Text’,5.9]

So even the following holds: [[t]] = [t] = t.

|t| returns the number of elements of a tuple. The indices of elements range from zero to the number
of elements minus one (i.e., |t|-1). Therefore, the selection index has to be within this range.2

2Please note that the index of objects (e.g., select_obj) ranges from 1 to the number of elements.

3.5.4 Tuple Creation 97

[t1,t2]⇒ t concatenate tuples
|t|⇒ i get number of elements of a tuple
t[i]⇒ v select a single element from a tuple

t[i1:i2]⇒ t select a part (specified range) of a tuple
subset(t,i)⇒ t select a subset of elements (specified indices) of a tuple
remove(t,i)⇒ t remove a subset of elements (specified indices) from a tuple
find(t1,t2)⇒ i get indices of all occurrences of t2 within t1

uniq(t)⇒ t discard all but one of successive identical elements from a tuple

Table 3.7: Basic operations on tuples (control data).

Tuple := [V1,V2,V3,V4]

for i := 0 to |Tuple|-1 by 1

fwrite_string (FileHandle,Tuple[i]+’\n’)

endfor

Further examples can be found in the program tuple.dev.

Note that these direct operations cannot be used for iconic tuples, i.e., iconic objects cannot be selected
from a tuple using [] and their number cannot be directly determined using ||. For this purpose,
however, HALCON operators are offered that carry out the equivalent tasks. In table 3.8 you can see
tuple operations that work on control data (and which are applied via assign or insert) and their
counterparts that work on iconic data (and which are independent operators). In the table the symbol t
represents a control tuple, and the symbols p and q represent iconic tuples.

control iconic
[] gen_empty_obj ()
[t1,t2] concat_obj (p1, p2, q)
|t| count_obj (p, num)
t[i] select_obj(p, q, i+1, 1)
t[i1:i2] copy_obj(p, q, i1+1, i2-i1+1)

Table 3.8: Equivalent tuple operations for control and iconic data.

Similar to assign and insert, inside the program text the operations gen_empty_obj, concat_obj,
count_obj, and select_obj are represented by the assignment operator ’:=’.

3.5.4 Tuple Creation

The simplest way to create a tuple, as mentioned in section 3.2, is the use of constants together with the
operator assign (or in case of iconic data one of its equivalents shown in table 3.8):

assign([],empty_tuple)

assign(4711,one_integer)

assign([4711,0.815],two_numbers)

La
ng

ua
ge

98 Language

This code is displayed as

empty_tuple := []

one_integer := 4711

two_numbers := [4711,0.815]

This is useful for constant tuples with a fixed (small) length. More general tuples can be created by
successive application of the concatenation or the operator insert together with variables, expressions
or constants. If we want to generate a tuple of length 100, where each element has the value 4711, it
might be done like this:

assign([],tuple)

for i := 1 to 100 by 1

assign([tuple,4711],tuple)

endfor

which is transformed to

tuple := []

for i := 1 to 100 by 1

tuple := [tuple,4711]

endfor

Because this is not very convenient a special function called gen_tuple_const is available to construct
a tuple of a given length, where each element has the same value. Using this function, the program from
above is reduced to:

assign(gen_tuple_const(100,4711),tuple)

which is displayed as

tuple := gen_tuple_const(100,4711)

If we want to construct a tuple with the same length as a given tuple there are two ways to get an easy
solution, The first one is based on gen_tuple_const:

assign(gen_tuple_const(|tuple_old|,4711),tuple_new)

which is displayed as

tuple_new := gen_tuple_const(|tuple_old|,4711)

The second one is a bit tricky and uses arithmetic functions:

assign((tuple_old * 0) + 4711,tuple_new)

3.5.5 Simple Arithmetic Operations 99

which is displayed as

tuple_new := (tuple_old * 0) + 4711

Here we get first a tuple of the same length with every element set to zero. Then we add the constant to
each element.

In the case of tuples with different values we have to use the loop version to assign the values to each
position:

assign([],tuple)

for i := 1 to 100 by 1

assign([tuple,i*i],tuple)

endfor

which is displayed as

tuple := []

for i := 1 to 100 by 1

tuple := [tuple,i*i]

endfor

In this example we construct a tuple with the square values from 12 to 1002.

3.5.5 Simple Arithmetic Operations

Table 3.9 shows an overview of the available simple arithmetic operations.

All operations are left-associative, except the right-associative unary minus operator. The evaluation
usually is done from left to right. However, parentheses can change the order of evaluation and some
operators have a higher precedence than others (see section 3.5.14 on page 107).

a1 / a2 division
a1 * a2 multiplication
a1 % a2 modulus
v1 + v2 addition and concatenation of strings
a1 - a2 subtraction

-a negation

Table 3.9: Arithmetic operations.

The arithmetic operations in HDevelop match the usual definitions. Expressions can have any number of
parentheses.

The division operator (a1 / a2) can be applied to integer as well as to real. The result is of type
real, if at least one of the operands is of type real. If both operands are of type integer the division
is an integer division. The remaining arithmetic operators (multiplication, addition, subtraction, and

La
ng

ua
ge

100 Language

negation) can be applied to either integer or real numbers. If at least one operand is of type real, the
result will be a real number as well. In the following example V1 is set to 1, V2 to 1.3333333, and V3
to 2.0.

V1 := 4/3

V2 := 4/3.0

V3 := (4/3) * 2.0

Simple examples can be found in the program arithmetic.dev.

3.5.6 Bit Operations

This section describes the operators for bit processing of numbers. The operands have to be integers.

lsh(i1,i2) left shift
rsh(i1,i2) right shift
i1 band i2 bitwise and
i1 bxor i2 bitwise xor
i1 bor i2 bitwise or

bnot i bitwise complement

Table 3.10: Bit operations.

The result of lsh(i1,i2) is a bitwise left shift of i1 that is applied i2 times. If there is no overflow
this is equivalent to a multiplication by 2i2. The result of rsh(i1,i2) is a bitwise right shift of i1 that
is applied i2 times. For non-negative i1 this is equivalent to a division by 2i2. For negative i1 the
result depends on the used hardware. For lsh and rsh the result is undefined if the second operand has
a negative value or the value is larger than 32. More examples can be found in the program bit.dev.

3.5.7 String Operations

There are several string operations available to modify, select and combine strings. Furthermore, some
operations allow to convert numbers (real and integer) to strings.

$ converts numbers to strings or modifies strings. The operator has two parameters: The first one (left of
the $) is the number that has to be converted. The second one (right of the $) specifies the conversion.
This format string consists of the following four parts

<flags><field width><precision><conversion characters>

So a conversion might look like

1332.4554 $ ’.6e’

3.5.7 String Operations 101

v$s string conversion
v1 + v2 concatenation of strings and addition

strchr(s1,s2) search character in string
strstr(s1,s2) search substring
strrchr(s1,s2) search character in string (reverse)
strrstr(s1,s2) search substring (reverse)

strlen(s) length of string
s{i} selection of one character

s{i1:i2} selection of substring
split(s1,s2) splitting in substrings

Table 3.11: String operations.

flags Zero or more flags, in any order, which modify the meaning of the conversion specification.
Flags may consist of the following characters:

- The result of the conversion is left justified within the field.

+ The result of a signed conversion always begins with a sign, + or -.

<space> If the first character of a signed conversion is not a sign, a space character is prefixed to
the result. This means that if the space flag and + flag both appear, the space flag is ignored.

The value is to be converted to an “alternate form”. For d and s conversions, this flag has no
effect. For o conversion (see below), it increases the precision to force the first digit of the
result to be a zero. For x or X conversion (see below), a non- zero result has 0x or 0X prefixed
to it. For e, E, f, g, and G conversions, the result always contains a radix character, even if
no digits follow the radix character. For g and G conversions, trailing zeros are not removed
from the result, contrary to usual behavior.

field width An optional string of decimal digits to specify a minimum field width. For an output
field, if the converted value has fewer characters than the field width, it is padded on the left (or
right, if the left-adjustment flag - has been given) to the field width.

precision The precision specifies the minimum number of digits to appear for the d, o, x, or X con-
versions (the field is padded with leading zeros), the number of digits to appear after the radix
character for the e and f conversions, the maximum number of significant digits for the g con-
version, or the maximum number of characters to be printed from a string in s conversion. The
precision takes the form of a period . followed by a decimal digit string. A null digit string is
treated as a zero.

conversion characters A conversion character indicates the type of conversion to be applied:

d,o,x,X The integer argument is printed in signed decimal (d), unsigned octal (o),
or unsigned hexadecimal notation (x and X). The x conversion uses the numbers
and letters 0123456789abcdef, and the X conversion uses the numbers and letters
0123456789ABCDEF. The precision component of the argument specifies the minimum num-
ber of digits to appear. If the value being converted can be represented in fewer digits than
the specified minimum, it is expanded with leading zeroes. The default precision is 1. The
result of converting a zero value with a precision of 0 is no characters.

La
ng

ua
ge

102 Language

f The floating-point number argument is printed in decimal notation in the style [-]dddrddd,
where the number of digits after the radix character, r, is equal to the precision specifica-
tion. If the precision is omitted from the argument, six digits are output; if the precision is
explicitly 0, no radix appears.

e,E The floating-point-number argument is printed in the style [-]drddde+dd, where there is
one digit before the radix character, and the number of digits after it is equal to the precision.
When the precision is missing, six digits are produced; if the precision is 0, no radix character
appears. The E conversion character produces a number with E introducing the exponent
instead of e. The exponent always contains at least two digits. However, if the value to be
printed requires an exponent greater than two digits, additional exponent digits are printed as
necessary.

g,G The floating-point-number argument is printed in style f or e (or in style E in the case of a
G conversion character), with the precision specifying the number of significant digits. The
style used depends on the value converted; style e is used only if the exponent resulting from
the conversion is less than -h or greater than or equal to the precision. Trailing zeros are
removed from the result. A radix character appears only if it is followed by a digit.

s The argument is taken to be a string, and characters from the string are printed until the end of
the string or the number of characters indicated by the precision specification of the argument
is reached. If the precision is omitted from the argument, it is interpreted as infinite and all
characters up to the end of the string are printed.

b Similar to the s conversion specifier, except that the string can contain backslash-escape se-
quences which are then converted to the characters they represent.

In no case does a nonexistent or insufficient field width cause truncation of a field; if the result of
a conversion is wider than the field width, the field is simply expanded to contain the conversion
result.

Examples for the string conversion can be found in the program string.dev.

The string concatenation (+) can be applied in combination with strings or all numerical types; if neces-
sary, the operands are first transformed into strings (according to their standard representation). At least
one of the operands has to be already a string so that the operator can act as a string concatenator. In the
following example a filename (e.g., ’Name5.tiff’) is generated. For this purpose two string constants
(’Name’ and ’.tiff’) and an integer value (the loop-index i) are concatenated:

for i := 1 to 5 by 1

read_image (Bild, ’Name’+i+’.tiff’)

endfor

str(r)chr(s1,s2) returns the index of the first (last) as a tuple occurrence of one character in s2 in
string s1, or -1 if none of the characters occurs in the string.

str(r)str(s1,s2) returns the index of the first (last) occurrence of string s2 in string s1, or -1 if s2
does not occur in the string.

strlen(s) returns the number of characters in s.

s{i} selects a single character (specified by index position) from s. The index ranges from zero to the
length of the string minus 1. The result of the operator is a string of length one.

3.5.8 Comparison Operators 103

s{i1:i2} returns all characters from the first specified index position (i1) up to the second specified
position (i2) in s as a string. The index ranges from zero to the length of the string minus 1.

split(s1,s2) divides the string s1 into single substrings. The string is split at those positions where it
contains a character from s2. As an example the result of

split(’/usr/image:/usr/proj/image’,’:’)

consists of the two strings

[’/usr/image’,’/usr/proj/image’]

3.5.8 Comparison Operators

In HDevelop, the comparison operators are defined not only on atomic values, but also on tuples with
an arbitrary number of elements. They always return values of type boolean. Table 3.12 shows all
comparison operators.

t1 < t2 less than
t1 > t2 greater than

t1 <= t2 less or equal
t1 >= t2 greater or equal
t1 = t2 equal
t1 # t2 not equal

Table 3.12: Comparison operators.

t1 = t2 and t1 # t2 are defined on all types. Two tuples are equal (true), if they have the same length
and all the data items on each index position are equal. If the operands have different types (integer
and real), the integer values are first transformed into real numbers. Values of type string cannot be
mixed up with numbers, i.e., string values are considered to be not equal to values of other types.

The four comparison operators compute the lexicographic order of tuples. On equal index positions the
types must be identical, however, values of type integer, real and boolean are adapted automatically.
The lexicographic order applies to strings, and the boolean false is considered to be smaller than the
boolean true (false < true). In the program compare.dev you can find examples for the comparison
operators.

3.5.9 Boolean Operators

The boolean operators and, xor, or and not are defined only for tuples of length 1. l1 and l2 is set
to true (1) if both operands are true (1), whereas l1 xor l2 returns true (1) if exactly one of both
operands is true. l1 or l2 returns true (1) if at least one of the operands is true (1). not l returns
true (1) if the input is false (0), and false (0), if the input is true (1).

La
ng

ua
ge

104 Language

1st Operand 2nd Operand Operation Result
1 1.0 = true
[] [] = true
’’ [] = false
[1,’2’] [1,2] = false
[1,2,3] [1,2] = false
[4711,’Hugo’] [4711,’Hugo’] = true
’Hugo’ ’hugo’ = false
2 1 > true
2 1.0 > true
[5,4,1] [5,4] > true
[2,1] [2,0] > true
true false > true
’Hugo’ ’hugo’ < true

Table 3.13: Examples for the comparison of tuples.

l1 and l2 logical ’and’
l1 xor l2 logical ’xor’
l1 or l2 logical ’or’

not l negation

Table 3.14: Boolean operators.

3.5.10 Trigonometric Functions

All these functions work on tuples of numbers as arguments. The input can either be of type integer
or real. However, the resulting type will be of type real. The functions are applied to all tuple values
and the resulting tuple has the same length as the input tuple. For atan2 the two input tuples have to be
of equal length. Table 3.15 shows the provided trigonometric functions. For the trigonometric functions
the angle is specified in radians.

sin(a) sine of a
cos(a) cosine of a
tan(a) tangent of a
asin(a) arc sine of a in the interval [−π/2, π/2], a ∈ [−1, 1]
acos(a) arc cosine a in the interval [−π/2, π/2], a ∈ [−1, 1]
atan(a) arc tangent a in the interval [−π/2, π/2], a ∈ [−∞,+∞]

atan2(a1,a2) arc tangent a1/a2 in the interval [−π, π]
sinh(a) hyperbolic sine of a
cosh(a) hyperbolic cosine of a
tanh(a) hyperbolic tangent of a

Table 3.15: Trigonometric functions.

3.5.11 Exponential Functions 105

3.5.11 Exponential Functions

All these functions work on tuples of numbers as arguments. The input can either be of type integer or
real. However, the resulting type will be of type real. The functions are applied to all tuple values and
the resulting tuple has the same length as the input tuple. For pow and ldexp the two input tuples have
to be of equal length. Table 3.16 shows the provided exponential functions.

exp(a) exponential function ea

log(a) natural logarithm ln(a), a> 0
log10(a) decadic logarithm, log10(a), a> 0

pow(a1,a2) a1a2

ldexp(a1,a2) a1 ·2a2

Table 3.16: Exponential functions.

3.5.12 Numerical Functions

The numerical functions shown in Table 3.17 work on different data types.

min(t) minimum value of the tuple
min2(t1,t2) element-wise minimum of two tuples

max(t) maximum value of the tuple
max2(t1,t2) element-wise maximum of two tuples

sum(t) sum of all elements of the tuple
or string concatenation

mean(a) mean value
deviation(a) standard deviation

cumul(a) cumulative sums of a tuple
median(a) median of a tuple

select_rank(a,i) element at rank i of a tuple
sqrt(a) square root

√
a

deg(a) convert radians to degrees
rad(a) convert degrees to radians
real(a) convert integer to real
int(a) truncate real to integer

round(a) convert real to integer
abs(a) absolute value of a (integer or real)
fabs(a) absolute value of a (always real)
ceil(a) smallest integer value not smaller than a
floor(a) largest integer value not greater than a

fmod(a1,a2) fractional part of a1/a2, with the same sign as a1
sgn(a) element-wise sign of a tuple

Table 3.17: Numerical functions.

La
ng

ua
ge

106 Language

The functions min and max select the minimum and the maximum values of the tuple values. All of
these values either have to be of type string, or integer/real. It is not allowed to mix strings with
numerical values. The resulting value will be of type real, if at least one of the elements is of type
real. If all elements are of type integer the resulting value will also be of type integer. The same
applies to the function sum that determines the sum of all values. If the input arguments are strings, string
concatenation will be used instead of addition.

The functions mean, deviation, sqrt, deg, rad, fabs, ceil, floor and fmod can work with
integer and real; the result is always of type real. The function mean calculates the mean value
and deviation the standard deviation of numbers. sqrt calculates the square root of a number.

cumul returns the different cumulative sums of the corresponding elements of the input tuple and median
calculates the median of a tuple. For both functions, the resulting value will be of type real, if at least
one of the elements is of type real. If all elements are of type integer the resulting value will also be
of type integer. select_rank returns the element at rank i and works for tuples containing int or
real values. The index i is of type int.

deg and rad convert numbers from radians to degrees and from degrees to radians, respectively.

real converts an integer to a real. For real as input it returns the input. int converts a real to an
integer and truncates it. round converts a real to an integer and rounds the value. For integer it
returns the input. The function abs always returns the absolut value that is of the same type as the input
value.

The following example (filename: euclid_distance.dev) shows the use of some numerical functions:

V1 := [18.8,132.4,33,19.3]

V2 := [233.23,32.786,234.4224,63.33]

Diff := V1 - V2

Distance := sqrt(sum(Diff * Diff))

Dotvalue := sum(V1 * V2)

First, the Euclidian distance of the two vectors V1 and V2 is computed, by using the formula:

d =
√∑

i

(V 1i − V 2i)2

The difference and the multiplication (square) are successively applied to each element of both vectors.
Afterwards sum computes the sum of the squares. Then the square root of the sum is calculated. After
that the dot product of V1 and V2 is determined by the formula:

〈V 1, V 2〉 =
∑

i

(V 1i ∗ V 2i)

3.5.13 Miscellaneous Functions

sort sorts the tuple values in ascending order, that means, that the first value of the resulting tuple is the
smallest one. But again: strings must not be mixed up with numbers. sort_index sorts the tuple values
in ascending order, but in contrast to sort it returns the index positions (0..) of the sorted values.

3.5.14 Operator Precedence 107

sort(t) sorting in increasing order
sort_index(t) return index instead of values

inverse(t) reverse the order of the values
is_number(v) test if value is a number

number(v) convert string to a number
environment(s) value of an environment variable

ord(a) ASCII number of a character
chr(a) convert an ASCII number to a character
ords(s) ASCII number of a tuple of strings
chrt(i) convert a tuple of integers into a string
rand(a) create random numbers

Table 3.18: Miscellaneous functions.

The function inverse reverses the order of the tuple values. Both sort and inverse are the identity
operation, if the input is empty, if the tuple is of length 1, or if the tuple contains only one value in all
positions, e.g., [1,1,...,1].

is_number returns true for variables of the type integer or real and for variables of the type string
that represent a number.

The function number converts a string representing a number to an integer or a real depending
on the type of the number. Note that strings starting with 0x are interpreted as hexadecimal numbers,
and strings starting with 0 as octal numbers; for example, the string ’20’ is converted to the integer 20,
’020’ to 16, and ’0x20’ to 32. If called with a string that does not represent a number or with a
variable of the type integer or real, number returns a copy of the input.

environment returns the value of an environment variable. Input is the name of the environment variable
as a string.

ord gives the ASCII number of a character as an integer. chr converts an ASCII number to a character.

ords converts a tuple of strings into a tuple of (ASCII) integers. chrt converts a tuple of integers into a
string.

3.5.14 Operator Precedence

Table 3.19 shows the precedence of the operators for control data. Some operations (like functions, | |,
t[], etc.) are left out, because they mark their arguments clearly.

La
ng

ua
ge

108 Language

band
bxor, bor
and
xor, or
#, =
<=, >=, <, >
+, -
/, *, %
- (unary minus), not
$

Table 3.19: Operator precedence (increasing from top to bottom).

3.6 Reserved Words

The strings shown in table 3.20 are reserved words and their usage is strictly limited to their predefined
meaning. They cannot be used as variables.

true false and or
xor bor bxor chr
ord chrt ords band
bnot not sum sin
cos tan asin acos
atan sinh cosh tanh
exp log log10 ceil
floor atan2 pow fabs
abs fmod ldexp round
deg rad min min2
max max2 median sgn
rand sort sort_index inverse
strlen strchr strrchr strstr
strrstr split environment is_number
number real int lsh
rsh deviation mean subset
uniq cumul remove select_rank
find sqrt gen_tuple_const H_MSG_TRUE
H_MSG_FALSE H_MSG_FAIL H_MSG_VOID

Table 3.20: Reserved words.

3.7 Control Structures 109

3.7 Control Structures

HDevelop provides the following constructs to structure programs:

if The simplest control structure is if. The condition contains a boolean expression. If the condition is
true, the body is executed. Otherwise the execution is continued at the first expression or operator
call that follows the word endif.

if (<Condition>)

...

endif

ifelse Another simple control structure is the condition with alternative. If the condition is true, all
expressions and calls between the head and the word endif are performed. If the condition is
false the part between else and endif is executed. Note that the operator is called ifelse and it
is displayed as if in the program text area.

if (<Condition>)

...

else

...

endif

while The while loop has a boolean expression as the conditional part. As long as it is true, the
body of the loop is performed. In order to enter the loop, the condition has to be true in the first
place. The loop can be terminated immediately with the instruction break (see below).

while (<Condition>)

...

endwhile

In section 5.3 on page 136 you can find an example for using the while loop.

for The for loop is controlled by a start and termination value and an incrementation value that
determines the number of loop steps. These values may also be expressions which are evaluated
immediately before the loop is entered. The expressions may be of type integer or of type real.
If all input values are of type integer the loop variable will also be of type integer. In all other
cases the loop variable will be of type real.

If the start value is less or equal to the termination value, the starting value is assigned to the loop
index and the body of the loop is entered. If the increment is less than zero the loop is entered if
the start value is larger or equal to the end value. Each time the body is executed, the loop index
is incremented by the incrementation value. If the loop index is equal to the termination value,
the body of the loop is performed for the last time. If the loop index is larger than the termination
value the body will not be executed any longer.3 Please note, that the loop index does not need to
become equal to the termination value in order to terminate the loop. The loop index is set to the
termination value when the loop is being left.

3For negative increment values the loop is terminated if the loop index is less than the termination value.

La
ng

ua
ge

110 Language

The loop can be terminated immediately with the instruction break (see below).

Please note, that the expressions for start and termination value are evaluated only once when en-
tering the loop. A modification of a variable that appears within these expressions has no influence
on the termination of the loop. The same applies to the modifications of the loop index. It also
has no influence on the termination. The loop value is assigned to the correct value each time the
for operator is executed. For more details, see section 4.6.3 on page 127 on the code generation
of for loops.

If the for loop is left too early (e.g., if you press Stop and set the PC) and the loop is entered
again, the expressions will be evaluated, as if the loop were entered for the first time.

for <loop value> := <Start> to <End> by <Increment>

...

endfor

In the following example the sine from 0 up to 6π is computed and printed in to the graphical
window (filename: sine.dev):

old_x := 0

old_y := 0

dev_set_color (’red’)

dev_set_part(0, 0, 511, 511)

for x := 1 to 511 by 1

y := sin(x / 511.0 * 2 * 3.1416 * 3) * 255

disp_line (WindowID, -old_y+256, old_x, -y+256, x)

old_x := x

old_y := y

endfor

In this example the assumption is made that the window is of size 512 × 512. The drawing is
always done from the most recently evaluated point to the current point.

Further examples on how to use the for loop can be found in section 5.8 on page 147 and sec-
tion 5.9 on page 149.

break The instruction break enables you to exit for and while loops. The program is then continued
at the next line after the end of the loop.

A typical use of the instruction break is to terminate a for loop as soon as a certain condition
becomes true, e.g., as in the following example:

Number := |Regions|

AllRegionsValid := 1

* check whether all regions have an area <= 30

for i := 1 to Number by 1

ObjectSelected := Regions[i]

area_center (ObjectSelected, Area, Row, Column)

if (Area > 30)

AllRegionsValid := 0

break ()

endif

endfor

3.8 Limitations 111

In the following example, the instruction break is used to terminate an (infinite) while loop as
soon as one clicks into the Graphics Window:

while (1)

grab_image (Image, FGHandle)

dev_error_var (Error, 1)

dev_set_check (’~give_error’)

get_mposition (WindowHandle, R, C, Button)

dev_error_var (Error, 0)

dev_set_check (’give_error’)

if ((Error = H_MSG_TRUE) and (Button # 0))

break ()

endif

endwhile

stop The stop construct stops the program after the operator is executed. The program can be contin-
ued by pressing the Step or Run button.

exit The exit construct terminates the session of HDevelop.

return The return construct returns from the current procedure call to the calling procedure. return
has no effect in case the current procedure is the main procedure.

3.8 Limitations

This section summarizes the restrictions of the HDevelop language:

• Maximum number of objects per parameter : 100000

• Maximum length of strings : 1024 characters

• Maximum length of a variable name : 256 characters

La
ng

ua
ge

112 Language

Code Export 113

Chapter 4

Code Export

The idea of code export or code generation is as follows: After developing a program according to the
given requirements it has to be translated into its final environment. For this, the program is transferred
into another programming language that can be compiled.

HDevelop allows to export a developed HDevelop program to the programming languages C++, Visual
Basic, Visual Basic .NET, C#, and C by writing the corresponding code to a file. The following sec-
tions describe the general steps of program development using this feature for the five languages C++
(section 4.1), COM / Visual Basic (section 4.2 on page 117),COM / Visual Basic .NET (section 4.3
on page 120), COM / C# (section 4.4 on page 123), and C (section 4.5 on page 125), including some
language-specific details of the code generation and optimization aspects.

Because HDevelop does more than just execute a HALCON program, the behavior of an exported pro-
gram will differ in some points from its HDevelop counterpart. A prominent example is that in HDe-
velop, all results are automatically displayed, while in the exported programs you have to insert the
corresponding display operators explicitly. Section 4.6 on page 126 describes these differences in more
detail.

4.1 Code Generation for C++

This section describes how to create a HALCON application in C++, starting from a program developed
in HDevelop.

4.1.1 Basic Steps

4.1.1.1 Program Export

The first step is to export the program using the menu File . Save As. Here, select the language (C++)
and save it to a file. In UNIX you specify the language by giving the file the extension “.cpp”. A file
will be created that contains the HDevelop program as C++ source code. For every HDevelop procedure

C
od

e
E

xp
or

t

114 Code Export

except the main procedure, the exported file contains a C++ procedure with the corresponding name.
Iconic input and output parameters of a procedure are declared as Hobject and Hobject*, respectively,
while control input and output parameters are declared as HTuple and HTuple*, respectively. All pro-
cedures are declared at the beginning of the file. The program body of the HDevelop main procedure
is contained in a procedure action() which is called in the function main(). action() and main()
can be excluded from compilation by inserting the instruction #define NO_EXPORT_MAIN at the appro-
priate position in the application. This can be useful if you want to integrate exported HDevelop code
into your application through specific procedure interfaces. In that case, there is typically no need to
export the main procedure, which was probably used only for testing the functionality implemented in
the corresponding ’real’ procedures.

Besides the program code, the file contains all necessary #include instructions. All local variables
(iconic as well as control) are declared in the corresponding procedures. Iconic variables belong to the
class Hobject and all other variables belong to HTuple.

4.1.1.2 Compiling and Linking in Windows Environments

The next step is to compile and link this new program. In the Windows environment, Visual
C++ is used for the compiling and linking. Example projects can be found in the directory
%HALCONROOT%\examples\cpp.

If you want to use Parallel HALCON, you have to include the libraries parhalcon.lib/.dll and
parhalconcpp.lib/.dll instead of halcon.lib/.dll and halconcpp.lib/.dll in your project
(see the Programmer’s Guide, chapter 6 on page 57, for more details).

4.1.1.3 Compiling and Linking in UNIX Environments

To compile and link the new program (called, e.g., test.cpp) under UNIX, you can use the example
makefile, which can be found in the directory $HALCONROOT/examples/cpp , by calling

make PROG=test

Alternatively, you can set the variable PROG in makefile to test and then just type make.

You can link the program to the Parallel HALCON libraries by calling

make parallel PROG=test

or just type make parallel if you set the variable PROG as described above.

For more details see the Programmer’s Guide, chapter 6 on page 57.

4.1.2 Optimization

Optimization might be necessary for variables of class HTuple. This kind of optimization can either
be done in HDevelop or in the generated C++ code. In most cases optimization is not necessary if you
program according to the following rules.

4.1.3 Used Classes 115

1. Using the tuple concatenation, it is more efficient to extend a tuple at the “right” side, like:

T := [T,New]

because this can the transformed to

T.Append(New);

in C++ and requires no creation of a new tuple, whereas

T := [New,T]

which is translated into

T = New.Append(T);

would need the creation of a new tuple.

2. Another good way to modify a tuple is the operator insert (see section 3.5.2 on page 95). In
this case HDevelop code like

T[i] := New

can directly be translated into the efficient and similar looking code

T[i] = New;

4.1.3 Used Classes

There are only two classes that are used: HTuple for control parameters and Hobject for iconic data.
There is no need for other classes as long as the program has the same functionality as in HDevelop.
When editing a generated program you are free to use any of the classes of HALCON/C++ to extend the
functionality.

4.1.4 Limitations and Troubleshooting

Besides the restrictions mentioned in this section and in section 4.6 on page 126, please also check the
description of the HDevelop operators in section 2.3.8.2 on page 55.

4.1.4.1 Exception Handling

In HDevelop, every exception normally causes the program to stop and report an error message in a
dialog window. This might not be useful in C++. In addition, there are different default behaviors
concerning the result state of operators.

C
od

e
E

xp
or

t

116 Code Export

Messages

In HALCON/C++ only severe errors cause an exception handling which terminates the program and
prints an error message. This might cause problems with minor errors, so called messages in HALCON.
These messages are handled as return values of the operators and can have the following values, which
are also available in HDevelop as constants:

H_MSG_TRUE

H_MSG_FALSE

H_MSG_FAIL

H_MSG_VOID

One of these messages is always returned indicating the status of the operator. Normally, the result is
H_MSG_TRUE. Some operators return H_MSG_FAIL like read_image or read_region to indicate that
they could not open a file or there was no permission to read it. In this case the programmer has to check
the return value and apply some adequate action. If the message H_MSG_FALSE is ignored, errors like

Halcon Error #4056: Image data management: object-ID is NULL

will happen in successive operators, because the predecessor operator did not calculate an appropriate
value.

Errors

In the case of hard errors (i.e., no message as described above) the program stops with an error message.
To prevent this behavior the HDevelop operators dev_error_var and dev_set_check can be used to
control the exception handling in the application. This works similarly in HDevelop and C++. One
difference is caused by the dynamic evaluation of dev_error_var in HDevelop. This means that each
time the operator is executed (e.g., in a loop) the use of the error variable might change. In contrast to
this, in C++ special code is added to store the return values of operators. This code will therefore be
static and cannot change during program execution. To understand how the code generation works let us
have a look at a short example. Here at first the HDevelop program:

dev_set_check(’~give_error’)

dev_error_var(error,true)

threshold(image,region,100,255)

dev_error_var(error,false)

if (error # H_MSG_TRUE)

write_string(WindowId,’error number = ’ + error)

exit()

endif

dev_set_check(’give_error’)

This program will be translated into

4.2 Code Generation for Visual Basic 6 117

HTuple error;

set_check("~give_error");

error = threshold(image,®ion,100,255);

if (error != 2)

{

write_string(WindowId,HTuple("error number = ") + HTuple(error));

exit(1);

}

set_check("give_error");

As can be seen, the operator dev_error_var is eliminated and replaced by the use of the error variable
later on.

The points mentioned above might cause these two problems:

• If the second parameter of dev_error_var cannot be derived from the program (because no con-
stant false or true are used but expressions, the value will be interpreted as true, that means:
“start to use the variable”. To avoid confusion use only the constants false or true as values for
the second parameter.

• The usage of a variable starts after the first call of dev_error_var(ErrVariable,true).
In C++ this means that all successive lines (i.e., lines “below”), until the first
dev_error_var(ErrVariable,false) will have the assignment to ErrVariable. This might
lead to a different behavior compared with HDevelop, if dev_error_var is called inside a loop,
because here the operators inside the loop before dev_error_var might also use ErrVariable
after the second execution of the loop body. Therefore: Try not to use dev_error_var inside a
loop. Use it right at the beginning of the program.

4.2 Code Generation for Visual Basic 6

This section describes how to create a HALCON application in Visual Basic 6, starting from a program
developed in HDevelop. HALCON can be used together with Visual Basic 6 based on the COM interface
of HALCON. A detailed description of this interface can be found in the Programmer’s Guide, part III
on page 69.

4.2.1 Basic Steps

4.2.1.1 Export

The first step is to export the program using the menu File . Save As. Here, select the language
(Visual Basic 6.0) and save it to file. In UNIX you specify the language by giving the file the
corresponding extension, which is “.bas”. The result is a new file with the given name and the extension
“.bas”.

C
od

e
E

xp
or

t

118 Code Export

4.2.1.2 The Visual Basic 6 Template

The exported file is intended to be used together with the predefined Visual Basic 6 project that can be
found in the directory

%HALCONROOT%\examples\vb\HDevelopTemplate

This project contains a form with a display window (HWindowXCtrl) and a button labeled Run. The file
generated by HDevelop has to be added to this project. This is done by using the menu Project . Add
Module . Existing and selecting the file. Now the project is ready for execution: Run the project and
then press the button Run on the form, which will call the exported code.

4.2.2 Program Structure

The file created by HDevelop contains a subroutine with the corresponding name for every HDe-
velop procedure except the main procedure, which is contained in the subroutine action(). Iconic
input and output parameters of a procedure are passed as ByVal HUntypedObjectX and ByRef
HUntypedObjectX, respectively, while control input and output parameters are passed as ByVal
Variant and ByRef Variant, respectively. The subroutine RunHalcon() contains a call to the subrou-
tine action() and has a parameter Window, which is of type HWindowX. This is the link to the window
on the form to which all output operations are passed. In addition, another subroutine is created with the
name InitHalcon(). This subroutine applies the same initializations that HDevelop performs.

Most of the variables (iconic as well as control) are declared locally inside the corresponding subroutines.
Iconic variables belong to the class HUntypedObjectX and control variables belong to Variant. The
subroutine RunHalcon() has a parameter Window, which is of type HWindowX. This is the link to the
window in the panel to which all output operations are passed.

Depending on the program, additional subroutines and variables are declared.

4.2.2.1 Arrays

If a single value is inserted into a Variant array, a special subroutine is called to ensure that the index
is valid. If the array is too small it is resized.

4.2.2.2 Expressions

All parameter expressions inside HDevelop are translated into expressions based on the HALCON tuple
operators. Therefore, an expression might look somewhat complex. In many cases these expressions can
be changed to simple Visual Basic expressions. For example, TupleSub becomes a simple subtraction.
To ensure that the exported program has the same effect in Visual Basic, this exchange is not applied
automatically because the semantics are not always identical.

4.2.3 Limitations and Troubleshooting 119

4.2.2.3 Stop

The HDevelop operator stop is translated into a subroutine in Visual Basic that creates a message box.
This message box causes the program to halt until the button is pressed.

4.2.2.4 Exit

The HDevelop operator exit is translated into the Visual Basic routine End. Because this routine has no
parameter, the parameters of exit are suppressed.

4.2.2.5 Used Classes

There are only six classes/types that are used: Variant for control parameters and HUntypedObjectX
for iconic data. In addition, there is the container class HTupleX, which comprises all operators of HAL-
CON processing tuples, in this case the data type Variant. Then, there are the classes HWindowXCtrl
and its low-level content HWindowX. HWindowXCtrl is used inside the project for the output window
and a variable of class HWindowX directs the output to this window. Finally, the class HOperatorSetX is
used as a container for all HALCON operators. There is no need for other classes as long as the program
has the same functionality as in HDevelop. When editing a generated program you are free to use any of
the classes of HALCON/COM to extend the functionality.

4.2.3 Limitations and Troubleshooting

Besides the restrictions mentioned in this section and in section 4.6 on page 126, please also check the
description of the HDevelop operators in section 2.3.8.2 on page 55.

4.2.3.1 Variable Names

In contrast to C, C++, or HDevelop, Visual Basic has many reserved words. Thus, the export adds the
prefix ho_ to all iconic and hv_ to all control variables, respectively, in order to avoid collisions with
these reserved words.

4.2.3.2 Exception Handling

In HDevelop, every exception normally causes the program to stop and report an error message in a
dialog window. This might not be useful in Visual Basic. The standard way to handle this in Visual
Basic is by using the On Error Goto command. This allows to access the reason for the exception and
to continue accordingly. Thus, for HDevelop programs containing error handling (dev_error_var) the
corresponding code is automatically included.

Please note that a call of (dev_)set_check("˜give_error") has no influence on the operator call.
The exception will always be raised. This is also true for messages like H_MSG_FAIL, which are not
handled as exceptions in C++, for example.

C
od

e
E

xp
or

t

120 Code Export

When handling exceptions you also have to be aware that the COM interface always resets the output
parameters at the beginning of the operator execution. Thus, when the exception occurs, output variables
are set to Nothing. Therefore, you cannot use the values of variables used as output parameters of the
operator causing the exception.

4.3 Code Generation for Visual Basic .NET

This section describes how to create a HALCON application in Visual Basic .NET, starting from a
program developed in HDevelop. HALCON can be used together with Visual Basic .NET based on the
COM interface of HALCON. A detailed description of this interface can be found in the Programmer’s
Guide, part III on page 69.

4.3.1 Basic Steps

4.3.1.1 Export

The first step is to export the program using the menu File . Save As. Here, select the language
(Visual Basic .NET) and save it to file. In UNIX you specify the language by giving the file the
corresponding extension, which is “.vb”. The result is a new file with the given name and the extension
“.vb”.

4.3.1.2 The Visual Basic .NET Template

The exported file is intended to be used together with the predefined Visual Basic .NET project that can
be found in the directory

%HALCONROOT%\examples\vb.net\HDevelopTemplate

This project contains a form with a display window (HWindowXCtrl) and a button labeled Run. The file
generated by HDevelop has to be added to this project. This is done by using the menu Project . Add
Existing Item and selecting the file. Now the project is ready for execution: Run the project and then
press the button Run on the form, which will call the exported code.

4.3.2 Program Structure

The file created by HDevelop contains a subroutine with the corresponding name for every HDe-
velop procedure except the main procedure, which is contained in the subroutine action(). Iconic
input and output parameters of a procedure are passed as ByVal HUntypedObjectX and ByRef
HUntypedObjectX, respectively, while control input and output parameters are passed as ByVal
Object and ByRef Object, respectively. The subroutine RunHalcon() contains a call to the subrou-
tine action() and has a parameter Window, which is of type HWindowX. This is the link to the window

4.3.2 Program Structure 121

on the form to which all output operations are passed. In addition, another subroutine is created with the
name InitHalcon(). This subroutine applies the same initializations that HDevelop performs.

Most of the variables (iconic as well as control) are declared locally inside the corresponding subroutines.
Iconic variables belong to the class HUntypedObjectX and control variables belong to Object.

Depending on the program, additional subroutines and variables are declared.

4.3.2.1 Arrays

If a single value is inserted into an Object array, a special subroutine is called to ensure that the array is
valid. If the array is too small or of the wrong type, it is recreated in the appropriate way.

4.3.2.2 Expressions

All parameter expressions inside HDevelop are translated into expressions based on the HALCON tuple
operators. Therefore, an expression might look somewhat complex. In many cases these expressions
can be changed to simple Visual Basic .NET expressions. For example, TupleSub becomes a simple
subtraction. To ensure that the exported program has the same effect in Visual Basic .NET, this exchange
is not applied automatically because the semantics are not always identical.

4.3.2.3 Stop

The HDevelop operator stop is translated into a subroutine in Visual Basic .NET that creates a message
box. This message box causes the program to halt until the button is pressed.

4.3.2.4 Exit

The HDevelop operator exit is translated into the Visual Basic .NET routine End. Because this routine
has no parameter, the parameters of exit are suppressed.

4.3.2.5 Used Classes

There are only six classes/types that are used: Object for control parameters and HUntypedObjectX for
iconic data. In addition, there is the container class HTupleX, which comprises all operators of HALCON
processing tuples, in this case the data type Object. Then, there are the classes HWindowXCtrl and its
low-level content HWindowX. HWindowXCtrl is used inside the project for the output window and a
variable of class HWindowX directs the output to this window. Finally, the class HOperatorSetX is used
as a container for all HALCON operators. There is no need for other classes as long as the program has
the same functionality as in HDevelop. When editing a generated program you are free to use any of the
classes of HALCON/COM to extend the functionality.

C
od

e
E

xp
or

t

122 Code Export

4.3.3 Limitations and Troubleshooting

Besides the restrictions mentioned in this section and in section 4.6 on page 126, please also check the
description of the HDevelop operators in section 2.3.8.2 on page 55.

4.3.3.1 Variable Names

In contrast to C, C++, or HDevelop, Visual Basic .NET has many reserved words. Thus, the export adds
the prefix ho_ to all iconic and hv_ to all control variables, respectively, in order to avoid collisions with
these reserved words.

4.3.3.2 Exception Handling

In HDevelop, every exception normally causes the program to stop and report an error message in
a dialog window. This might not be useful in Visual Basic .NET. The standard way to handle this
in Visual Basic .NET is by using the Try/Catch mechanism. This allows to access the reason for
the exception and to continue accordingly. Thus, for HDevelop programs containing error handling
((dev_)set_check("˜give_error")) the corresponding code is automatically included. Every op-
erator call, for which it is assumed that the HALCON error mechanism is turned off, is enclosed in a
Try block followed by a Catch block. The latter handles the exception and assigns the corresponding
HALCON error number to the error variable activated by dev_error_var or to a local error variable,
otherwise.

Please note that a call of (dev_)set_check("˜give_error") has no influence on the operator call.
The exception will always be raised. This is also true for messages like H_MSG_FAIL, which are not
handled as exceptions in C++, for example.

When handling exceptions you also have to be aware that the COM interface always resets the output
parameters at the beginning of the operator execution. Thus, when the exception occurs, output variables
are set to Nothing. Therefore, you cannot use the values of variables used as output parameters of the
operator causing the exception.

4.3.3.3 Memory Management

The .NET Framework’s runtime environment CLR (Common Language Runtime) has a mechanism
called garbage collector, which is used by the CLR to remove no longer needed .NET objects from
memory. As mentioned earlier, in the exported Visual Basic .NET code every iconic object is represented
by a .NET HUntypedObjectX object, which contains a reference to a COM HUntypedObjectX object.
From the garbage collector’s point of view, a .NET HUntypedObjectX object is rather small. Thus, it
might not be collected from memory although the underlying iconic object (e.g. an image) might in fact
occupy a large portion of memory. In order to avoid memory leaks caused by this effect, in the exported
code every iconic object is deleted explicitly before it is assigned a new value.

4.4 Code Generation for C# 123

4.4 Code Generation for C#

This section describes how to create a HALCON application in C#, starting from a program developed
in HDevelop. HALCON can be used together with C# based on the COM interface of HALCON. A
detailed description of this interface can be found in the Programmer’s Guide, part III on page 69.

4.4.1 Basic Steps

4.4.1.1 Export

The first step is to export the program using the menu File . Save As. Here, select the language (C#)
and save it to file. In UNIX you specify the language by giving the file the corresponding extension,
which is “.cs”. The result is a new file with the given name and the extension “.cs”.

4.4.1.2 The C# Template

The exported file is intended to be used together with the predefined C# project that can be found in the
directory

%HALCONROOT%\examples\c#\HDevelopTemplate

This project contains a form with a display window (HWindowXCtrl) and a button labeled Run. The file
generated by HDevelop has to be added to this project. This is done by using the menu Project . Add
Existing Item and selecting the file. Now the project is ready for execution: Run the project and then
press the button Run on the form, which will call the exported code.

4.4.2 Program Structure

The file created by HDevelop contains a subroutine with the corresponding name for every HDevelop
procedure except the main procedure, which is contained in the subroutine action(). Iconic input and
output parameters of a procedure are passed as HUntypedObjectX and out HUntypedObjectX, respec-
tively, while control input and output parameters are passed as object and out object, respectively.
The subroutine RunHalcon() contains a call to the subroutine action() and has a parameter Window,
which is of type HWindowX. This is the link to the window on the form to which all output operations
are passed. In addition, another subroutine is created with the name InitHalcon(). This subroutine
applies the same initializations that HDevelop performs.

Most of the variables (iconic as well as control) are declared locally inside the corresponding subroutines.
Iconic variables belong to the class HUntypedObjectX and control variables belong to object.

Depending on the program, additional subroutines and variables are declared.

4.4.2.1 Arrays

If a single value is inserted into an object array, a special subroutine is called to ensure that the array is
valid. If the array is too small or of th wrong type, it is recreated in the appropriate way.

C
od

e
E

xp
or

t

124 Code Export

4.4.2.2 Expressions

All parameter expressions inside HDevelop are translated into expressions based on the HALCON tuple
operators. Therefore, an expression might look somewhat complex. In many cases these expressions can
be changed to simple C# expressions. For example, TupleSub becomes a simple subtraction. To ensure
that the exported program has the same effect in C#, this exchange is not applied automatically because
the semantics are not always identical.

4.4.2.3 Used Classes

There are only six classes/types that are used: object for control parameters and HUntypedObjectX for
iconic data. In addition, there is the container class HTupleX, which comprises all operators of HALCON
processing tuples, in this case the data type object. Then, there are the classes HWindowXCtrl and its
low-level content HWindowX. HWindowXCtrl is used inside the project for the output window and a
variable of class HWindowX directs the output to this window. Finally, the class HOperatorSetX is used
as a container for all HALCON operators. There is no need for other classes as long as the program has
the same functionality as in HDevelop. When editing a generated program you are free to use any of the
classes of HALCON/COM to extend the functionality.

4.4.3 Limitations and Troubleshooting

Besides the restrictions mentioned in this section and in section 4.6 on page 126, please also check the
description of the HDevelop operators in section 2.3.8.2 on page 55.

4.4.3.1 Variable Names

The export adds the prefix ho_ to all local iconic and hv_ to all local control variables, respectively, in
order to avoid collisions with reserved words.

4.4.3.2 Exception Handling

In HDevelop, every exception normally causes the program to stop and report an error message
in a dialog window. This might not be useful in C#. The standard way to handle this in Vi-
sual Basic .NET is by using the try/catch mechanism. This allows to access the reason for the
exception and to continue accordingly. Thus, for HDevelop programs containing error handling
((dev_)set_check("˜give_error")) the corresponding code is automatically included. Every op-
erator call, for which it is assumed that the HALCON error mechanism is turned off, is enclosed in a
try block followed by a catch block. The latter handles the exception and assigns the corresponding
HALCON error number to the error variable activated by dev_error_var or to a local error variable,
otherwise.

Please note that a call of (dev_)set_check("˜give_error") has no influence on the operator call.
The exception will always be raised. This is also true for messages like H_MSG_FAIL, which are not
handled as exceptions in C++, for example.

4.5 Code Generation for C 125

When handling exceptions you also have to be aware that the COM interface always resets the output
parameters at the beginning of the operator execution. Thus, when the exception occurs, output variables
are set to Nothing. Therefore, you cannot use the values of variables used as output parameters of the
operator causing the exception.

4.4.3.3 Memory Management

The .NET Framework’s runtime environment CLR (Common Language Runtime) has a mechanism
called garbage collector, which is used by the CLR to remove no longer needed .NET objects from
memory. As mentioned earlier, in the exported C# code every iconic object is represented by a .NET
HUntypedObjectX object, which contains a reference to a COM HUntypedObjectX object. From the
garbage collector’s point of view, a .NET HUntypedObjectX object is rather small. Thus, it might not
be collected from memory although the underlying iconic object (e.g. an image) might in fact occupy
a large portion of memory. In order to avoid memory leaks caused by this effect, in the exported code
every iconic object is deleted explicitly before it is assigned a new value.

4.5 Code Generation for C

This section describes how to create a HALCON application in C, starting from a program developed in
HDevelop.

4.5.1 Basic Steps

4.5.1.1 Program Export

The first step is to export the program using the menu File . Save As. Here, select the language (C)
and save it to file. In UNIX you specify the language by giving the file the extension “.c”. A file will
be created that contains the HDevelop program as C source code. For every HDevelop procedure except
the main procedure, the exported file contains a C procedure with the corresponding name. Iconic input
and output parameters of a procedure are declared as Hobject and Hobject*, respectively, while con-
trol input and output parameters are declared as Htuple and Htuple*, respectively. All procedures are
declared at the beginning of the file. The program body of the HDevelop main procedure is contained
in a procedure action() which is called in function main(). action() and main() can be excluded
from compilation by inserting the instruction #define NO_EXPORT_MAIN at the appropriate position in
the application. This can be useful if you want to integrate exported HDevelop code into your appli-
cation through specific procedure interfaces. In that case, there is typically no need to export the main
procedure, which was probably used only for testing the functionality implemented in the corresponding
’real’ procedures.

Besides the program code, the file contains all necessary #include instructions. All local variables
(iconic as well as control) are declared in the corresponding procedures. Iconic variables belong to the
class Hobject and all other variables belong to Htuple.

Please note that in the current version the generated C code is not optimized for readability. It is output
such that it always produces identical results as the HDevelop code.

C
od

e
E

xp
or

t

126 Code Export

4.5.1.2 Compiling and Linking in Windows Environments

The next step is to compile and link this new program. In the Windows environment, Visual
C++ is used for the compiling and linking. Example projects can be found in the directory
%HALCONROOT%\examples\c.

If you want to use Parallel HALCON, you have to include the libraries parhalcon.lib/.dll and
parhalconc.lib/.dll instead of halcon.lib/.dll and halconc.lib/.dll in your project (see
the Programmer’s Guide, chapter 14 on page 107, for more details).

4.5.1.3 Compiling and Linking in UNIX Environments

To compile and link the new program (called, e.g., test.c) under UNIX, you can use the example
makefile, which can be found in the directory $HALCONROOT/examples/c , by calling

make TEST_PROG=test

Alternatively, you can set the variable TEST_PROG in makefile to test and then just type make.

You can link the program to the Parallel HALCON libraries by calling

make parallel TEST_PROG=test

or just type make parallel if you set the variable TEST_PROG as described above.

For more details see the Programmer’s Guide, chapter 14 on page 107.

4.6 General Aspects of Code Generation

In the following, general differences in the behavior of a HDevelop program and its exported versions
are described.

4.6.1 User-Defined Code Blocks

HDevelop comments containing the # symbol as the first character are exported as plain text statements.
For example, the line

* #Call MsgBox("Press button to continue",vbYes,"Program stop","",1000)

in HDevelop will result in

Call MsgBox("Press button to continue",vbYes,"Program stop","",1000)

in Visual Basic 6. This feature can be used to integrate Visual Basic, Visual Basic .NET, C#, C++, or C
code into a HDevelop program.

4.6.2 Assignment 127

4.6.2 Assignment

In HDevelop each time a new value is assigned to a variable its old contents are removed automati-
cally, independent of the type of the variable. In the exported code, this is also the case for iconic objects
(C++: Hobject, Visual Basic 6: HUntypedObjectX) and for the class HTuple (C++), the type Variant
(Visual Basic 6), and the class object (Visual Basic .NET, C#), as they all have a destructor that re-
moves the stored data. Because C does not provide destructors, the generated C code calls the operators
clear_obj and destroy_tuple to remove the content of iconic output parameters (Hobject) and con-
trol output parameters (Htuple) before each operator call. Memory issues regarding iconic objects in
Visual Basic .NET and C# are described in section 4.3.3.3 and section 4.4.3.3, respectively.

However, problems arise if a tuple (variant) contains a handle, for example for a file, a window, or for
OCR. In this case, the memory of the handle is automatically removed but not the data to which it points.
In the exported programs, this data therefore has to be removed explicitly by calling the corresponding
operators close_* like close_ocr or close_ocv. Please insert the close_* operators for all handles
in use

• before a new value is assigned to a handle and

• at the end of the program.

In Visual Basic, Visual Basic .NET, and C#, the ideal way would be to use the specific COM classes
for this kind of data in combination with the member function. This exchange must be done “by hand”
because the export is not able to generate appropriate code.

4.6.3 for Loops

HDevelop and the programming languages have different semantics for loops, which may cause confu-
sion. Because the problems are so rare and the generated code would become very difficult to understand
otherwise, the code generation ignores the different semantics. These differences are:

1. In the programming languages, you can modify the loop variable (e.g., by setting it to the end
value of the condition) to terminate the loop. This can’t be done in HDevelop because here the
current value is stored “inside” the for-operator and is automatically updated when it is executed
again.

2. In the programming languages, you can modify the step range if you use a variable for the
increment. This is also not possible with HDevelop because the increment is stored “inside” the
for-operator when the loop is entered.

3. The last difference concerns the value of the loop variable after exiting the loop. In the program-
ming languages, it has the value with which the condition becomes false for the first time. In
HDevelop it contains the end value, which was calculated when the loop was entered.

Looking at the mentioned points, we recommend to program according to the following rules:

1. Don’t modify the loop variable or the step value inside the loop. If you need this behavior, use
the while-loop.

2. Don’t use the loop variable after the loop.

C
od

e
E

xp
or

t

128 Code Export

4.6.4 Protected External Procedures

As described for the different programming languages, HDevelop procedures are exported automatically
to procedures or subroutines of the selected programming language. This does not hold for the pro-
tected external procedures described in section 2.4.3.3 on page 74. These procedures are protected by a
password so that they cannot be viewed and modified by unauthorized users. Thus, as long as they are
protected by the password, they can not be exported to any programming language.

4.6.5 System Parameters

You should know that HDevelop performs some changes of system parameters of HALCON by calling
the operator set_system (see the reference manual). This might cause the exported program not to
produce identical output. If such a problem arises, you may query the system parameters by means
of get_system in HDevelop after or while running the original HDevelop version of the program.
Depending to the problem, you can now modify relevant parameters by explicitly calling the operator
set_system in the exported program.

4.6.6 Graphics Windows

The graphics windows of HDevelop and the basic windows of the HALCON libraries (C++: class
HWindow; Visual Basic,Visual Basic .NET,C#: class HWindowXCtrl; C: addressed via handles) have
different functionality.

• Multiple windows
If you use the operator dev_open_window to open multiple graphics windows in HDevelop, these
calls will be converted into corresponding calls of open_window only for C++ and C programs.
In the export of Visual Basic, Visual Basic .NET, and C# programs, all window operations are sup-
pressed, because the exported code is intended to work together with the corresponding template.
If you want to use more than one window in Visual Basic, Visual Basic .NET, or C#, you have to
modify the code and project manually.

Note that the export of programs containing multiple windows to C++ or C might be incorrect if the
button Activate was used during program execution. Note also that HDevelop window operations
that do not have a window handle parameter like dev_open_window, dev_close_window, or
dev_set_line_style are suppressed in all HDevelop procedures except the main procedure. In
order to perform windows operations in HDevelop procedures aimed to be exported to C++ or C,
the corresponding HALCON operators like open_window, close_window, or set_line_style
should be used instead (in that case ignore the warning issued by HDevelop).

• Window size
In exported Visual Basic, Visual Basic .NET, and C# programs, the size of the window on the form
is predefined (512× 512); thus, it will normally not fit your image size. Therefore, you must adapt
the size interactively or by using the properties of the window.

• Displaying results
Normally, the result of every operator is displayed in the graphics window of HDevelop. This
is not the case when using an exported program. It behaves like the HDevelop program running

4.6.6 Graphics Windows 129

with the option: “update window = off”. We recommend to insert the operator dev_display in
the HDevelop program at each point where you want to display data. This will not change the
behavior of the HDevelop program but result in the appropriate call in the exported code.

When generating code for C++ or C, close the default graphics window (using
dev_close_window) and open a new one (using dev_open_window) before the first call
of dev_display in order to assure a correct export.

• Displaying images
In HDevelop, images are automatically scaled to fit the current window size. This is not the case in
exported programs. For example, if you load and display two images of different size, the second
one will appear clipped if it is larger than the first image or filled up with black areas if it is smaller.
For a correct display, you must use the operator dev_set_part before displaying an image with
dev_display as follows:

dev_set_part (0, 0, ImageHeight-1, ImageWidth-1)

dev_display (Image)

In this example, Image is the image variable, ImageHeight and ImageWidth denote its size.
You can query the size of an image with the operator get_image_pointer1. Please consult the
HALCON Reference Manuals for more details.

Note that the operator dev_set_part (and its HALCON library equivalent set_part) is more
commonly used for displaying (and thereby zooming) parts of images. By calling it with the full
size of an image as shown above, you assure that the image exactly fits the window.

• Changing display parameters
If you change the way how results are displayed (color, line width, etc.) in HDevelop interac-
tively via the menu Visualization, these changes will not be incorporated in the exported pro-
gram. We recommend to insert the corresponding Develop operators (e.g., dev_set_color or
dev_set_line_width) in the HDevelop program explicitly. This will result in the appropriate
call (set_color, set_line_width, etc.) in the exported code.

C
od

e
E

xp
or

t

130 Code Export

Program Examples 131

Chapter 5

Program Examples

This chapter contains examples that illustrate how to program with HDevelop. To understand the exam-
ples you should have a basic knowledge of image analysis.

The user interface is described in section 1.4 on page 3 and chapter 2 on page 11. Language details are
explained in chapter 3 on page 89. The examples of this chapter are also available as program code in
the directory

%HALCONROOT%\examples\hdevelop\Manuals\HDevelop

To experiment with these examples we recommend to create a private copy in your working directory.

More detailed information on HALCON operators is available in the reference manuals.

5.1 Stamp Segmentation

File name: stamps.dev
The first example performs a document analysis task. Figure 5.1 shows a part of a stamp catalog page.
It contains two types of information about stamps: a graphical presentation and a textual description of
the stamp.

In this example you have to transform the textual information into a representation that can be processed
by a computer with little effort. You might use an OCR program for this task, but you will soon recognize
that most of the available products create many errors due to the graphical presentation of the stamps.
Thus another task has to be preprocessed: the elimination of all stamps (i.e., changing stamps to the gray
value of the paper). After this preprocessing it is possible to process the remaining text using an OCR
program.

When creating an application to solve this kind of problem, it is helpful to describe characteristic at-
tributes of the objects to be searched (here: stamps). This task can be solved by a novice with some
experience, too. In this case, a characterization might look as follows:

E
xa

m
pl

es

132 Program Examples

Figure 5.1: Part of the page of a Michel catalog.

• Stamps are darker than paper.

• Stamps are connected image areas that do not overlap.

• Stamps have a minimum and maximum size.

• Stamps are rectangular.

The task would be very simple if the attribute list would directly represent the program. Unfortunately,

5.2 Capillary Vessel 133

this is not possible due to the ambiguity of spoken language. Thus you need language constructs with
a precise syntax and a semantics that are as close as possible to the informal description. Using the
HDevelop syntax, an appropriate program would look like this:

dev_close_window ()

read_image (Catalog, ’swiss1.tiff’)

get_image_pointer1 (Catalog, Pointer, Type, Width, Height)

dev_open_window (0, 0, Width/2, Height/2, ’black’, WindowID)

dev_set_part (0, 0, Height-1, Width-1)

dev_set_draw (’fill’)

threshold (Catalog, Dark, 0, 110)

dev_set_colored (6)

connection (Dark, ConnectedRegions)

fill_up (ConnectedRegions, RegionFillUp)

select_shape (RegionFillUp, StampCandidates, ’area’,

’and’, 10000, 200000)

select_shape (StampCandidates, Stamps,

’compactness’, ’and’, 1, 1.5)

smallest_rectangle1 (Stamps, Row1, Column1, Row2, Column2)

dev_display (Catalog)

dev_set_draw (’margin’)

dev_set_line_width (3)

disp_rectangle1 (WindowID, Row1, Column1, Row2, Column2)

Figure 5.2 shows the segmentation result.

Due to the unknown operators and unfamiliar syntax this program appears unclear to the user at first
glance.

But if you look closer at the operators you will notice the direct relation to the description above.

threshold selects all image pixels darker than the paper.

connection merges all selected pixels touching each other to connected regions.

select_shape selects the regions with areas (attribute: ’area’) inside a specified interval.

smallest_rectangle1 computes each region’s coordinates (row/column) of the enclosing rectangle.

Once the user is familiar with the single operators and their syntax, the transformation becomes easy.
In particular, it is not important to the program whether an image or a set of regions is processed. You
can handle them both in the same way. In addition, the memory management of internal data structures
is transparent to the user. Thus, you do not need to bother about memory management and you can
concentrate on the image analysis tasks to solve.

5.2 Capillary Vessel

File name: vessel.dev
The task of this example is the segmentation of a capillary vessel. In particular, you have to separate the
cell area in the upper and lower part of figure 5.3 (left image) from the area in the middle of the image.

E
xa

m
pl

es

134 Program Examples

Figure 5.2: Segmentation result for stamps.

The area boundaries are very blurred and even a human viewer has difficulties recognizing them. At
first glance it seems very difficult to find a segmentation criterion: There is neither a clear edge nor a
significant difference between the gray values of both areas. Thus it is not very promising to use an edge
operator or a threshold operation.

One solution of this problem makes use of the different textures within the areas: Cells are more textured
than the part which is supplied with blood. To emphasize this difference you can use a texture transfor-

5.2 Capillary Vessel 135

Figure 5.3: Capillary vessel (left) and texture transformation (right).

mation by Laws. Texture transformations are linear filters that intensify certain frequencies which are
typical for the requested texture. The corresponding HALCON operator is texture_laws. You have to
specify the filter size and type. Both attributes determine the frequency properties. In this program the
filter ’el’ with mask size 5 × 5 is used. It performs a derivation in vertical direction and a smoothing
in horizontal direction. Thus structures in vertical direction are intensified. You cannot directly use the
computed result of texture_laws (see figure 5.3 right), because it is too speckled. Therefore you must
generalize the texture image by a mean filter (mean_image). From this you obtain the so called texture
energy (figure 5.4 left).

Figure 5.4: Capillary vessel texture energy (left) and segmentation (right).

The filter mask is chosen very large within this program. The mask size for the horizontal direction is
211 and 61 for the vertical direction. The asymmetry is used, because the vessel is nested in horizontal

E
xa

m
pl

es

136 Program Examples

direction. From this you obtain an image with an upper and lower part that is brighter than that in the
middle.

read_image (Image, ’vessel’)

texture_laws (Image, Texture, ’el’, 5, 5)

mean_image (Texture, Energy, 211, 61)

bin_threshold (Energy, Vessel)

To separate these areas you just have to find the appropriate threshold. In this case — we have
only two types of textures — the threshold can be found automatically. This is done by the operator
bin_threshold, which also applies the resulting threshold and thus extracts the vessel. The right side
of figure 5.4 shows the result of the segmentation.

5.3 Particles

File name: particle.dev
This program example processes an image that was taken from a medical application. It shows tissue
particles on a carrier (figure 5.5 left).

Figure 5.5: Tissue particles (left) and large objects (right).

As in many other medical applications, the existing objects have to be evaluated statistically. This means
that different objects have to be extracted and classified according to their size or other attributes for
example. After this, you can analyze them. An important step to solve this problem is the image segmen-
tation that locates the relevant objects. For the statistical evaluation you may have a look at appropriate
literature about statistics.

In our case there are two object classes:

• large, bright particles

• small, dark particles

5.3 Particles 137

The large, bright particles differ clearly from the background because of their gray values. The informal
description ’brighter than the background’ leads directly to the algorithmic solution using a thresholding.
The only thing to decide is whether you specify the threshold automatically or empirically. In our case,
a fixed threshold is completely sufficient due to the good contrast. Hence you get the following simple
segmentation operator:

read_image (Particle, ’particle’)

threshold (Particle, Large, 110, 255)

The variable Large contains all pixels whose gray values are brighter than 110. You can see the result
on the right side of figure 5.5.

It is more difficult to find the small, dark particles. A first effort to specify a threshold interactively
shows that there is no fixed threshold suitable to extract all particles. But if you look closer at the image
you will notice that the smaller particles are much brighter than their local environment, i.e., you may
specify suitable threshold values that are valid for a small image part each. Now it is easy to transform
this observation into an algorithm. One way is to determine the threshold values locally (e.g., from a
bar chart). Another solution might be the definition of a local environment by an n × n window. This
method is used in the example. The window’s mean value is used as an approximation of the background
intensity. This can be done by applying a low pass filter, such as a mean filter or a Gaussian filter. The
window size n defines the size of the local environment and should approximately be twice as large as
the objects to search for. Since they show an average diameter of 15 pixels, a mask size of 31 is used.

The resulting pixels are specified by the comparison of the original gray values with the mean image. To
reduce problems caused by noise you add a constant to the mean image (3). The appropriate program
segment looks as follows:

mean_image (Particle, Mean, 31, 31)

dyn_threshold (Particle, Mean, Small, 3, ’light’)

The operator dyn_threshold compares two images pixel by pixel. You can see the segmentation result
in figure 5.6 left.

As we see, all objects have been found. Unfortunately, the edges of the large particles and several very
small regions that emerged due to the noisy image material were found, too.

We first try to suppress the edges. One way is to eliminate all objects that exceed a certain maximum
size. You can do this by calling:

connection (Small, SmallSingle)

select_shape (SmallSingle, ReallySmall, ’area’, ’and’, 1, 300)

By the same method you might also eliminate all objects which are too small (blurring). For this, you
would just have to increase the minimum size with the call of select_shape. But if you examine the
segmentation results again, you will notice that some of the resulting pixels were already extracted by
the first segmentation. Thus you should search the small particles within the complement of the large
ones only. To avoid the segmentation of small particles in the direct neighbourhood of the large ones,
those are enlarged before building their complement. Thus we get the following modified program:

E
xa

m
pl

es

138 Program Examples

Figure 5.6: Small objects: simple (left) and advanced segmentation (right).

dilation_circle (Large, LargeDilation, 8.5)

complement (LargeDilation, NotLarge)

reduce_domain (Particle, NotLarge, ParticleRed)

mean_image (ParticleRed, Mean, 31, 31)

dyn_threshold (ParticleRed, Mean, Small, 3, ’light’)

This method shows two advantages: First, the (reliable) model of the large particles can be used to extract
the small ones. This increases the quality of the segmentation. Second, the processing speed is increased,
as the second segmentation works only on a part of the image data. The right side of figure 5.6 shows
the segmentation result.

Unfortunately, the image still contains noise. To remove it, you may either sort out noisy objects by their
area as described above, or by an opening operation. We prefer the second method as it additionally
smooths the object edges.

opening_circle (Small, SmallClean, 2.5)

Here, a circle is used as the structuring element of the opening operation. The operator preserves regions
only that may at least cover a circle of radius 2.5. Smaller regions are eliminated.

Figure 5.7 shows the result of the segmentation with noise removal on the left side. The right side
contains the final result.

Finally, we would like to show within this example how to select regions with the mouse interactively.
At this, a loop is executed until you press the middle or right mouse button. When pressing a mouse
button, the operator get_mbutton returns the button that was pressed and the position (coordinates)
where it was pressed. This information is used to select the chosen object. In the following you see the
corresponding program part:

5.4 Annual Rings 139

Figure 5.7: Noise-removed segmentation (left) and final result (right).

dev_clear_window (WindowID)

connection (SmallClean, SmallSingle)

Button := 1

dev_set_color (’red’)

while (Button = 1)

get_mbutton (WindowID, Row, Column, Button)

select_region_point (SmallSingle, OneObject, Row, Column)

intensity (OneObject, Particle, MeanGray, Deviation)

endwhile

First, the window is cleared via dev_clear_window. After that, connection calculates all connected
components to allow the selection of single regions. This also displays the region components in the
HDevelop window. Then you may set the drawing color (here: red) to visualize the selected regions.
The loop is initialized by assigning 1 to the variable Button (1 is the code for the left mouse button).
Within the loop the mouse state is queried and the chosen region is selected. As an example the mean
gray value and the standard deviation are computed for each selected region. As long as you press only
the left mouse button within the window the loop continues. You can terminate it by pressing any other
mouse button.

5.4 Annual Rings

File name: wood.dev
Everyone knows the task to determine the age of a tree by counting its annual rings. This will now be
done automatically using the example program. The first step is the segmentation of annual rings. This
is quite simple as you can see them clearly as bright or dark lines. Again, the dynamic thresholding
(dyn_threshold) can be used (as before during the particle segmentation in section 5.3 on page 136).
To achieve a suitable threshold image you apply the mean filter (mean_image) with size 15× 15 first.

E
xa

m
pl

es

140 Program Examples

The segmentation result contains many tiny regions that are no annual rings. To eliminate them you
have to create the connected components (connection) and suppress all regions that are too small
(select_shape). Counting the rings becomes difficult, as there might be fissures in the wood (see
figure 5.8).

Figure 5.8: Annual rings of a tree.

Thus, we suggest the following method: You define the start and end point of a line across the an-
nual rings using your mouse. Then the number of intersections with annual rings is counted along this
line. This can be done by the following HALCON operators: The start and end points, represented
by their x- and y-coordinates, are transformed into a line (gen_region_line). This line is intersected
(intersection) with the annual rings (SelectedRegions). The number of the connected regions
(count_obj) in this intersection is the number of annual rings. The complete program looks as follows:

dev_close_window ()

read_image (WoodPiece1, ’woodring’)

get_image_pointer1 (WoodPiece1, Pointer, Type, Width, Height)

dev_open_window (0, 0, Width/2, Height/2, ’black’, WindowID)

mean_image (WoodPiece1, ImageMean, 9, 9)

dyn_threshold (WoodPiece1, ImageMean, Regions, 5.0, ’dark’)

threshold (WoodPiece1, Dark, 0, 90)

dilation_rectangle1 (Dark, DarkDilation, 30, 7)

difference (Regions, DarkDilation, RegionBright)

connection (RegionBright, ConnectedRegions)

select_shape (ConnectedRegions, SelectedRegions,

’area’, ’and’, 30, 10000000)

get_mbutton (WindowID, Row1, Column1, Button1)

get_mbutton (WindowID, Row2, Column2, Button2)

gen_region_line (Line, Row1, Column1, Row2, Column2)

intersection (Line, SelectedRegions, Inters)

connection (Inters, ConnectedInters)

Number := |ConnectedInters|

5.5 Bonding 141

5.5 Bonding

File name: ball.dev
This is the first example in the field of quality inspection. The task is to detect bonding balls. Figure 5.9
shows two typical microscope images of a die.

Figure 5.9: Exemplary images with bonding balls on a die.

The die border and the bonding wires appear dark. Thus you may apply a thresholding. Since the
background is also dark we have to extract the die before doing the segmentation. The die is rather
bright. Thus we can select the pixels by their gray values.

read_image (Bond, ’die3’)

threshold (Bond, Bright, 120, 255)

shape_trans (Bright, Die, ’rectangle2’)

All pixels of the die that got lost by the thresholding can be recovered by using a hull computation. Since
the die is rectangular and may be slightly turned during the assembly we use the smallest enclosing
rectangle as a hull.

Now you can start the segmentation of wires and bonding balls. Since only those parts of wires and balls
are of interest that lie within the die area, you may restrict the segmentation to this region. All dark pixels
within the die area belong to wires. Unfortunately, there are some bright reflections on the wires that are
not found by the segmentation. You may fill these gaps by using fill_up_shape. In our case, the gaps
with a certain size (1 up to 100 pixels) are filled.

E
xa

m
pl

es

142 Program Examples

reduce_domain (Bond, Die, DieGray)

threshold (DieGray, Wires, 0, 100)

fill_up_shape (Wires, WiresFilled, ’area’, 1, 100)

opening_circle (WiresFilled, Balls, 15.5)

connection (Balls, SingleBalls)

select_shape (SingleBalls, IntermediateBalls, ’circularity’,and,0.85, 1.0)

sort_region (IntermediateBalls, FinalBalls, ’FirstPoint’, ’True’, ’column’)

smallest_circle (FinalBalls, Row, Column, Radius)

Since the balls are wider than the wires, you may clean this region using a simple opening. The radius
(here 15.5) should correspond to the minimum size of one ball. In both images you see an erroneous
segmentation that was created by a rectangular dark region. This can be suppressed by a shape segmen-
tation. Since in practice a bonding detection would be performed only close to the anticipated positions
of bonding balls. Figure 5.10 shows the results of the whole segmentation.

Figure 5.10: Detected bonding positions.

Balls are shown in white color. Every radius of a ball you can find in the tuple variable Radius. The
number of balls within the example you can get with the absolute value of Radius.

NumBalls := |Radius|

Diameter := 2*Radius

MeanDiameter := sum(Diameter)/NumBalls

MinDiameter := min(Diameter)

Diameter, MeanDiameter and MinDiameter are some examples for calculations possible with HDevelop.

5.6 Calibration Plate 143

5.6 Calibration Plate

File name: calib.dev
This example works with the image of a calibration plate. It is used to specify the internal parameters of
a CCD camera. Therefore, you have to extract the circles on the plate (see left side of figure 5.11).

Figure 5.11: Calibration plate and gray_inside result.

This example describes an interesting operator. It is called gray_inside and is a so-called fuzzy op-
erator. In this case, fuzzy means that the value of each pixel is not interpreted as gray value but as the
affiliation to a certain class. The bigger the number (max. 1), the stronger the affiliation.1

By applying gray_inside to an image every pixel value is interpreted as the “potential energy” you
have to afford to get from the pixel position to the image border. The dark pixels present valleys and
the bright pixels mountains. Thus a dark region in the middle of an image is equivalent to a hole in
a mountain that needs a lot of energy to be left. This is also true for the dark circles on the bright
background in the image of the calibration board.

Before calling gray_inside you should use a smoothing filter to suppress small valleys. This reduces
runtime considerably.

If you look at the operator result on the right side of figure 5.11 you will notice the circles as significant
bright points. Now a simple thresholding is sufficient to extract them.

read_image (Caltab, ’caltab’)

gauss_image (Caltab, ImageGauss, 9)

gray_inside (ImageGauss, ImageDist)

threshold (ImageDist, Bright, 110, 255)

connection (Bright, Circles)

elliptic_axis (Circles, Ra, Rb, Phi)

After calculating the ellipse parameters of each circle (elliptic_axis), you may compute the camera
parameters.

1In HALCON the range of 0 to 1 is mapped to values of a byte image (0 to 255).

E
xa

m
pl

es

144 Program Examples

5.7 Devices

File name: ic.dev
This example discusses the combination of different segmentation methods. It works with an image of
multiple electronic components. These differ in shape, size and arrangement. The left side of figure 5.12
shows the input image.

Figure 5.12: Board with electronic devices (left) and the corresponding color value image in the HSV
space (right).

First you extract resistors and capacitors. This is quite simple because you have a color image and both
component types have different colors. The input image consists of three channels containing the red,
green, and blue channels. Since segmentation in the RGB space is difficult, you have to transform the
image into the HSV space. Here the color information is stored in one single channel. The right side
of figure 5.12 shows the image representation in this channel (Hue). Elements that are too small can
be eliminated via select_shape. The program sequence to extract resistors and capacitors is shown
below:

read_image (ICs, ’ic’)

decompose3 (ICs, Red, Green, Blue)

trans_from_rgb (Red, Green, Blue, Hue, Saturation, Intensity)

threshold (Saturation, Colored, 100, 255)

reduce_domain (Hue, Colored, HueColored)

threshold (HueColored, Blue, 114, 137)

connection (Blue, BlueConnect)

select_shape (BlueConnect, BlueLarge, ’area’, ’and’, 150, 100000)

shape_trans (BlueLarge, Condensators, ’rectangle2’)

threshold (HueColored, Red, 10, 19)

connection (Red, RedConnect)

select_shape (RedConnect, RedLarge, ’area’, ’and’, 150, 100000)

shape_trans (RedLarge, Resistors, ’rectangle2’)

If you look closer at this program segment you will notice some obvious enhancements that can be made.

5.7 Devices 145

One is necessary due to the color model: The thresholding of the color image chooses all pixels with a
certain color. This selection is independent of the color saturation. Thus it might happen that very bright
pixels (nearly white pixels) or very dark pixels (nearly black pixels) have the same color value as the
components. But you are only looking for stronger colors. For this you select all pixels first whose color
is strong, i.e., all pixels with a high saturation.

The second enhancement concerns the objects’ shape. As the devices are rectangular you can specify the
smallest enclosing rectangle of all connected components to enhance the segments. On the left side of
figure 5.13 the resulting components are marked.

Figure 5.13: Resistors and capacitors (left) and ICs (right).

In a second step, we will search for all ICs. This seems to be easy, as they are rather large and dark.
However, some problems emerge due to the bright labels that are printed across some ICs. Thus a simple
thresholding alone is not sufficient. In addition you have to combine the segments belonging to one IC.
This is done by examining the spatial adjacencies of the segments. A dilation is used to enlarge the
regions until they overlap each other. This dilation must not be so large that different ICs are merged.
Thus gaps caused by labels have to be smaller than gaps between ICs. Now you can separate the enlarged
ICs in their connected components. Unfortunately, they have become too large by the dilation. Another
thresholding for each connected component will detect the dark pixels of each IC. Finally, you can
specify the enclosing rectangles analogously to the resistors and the capacitors (see above).

threshold (Intensity, Dark, 0, 50)

dilation_rectangle1 (Dark, DarkDilate, 15, 15)

connection (DarkDilate, ICLarge)

add_channels (ICLarge, Intensity, ICLargeGray)

threshold (ICLargeGray, ICsDark, 0, 50)

shape_trans (ICsDark, IC, ’rectangle2’)

The right side of figure 5.13 shows the resulting ICs. We have to mention two aspects about the program
segment above. Here the operator add_channels has been used instead of reduce_domain. This is
necessary as several regions have to be “supplied” with gray values. The situation of previous programs

E
xa

m
pl

es

146 Program Examples

was quite different: there the number of valid pixels of one image has been restricted. From this fol-
lows the second point: here the operator threshold gets several images as input.2 The thresholding is
performed in every image. Thus you receive as many regions as input images.

Finally, the segmentation of IC contacts has to be done. They are bright and small. Thus it is easy to
extract them using a dynamic thresholding (compare section 5.3 on page 136). However, several other
tin elements on the board remain a problem, because they have to be distinguished from the IC contacts.
This can be done by restricting the search on a region of interest. IC contacts may only appear either on
the right or the left side of ICs. The coarse region of interest is defined by enlarging the IC regions with a
following set subtraction. Then the result is resized appropriately by using another dilation. Figure 5.14
shows the operator result on the left side.

Figure 5.14: Searching regions for contacts (left) and IC contacts (right).

Now you only have to intersect the result of the thresholding with the region of interest.

dilation_rectangle1 (IC, ICWidth, 5, 1)

difference (ICWidth, IC, SearchingArea)

dilation_rectangle1 (SearchingArea, SearchingAreaWidth, 14, 1)

union1 (SearchingAreaWidth, SearchingAreaUnion)

reduce_domain (Intensity, SearchingAreaUnion, SearchGray)

mean_image (SearchGray, Mean, 15, 15)

dyn_threshold (SearchGray, Mean, Contacts, 5, ’light’)

connection (Contacts, ContactsConnect)

fill_up (ContactsConnect, ContactsFilled)

select_shape (ContactsFilled, ContactsRes, ’area’, ’and’, 10, 100)

The result of the intersection is still not satisfying. Too many small and too many wrong regions have
been found. So we have to eliminate them by using select_shape. Figure 5.14 shows the final result
of the segmentation on the right side.

2One matrix is shared by several iconic objects to reduce costs of memory and computation time.

5.8 Cell Walls 147

5.8 Cell Walls

File name: wood_cells.dev
In this example we will examine the alteration of the cell wall’s proportion during a tree’s growth. The
input image is a microscope view of wooden cells (see figure 5.15).

Figure 5.15: Microscope image of wooden cells.

You can clearly see the single cells and the discontinuity that is caused by the stopped growing in winter.

Extracting cell walls is simple because they are significantly darker. The remaining “difficulty” lies in
the computation of the distribution in growth direction, i.e., along the image x-axis. First, we define the
width of the window over which the cell distribution is computed by assigning it to the variable X in
the program. Then we fetch the image size using get_image_pointer1 to get the corresponding loop
parameters. The broader the search range, the stronger the smoothing during the measurement.

Now the loop starts from the “left” side to compute the whole image. The ratio of the area of the cell
walls and a rectangle of width X is computed for every value of the loop variable i. The number of pixels
belonging to a cell wall (Area) is determined by area_center. This value is transformed to percent for
the output.

E
xa

m
pl

es

148 Program Examples

X := 20

read_image (WoodCells1, ’woodcell’)

threshold (WoodCells1, CellBorder, 0, 120)

get_image_pointer1 (WoodCells1, Pointer, Type, Width, Height)

open_file (’wood_cells.dat’, ’output’, FileHandle)

for i := 0 to Width-X-1 by 1

clip_region (CellBorder, Part, 0, i, Height-1, i+X)

area_center (Part, Area, Row, Col)

fwrite_string (FileHandle, i + ’ ’ + (Area * 100.0 / (X * Height)))

fnew_line (FileHandle)

endfor

close_file (FileHandle)

Figure 5.16 shows the measurement result.

20

30

40

50

60

70

80

90

0 100 200 300 400 500 600 700 800 900

A
n
z
a
h
l

Position

"wood_cells.dat"

Figure 5.16: Cell wall proportion in growth direction in percent.

To allow further processing of the data (such as for plotting using gnuplot as in figure 5.16) it has to
be written to a file. Therefore, a text file is opened first (open_file). Now you can write to this file
by using fwrite_string and fnew_line. Note the formatting of output when using fwrite_string.
The output text starts with the loop variable that is followed by a space character. Thus the number
is transformed into a string. Finally, the proportion of the cell wall (in percent) is concatenated to the
string. At this it is important that the first or second value of the expression is a string, so that the
following numbers are converted into strings. Here + denotes the concatenation of characters instead of
the addition of numbers.

5.9 Region Selection 149

5.9 Region Selection

File name: eyes.dev
This example explains how to handle single iconic objects. In contrast to numerical data, where many
different functions may be executed on parameter positions (see section 3.5 on page 93), iconic objects
may only be handled by using HALCON operators. The most important operators to select and combine
iconic objects are shown in this example.

The task is to search the eyes of the mandrill in figure 5.17.

Figure 5.17: Mandrill and the detected result.

This is a simple task. First, we extract the bright parts by a thresholding. Then we have to examine the
connected components according to their shape and size to select the eyes. At this, you could use the
operator select_shape and get a fast program of five lines that processes the task. For demonstration
purpose we use a kind of “low level” version instead: every region is extracted separately and examined
afterwards. If it conforms to a given shape, it is added to a result variable.

E
xa

m
pl

es

150 Program Examples

dev_close_window ()

read_image (Image, ’monkey’)

threshold (Image, Region, 128, 255)

connection (Region, ConnectedRegions)

select_shape (ConnectedRegions, CompactRegions,

’compactness’, ’and’, 1.5, 1.8)

Number := |CompactRegions|

Eyes := []

for i := 1 to Number by 1

SingleSelected := CompactRegions[i]

area_center (SingleSelected, Area, Row, Column)

dev_set_color (’green’)

if ((Area > 500) and (Area < 50000))

dev_set_color (’red’)

Eyes := [SingleSelected,Eyes]

endif

endfor

Note that you have to specify the number of regions (count_obj) in order to run a for loop from
1 to Number. Within this loop a region is selected (select_obj) according to the loop variable i
in order to evaluate its attributes. If its area is within certain bounds the region is added to variable
Eyes (concat_obj). You have to specify the variable Eyes properly, as it is also used as input for
concat_obj. This can be done by using empty_object that assigns no iconic object in a defined way
to the variable, i.e., count_obj returns zero for it.

During the run time of the program you can see how the individual regions are selected and examined.
To speed up the processing you can use the menu File . Options to suppress the automatic output.

5.10 Exception Handling

File name: exception.dev
In some applications it is necessary to have explicit control over the result state of an operator. By default
HDevelop stops if an operator returns a different state than H_MSG_TRUE and gives an error message. To
have explicit control over the result state, two HDevelop operators are available: dev_error_var and
dev_set_check. The following example shows how to use these operators.

The task is to get online information about the position of the mouse inside a graphics window and to
display the gray value at this position. This can be achieved using the two operators get_mposition
and get_grayval. The problem with get_mposition in HDevelop is, that it returns H_MSG_FAIL if
the mouse is outside of the window to indicate that the mouse coordinates are invalid. This would lead
to an interruption of the program. Therefore an explicit error handling is needed. The complete program
is given below:

5.11 Road Scene 151

read_image (Image, ’mreut’)

dev_close_window ()

dev_open_window (0, 0, -1, -1, ’black’, WindowID)

dev_display (Image)

Button := 1

while (Button # 4)

dev_error_var (Error, 1)

dev_set_check (’~give_error’)

get_mposition (WindowID, Row, Column, Button)

dev_error_var (Error, 0)

dev_set_check (’give_error’)

if (Error = H_MSG_TRUE)

get_grayval (Image, Row, Column, Grayval)

dev_set_color (’black’)

disp_rectangle1 (WindowID, 0, 0, 22, 85)

dev_set_color (’white’)

set_tposition (WindowID, 15, 2)

write_string (WindowID, ’(’+Row+’,’+Column+’)=’+Grayval)

endif

endwhile

After loading an image and opening a window we enter the loop to query the mouse position. Because the
operator get_mposition might cause an exception we call dev_set_check to declare that HDevelop
should not stop if an exception occurs. dev_set_check has to be called before and after the critical
call(s). If we want to know which error occurred we have to specify the variable in which the return
value will be stored. This is done by using dev_error_var. Now get_mposition can be called
independent of the context. To check if the coordinates are valid, the error variable is compared to one
of the constants for standard return values (like H_MSG_TRUE or H_MSG_FAIL). If the call succeeded,
this coordinate is used to query the gray value of the corresponding pixel in the image, which is then
displayed in the window.

5.11 Road Scene

File name: road_signs.dev
The computing time is a critical factor in many image analysis tasks. Thus the system has to offer features
to speed up the processing. But direct hardware access must be avoided in any case. All operators should
work on encapsulated data structures. To allow optimization for performance, data structures have to be
used that support transparent and efficient programming. The example segmentation of a road scene
demonstrates how HALCON helps to achieve this goal.

Here the task is to find the middle and border road markings of a motorway. The program is performed
by a normal workstation with a processing time of maximum 20 ms per half image (video frequency) at
a resolution of 512×512 pixels. In figure 5.18 you see an image of such a road sequence on the left side.

Assume that there is no specialized operator for this task. Thus, you have to make use of standard
methods. The data structure used consists of a gray value image with a covering mask, i.e., domain
(ROI).3 All operators work only on those parts of the image data that lie within the domain. This can be

3See the Quick Guide for a short introduction to the data structures used by HDevelop.

E
xa

m
pl

es

152 Program Examples

Figure 5.18: Part of an image sequence (left) and search grid for marking band (right).

exploited to reduce computation time.

The following assumptions on the image data help to specify a region as a search mask:

1. Road markings remain in a certain image part only.

2. Road markings have a certain minimum length in y-direction.

3. Road markings are separated by an edge from their environment.

The first two assumptions can restrict the search area enormously. To make use of this, we create a region
as a grid whose line distance is determined by the minimum size of the road marking. Figure 5.18 shows
the corresponding region (= line grid) on the right side.

While performing an edge filter within the grid all pixels with a high gradient are candidates on the
contour of a road marking. By enlarging these pixels by the minimum diameter of the markings (dilation)
with rectangle, you will get the search window shown in figure 5.19 on the left side.

Now the road markings can be easily extracted by a thresholding within the search windows. The seg-
mentation result is shown on the right side of figure 5.19. The corresponding HDevelop program looks
as follows:

5.11 Road Scene 153

Figure 5.19: Search areas for markings (left) and segmentation (right).

MinSize := 30

set_system (’init_new_image’, ’false’)

read_image (Motorway, ’motorway’)

count_seconds (Seconds1)

gen_grid_region (Grid, MinSize, MinSize, ’lines’, 512, 512)

clip_region (Grid, GridRoad, 130, 10, 450, 502)

reduce_domain (Motorway, GridRoad, Mask)

sobel_amp (Mask, Gradient, ’sum_abs’, 3)

threshold (Gradient, Points, 40, 255)

dilation_rectangle1 (Points, RegionDilation, MinSize, MinSize)

reduce_domain (Motorway, RegionDilation, SignsGray)

threshold (SignsGray, Signs, 190, 255)

count_seconds (Seconds2)

Time := Seconds2-Seconds1

dev_display (Signs)

First you create a grid by using gen_grid_region. It is reduced to the lower image half with
clip_region. The operator reduce_domain creates an image containing this pattern as definition
range. This image is passed to the operator sobel_amp. You obtain pixels with high gradient values
using threshold. These pixels are enlarged to the region of interest (ROI) by a dilation with a rectan-
gular mask. Within this region another thresholding is performed. Correct road markings are equivalent
to bright areas in the search window (ROI).

The HALCON program needs an average of 20 ms on a standard Pentium. Notice that this is even
possible under the following restrictions:

1. Only standard operators have been used.

2. Only encapsulated data structures have been used.

3. Despite optimization the program is quite comprehensible.

E
xa

m
pl

es

154 Program Examples

4. The program is very short.

This example shows that you can write efficient programs even while using complex data structures.
Hence a significant reduction of development time is achieved. Furthermore, data encapsulation is a
basic condition for the portability of the whole system and the user software.

Tips & Tricks 155

Chapter 6

Tips & Tricks

This chapter contains helpful information for working with HDevelop.

6.1 Keycodes

In order to speed up the entering of values in the input fields of HDevelop (e.g., operator parameters),
several keycodes are defined, which have special functions. They conform to the standards of the Emacs
editor. This feature is only available for UNIX systems. Some of them are shown in table 6.1.

Delete Delete single character at current cursor position.
<Ctrl> a Move the cursor to the beginning of the line.
<Ctrl> b Move cursor left one character.
<Ctrl> d Analogous to Delete
<Ctrl> e Move cursor to last character in line.
<Ctrl> f Move cursor right one character.
<Ctrl> h Delete single character immediately preceding current cursor position
<Ctrl> k Delete all characters from current position to end of line.
<Meta> b Backward to previous word.
<Alt> b Backward to previous word.
<Meta> d Delete from current cursor position to end of current word.
<Alt> d Delete from current cursor position to end of current word.
<Meta> f Forward to next word.
<Alt> f Forward to next word.

Table 6.1: Keycodes for special editing functions.

Ti
ps

156 Tips & Tricks

6.2 Interactions During Program Execution

The interpreter of HDevelop allows some user interactions during the execution of a program. First, the
stop button has to be mentioned, which is responsible for interrupting the execution of a program. When
the stop button is pressed, the execution is stopped at the active HALCON operator.

Other features of the HDevelop interpreter are the possibility to display iconic variables by simply double
clicking on them, and the facility to set the parameters which control the display to the appropriate values.
In addition to this, it is possible to insert commands into the program text, no matter whether this makes
any sense or not. Please note that interactions during the execution of HALCON application can only
be used in a sensible way, if the single operators have short runtimes, because HDevelop can only react
within the “gaps”, that is, between the calls to the HALCON library.

Please note that neither the PC nor the BP can be set during the execution of the HALCON application.

6.3 Online Help

Online documentation is available in PDF and partly in HTML format.

To display the HTML files containing information on HALCON operators, you need a browser. It is
not provided in the HALCON distribution, but nevertheless used by HDevelop. Such a tool is likely to
be installed on your computer. Otherwise you may obtain it for free, e.g., via the Internet. In HDevelop
you may call the reference manual via the menu Help . HALCON Operators. It will start a browser
with the corresponding help files (see section 2.3.11 on page 63). Under UNIX, the availability of one of
the following browsers is checked (in that order): firefox, mozilla, netscape, opera, konqueror, galeon.
Under Windows, the default browser is used.

Besides HTML, the documentation is available in PDF format as well. To display the manuals, the
Adobe file viewer Acrobat Reader is included in the distribution for Windows systems. This viewer is
not activated from HDevelop, but has to be started from the Windows start menu.

6.4 Warning and Error Windows

Warning and error windows are popups that make the user aware of user errors. Usually, they interrupt
the faulty actions with a description of the error. For this purpose information about the kind of the error
is determined during the execution. Figure 6.1 shows an example of an error window.

6.5 Restrictions

Not every HALCON operator that is available in HALCON/C or HALCON/C++ can or should be used
in HDevelop. There are two reasons for this. On the one hand, the HALCON system is influenced by
HDevelop so deeply that some operators don’t behave like in a normal user program. Usually this con-
cerns the graphical operators like set_color. For this class of operators, specific versions for HDevelop
are available, e.g., dev_set_color.

6.5 Restrictions 157

Figure 6.1: Example for an error window.

On the other hand, some low-level operators exist (like reset_obj_db or clear_obj) that will bring
HDevelop “out of balance.”

Not the whole functionality of HDevelop can be transferred to a C++-program because the graphics
windows of HDevelop are more comfortable than the simple HALCON windows.

However, the points described above are very special and will not bother the normal user because the
appropriate functions can be found in both working environments. If you use dev_set_color in HDe-
velop, for example, you would use set_color as its counterpart in HALCON/C++. Further restrictions
can be found in section 4.1.4 on page 115.

Ti
ps

158 Tips & Tricks

Glossary 159

Appendix A

Glossary

Boolean is the type name for the truth values true and false as well as for the related boolean expres-
sions.

Body A body is part of a conditional instruction (if) or a loop (while or for) and consists of a sequence
of operator calls. If you consider the for-loop, for instance, all operator calls, that are located
between for and endfor form the body.

Button A button is part of a graphical user interface. With the mouse the user can press a button to
cause an action to be performed.

Control data Control data can be either numbers (↑integer and ↑real), character strings (↑string)
and truth values (boolean). This data can be used as atomic values (i.e., single values) or as
↑tuples (i.e., arrays of values).

Empty region An empty ↑region contains no points at all, i.e., its area is zero.

Graphics window A graphics window is used in ↑HDevelop for displaying ↑images, ↑regions, or
↑XLD.

HDevelop is an integrated development environment (IDE) for the creation of HALCON applications.

Iconic data are image data, i.e., image arrays and data, which are described by coordinates and are
derived from image arrays, e.g., ↑regions, ↑image and ↑XLD.

Image An image consists of one or more (multichannel image) image arrays and a ↑region as the def-
inition domain. All image arrays have the same dimension, but they can be of different pixel
types. The size of the ↑region is smaller or equal than the size of the image arrays. The ↑region
determines all image points that should be processed.

Iconic object Generic implementation of ↑iconic data in HALCON.

integer is the type name for integer numbers. Integers are implemented using the C-type long (4 or 8
byte).

G
lo

ss
ar

y

160 Glossary

Operator data base The operator data base contains information about the HALCON operators. They
are loaded at runtime from the binary files in %HALCONROOT%\help.

Program window In HDevelop the program window contains the program. It is used to edit (copy,
delete, and paste lines) and to run or debug the program.

Operator window In the operator window of HDevelop the parameters of the selected operators can be
entered or modified.

Real is the type name for floating point numbers. They are implemented using the C-type double (8
bytes).

Region A region is a set of image points without gray values. A region can be imagined as a binary
image (mask). Regions are implemented using runlength encoding. The region size is not limited
to the image size (see also set_system(’clip_region’,’true’/’false’) in the HALCON
reference manual.

String is the type name for character strings. A string starts and ends with a single quote; in between
any character can be used except single quote. The empty string consists of two consecutive single
quotes. The maximum length of a character string is limited to 1024 characters.

Tuple A tuple is an ordered multivalue set. In case of ↑control data a tuple can consist of a large number
of items with different data types. The term tuple is also used in conjunction with ↑iconic objects,
if it is to be emphasized that several ↑iconic objects will be used.

Type ↑iconic variables can be assigned with data items of type ↑image, ↑region, and ↑XLD. The types
of ↑control data items can be one of ↑integer, ↑real, ↑boolean, or ↑string.

Variable window In HDevelop the variable window manages the ↑control and ↑iconic data.

XLD is the short term for eXtended Line Description. It is used as a superclass for contours, polygons,
and lines (see also the HALCON Reference Manual).

Index 161

Index

add_channels (AddChannels), 35, 39, 145
anisometry, 42
anisometry (Anisometry), 42
area_center (AreaCenter), 40, 90, 147
assign (Assign), 53, 95–97

bin_threshold (BinThreshold), 136
Boolean, 159
break, 110
Break point, 67
break (Break), 53, 109–111
break point (HDevelop), 29, 31, 32
Button, 159

C, 1, 125
compile and link (UNIX), 126
compile and link (Windows), 126
export of HDevelop programs, 1, 19, 23,

125
C++, 1, 19, 23

compile and link (UNIX), 114
compile and link (Windows), 114
export of HDevelop programs, 1, 113

C#, 1, 19, 23
export of HDevelop programs, 1, 123

channel, 34
clear_obj, 157
cleared, 33
clip_region (ClipRegion), 153
close_window (CloseWindow), 128
Code generation, 113
color, 145
color image, 43

RGB, 34, 35
COM, 1, 117, 120, 123
comment (Comment), 31, 53, 55
compactness (Compactness), 8, 41
concat_obj (ConcatObj), 84, 97, 150

connect_and_holes (ConnectAndHoles),
41

connected components, 140, 145
connection (Connection), 7, 43, 133, 139,

140
contlength (Contlength), 41
Control structures

ifelse, 109
Control data, 82, 159
Control parameter, 89
Control structures, 109

break, 110
exit, 111
for, 109
if, 109
stop, 111
while, 109

control structures (HDevelop), 53
assignment, 53
comment, 55
conditional execution, 53
loop execution, 53

convexity (Convexity), 41
cooc_feature_image

(CoocFeatureImage), 42
cooc_feature_matrix

(CoocFeatureMatrix), 42
count_obj (CountObj), 43, 97, 140, 150

Data structures, 89, 90, 93
data types

boolean, 79
floating-point numbers (real), 79
integers, 79
strings, 79
tuples, 54, 79

Delphi (Borland), 1
dev_clear_obj (DevClearObj), 57

In
de

x

162 Index

dev_clear_window (DevClearWindow), 56,
139

dev_close_inspect_ctrl
(DevCloseInspectCtrl), 58

dev_close_window (DevCloseWindow), 56,
128, 129

dev_display, 129
dev_display (DevDisplay), 2, 8, 57, 86,

129
dev_error_var, 116
dev_error_var (DevErrorVar), 58, 91,

150, 151
dev_inspect_ctrl (DevInspectCtrl), 57,

58
dev_map_par (DevMapPar), 58
dev_map_prog (DevMapProg), 58
dev_map_var (DevMapVar), 58
dev_open_window, 129
dev_open_window (DevOpenWindow), 56,

57, 60, 128, 129
dev_set_check, 116
dev_set_check (DevSetCheck), 58, 91,

150, 151
dev_set_color (DevSetColor), 56, 57, 59,

129, 156, 157
dev_set_colored (DevSetColored), 57
dev_set_draw (DevSetDraw), 57, 59
dev_set_line_style

(DevSetLineStyle), 128
dev_set_line_width

(DevSetLineWidth), 57, 129
dev_set_lut (DevSetLut), 57
dev_set_paint (DevSetPaint), 57
dev_set_part, 129
dev_set_part (DevSetPart), 57, 85, 129
dev_set_shape (DevSetShape), 57
dev_set_window (DevSetWindow), 56
dev_set_window_extents

(DevSetWindowExtents), 56
dev_unmap_par (DevUnmapPar), 58
dev_unmap_prog (DevUnmapProg), 58
dev_unmap_var (DevUnmapVar), 58
dev_update_pc (DevUpdatePc), 58
dev_update_time (DevUpdateTime), 58
dev_update_var (DevUpdateVar), 58
dev_update_window (DevUpdateWindow),

57, 58

dilation, 145, 152
disp_circle (DispCircle), 85
disp_image (DispImage), 85
disp_line (DispLine), 85
disp_region (DispRegion), 85
document analysis, 131
dump_window (DumpWindow), 33
dyn_threshold (DynThreshold), 6, 7, 61,

137, 139

eccentricity (Eccentricity), 9, 41
Edit menu (HDevelop), 25

Copy, 26, 66
Cut, 26, 66
Delete, 26
Find Again, 27
Find Operator, 27
Paste, 26, 66
Replace Variables, 27

Edit External Procedure Passwords, 50
elliptic_axis (EllipticAxis), 41, 143
empty_object (EmptyObject), 150
entropy_gray (EntropyGray), 41
environment variables

HALCONIMAGES, 20
error handling (HALCON), 58

error codes, 58
H_MSG_FAIL, 58, 150, 151
H_MSG_TRUE, 58, 150, 151

Error message, 156
Example, 89
Exception handling, 115, 119, 122, 124
Execute

Reset program, 93
Execute menu (HDevelop), 28

Activate, 31, 66
Call Stack, 31
Clear All Break Points, 31
Clear Break Point, 31
Deactivate, 31, 66
Reset Program, 32, 66
Run, 28, 66
Set Break Point, 31
Step, 29, 66
Step Into, 30, 66
Step Out, 30, 66
Stop, 30, 66

Index 163

Execution time, 22
exit, 111
exit (Exit), 53, 55, 111

false, 91, 159
features

histogram, 38
region features, 39
region gray value features, 41
region shape features, 40

File menu (HDevelop), 16
Cleanup, 21
history, 18, 25
Insert, 16
Insert Procedures, 18
Modules, 24
New, 16, 17, 66
Open, 16, 19, 20
Options, 16, 21, 57, 58, 65, 71, 72
Print, 19
Print Selection, 20
Quit, 24, 29
Read Image, 4, 20
Save, 18, 66
Save As, 18, 19, 23, 50

file_exists (FileExists), 58
fill_interlace (FillInterlace), 5
fill_up_shape (FillUpShape), 141
fnew_line (FnewLine), 148
for, 109
for, 127, 159
for (For), 53, 67, 109, 110, 150
frame grabber, 58
fwrite_string (FwriteString), 148

gauss_image (GaussImage), 61
Gaussian filter, 137
gen_empty_obj (GenEmptyObj), 84, 97
gen_grid_region (GenGridRegion), 153
gen_lowpass (GenLowpass), 61
gen_region_line (GenRegionLine), 140
get_grayval (GetGrayval), 150
get_image_pointer1

(GetImagePointer1), 129, 147
get_mbutton (GetMbutton), 138
get_mposition (GetMposition), 58, 150,

151
get_system, 128

gnuplot, 148
Graphics window, 84, 128, 159

History, 86
graphics window (HDevelop), 11

activate, 57
close, 33, 56
coordinate system, 57
display

color, 43, 45, 57
image, 44
line width, 43, 45, 57
LUT, 43, 46, 57
pen, 45
region, 43, 45, 57

ID, 57
inspect by zooming, 34, 42, 45
inspect feature histogram, 38
inspect gray value histogram, 35
inspect pixels, 33
open, 32, 56
reset, 33
size, 42, 56

gray value features, 41
gray_histo (GrayHisto), 36
gray_inside (GrayInside), 143

H_MSG_FAIL, 58, 150, 151
H_MSG_TRUE, 58, 150, 151
H_MSG_FAIL, 92, 116
H_MSG_FALSE, 92, 116
H_MSG_TRUE, 92, 116
H_MSG_VOID, 92, 116
HALCON

error handling, 58
error codes, 58, 150, 151

memory management, 133
HALCONIMAGES, 20
HDevelop

break point (BP), 29, 31, 32
graphics window, 11

activate, 57
close, 33, 56
coordinate system, 57
display color, 43, 45, 57
display image, 44
display line width, 43, 45, 57
display LUT, 43, 46, 57

In
de

x

164 Index

display pen, 45
display region, 43, 45, 57
ID, 57
inspect by zooming, 34, 42, 45
inspect feature histogram, 38
inspect gray value histogram, 35
inspect pixels, 33
open, 32, 56
reset, 33
size, 42, 56

language
control structures, 53, 55

main window, 11, 14, 62
menu Edit, 25, 26, 27, 66
menu Execute, 28, 28, 29–32, 66
menu File, 4, 16, 16, 17–21, 23–25, 29,

50, 57, 58, 65, 66, 71, 72
menu Help, 63, 63, 65
menu Operators, 4, 6, 8, 53, 53, 55, 59,

60
menu Procedures, 47, 47, 48–50, 69
menu Suggestions, 60, 61
menu Visualization, 8, 32–35, 38, 39,

42–46, 57–59, 66
menu Window, 62, 62, 63
menu bar, 15
online help, 63

operator selection, 60, 78
procedure selection, 78

operator name field, 78
operator parameter display, 78
operator window, 11, 65, 67, 77

control buttons, 80
procedures, 3, 12, 47, 53, 69

call stack, 12, 13, 31
copy, 48
create, 24, 47, 71
delete, 47, 48
export, 19, 23, 128
external, 3, 13, 49, 50
external procedure path, 13, 50, 69
hierarchy, 3
insert, 18
interface, 24, 47, 49, 69, 78
local, 3, 13, 50
main, 3, 12, 13, 111, 114, 118, 120, 123,

125, 128

print, 20, 50
replace, 49
return, 111
save, 18, 19, 49
step into, 30
step out, 30

program
export to C, 1, 19, 23, 125
export to C++, 1, 113
export to C#, 1, 123
export to Visual Basic, 117
export to Visual Basic .NET, 120

program counter (PC), 12, 16, 21, 28, 29,
32, 67, 80

program window, 11, 23, 25, 28, 31, 66
iconify, 58, 62

programs, 16
load, 16
print, 19, 20, 50
run, 21, 28, 29
save, 18, 19
stop, 29, 55

status bar, 65
title bar, 15
variable window, 11, 29, 80

iconify, 58, 62
HDevEngine, 1, 2
Help menu (HDevelop), 63

About, 63
HALCON News (WWW), 65
HALCON Operators, 65
HDevelop Language, 65

History, 86

Iconic data, 159
Iconic object, 82, 89, 159
iconic object, 149
if, 109, 159
if (If), 53, 67, 109
ifelse, 109
ifelse (Ifelse), 53, 67, 109
Image, 82, 159
image

channel (image matrix), 34
color, 43

RGB, 34, 35
gray value histogram, 35

Index 165

load, 20
multi-channel, 40
pixel

type, 34
region of interest (ROI), 146, 152, 153
size, 34

insert, 115
insert (Insert), 53, 54, 95–98
Insertion cursor, 66, 67
intensity (Intensity), 41
Interaction, 156
Interface, 69
interface, 13
intersection, 146
intersection (Intersection), 140

junctions_skeleton
(JunctionsSkeleton), 61

kbshort:CtrlX, 26
kbshort:F7, 30
kbshort:F8, 30
keyboard shortcuts

<Ctrl> C, 26
<Ctrl> F, 27
<Ctrl> G, 27
<Ctrl> H, 27
<Ctrl> N, 16
<Ctrl> O, 16
<Ctrl> P, 19
<Ctrl> S, 18
<Ctrl> V, 26
F5, 28
F6, 29
F9, 30

Keycodes, 155

Language definition, 89
Laws, 135
Line Width, 43, 57
linear filters, 135
Load, 66
Loop

Body, 159
low pass filter, 137

main window (HDevelop), 11, 14, 62
mean filter, 137

mean_image (MeanImage), 6, 7, 61, 90, 135,
139

median_image (MedianImage), 61
memory management, 133
menu bar (HDevelop), 15

Edit, 25, 26, 27, 66
Execute, 28, 28, 29–32, 66
File, 4, 16, 16, 17–21, 23–25, 29, 50, 57,

58, 65, 66, 71, 72
Help, 63, 63, 65
Operators, 4, 6, 8, 53, 53, 55, 59, 60
Procedures, 47, 47, 48–50, 69
Suggestions, 60, 61
Visualization, 8, 32–35, 38, 39, 42–46,

57–59, 66
Window, 62, 62, 63

min_max_gray (MinMaxGray), 41
Miscellaneous, 155
moments_gray_plane

(MomentsGrayPlane), 42
mouse handling, 12
multi-channel image, 40

Notation
Decimal, 90
Hexadecimal, 90
Octal, 90

online help (HDevelop), 63
operator selection, 60, 78
procedure selection, 78

Open Example Program, 18
open_file (OpenFile), 148
open_window (OpenWindow), 59, 60, 128
opening, 138
operating systems

UNIX, 4, 19, 114, 126
Windows, 3, 114, 126

Operation
Arithmetics, 99
Boolean, 103
Comparison, 103
String, 100
Trigonometric, 104
Tuple, 96

Operator
Data base, 160

operator or procedure call runtime, 65

In
de

x

166 Index

Operator window, 160
textttCancel, 81
Enter, 82
Ok, 82

operator window (HDevelop), 11, 65, 67, 77
control buttons, 80
operator name field, 78
operator parameter display, 78

Operators menu (HDevelop), 53
Control, 53
Develop, 8, 55
File
Images, 4

Filter
Smoothing, 6

Graphics
Window, 60

System
Database, 60

others, 59
Optimization, 114
orientation_region

(OrientationRegion), 41
Output, 21

Parallel HALCON, 114, 126
Parameter expressions, 93
Parameter types, 89
pixel

type, 34
procedure passwd, 50
Procedures menu (HDevelop), 47

Copy, 48
Create, 47, 69
Delete All Unused, 48
Delete Current, 47
Edit External Procedure Paths, 50
Edit Interface, 47
Make All External, 50
Make All Local, 50
Print Current, 50
Replace Procedure Call, 49
Save Current As, 49, 50

procedures (HDevelop), 3, 12, 47, 53, 69
call stack, 12, 13, 31
copy, 48
create, 24, 47, 71

delete, 47, 48
export, 19, 23, 128

C, 125
C++, 113
C#, 123
Visual Basic, 118
Visual Basic .NET, 120

external, 3, 13, 49, 50
path, 13, 50, 69

hierarchy, 3
insert, 18
interface, 24, 47, 49, 69, 78
local, 3, 13, 50
main, 3, 12, 13, 111, 114, 118, 120, 123,

125, 128
print, 20, 50
replace, 49
return, 111
save, 18, 19, 49
step into, 30
step out, 30

Program window, 160
program window (HDevelop), 11, 23, 25, 28,

31, 66
break point (BP), 29, 31, 32
iconify, 58, 62
program counter (PC), 12, 16, 21, 28, 29,

32, 67, 80
programming language

C, 1
C++, 1
C#, 1
COM, 1
Delphi (Borland), 1
Visual Basic, 1

programs (HDevelop), 16
comment, 55
load, 16
print, 19, 20, 50
run, 21, 28, 29

conditional execution, 53
control structures, 53
loop execution, 53

save, 18, 19
stop, 29, 55

protectedHDevelop procedure, 74

read_image (ReadImage), 4, 58, 60, 90

Index 167

Redo, 26, 66
reduce_domain (ReduceDomain), 35, 39,

145, 153
Region, 82, 160

Empty, 159
region, 38, 43

features, 39
histogram, 38

gray value features, 41
shape features, 40

region of interest (ROI), 146, 152, 153
remove, 138
Reserved words, 108
reset_obj_db (ResetObjDb), 60
reset_obj_db, 157
Restrictions, 111, 115, 119, 122, 124, 156
return (Return), 53, 111
RGB, 34, 35
Run, 4
Runtime error, 116
runtime error, 29, 150

SaveAs, 49
segmentation, 133, 151
select_gray (SelectGray), 9, 39
select_obj (SelectObj), 96, 97, 150
select_shape (SelectShape), 8, 9, 38, 39,

84, 133, 137, 140, 144, 146, 149
select_shape_xld (SelectShapeXld), 38,

39
Semantics, 89
set_check (SetCheck), 58
set_color (SetColor), 56, 129, 156, 157
set_line_style (SetLineStyle), 128
set_line_width (SetLineWidth), 129
set_paint (SetPaint), 57
set_part (SetPart), 129
set_system (SetSystem), 91
set_system, 128
shape features, 40
sigma_image (SigmaImage), 61
skeleton (Skeleton), 61
smallest_rectangle1

(SmallestRectangle1), 40,
133

smallest_rectangle2
(SmallestRectangle2), 41

smooth_image (SmoothImage), 61
smoothing filter, 143
sobel_amp (SobelAmp), 153
status bar (HDevelop), 65
stop, 111
stop (Stop), 53, 55, 111
String, 100, 160

Concatenation, 94
Operations, 100

Suggestions menu (HDevelop), 60
Alternatives, 61
Keywords, 61
Predecessor, 61
See also, 61
Successor, 61

Syntax, 89

terminate, 30
test_region_point (TestRegionPoint),

58
text file, 148
texture energy, 135
texture_laws (TextureLaws), 135
textures, 134
threshold (Threshold), 6, 37, 133, 146,

153
title bar (HDevelop), 15
tool bar, 65
Transformations, 7
true, 91, 159
Tuple, 84, 160

Arithmetic, 94
Concatenation, 95, 96

tuple, 54, 79
Type, 82, 160

boolean, 91, 94, 103, 159
Control parameter, 89, 90
Iconic object, 89, 93
integer, 90
integer, 93, 94, 100, 159
Numerical, 90
real, 90, 93, 94, 100, 159, 160
string, 90, 93, 94, 159, 160

Undo, 26, 66
UNIX, 4, 19, 114, 126

Variable, 92

In
de

x

168 Index

_, 93
Control, 82, 84
Iconic, 57, 82
Visualization, 21

Variable window, 24, 82, 160
variable window (HDevelop), 11, 29, 80

iconify, 58, 62
Visual Basic, 1, 19, 23

export of HDevelop programs, 117
Visual Basic .NET, 1, 19, 23

export of HDevelop programs, 120
Visual Basic .NETexport, 1
Visual Basicexport, 1
Visualization, 32
Visualization menu (HDevelop)

Clear Window, 33, 33
Close Window, 33
Color, 43, 57
Colored, 8, 43, 57
Draw, 43, 57
Feature Histogram Info, 38, 66
Gray Histogram Info, 35, 66
Lut, 43, 57
Open Window, 32
Paint, 44, 57
Pixel Info, 33, 66
Region Info, 38, 39, 66
Reset Parameters, 33
Set Parameters, 43, 44, 58, 66
Lut, 46
Paint, 44
Pen, 45, 59
Zoom, 45

Shape, 43, 57
Size Window, 33, 42
Zooming, 34, 42, 66
Reset, 57

watersheds (Watersheds), 61
while, 109, 127, 159
while (While), 53, 67, 109–111
Window menu (HDevelop), 62

Arrange icons, 62
Cascade, 62
Next, 63
Tile, 62
others, 63

Windows, 3, 114, 126
write_string (WriteString), 43

XLD, 38, 43, 82, 160
features

histogram, 38

zooming (HDevelop graphics window), 34, 42,
45

	1 Introducing HDevelop
	1.1 Facts about HDevelop
	1.2 HDevEngine
	1.3 HDevelop Procedures
	1.4 Example Session

	2 Graphical User Interface
	2.1 Interacting with HDevelop
	2.2 Procedures in HDevelop
	2.3 Main Window
	2.3.1 Title Bar
	2.3.2 Menu Bar
	2.3.3 Menu 'File'
	2.3.4 Menu 'Edit'
	2.3.5 Menu 'Execute'
	2.3.6 Menu 'Visualization'
	2.3.7 Menu 'Procedures'
	2.3.8 Menu 'Operators'
	2.3.9 Menu 'Suggestions'
	2.3.10 Menu 'Window' (Windows only)
	2.3.11 Menu 'Help'
	2.3.12 Tool Bar
	2.3.13 Window Area (Windows)
	2.3.14 Status Bar

	2.4 Program Window
	2.4.1 The Program Area
	2.4.2 Program Counter, Insertion Cursor, and Break Points
	2.4.3 Creating and Editing Procedures

	2.5 Operator Window
	2.5.1 Operator Name Field
	2.5.2 Parameter Display
	2.5.3 Control Buttons

	2.6 Variable Window
	2.6.1 Area for Iconic Data
	2.6.2 Area for Control Data

	2.7 Graphics Window

	3 Language
	3.1 Basic Types of Parameters
	3.2 Control Types and Constants
	3.3 Variables
	3.4 Operations on Iconic Objects
	3.5 Expressions for Input Control Parameters
	3.5.1 General Features of Tuple Operations
	3.5.2 Assignment
	3.5.3 Basic Tuple Operations
	3.5.4 Tuple Creation
	3.5.5 Simple Arithmetic Operations
	3.5.6 Bit Operations
	3.5.7 String Operations
	3.5.8 Comparison Operators
	3.5.9 Boolean Operators
	3.5.10 Trigonometric Functions
	3.5.11 Exponential Functions
	3.5.12 Numerical Functions
	3.5.13 Miscellaneous Functions
	3.5.14 Operator Precedence

	3.6 Reserved Words
	3.7 Control Structures
	3.8 Limitations

	4 Code Export
	4.1 Code Generation for C++
	4.1.1 Basic Steps
	4.1.2 Optimization
	4.1.3 Used Classes
	4.1.4 Limitations and Troubleshooting

	4.2 Code Generation for Visual Basic 6
	4.2.1 Basic Steps
	4.2.2 Program Structure
	4.2.3 Limitations and Troubleshooting

	4.3 Code Generation for Visual Basic .NET
	4.3.1 Basic Steps
	4.3.2 Program Structure
	4.3.3 Limitations and Troubleshooting

	4.4 Code Generation for C#
	4.4.1 Basic Steps
	4.4.2 Program Structure
	4.4.3 Limitations and Troubleshooting

	4.5 Code Generation for C
	4.5.1 Basic Steps

	4.6 General Aspects of Code Generation
	4.6.1 User-Defined Code Blocks
	4.6.2 Assignment
	4.6.3 'for' Loops
	4.6.4 Protected External Procedures
	4.6.5 System Parameters
	4.6.6 Graphics Windows

	5 Program Examples
	5.1 Stamp Segmentation
	5.2 Capillary Vessel
	5.3 Particles
	5.4 Annual Rings
	5.5 Bonding
	5.6 Calibration Plate
	5.7 Devices
	5.8 Cell Walls
	5.9 Region Selection
	5.10 Exception Handling
	5.11 Road Scene

	6 Tips & Tricks
	6.1 Keycodes
	6.2 Interactions During Program Execution
	6.3 Online Help
	6.4 Warning and Error Windows
	6.5 Restrictions

	A Glossary
	Index

