
HALCON Application Note

How to Use Shape-Based Matching
to Find and Localize Objects

Provided Functionality

. Finding objects starting based on a single model image

. Localizing objects with subpixel accuracy

Typical Applications

. Object recognition and localization

. Intermediate machine vision steps, e.g., alignment of ROIs

. Completeness check

. Parts inspection

Involved Operators

create_shape_model, create_scaled_shape_model
inspect_shape_model, get_shape_model_params
get_shape_model_contours, set_shape_model_origin, get_shape_model_origin
find_shape_model, find_shape_models
find_scaled_shape_model, find_scaled_shape_models
write_shape_model, read_shape_model
clear_shape_model, clear_all_shape_models

Copyright c© 2002-2006 by MVTec Software GmbH, München, Germany MVTec Software GmbH



Overview

HALCON’s operators for shape-based matching enable you to find and localize objects based on a single
model image, i.e., from a model. This method is robust to noise, clutter, occlusion, and arbitrary non-
linear illumination changes. Objects are localized with subpixel accuracy in 2D, i.e., found even if they
are rotated or scaled.

The process of shape-based matching (see section 1 on page 4 for a quick overview) is divided into two
distinct phases: In a first phase, you specify and create the model. This model can be stored in a file to be
reused in different applications. Detailed information about this phase can be found in section 2 on page
6. In the second phase, the model is used to find and localize an object. Section 3 on page 20 describes
how to optimize the outcome of this phase by restricting the search space.

Shape-based matching is a powerful tool for various machine vision tasks, ranging from intermediate
image processing, e.g., to place ROIs automatically or to align them to a moving part, to complex tasks,
e.g., recognize and localize a part in a robot vision application. Examples can be found in section 4 on
page 30.

Unless specified otherwise, the example programs can be found in the subdirectory shape_matching
of the directory %HALCONROOT%\examples\application_guide.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written
permission of the publisher.

Edition 1 June 2002 (HALCON 6.1)
Edition 1a May 2003 (HALCON 6.1.2)
Edition 2 December 2003 (HALCON 7.0)
Edition 2a April 2005 (HALCON 7.0.2)

Microsoft, Windows, Windows NT, Windows 2000, and Windows XP are either trademarks or registered trademarks
of Microsoft Corporation.

All other nationally and internationally recognized trademarks and tradenames are hereby recognized.

More information about HALCON can be found at:

http://www.mvtec.com/halcon/



3

Contents

1 A First Example 4

2 Creating a Suitable Model 6
2.1 A Closer Look at the Region of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Which Information is Stored in the Model? . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Synthetic Model Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Optimizing the Search Process 20
3.1 Restricting the Search Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Searching for Multiple Instances of the Object . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Searching for Multiple Models Simultaneously . . . . . . . . . . . . . . . . . . . . . . 24

3.4 A Closer Look at the Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 How to Optimize the Matching Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Using the Results of Matching 30
4.1 Introducing Affine Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Creating and Applying Affine Transformations With HALCON . . . . . . . . . . . . . . 30

4.3 Using the Estimated Position and Orientation . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Using the Estimated Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Miscellaneous 45
5.1 Adapting to a Changed Camera Orientation . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Reusing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



4 Application Note on Shape-Based Matching

1 A First Example

In this section we give a quick overview of the matching process. To follow the example actively, start
the HDevelop program hdevelop\first_example_shape_matching.dev, which locates the print on
an IC; the steps described below start after the initialization of the application (press Run once to reach
this point).

Step 1: Select the object in the model image

Row1 := 188

Column1 := 182

Row2 := 298

Column2 := 412

gen_rectangle1 (ROI, Row1, Column1, Row2, Column2)

reduce_domain (ModelImage, ROI, ImageROI)

After grabbing the so-called model image, i.e., a representative image of the object to find, the first
task is to create a region containing the object. In the example program, a rectangular region is created
using the operator gen_rectangle1; alternatively, you can draw the region interactively using, e.g.,
draw_rectangle1 or use a region that results from a previous segmentation process. Then, an image
containing just the selected region is created using the operator reduce_domain. The result is shown in
figure 1.

Step 2: Create the model

inspect_shape_model (ImageROI, ShapeModelImages, ShapeModelRegions, 8, 30)

create_shape_model (ImageROI, NumLevels, 0, rad(360), 0, ’none’,

’use_polarity’, 30, 10, ModelID)

With the operator create_shape_model, the so-called model is created, i.e., the internal data
structure describing the searched object. Before this, we recommend to apply the operator in-
spect_shape_model, which helps you to find suitable parameters for the model creation. in-

1© 2©

Figure 1: 1© specifying the object; 2© the internal model (4 pyramid levels).



1 A First Example 5

Figure 2: Finding the object in other images.

spect_shape_model shows the effect of two parameters: the number of pyramid levels on which the
model is created, and the minimum contrast that object points must have to be included in the model. As
a result, the operator inspect_shape_model returns the model points on the selected pyramid levels as
shown in figure 1; thus, you can check whether the model contains the relevant information to describe
the object of interest.

When actually creating the model with the operator create_shape_model, you can specify additional
parameters besides NumLevels and Contrast: First of all, you can restrict the range of angles the
object can assume (parameters AngleStart and AngleExtent) and the angle steps at which the model
is created (AngleStep). With the help of the parameter Optimization you can reduce the number of
model points; this is useful in the case of very large models. The parameter Metric lets you specify
whether the polarity of the model points must be observed. Finally, you can specify the minimum
contrast object points must have in the search images to be compared with the model (MinContrast).
The creation of the model is described in detail in section 2.

As a result, the operator create_shape_model returns a handle for the newly created model (ModelID),
which can then be used to specify the model, e.g., in calls to the operator find_shape_model. Note
that if you use HALCON’s COM or C++ interface and call the operator via the classes HShapeModelX
or HShapeModel, no handle is returned because the instance of the class itself acts as your handle.

If not only the orientation but also the scale of the searched object is allowed to vary, you must use the
operator create_scaled_shape_model to create the model; then, you can describe the allowed range
of scaling with three parameters similar to the range of angles.

Step 3: Find the object again

for i := 1 to 20 by 1

grab_image (SearchImage, FGHandle)

find_shape_model (SearchImage, ModelID, 0, rad(360), 0.7, 1, 0.5,

’interpolation’, 0, 0.9, RowCheck, ColumnCheck,

AngleCheck, Score)

endfor

To find the object again in a search image, all you need to do is call the operator find_shape_model;
figure 2 shows the result for one of the example images. Besides the already mentioned ModelID,

Fi
rs

tE
xa

m
pl

e



6 Application Note on Shape-Based Matching

find_shape_model provides further parameters to optimize the search process: The parameters An-
gleStart, AngleExtent, and NumLevels, which you already specified when creating the model, allow
you to use more restrictive values in the search process; by using the value 0 for NumLevels, the value
specified when creating the model is used. With the parameter MinScore you can specify how many of
the model points must be found; a value of 0.5 means that half of the model must be found. Further-
more, you can specify how many instances of the object are expected in the image (NumMatches) and
how much two instances of the object may overlap in the image (MaxOverlap). To compute the position
of the found object with subpixel accuracy the parameter SubPixel should be set to a value different
from ’none’. Finally, the parameter Greediness describes the used search heuristics, ranging from
“safe but slow” (value 0) to “fast but unsafe” (value 1). How to optimize the search process is described
in detail in section 3 on page 20.

The operator find_shape_model returns the position and orientation of the found object instances in
the parameters Row, Column, and Angle, and their corresponding Score, i.e., how much of the model
was found.

If you use the operator find_scaled_shape_model (after creating the model using cre-
ate_scaled_shape_model), the scale of the found object is returned Scale.

2 Creating a Suitable Model

A prerequisite for a successful matching process is, of course, a suitable model for the object you want to
find. A model is suitable if it describes the significant parts of the object, i.e., those parts that characterize
it and allow to discriminate it clearly from other objects or from the background. On the other hand, the
model should not contain clutter, i.e., points not belonging to the object (see, e.g., figure 4).

2.1 A Closer Look at the Region of Interest

When creating the model, the first step is to select a region of interest (ROI), i.e., the part of the image
which serves as the model. In HALCON, a region defines an area in an image or, more generally, a set
of points. A region can have an arbitrary shape; its points do not even need to be connected. Thus, the
region of the model can have an arbitrary shape as well.

The sections below describe how to create simple and more complex regions. The following code frag-
ment shows the typical next steps after creating an ROI:

reduce_domain (ModelImage, ROI, ImageROI)

create_shape_model (ImageROI, 0, 0, rad(360), 0, ’none’, ’use_polarity’,

30, 10, ModelID)

Note that the region of interest used when creating a shape model influences the matching results: Its
center of gravity is used as the reference point of the model (see section 2.1.4 on page 12 for more
information).



2.1.1 How to Create a Region 7

Figure 3: Creating an ROI from two regions.

2.1.1 How to Create a Region

HALCON offers multiple operators to create regions, ranging from standard shapes
like rectangles (gen_rectangle2) or ellipses (gen_ellipse) to free-form shapes (e.g.,
gen_region_polygon_filled). These operators can be found in the HDevelop menu Opera-
tors . Regions . Creation.

However, to use these operators you need the “parameters” of the shape you want to create, e.g., the
position, size and, orientation of a rectangle or the position and radius of a circle. Therefore, they are
typically combined with the operators in the HDevelop menu Operators . Graphics . Drawing, which
let you draw a shape on the displayed image and then return the shape parameters:

draw_rectangle1 (WindowHandle, ROIRow1, ROIColumn1, ROIRow2, ROIColumn2)

gen_rectangle1 (ROI, ROIRow1, ROIColumn1, ROIRow2, ROIColumn2)

2.1.2 How to Combine and Mask Regions

You can create more complex regions by adding or subtracting standard regions using the operators
union2 and difference. For example, to create an ROI containing the square and the cross in figure 3,
the following code fragment was used:

draw_rectangle1 (WindowHandle, ROI1Row1, ROI1Column1, ROI1Row2,

ROI1Column2)

gen_rectangle1 (ROI1, ROI1Row1, ROI1Column1, ROI1Row2, ROI1Column2)

draw_rectangle1 (WindowHandle, ROI2Row1, ROI2Column1, ROI2Row2,

ROI2Column2)

gen_rectangle1 (ROI2, ROI2Row1, ROI2Column1, ROI2Row2, ROI2Column2)

union2 (ROI1, ROI2, ROI)

Similarly, you can subtract regions using the operator difference. This method is useful to “mask”
those parts of a region containing clutter, i.e., high-contrast points that are not part of the object. In
figure 4, e.g., the task is to find the three capacitors. When using a single circular ROI, the created model

M
od

el
C

re
at

io
n



8 Application Note on Shape-Based Matching

model for ring−shaped ROI

model for full−circle ROI

Figure 4: Masking the part of a region containing clutter.

contains many clutter points, which are caused by reflections on the metallic surface. Thus, the other two
capacitors are not found. The solution to this problem is to use a ring-shaped ROI, which can be created
by the following lines of code:

draw_circle (WindowHandle, ROI1Row, ROI1Column, ROI1Radius)

gen_circle (ROI1, ROI1Row, ROI1Column, ROI1Radius)

gen_circle (ROI2, ROI1Row, ROI1Column, ROI1Radius-8)

difference (ROI1, ROI2, ROI)

Note that the ROI should not be too “thin”, otherwise it vanishes at higher pyramid levels! As a rule
of thumb, an ROI should be 2NumLevels−1 pixels wide; in the example, the width of 8 pixels therefore
allows to use 4 pyramid levels.

For this task even better results can be obtained by using a synthetic model image. This is described in
section 2.3 on page 18.



2.1.3 Using Image Processing to Create and Modify Regions 9

b)

d)

a)

c)

Figure 5: Using image processing to create an ROI: a) extract bright regions; b) select the card; c) the
logo forms the ROI; d) result of the matching.

2.1.3 Using Image Processing to Create and Modify Regions

In the previous sections, regions were created explicitly by specifying their shape parameters. Especially
for complex ROIs this method can be inconvenient and time-consuming. In the following, we therefore
show you how to extract and modify regions using image processing operators.

Example 1: Determining the ROI Using Blob Analysis

To follow the example actively, start the HDevelop program hde-
velop\create_roi_via_vision.dev, which locates the MVTec logo on a pendulum (see figure 5);
we start after the initialization of the application (press Run once). The main idea is to “zoom in” on the
desired region in multiple steps: First, find the bright region corresponding to the card, then extract the
dark characters on it.

Step 1: Extract the bright regions

threshold (ModelImage, BrightRegions, 200, 255)

connection (BrightRegions, ConnectedRegions)

fill_up (ConnectedRegions, FilledRegions)

First, all bright regions are extracted using a simple thresholding operation (threshold); the operator

M
od

el
C

re
at

io
n



10 Application Note on Shape-Based Matching

connection forms connected components. The extracted regions are then filled up via fill_up; thus,
the region corresponding to the card also encompasses the dark characters (see figure 5a).

Step 2: Select the region of the card

select_shape (FilledRegions, Card, ’area’, ’and’, 1800, 1900)

The region corresponding to the card can be selected from the list of regions with the operator se-
lect_shape. In HDevelop, you can determine suitable features and values using the dialog Visual-
ization . Region Info; just click into a region, and the dialog immediately displays its feature values.
Figure 5b shows the result of the operator.

Step 3: Use the card as an ROI for the next steps

reduce_domain (ModelImage, Card, ImageCard)

Now, we can restrict the next image processing steps to the region of the card using the operator re-
duce_domain. This iterative focusing has an important advantage: In the restricted region of the card,
the logo characters are much easier to extract than in the full image.

Step 4: Extract the logo

threshold (ImageCard, DarkRegions, 0, 230)

connection (DarkRegions, ConnectedRegions)

select_shape (ConnectedRegions, Characters, ’area’, ’and’, 150, 450)

union1 (Characters, CharacterRegion)

The logo characters are extracted similarly to the card itself; as a last step, the separate character regions
are combined using the operator union1.

Step 5: Enlarge the region using morphology

dilation_circle (CharacterRegion, ROI, 1.5)

reduce_domain (ModelImage, ROI, ImageROI)

create_shape_model (ImageROI, 0, 0, rad(360), 0, ’none’, ’use_polarity’,

30, 10, ModelID)

Finally, the region corresponding to the logo is enlarged slightly using the operator dilation_circle.
Figure 5c shows the resulting ROI, which is then used to create the shape model.

Example 2: Further Processing the Result of inspect_shape_model

You can also combine the interactive ROI specification with image processing. A useful method in the
presence of clutter in the model image is to create a first model region interactively and then process
this region to obtain an improved ROI. Figure 6 shows an example; the task is to locate the arrows. To
follow the example actively, start the HDevelop program hdevelop\process_shape_model.dev; we
start after the initialization of the application (press Run once).

Step 1: Select the arrow

gen_rectangle1 (ROI, 361, 131, 406, 171)

First, an initial ROI is created around the arrow, without trying to exclude clutter (see figure 6a).



2.1.3 Using Image Processing to Create and Modify Regions 11

model for

Contrast = 30

model for

Contrast = 90

model for

Contrast = 134

final ROI final modelprocessed region

a)

b)

c)

d)

Figure 6: Processing the result of inspect_shape_model: a) interactive ROI; b) models for different values
of Contrast; c) processed model region and corresponding ROI and model; d) result of the
search.

Step 2: Create a first model region

reduce_domain (ModelImage, ROI, ImageROI)

inspect_shape_model (ImageROI, ShapeModelImage, ShapeModelRegion, 1, 30)

Figure 6b shows the shape model regions that would be created for different values of the parameter
Contrast. As you can see, you cannot remove the clutter without losing characteristic points of the
arrow itself.

Step 3: Process the model region

fill_up (ShapeModelRegion, FilledModelRegion)

opening_circle (FilledModelRegion, ROI, 3.5)

You can solve this problem by exploiting the fact that the operator inspect_shape_model returns the
shape model region; thus, you can process it like any other region. The main idea to get rid of the clutter
is to use morphological operator opening_circle, which eliminates small regions. Before this, the

M
od

el
C

re
at

io
n



12 Application Note on Shape-Based Matching

operator fill_up must be called to fill the inner part of the arrow, because only the boundary points are
part of the (original) model region. Figure 6c shows the resulting region.

Step 4: Create the final model

reduce_domain (ModelImage, ROI, ImageROI)

create_shape_model (ImageROI, 3, 0, rad(360), 0, ’none’, ’use_polarity’,

30, 10, ModelID)

The processed region is then used to create the model; figure 6c shows the corresponding ROI and the
final model region. Now, all arrows are located successfully.

2.1.4 How the ROI Influences the Search

Note that the ROI used when creating the model also influences the results of the subsequent matching:
By default, the center point of the ROI acts as the so-called point of reference of the model for the
estimated position, rotation, and scale. After creating a model, you can change its point of reference
with the operator set_shape_model_origin. Note that this operator expects not the absolute position
of the new reference point as parameters, but its distance to the default reference point. Please note that
by modifying the point of reference, the accuracy of the estimated position may decrease (see section 3.4
on page 26). You can query the reference point using the operator get_shape_model_origin

The point of reference also influences the search itself: An object is only found if the point of reference
lies within the image, or more exactly, within the domain of the image (see also section 3.1.1 on page
20). Please note that this test is always performed for the original point of reference, i.e., the center point
of the ROI, even if you modified the reference point using set_shape_model_origin.

2.2 Which Information is Stored in the Model?

As the name shape-based pattern matching suggests, objects are represented and recognized by their
shape. There exist multiple ways to determine or describe the shape of an object. Here, the shape is
extracted by selecting all those points whose contrast exceeds a certain threshold; typically, the points
correspond to the contours of the object (see, e.g., figure 1 on page 4). Section 2.2.1 takes a closer look
at the corresponding parameters.

To speed up the matching process, a so-called image pyramid is created, consisting of the original, full-
sized image and a set of downsampled images. The model is then created and searched on the different
pyramid levels (see section 2.2.2 on page 14 for details).

If the object is allowed to appear rotated or scaled, the corresponding information is used already when
creating the model. This also speeds up the matching process, at the cost of higher memory requirements
for the created model. Section 2.2.3 on page 16 and section 2.2.4 on page 17 describe the corresponding
parameters. If the high memory requirements become a problem, you can modify this behavior via the
parameter Optimization (see page 16).

In the following, all parameters belong to the operator create_shape_model if not stated otherwise.



2.2.1 Which Pixels are Part of the Model? 13

c)

a)

d)

b)

Figure 7: Selecting significant pixels via Contrast: a) complete object but with clutter; b) no clutter but
incomplete object; c) hysteresis threshold; d) minimum contour size.

2.2.1 Which Pixels are Part of the Model?

For the model those pixels are selected whose contrast, i.e., gray value difference to neighboring pixels,
exceeds a threshold specified by the parameter Contrast when calling create_shape_model. In order
to obtain a suitable model the contrast should be chosen in such a way that the significant pixels of the
object are included, i.e., those pixels that characterize it and allow to discriminate it clearly from other
objects or from the background. Obviously, the model should not contain clutter, i.e., pixels that do not
belong to the object.

In some cases it is impossible to find a single value for Contrast that removes the clutter but not also
parts of the object. Figure 7 shows an example; the task is to create a model for the outer rim of a drill-
hole: If the complete rim is selected, the model also contains clutter (figure 7a); if the clutter is removed,
parts of the rim are missing (figure 7b).

To solve such problems, the parameter Contrast provides two additional methods: hysteresis thresh-
olding and selection of contour parts based on their size. Both methods are used by specifying a tuple of
values for Contrast instead of a single value.

Hysteresis thresholding (see also the operator hysteresis_threshold) uses two thresholds, a lower
and an upper threshold. For the model, first pixels that have a contrast higher than the upper threshold
are selected; then, pixels that have a contrast higher than the lower threshold and that are connected to a
high-contrast pixel, either directly or via another pixel with contrast above the lower threshold, are added.
This method enables you to select contour parts whose contrast varies from pixel to pixel. Returning to
the example of the drill-hole: As you can see in figure 7c, with a hysteresis threshold you can create a
model for the complete rim without clutter. The following line of code shows how to specify the two

M
od

el
C

re
at

io
n



14 Application Note on Shape-Based Matching

thresholds in a tuple:

inspect_shape_model (ImageROI, ModelImages, ModelRegions, 1, [26,52])

The second method to remove clutter is to specify a minimum size, i.e., number of pixels, for the contour
components. Figure 7d shows the result for the example task. The minimum size must be specified in
the third element of the tuple; if you don’t want to use a hysteresis threshold, set the first two elements
to the same value:

inspect_shape_model (ImageROI, ModelImages, ModelRegions, 1, [26,26,12])

Alternative methods to remove clutter are to modify the ROI as described in section 2.1 on page 6 or
create a synthetic model (see section 2.3 on page 18).

2.2.2 How Subsampling is Used to Speed Up the Search

To speed up the matching process, a so-called image pyramid is created, both for the model image and
for the search images. The pyramid consists of the original, full-sized image and a set of downsampled
images. For example, if the the original image (first pyramid level) is of the size 600x400, the second
level image is of the size 300x200, the third level 150x100, and so on. The object is then searched first
on the highest pyramid level, i.e., in the smallest image. The results of this fast search are then used
to limit the search in the next pyramid image, whose results are used on the next lower level until the
lowest level is reached. Using this iterative method, the search is both fast and accurate. Figure 8 depicts
4 levels of an example image pyramid together with the corresponding model regions.

You can specify how many pyramid levels are used via the parameter NumLevels. We recommend
to choose the highest pyramid level at which the model contains at least 10-15 pixels and in which
the shape of the model still resembles the shape of the object. You can inspect the model image
pyramid using the operator inspect_shape_model, e.g., as shown in the HDevelop program hde-
velop\first_example_shape_matching.dev:

inspect_shape_model (ImageROI, ShapeModelImages, ShapeModelRegions, 8, 30)

area_center (ShapeModelRegions, AreaModelRegions, RowModelRegions,

ColumnModelRegions)

HeightPyramid := |ShapeModelRegions|

for i := 1 to HeightPyramid by 1

if (AreaModelRegions[i-1] >= 15)

NumLevels := i

endif

endfor

create_shape_model (ImageROI, NumLevels, 0, rad(360), 0, ’none’,

’use_polarity’, 30, 10, ModelID)

After the call to the operator, the model regions on the selected pyramid levels are displayed in HDe-
velop’s Graphics Window; you can have a closer look at them using the online zooming (menu entry
Visualization . Online Zooming). The code lines following the operator call loop through the
pyramid and determine the highest level on which the model contains at least 15 points. This value is
then used in the call to the operator create_shape_model.

A much easier method is to let HALCON select a suitable value itself by specifying the value 0 for



2.2.2 How Subsampling is Used to Speed Up the Search 15

Figure 8: The image and the model region at four pyramid levels (original size and zoomed to equal size).

NumLevels. You can then query the used value via the operator get_shape_model_params.

The operator inspect_shape_model returns the pyramid images in form of an image tuple (array); the
individual images can be accessed like the model regions with the operator select_obj. Please note
that object tuples start with the index 1, whereas control parameter tuples start with the index 0! !
You can enforce a further reduction of model points via the parameter Optimization. This may be
useful to speed up the matching in the case of particularly large models. Please note that regardless of
your selection all points passing the contrast criterion are displayed, i.e., you cannot check which points

M
od

el
C

re
at

io
n



16 Application Note on Shape-Based Matching

are part of the model.

With an optional second value, you can specify whether the model is pregenerated completely for the
allowed range of rotation and scale (see the following sections) or not. By default, the model is pregener-
ated, because this speeds up the search process. A reason to switch off the pregeneration is if the created
model requires too much memory. In such a case, pass ’no_pregeneration’ as the second value of
Optimization. Alternatively, you can set this parameter via the operator set_system.

2.2.3 Allowing a Range of Orientation

If the object’s rotation may vary in the search images you can specify the allowed range in the parameter
AngleExtent and the starting angle of this range in the parameter AngleStart (unit: rad). Note that
the range of rotation is defined relative to the model image, i.e., a starting angle of 0 corresponds to the
orientation the object has in the model image. Therefore, to allow rotations up to +/-5◦, e.g., you should
set the starting angle to -rad(5) and the angle extent to rad(10).

We recommend to limit the allowed range of rotation as much as possible in order to speed up the search
process and to minimize the required memory. Note that you can further limit the allowed range when
calling the operator find_shape_model (see section 3.1.2 on page 21). If you want to reuse a model
for different tasks requiring a different range of angles and if memory is not an issue, you can therefore
use a large range when creating the model and a smaller range for the search.

If the object is (almost) symmetric you should limit the allowed range. Otherwise, the search process
will find multiple, almost equally good matches on the same object at different angles; which match (at
which angle) is returned as the best can therefore “jump” from image to image. The suitable range of
rotation depends on the symmetry: For a cross-shaped or square object the allowed extent must be less
than 90◦, for a rectangular object less than 180◦, and for a circular object 0◦.

To speed up the matching process, the model is precomputed for different angles within the allowed range
(if you didn’t switch off this behavior as described in the previous section), at steps specified with the
parameter AngleStep. If you select the value 0, HALCON automatically chooses an optimal step size
φopt to obtain the highest possible accuracy by determining the smallest rotation that is still discernible
in the image. The underlying algorithm is explained in figure 9: The rotated version of the cross-shaped
object is clearly discernible from the original if the point that lies farthest from the center of the object is
moved by at least 2 pixels. Therefore, the corresponding angle φopt is calculated as follows:

d2 = l2 + l2 − 2 · l · l · cos φ ⇒ φopt = arccos
(

1− d2

2 · l2

)
= arccos

(
1− 2

l2

)

φ
d

l

l

Figure 9: Determining the minimum angle step size from the extent of the model.



2.2.4 Allowing a Range of Scale 17

with l being the maximum distance between the center and the object boundary and d = 2 pixels.

The automatically determined angle step size φopt is suitable for most applications; therefore, we rec-
ommend to select the value 0. You can query the used value after the creation via the operator
get_shape_model_params. By selecting a higher value you can speed up the search process, how-
ever, at the cost of a decreased accuracy of the estimated orientation. Note that for very high values the
matching may fail altogether!

The value chosen for AngleStep should not deviate too much from the optimal value ( 1
3φopt ≤ φ ≤

3φopt). Note that choosing a very small step size does not result in an increased angle accuracy!

2.2.4 Allowing a Range of Scale

Similarly to the range of orientation, you can specify an allowed range of scale with the parameters
ScaleMin, ScaleMax, and ScaleStep of the operator create_scaled_shape_model.

Again, we recommend to limit the allowed range of scale as much as possible in order to speed up the
search process and to minimize the required memory. Note that you can further limit the allowed range
when calling the operator find_scaled_shape_model (see section 3.1.2 on page 21). If too much
memory is required, you can switch off the pregeneration of the model as described on page 16.

Note that if you are searching for the object on a large range of scales you should create the model based
on a large scale because HALCON cannot “guess” model points when precomputing model instances at
scales larger than the original one. On the other hand, NumLevels should be chosen such that the highest
level contains enough model points also for the smallest scale.

If you select the value 0 for the parameter ScaleStep, HALCON automatically chooses a suitable
step size to obtain the highest possible accuracy by determining the smallest scale change that is still
discernible in the image. Similarly to the angle step size (see figure 9 on page 16), a scaled object is
clearly discernible from the original if the point that lies farthest from the center of the object is moved
by at least 2 pixels. Therefore, the corresponding scale change ∆sopt is calculated as follows:

∆s =
d

l
⇒ ∆sopt =

2
l

with l being the maximum distance between the center and the object boundary and d = 2 pixels.

The automatically determined scale step size is suitable for most applications; therefore, we rec-
ommend to select the value 0. You can query the used value after the creation via the operator
get_shape_model_params. By selecting a higher value you can speed up the search process, however,
at the cost of a decreased accuracy of the estimated scale. Note that for very high values the matching
may fail altogether!

The value chosen for ScaleStep should not deviate too much from the optimal value ( 1
3∆sopt ≤ ∆s ≤

3∆sopt). Note that choosing a very small step size does not result in an increased scale accuracy!

2.2.5 Which Pixels are Compared with the Model?

For efficiency reasons the model contains information that influences the search process: With the pa-
rameter MinContrast you can specify which contrast a point in a search image must at least have in

M
od

el
C

re
at

io
n



18 Application Note on Shape-Based Matching

order to be compared with the model. The main use of this parameter is to exclude noise, i.e., gray value
fluctuations, from the matching process. You can determine the noise by examining the gray values with
the HDevelop dialog Visualization . Pixel Info; then, set the minimum contrast to a value larger
than the noise.

The parameter Metric lets you specify whether the polarity, i.e., the direction of the contrast must be
observed. If you choose the value ’use_polarity’ the polarity is observed, i.e., the points in the
search image must show the same direction of the contrast as the corresponding points in the model. If,
for example, the model is a bright object on a dark background, the object is found in the search images
only if it is also brighter than the background.

You can choose to ignore the polarity globally by selecting the value ’ignore_global_polarity’. In
this mode, an object is recognized also if the direction of its contrast reverses, e.g., if your object can
appear both as a dark shape on a light background and vice versa. This flexibility, however, is obtained
at the cost of a slightly lower recognition speed.

If you select the value ’ignore_local_polarity’, the object is found even if the contrast changes
locally. This mode can be useful, e.g., if the object consists of a part with a medium gray value, within
which either darker of brighter sub-objects lie. Please note however, that the recognition speed may
decrease dramatically in this mode, especially if you allowed a large range of rotation (see section 2.2.3
on page 16).

2.3 Synthetic Model Images

Depending on the application it may be difficult to create a suitable model because there is no “good”
model image containing a perfect, easy to extract instance of the object. An example of such a case was
already shown in section 2.1.2 on page 7: The task of locating the capacitors seems to be simple at first,
as they are prominent bright circles on a dark background. But because of the clutter inside and outside
the circle even the model resulting from the ring-shaped ROI is faulty: Besides containing clutter points
also parts of the circle are missing.

In such cases, it may be better to use a synthetic model image. How to create such an image to locate
the capacitors is explained below. To follow the example actively, start the HDevelop program hde-
velop\synthetic_circle.dev; we start after the initialization of the application (press Run once).

Step 1: Create an XLD contour

RadiusCircle := 43

SizeSynthImage := 2*RadiusCircle + 10

gen_ellipse_contour_xld (Circle, SizeSynthImage / 2, SizeSynthImage / 2, 0,

RadiusCircle, RadiusCircle, 0, 6.28318,

’positive’, 1.5)

First, we create a circular region using the operator gen_ellipse_contour_xld (see figure 10a). You
can determine a suitable radius by inspecting the image with the HDevelop dialog Visualization .
Online Zooming. Note that the synthetic image should be larger than the region because pixels around
the region are used when creating the image pyramid.



2.3 Synthetic Model Images 19

a) b)

c)

Figure 10: Locating the capacitors using a synthetic model: a) paint region into synthetic image; b) corre-
sponding model; c) result of the search.

Step 2: Create an image and insert the XLD contour

gen_image_const (EmptyImage, ’byte’, SizeSynthImage, SizeSynthImage)

paint_xld (Circle, EmptyImage, SyntheticModelImage, 128)

Then, we create an empty image using the operator gen_image_const and insert the XLD contour with
the operator paint_xld. In figure 10a the resulting image is depicted.

Step 3: Create the model

create_scaled_shape_model (SyntheticModelImage, 0, 0, 0, 0.01, 0.8, 1.2, 0,

’none’, ’use_polarity’, 30, 10, ModelID)

Now, the model is created from the synthetic image. Figure 10d shows the corresponding model region,
figure 10e the search results.

Note how the image itself, i.e., its domain, acts as the ROI in this example.

M
od

el
C

re
at

io
n



20 Application Note on Shape-Based Matching

3 Optimizing the Search Process

The actual matching is performed by the operators find_shape_model, find_scaled_shape_model,
find_shape_models, or find_scaled_shape_models. In the following, we show how to select suit-
able parameters for these operators to adapt and optimize it for your matching task.

3.1 Restricting the Search Space

An important concept in the context of finding objects is that of the so-called search space. Quite
literally, this term specifies where to search for the object. However, this space encompasses not only the
2 dimensions of the image, but also other parameters like the possible range of scales and orientations or
the question of how much of the object must be visible. The more you can restrict the search space, the
faster the search will be.

3.1.1 Searching in a Region of Interest

The obvious way to restrict the search space is to apply the operator find_shape_model to a region of
interest only instead of the whole image as shown in figure 11. This can be realized in a few lines of
code:

Step 1: Create a region of interest

Row1 := 141

Column1 := 163

Row2 := 360

Column2 := 477

gen_rectangle1 (SearchROI, Row1, Column1, Row2, Column2)

First, you create a region, e.g., with the operator gen_rectangle1 (see section 2.1.1 on page 7 for more
ways to create regions).

Figure 11: Searching in a region of interest.



3.1.2 Restricting the Range of Orientation and Scale 21

Step 2: Restrict the search to the region of interest

for i := 1 to 20 by 1

grab_image (SearchImage, FGHandle)

reduce_domain (SearchImage, SearchROI, SearchImageROI)

find_shape_model (SearchImageROI, ModelID, 0, rad(360), 0.8, 1, 0.5,

’interpolation’, 0, 0.9, RowCheck, ColumnCheck,

AngleCheck, Score)

endfor

The region of interest is then applied to each search image using the operator reduce_domain. In this
example, the searching speed is almost doubled using this method.

Note that by restricting the search to a region of interest you actually restrict the position of the point of
reference of the model, i.e., the center of gravity of the model ROI (see section 2.1.4 on page 12). This
means that the size of the search ROI corresponds to the extent of the allowed movement; for example,
if your object can move ± 10 pixels vertically and ± 15 pixels horizontally you can restrict the search
to an ROI of the size 20×30. In order to assure a correct boundary treatment on higher pyramid levels,
we recommend to enlarge the ROI by 2NumLevels−1 pixels; to continue the example, if you specified
NumLevels = 4, you can restrict the search to an ROI of the size 36×46.

Please note that even if you modify the point of reference using set_shape_model_origin, the original
one, i.e., the center point of the model ROI, is used during the search. Thus, you must always specify the
search ROI relative to the original reference point.

3.1.2 Restricting the Range of Orientation and Scale

When creating the model with the operator create_shape_model (or cre-
ate_scaled_shape_model), you already specified the allowed range of orientation and scale (see
section 2.2.3 on page 16 and section 2.2.4 on page 17). When calling the operator find_shape_model
(or find_scaled_shape_model) you can further limit these ranges with the parameters AngleStart,
AngleExtent, ScaleMin, and ScaleMax. This is useful if you can restrict these ranges by other
information, which can, e.g., be obtained by suitable image processing operations.

Another reason for using a larger range when creating the model may be that you want to reuse the model
for other matching tasks.

3.1.3 Visibility

With the parameter MinScore you can specify how much of the object — more precisely: of the model
— must be visible. A typical use of this mechanism is to allow a certain degree of occlusion as demon-
strated in figure 12: The security ring is found if MinScore is set to 0.7.

Let’s take a closer look at the term “visibility”: When comparing a part of a search image with the model,
the matching process calculates the so-called score, which is a measure of how many model points could
be matched to points in the search image (ranging from 0 to 1). A model point may be “invisible” and
thus not matched because of multiple reasons:

O
pt

im
al

S
ea

rc
h



22 Application Note on Shape-Based Matching

b) c)a)

Figure 12: Searching for partly occluded objects: a) model of the security ring; b) search result for
MinScore = 0.8; c) search result for MinScore = 0.7.

• Parts of the object’s contour are occluded, e.g., as in figure 12.

Please note that an object must not be clipped at the image border; this case is not treated as an !
occlusion! More precisely, the smallest rectangle surrounding the model must not be clipped.

• Parts of the contour have a contrast lower than specified in the parameter MinContrast when
creating the model (see section 2.2.5 on page 17).

• The polarity of the contrast changes globally or locally (see section 2.2.5 on page 17).

• If the object is deformed, parts of the contour may be visible but appear at an incorrect position
and therefore do not fit the model anymore. Note that this effect also occurs if camera observes the
scene under an oblique angle; section 5.1 on page 45 shows how to handle this case.

Besides these obvious reasons, which have their root in the search image, there are some not so obvious
reasons caused by the matching process itself:

• As described in section 2.2.3 on page 16, HALCON precomputes the model for intermediate angles
within the allowed range of orientation. During the search, a candidate match is then compared
to all precomputed model instances. If you select a value for the parameter AngleStep that is
significantly larger than the automatically selected minimum value, the effect depicted in figure 13
can occur: If the object lies between two precomputed angles, points lying far from the center are
not matched to a model point, and therefore the score decreases.

Of course, the same line of reasoning applies to the parameter ScaleStep (see section 2.2.4 on
page 17).

• Another stumbling block lies in the use of an image pyramid which was introduced in section 2.2.2
on page 14: When comparing a candidate match with the model, the specified minimum score
must be reached on each pyramid level. However, on different levels the score may vary, with
only the score on the lowest level being returned in the parameter Score; this sometimes leads to
the apparently paradox situation that MinScore must be set significantly lower than the resulting
Score.

Recommendation: The higher MinScore, the faster the search!



3.1.4 Thoroughness vs. Speed 23

AngleStep = 20 AngleStep = 30

Figure 13: The effect of a large AngleStep on the matching.

3.1.4 Thoroughness vs. Speed

With the parameter Greediness you can influence the search algorithm itself and thereby trade thor-
oughness against speed. If you select the value 0, the search is thorough, i.e., if the object is present
(and within the allowed search space and reaching the minimum score), it will be found. In this mode,
however, even very unlikely match candidates are also examined thoroughly, thereby slowing down the
matching process considerably.

The main idea behind the “greedy” search algorithm is to break off the comparison of a candidate with
the model when it seems unlikely that the minimum score will be reached. In other words, the goal is
not to waste time on hopeless candidates. This greediness, however, can have unwelcome consequences:
In some cases a perfectly visible object is not found because the comparison “starts out on a wrong foot”
and is therefore classified as a hopeless candidate and broken off.

You can adjust the Greediness of the search, i.e., how early the comparison is broken off, by selecting
values between 0 (no break off: thorough but slow) and 1 (earliest break off: fast but unsafe). Note
that the parameters Greediness and MinScore interact, i.e., you may have to specify a lower minimum
score in order to use a greedier search. Generally, you can reach a higher speed with a high greediness
and a sufficiently lowered minimum score.

3.2 Searching for Multiple Instances of the Object

All you have to do to search for more than one instance of the object is to set the parameter Num-
Matches accordingly. The operator find_shape_model (or find_scaled_shape_model) then re-
turns the matching results as tuples in the parameters Row, Column, Angle, Scale, and Score. If you
select the value 0, all matches are returned.

Note that a search for multiple objects is only slightly slower than a search for a single object.

A second parameter, MaxOverlap, lets you specify how much two matches may overlap (as a fraction).
In figure 14b, e.g., the two security rings overlap by a factor of approximately 0.2. In order to speed up
the matching as far as possible, however, the overlap is calculated not for the models themselves but for
their smallest surrounding rectangle. This must be kept in mind when specifying the maximum overlap;
in most cases, therefore a larger value is needed (e.g., compare figure 14b and figure 14d).

O
pt

im
al

S
ea

rc
h



24 Application Note on Shape-Based Matching

a) c)

e)d)b)

Figure 14: A closer look at overlapping matches: a) model of the security ring; b) model overlap; c)
smallest rectangle surrounding the model; d) rectangle overlap; e) pathological case.

Figure 14e shows a “pathological” case: Even though the rings themselves do not overlap, their sur-
rounding rectangles do to a large degree. Unfortunately, this effect cannot be prevented.

3.3 Searching for Multiple Models Simultaneously

If you are searching for instances of multiple models in a single image, you can of course call the operator
find_shape_model (or find_scaled_shape_model) multiple times. A much faster alternative is
to use the operators find_shape_models or find_scaled_shape_models instead. These operators
expect similar parameters, with the following differences:

• With the parameter ModelIDs you can specify a tuple of model IDs instead of a single one. As
when searching for multiple instances (see section 3.2 on page 23), the matching result parameters
Row etc. return tuples of values.

• The output parameter Model shows to which model each found instance belongs. Note that the
parameter does not return the model IDs themselves but the index of the model ID in the tuple
ModelIDs (starting with 0).

• The search is always performed in a single image. However, you can restrict the search to a certain
region for each model individually by passing an image tuple (see below for an example).

• You can either use the same search parameters for each model by specifying single values for
AngleStart etc., or pass a tuple containing individual values for each model.



3.3 Searching for Multiple Models Simultaneously 25

b)a)

Figure 15: Searching for multiple models : a) models of ring and nut; b) search ROIs for the two models.

• You can also search for multiple instances of multiple models. If you search for a certain number
of objects independent of their type (model ID), specify this (single) value in the parameter Num-
Matches. By passing a tuple of values, you can specify for each model individually how many
instances are to be found. In this tuple, you can mix concrete values with the value 0; the tuple
[3,0], e.g., specifies to return the best 3 instances of the first model and all instances of the second
model.

Similarly, if you specify a single value for MaxOverlap, the operators check whether a found
instance is overlapped by any of the other instances independent of their type. By specifying a
tuple of values, each instance is only checked against all other instances of the same type.

The example HDevelop program hdevelop\multiple_models.dev uses the operator
find_scaled_shape_models to search simultaneously for the rings and nuts depicted in figure 15.

Step 1: Create the models

create_scaled_shape_model (ImageROIRing, 0, -rad(22.5), rad(45), 0, 0.8,

1.2, 0, ’none’, ’use_polarity’, 60, 10,

ModelIDRing)

create_scaled_shape_model (ImageROINut, 0, -rad(30), rad(60), 0, 0.6, 1.4,

0, ’none’, ’use_polarity’, 60, 10, ModelIDNut)

ModelIDs := [ModelIDRing, ModelIDNut]

First, two models are created, one for the rings and one for the nuts. The two model IDs are then
concatenated into a tuple using the operator assign.

O
pt

im
al

S
ea

rc
h



26 Application Note on Shape-Based Matching

Step 2: Specify individual search ROIs

gen_rectangle1 (SearchROIRing, 110, 10, 130, Width - 10)

gen_rectangle1 (SearchROINut, 315, 10, 335, Width - 10)

SearchROIs := [SearchROIRing,SearchROINut]

add_channels (SearchROIs, SearchImage, SearchImageReduced)

In the example, the rings and nuts appear in non-overlapping parts of the search image; therefore, it is
possible to restrict the search space for each model individually. As explained in section 3.1.1 on page
20, a search ROI corresponds to the extent of the allowed movement; thus, narrow horizontal ROIs can
be used in the example (see figure 15b).

The two ROIs are concatenated into a region array (tuple) using the operator concat_obj and then
“added” to the search image using the operator add_channels. The result of this operator is an array
of two images, both having the same image matrix; the domain of the first image is restricted to the first
ROI, the domain of the second image to the second ROI.

Step 3: Find all instances of the two models

find_scaled_shape_models (SearchImageReduced, ModelIDs, [-rad(22.5),

-rad(30)], [rad(45), rad(60)], [0.8, 0.6], [1.2,

1.4], 0.7, 0, 0, ’interpolation’, 0, 0.9,

RowCheck, ColumnCheck, AngleCheck, ScaleCheck,

Score, ModelIndex)

Now, the operator find_scaled_shape_models is applied to the created image array. Because the
two models allow different ranges of rotation and scaling, tuples are specified for the corresponding
parameters. In contrast, the other parameters are are valid for both models. Section 4.3.3 on page 35
shows how to access the matching results.

3.4 A Closer Look at the Accuracy

During the matching process, candidate matches are compared with instances of the model at different
positions, angles, and scales; for each instance, the resulting matching score is calculated. If you set
the parameter SubPixel to ’none’, the result parameters Row, Column, Angle, and Scale contain
the corresponding values of the best match. In this case, the accuracy of the position is therefore 1
pixel, while the accuracy of the orientation and scale is equal to the values selected for the parameters
AngleStep and ScaleStep, respectively, when creating the model (see section 2.2.3 on page 16 and
section 2.2.4 on page 17).

If you set the parameter SubPixel to ’interpolation’, HALCON examines the matching scores at
the neighboring positions, angles, and scales around the best match and determines the maximum by
interpolation. Using this method, the position is therefore estimated with subpixel accuracy (≈ 1

20 pixel
in typical applications). The accuracy of the estimated orientation and scale depends on the size of the
object, like the optimal values for the parameters AngleStep and ScaleStep (see section 2.2.3 on page
16 and section 2.2.4 on page 17): The larger the size, the more accurately the orientation and scale can
be determined. For example, if the maximum distance between the center and the boundary is 100 pixel,
the orientation is typically determined with an accuracy of ≈ 1

10
◦.

Recommendation: Because the interpolation is very fast, you can set SubPixel to ’interpolation’



3.4 A Closer Look at the Accuracy 27

p. of ref.
new

p. of ref.
original

model rotation rotation inaccuracy

Figure 16: Effect of inaccuracy of the estimated orientation on a moved point of reference.

in most applications.

When you choose the values ’least_squares’, ’least_squares_high’, or
’least_squares_very_high’, a least-squares adjustment is used instead of an interpolation,
resulting in a higher accuracy. However, this method requires additional computation time.

Please note that the accuracy of the estimated position may decrease if you modify the point of !
reference using set_shape_model_origin! This effect is visualized in figure 16: As you can see
in the right-most column, an inaccuracy in the estimated orientation “moves” the modified point of
reference, while the original point of reference is not affected. The resulting positional error depends
on multiple factors, e.g., the offset of the reference point and the orientation of the found object. The
main point to keep in mind is that the error increases linearly with the distance of the modified point of
reference from the original one (compare the two rows in figure 16).

An inaccuracy in the estimated scale also results in an error in the estimated position, which again
increases linearly with the distance between the modified and the original reference point.

For maximum accuracy in case the reference point is moved, the position should be determined using the
least-squares adjustment. Note that the accuracy of the estimated orientation and scale is not influenced
by modifying the reference point.

O
pt

im
al

S
ea

rc
h



28 Application Note on Shape-Based Matching

3.5 How to Optimize the Matching Speed

In the following, we show how to optimize the matching process in two steps. Please note that in order
to optimize the matching it is very important to have a set of representative test images from your!
application in which the object appears in all allowed variations regarding its position, orientation,
occlusion, and illumination.

Step 1: Assure that all objects are found

Before tuning the parameters for speed, we recommend to find settings such that the matching succeeds
in all test images, i.e., that all object instances are found. If this is not the case when using the default
values, check whether one of the following situations applies:

? Is the object clipped at the image border?
Unfortunately, this failure cannot be prevented, i.e., you must assure that the object is not clipped
(see section 3.1.3 on page 21).

? Is the search algorithm “too greedy”?
As described in section 3.1.4 on page 23, in some cases a perfectly visible object is not found if
the Greediness is too high. Select the value 0 to force a thorough search.

? Is the object partly occluded?
If the object should be recognized in this state nevertheless, reduce the parameter MinScore.

? Does the matching fail on the highest pyramid level?
As described in section 3.1.3 on page 21, in some cases the minimum score is not reached on
the highest pyramid level even though the score on the lowest level is much higher. Test this by
reducing NumLevels in the call to find_shape_model. Alternatively, reduce the MinScore.

? Does the object have a low contrast?
If the object should be recognized in this state nevertheless, reduce the parameter MinContrast
(operator create_shape_model!).

? Is the polarity of the contrast inverted globally or locally?
If the object should be recognized in this state nevertheless, use the appropriate value for the pa-
rameter Metric when creating the model (see section 2.2.5 on page 17). If only a small part of the
object is affected, it may be better to reduce the MinScore instead.

? Does the object overlap another instance of the object?
If the object should be recognized in this state nevertheless, increase the parameter MaxOverlap
(see section 3.2 on page 23).

? Are multiple matches found on the same object?
If the object is almost symmetric, restrict the allowed range of rotation as described in section 2.2.3
on page 16 or decrease the parameter MaxOverlap (see section 3.2 on page 23).

Step 2: Tune the parameters regarding speed

The speed of the matching process depends both on the model and on the search parameters. To make
matters more difficult, the search parameters depend on the chosen model parameters. We recommend
the following procedure:



3.5 How to Optimize the Matching Speed 29

• Increase the MinScore as far as possible, i.e., as long as the matching succeeds.

• Now, increase the Greediness until the matching fails. Try reducing the MinScore; if this does
not help restore the previous values.

• If possible, use a larger value for NumLevels when creating the model.

• Restrict the allowed range of rotation and scale as far as possible as described in section 2.2.3 on
page 16 and section 2.2.4 on page 17. Alternatively, adjust the corresponding parameters when
calling find_shape_model or find_scaled_shape_model.

• Restrict the search to a region of interest as described in section 3.1.1 on page 20.

The following methods are more “risky”, i.e., the matching may fail if you choose unsuitable parameter
values.

• Increase the MinContrast as long as the matching succeeds.

• If you a searching for a particularly large object, it sometimes helps to select a higher point reduc-
tion with the parameter Optimization (see section 2.2.2 on page 14).

• Increase the AngleStep (and the ScaleStep) as long as the matching succeeds.

O
pt

im
al

S
ea

rc
h



30 Application Note on Shape-Based Matching

4 Using the Results of Matching

As results, the operators find_shape_model, find_scaled_shape_model etc. return

• the position of the match in the parameters Row and Column,

• its orientation in the parameter Angle,

• the scaling factor in the parameter Scale, and

• the matching score in the parameter Score.

The matching score, which is a measure of the similarity between the model and the matched object, can
be used “as it is”, since it is an absolute value.

In contrast, the results regarding the position, orientation, and scale are worth a closer look as they are
determined relative to the created model. Before this, we introduce HALCON’s powerful operators for
the so-called affine transformations, which, when used together with the shape-based matching, enable
you to easily realize applications like image rectification or the alignment of ROIs with a few lines of
code.

4.1 Introducing Affine Transformations

“Affine transformation” is a technical term in mathematics describing a certain group of transformations.
Figure 17 shows the types that occur in the context of the shape-based matching: An object can be
translated (moved) along the two axes, rotated, and scaled. In figure 17d, all three transformations were
applied in a sequence.

Note that for the rotation and the scaling there exists a special point, called fixed point or point of ref-
erence. The transformation is performed around this point. In figure 17b, e.g., the IC is rotated around
its center, in figure 17e around its upper right corner. The point is called fixed point because it remains
unchanged by the transformation.

The transformation can be thought of as a mathematical instruction that defines how to calculate the
coordinates of object points after the transformation. Fortunately, you need not worry about the math-
ematical part; HALCON provides a set of operators that let you specify and apply transformations in a
simple way.

4.2 Creating and Applying Affine Transformations With HALCON

HALCON allows to transform not only regions, but also images and XLD contours by providing the
operators affine_trans_region, affine_trans_image, and affine_trans_contour_xld. The
transformation in figure 17d corresponds to the line

affine_trans_region (IC, TransformedIC, ScalingRotationTranslation,

’false’)

The parameter ScalingRotationTranslation is a so-called homogeneous transformation matrix that
describes the desired transformation. You can create this matrix by adding simple transformations step
by step. First, an identity matrix is created:



4.2 Creating and Applying Affine Transformations With HALCON 31

e)

column / y

row / x

c) d)

f)

a) b)

Figure 17: Typical affine transformations: a) translation along two axes; b) rotation around the IC center;
c) scaling around the IC center; d) combining a, b, and c; e) rotation around the upper right
corner; f) scaling around the right IC center.

hom_mat2d_identity (EmptyTransformation)

Then, the scaling around the center of the IC is added:

hom_mat2d_scale (EmptyTransformation, 0.5, 0.5, RowCenterIC,

ColumnCenterIC, Scaling)

Similarly, the rotation and the translation are added:

hom_mat2d_rotate (Scaling, rad(90), RowCenterIC, ColumnCenterIC,

ScalingRotation)

hom_mat2d_translate (ScalingRotation, 100, 200, ScalingRotationTranslation)

Please note that in these operators the coordinate axes are labeled with x and y instead of Row and
Column! Figure 17a clarifies the relation.

Transformation matrices can also be constructed by a sort of “reverse engineering”. In other words, if the
result of the transformation is known for some points of the object, you can determine the corresponding

M
at

ch
in

g
R

es
ul

ts



32 Application Note on Shape-Based Matching

transformation matrix. If, e.g., the position of the IC center and its orientation after the transformation is
known, you can get the corresponding matrix via the operator vector_angle_to_rigid.

vector_angle_to_rigid (RowCenterIC, ColumnCenterIC, 0,

TransformedRowCenterIC, TransformedColumnCenterIC,

rad(90), RotationTranslation)

and then use this matrix to compute the transformed region:

affine_trans_region (IC, TransformedIC, RotationTranslation, ’false’)

4.3 Using the Estimated Position and Orientation

Even if the task is just to check whether an object is present in the image, you will typically use the re-
turned position and orientation: to display the found instance. This basic use is described in section 4.3.1.
More advanced applications are to align ROIs for other inspection tasks, e.g., measuring (section 4.3.4
on page 36), or to transform the search image so that the object is positioned as in the model image
(section 4.3.5 on page 39). Section 4.4 on page 43 shows how to locate grasping points on nuts, which
could then be passed on to a robot.

There are two things to keep in mind about the position and orientation returned in the parameters Row,
Column, and Angle: Most important, contrary to expectation the estimated position is not exactly!
the position of the point of reference but only close to it. Instead, it is optimized for creating the
transformation matrix with which the applications described above can be realized.

Secondly, in the model image the object is taken as not rotated, i.e., its angle is 0, even if it seems to be
rotated, e.g., as in figure 18b.

4.3.1 Displaying the Matches

Especially during the development of a matching application it is useful to display the matching results
overlaid on the search image. This can be realized in a few steps (see, e.g., the HDevelop program
hdevelop\first_example_shape_matching.dev):

Step 1: Access the XLD contour containing the model

create_shape_model (ImageROI, NumLevels, 0, rad(360), 0, ’none’,

’use_polarity’, 30, 10, ModelID)

get_shape_model_contours (ShapeModel, ModelID, 1)

Below, we want to display the model at the extracted position and orientation. As shown in section 1
on page 4, the corresponding region can be accessed via the operator inspect_shape_model. This is
useful to display the model in the model image. However, for the search images we recommend to use
the XLD version of the model, because XLD contours can be transformed more precisely and quickly.
You can access the XLD model by calling the operator get_shape_model_contours after creating the
model. Note that the XLD model is located in the origin of the image, not on the position of the model
in the model image.



4.3.1 Displaying the Matches 33

Angle

Angle = 0

Column Column

Row

Row

Row

Column Column

Row

Angle

Angle = 0

model image

model image search image

search image

a)

b)

Figure 18: The position and orientation of a match: a) The center of the ROI acts as the default point of
reference; b) In the model image, the orientation is always 0.

Step 2: Determine the affine transformation

find_shape_model (SearchImage, ModelID, 0, rad(360), 0.7, 1, 0.5,

’interpolation’, 0, 0.9, RowCheck, ColumnCheck,

AngleCheck, Score)

if (|Score| = 1)

vector_angle_to_rigid (0, 0, 0, RowCheck, ColumnCheck, AngleCheck,

MovementOfObject)

After the call of the operator find_shape_model, the results are checked; if the matching failed, empty
tuples are returned in the parameters Score etc. For a successful match, the corresponding affine trans-
formation can be constructed with the operator vector_angle_to_rigid from the position and orien-
tation of the match (see section 4.2 on page 30). In the first 2 parameters, you pass the “relative” position
of the reference point, i.e., its distance to the default reference point (the center of gravity of the ROI, see
section 2.1.4 on page 12). By default, this relative position is (0,0); section 4.3.4 on page 36 shows the
values in the case of a modified reference point.

Step 3: Transform the XLD

affine_trans_contour_xld (ShapeModel, ModelAtNewPosition,

MovementOfObject)

dev_display (ModelAtNewPosition)

Now, you can apply the transformation to the XLD version of the model using the operator
affine_trans_contour_xld and display it; figure 2 on page 5 shows the result.

M
at

ch
in

g
R

es
ul

ts



34 Application Note on Shape-Based Matching

Figure 19: Displaying multiple matches; the used model is depicted in figure 12a on page 22 .

4.3.2 Dealing with Multiple Matches

If multiple instances of the object are searched and found, the parameters Row, Column, Angle, and
Score contain tuples. The HDevelop program hdevelop\multiple_objects.dev shows how to ac-
cess these results in a loop:

Step 1: Determine the affine transformation

find_shape_model (SearchImage, ModelID, 0, rad(360), 0.75, 0, 0.55,

’interpolation’, 0, 0.8, RowCheck, ColumnCheck,

AngleCheck, Score)

for j := 0 to |Score| - 1 by 1

vector_angle_to_rigid (0, 0, 0, RowCheck[j], ColumnCheck[j],

AngleCheck[j], MovementOfObject)

affine_trans_contour_xld (ShapeModel, ModelAtNewPosition,

The transformation corresponding to the movement of the match is determined as in the previous section;
the only difference is that the position of the match is extracted from the tuple via the loop variable.

Step 2: Use the transformation

affine_trans_pixel (MovementOfObject, -120, 0, RowArrowHead,

ColumnArrowHead)

disp_arrow (WindowHandle, RowCheck[j], ColumnCheck[j],

RowArrowHead, ColumnArrowHead, 2)

In this example, the transformation is also used to display an arrow that visualizes the orientation (see
figure 19). For this, the position of the arrow head is transformed using affine_trans_pixel with the
same transformation matrix as the XLD model.

Note that you must use the operator affine_trans_pixel and not affine_trans_point_2d,!
because the latter uses a different image coordinate system than affine_trans_pixel,
affine_trans_contour_xld, affine_trans_region, and affine_trans_image.



4.3.3 Dealing with Multiple Models 35

4.3.3 Dealing with Multiple Models

When searching for multiple models simultaneously as described in section 3.3 on page 24, it is useful
to store the information about the models, i.e., the XLD models, in tuples. The following example code
stems from the already partly described HDevelop program hdevelop\multiple_models.dev, which
uses the operator find_scaled_shape_models to search simultaneously for the rings and nuts depicted
in figure 15 on page 25.

Step 1: Access the XLD models

create_scaled_shape_model (ImageROIRing, 0, -rad(22.5), rad(45), 0, 0.8,

1.2, 0, ’none’, ’use_polarity’, 60, 10,

ModelIDRing)

get_shape_model_contours (ShapeModelRing, ModelIDRing, 1)

create_scaled_shape_model (ImageROINut, 0, -rad(30), rad(60), 0, 0.6, 1.4,

0, ’none’, ’use_polarity’, 60, 10, ModelIDNut)

get_shape_model_contours (ShapeModelNut, ModelIDNut, 1)

As in the previous sections, the XLD contours corresponding to the two models are accessed with the
operator get_shape_model_contours.

Step 2: Save the information about the models in tuples

NumContoursRing := |ShapeModelRing|

NumContoursNut := |ShapeModelNut|

ShapeModels := [ShapeModelRing,ShapeModelNut]

StartContoursInTuple := [1, NumContoursRing+1]

NumContoursInTuple := [NumContoursRing, NumContoursNut]

To facilitate the access to the shape models later, the XLD contours are saved in tuples in analogy to the
model IDs (see section 3.3 on page 24). However, when concatenating XLD contours with the operator
concat_obj, one must keep in mind that XLD objects are already tuples as they may consist of multiple
contours! To access the contours belonging to a certain model, you therefore need the number of contours
of a model and the starting index in the concatenated tuple. The former is determined using the operator
count_obj; the contours of the ring start with the index 1, the contours of the nut with the index 1 plus
the number of contours of the ring.

M
at

ch
in

g
R

es
ul

ts



36 Application Note on Shape-Based Matching

Step 3: Access the found instances

find_scaled_shape_models (SearchImageReduced, ModelIDs, [-rad(22.5),

-rad(30)], [rad(45), rad(60)], [0.8, 0.6], [1.2,

1.4], 0.7, 0, 0, ’interpolation’, 0, 0.9,

RowCheck, ColumnCheck, AngleCheck, ScaleCheck,

Score, ModelIndex)

for i := 0 to |Score| - 1 by 1

Model := ModelIndex[i]

vector_angle_to_rigid (0, 0, 0, RowCheck[i], ColumnCheck[i],

AngleCheck[i], MovementOfObject)

hom_mat2d_scale (MovementOfObject, ScaleCheck[i], ScaleCheck[i],

RowCheck[i], ColumnCheck[i], MoveAndScalingOfObject)

copy_obj (ShapeModels, ShapeModel, StartContoursInTuple[Model],

NumContoursInTuple[Model])

affine_trans_contour_xld (ShapeModel, ModelAtNewPosition,

MoveAndScalingOfObject)

dev_display (ModelAtNewPosition)

endfor

As described in section 4.3.2 on page 34, in case of multiple matches the output parameters Row etc.
contain tuples of values, which are typically accessed in a loop, using the loop variable as the index into
the tuples. When searching for multiple models, a second index is involved: The output parameter Model
indicates to which model a match belongs by storing the index of the corresponding model ID in the
tuple of IDs specified in the parameter ModelIDs. This may sound confusing, but can be realized in an
elegant way in the code: For each found instance, the model ID index is used to select the corresponding
information from the tuples created above.

As already noted, the XLD representing the model can consist of multiple contours; therefore, you cannot
access them directly using the operator select_obj. Instead, the contours belonging to the model are
selected via the operator copy_obj, specifying the start index of the model in the concatenated tuple
and the number of contours as parameters. Note that copy_obj does not copy the contours, but only the
corresponding HALCON objects, which can be thought of as references to the contours.

4.3.4 Aligning Other ROIs

The results of the matching can be used to align ROIs for other image processing steps. i.e., to position
them relative to the image part acting as the model. This method is very useful, e.g., if the object to be
inspected is allowed to move or if multiple instances of the object are to be inspected at once as in the
example application described below.

In the example application hdevelop\align_measurements.dev, the task is to inspect razor blades
by measuring the width and the distance of their “teeth”. Figure 20a shows the model ROI, figure 20b
the corresponding model region.

The inspection task is realized with the following steps:



4.3.4 Aligning Other ROIs 37

d)

c)a) b)

Figure 20: Aligning ROIs for inspecting parts of a razor: a) ROIs for the model; b) the model; c) measuring
ROIs; d) inspection results with zoomed faults.

Step 1: Position the measurement ROIs for the model blade

Rect1Row := 244

Rect1Col := 73

DistColRect1Rect2 := 17

Rect2Row := Rect1Row

Rect2Col := Rect1Col + DistColRect1Rect2

RectPhi := rad(90)

RectLength1 := 122

RectLength2 := 2

First, two rectangular measurement ROIs are placed over the teeth of the razor blade acting as the model
as shown in figure 20c. To be able to transform them later along with the XLD model, they are moved
to lie on the XLD model, whose reference point is the origin of the image. Note that before moving the

M
at

ch
in

g
R

es
ul

ts



38 Application Note on Shape-Based Matching

regions the clipping must be switched off.

area_center (ModelROI, Area, CenterROIRow, CenterROIColumn)

get_system (’clip_region’, OriginalClipRegion)

set_system (’clip_region’, ’false’)

move_region (MeasureROI1, MeasureROI1Ref, - CenterROIRow,

- CenterROIColumn)

move_region (MeasureROI2, MeasureROI2Ref, - CenterROIRow,

- CenterROIColumn)

set_system (’clip_region’, OriginalClipRegion)

DistRect1CenterRow := Rect1Row - CenterROIRow

DistRect1CenterCol := Rect1Col - CenterROIColumn

DistRect2CenterRow := Rect2Row - CenterROIRow

DistRect2CenterCol := Rect2Col - CenterROIColumn

Step 2: Find all razor blades

find_shape_model (SearchImage, ModelID, 0, 0, 0.8, 0, 0.5, ’interpolation’,

0, 0.7, RowCheck, ColumnCheck, AngleCheck, Score)

Then, all instances of the model object are searched for in the image.

Step 3: Determine the affine transformation

for i := 0 to |Score|-1 by 1

vector_angle_to_rigid (0, 0, 0, RowCheck[i], ColumnCheck[i],

AngleCheck[i], MovementOfObject)

affine_trans_contour_xld (ShapeModel, ModelAtNewPosition,

MovementOfObject)

For each razor blade, the transformation representing its position and orientation is calculated.

Step 4: Create measurement objects at the corresponding positions

affine_trans_pixel (MovementOfObject, DistRect1CenterRow,

DistRect1CenterCol, Rect1RowCheck,

Rect1ColCheck)

affine_trans_pixel (MovementOfObject, DistRect2CenterRow,

DistRect2CenterCol, Rect2RowCheck,

Rect2ColCheck)

Now, the new positions of the measure ROIs are calculated using the operator affine_trans_pixel
with the moved ROI coordinates. As remarked in section 4.3.2 on page 34, you must use!
affine_trans_pixel and not affine_trans_point_2d. Then, the new measure objects are created.



4.3.5 Rectifying the Search Results 39

RectPhiCheck := RectPhi + AngleCheck[i]

gen_measure_rectangle2 (Rect1RowCheck, Rect1ColCheck,

RectPhiCheck, RectLength1, RectLength2,

Width, Height, ’bilinear’,

MeasureHandle1)

gen_measure_rectangle2 (Rect2RowCheck, Rect2ColCheck,

RectPhiCheck, RectLength1, RectLength2,

Width, Height, ’bilinear’,

MeasureHandle2)

In the example application, the individual razor blades are only translated but not rotated relative to the
model position. Instead of applying the full affine transformation to the measure ROIs and then creating
new measure objects, one can therefore use the operator translate_measure to translate the measure
objects themselves. The example program contains the corresponding code; you can switch between the
two methods by modifying a variable at the top of the program.

Step 5: Measure the width and the distance of the “teeth”

measure_pairs (SearchImage, MeasureHandle1, 2, 25, ’negative’,

’all’, RowEdge11, ColEdge11, Amp11, RowEdge21,

ColEdge21, Amp21, Width1, Distance1)

measure_pairs (SearchImage, MeasureHandle2, 2, 25, ’negative’,

’all’, RowEdge12, ColEdge12, Amp12, RowEdge22,

ColEdge22, Amp22, Width2, Distance2)

Now, the actual measurements are performed using the operator measure_pairs.

Step 6: Inspect the measurements

NumberTeeth1 := |Width1|

if (NumberTeeth1 < 37)

for j := 0 to NumberTeeth1 - 2 by 1

if (Distance1[j] > 4.0)

RowFault := round(0.5*(RowEdge11[j+1] + RowEdge21[j]))

ColFault := round(0.5*(ColEdge11[j+1] + ColEdge21[j]))

disp_rectangle2 (WindowHandle, RowFault, ColFault, 0,

4, 4)

Finally, the measurements are inspected. If a “tooth” is too short or missing completely, no edges are
extracted at this point resulting in an incorrect number of extracted edge pairs. In this case, the faulty
position can be determined by checking the distance of the teeth. Figure 20d shows the inspection results
for the example.

Please note that the example program is not able to display the fault if it occurs at the first or the last
tooth.

4.3.5 Rectifying the Search Results

In the previous section, the matching results were used to determine the so-called forward transforma-
tion, i.e., how objects are transformed from the model into the search image. Using this transformation,
ROIs specified in the model image can be positioned correctly in the search image.

M
at

ch
in

g
R

es
ul

ts



40 Application Note on Shape-Based Matching

You can also determine the inverse transformation which transforms objects from the search image back
into the model image. With this transformation, you can rectify the search image (or parts of it), i.e.,
transform it such that the matched object is positioned as it was in the model image. This method is
useful if the following image processing step is not invariant against rotation, e.g., OCR or the variation
model. Note that image rectification can also be useful before applying shape-based matching, e.g., if
the camera observes the scene under an oblique angle; see section 5.1 on page 45 for more information.

The inverse transformation can be determined and applied in a few steps, which are described below; in
the corresponding example application of the HDevelop program hdevelop\rectify_results.dev
the task is to extract the serial number on CD covers (see figure 21).

Step 1: Calculate the inverse transformation

vector_angle_to_rigid (CenterROIRow, CenterROIColumn, 0, RowCheck,

ColumnCheck, AngleCheck, MovementOfObject)

hom_mat2d_invert (MovementOfObject, InverseMovementOfObject)

You can invert a transformation easily using the operator hom_mat2d_invert. Note that in contrast to
the previous sections, the transformation is calculated based on the absolute coordinates of the reference
point, because here we want to transform the results such that they appear as in the model image.

Step 2: Rectify the search image

affine_trans_image (SearchImage, RectifiedSearchImage,

InverseMovementOfObject, ’constant’, ’false’)

Now, you can apply the inverse transformation to the search image using the operator
affine_trans_image. Figure 21d shows the resulting rectified image of a different CD; undefined
pixels are marked in grey.

Step 3: Extract the numbers

reduce_domain (RectifiedSearchImage, NumberROI,

RectifiedNumberROIImage)

threshold (RectifiedNumberROIImage, Numbers, 0, 128)

connection (Numbers, IndividualNumbers)

Now, the serial number is positioned correctly within the original ROI and can be extracted without
problems. Figure 21e shows the result, which could then, e.g., be used as the input for OCR.

Unfortunately, the operator affine_trans_image transforms the full image even if you restrict its
domain with the operator reduce_domain. In a time-critical application it may therefore be necessary
to crop the search image before transforming it. The corresponding steps are visualized in figure 22.

Step 1: Crop the search image

affine_trans_region (NumberROI, NumberROIAtNewPosition,

MovementOfObject, ’false’)

smallest_rectangle1 (NumberROIAtNewPosition, Row1, Column1, Row2,

Column2)

crop_rectangle1 (SearchImage, CroppedNumberROIImage, Row1, Column1,

Row2, Column2)

First, the smallest axis-parallel rectangle surrounding the transformed number ROI is computed using



4.3.5 Rectifying the Search Results 41

a)

c) d)

b)

e)

Figure 21: Rectifying the search results: a) ROIs for the model and for the number extraction; b) the model;
c) number ROI at matched position; d) rectified search image (only relevant part shown); e)
extracted numbers.

the operator smallest_rectangle1, and the search image is cropped to this part. Figure 22b shows
the resulting image overlaid on a grey rectangle to facilitate the comparison with the subsequent images.

M
at

ch
in

g
R

es
ul

ts



42 Application Note on Shape-Based Matching

Column1

translate(−Row1,−Column1)

Row1

c) d)b)

a)

Figure 22: Rectifying only part of the search image: a) smallest image part containing the ROI; b) cropped
search image; c) result of the rectification; d) rectified image reduced to the original number
ROI.

Step 2: Create an extended affine transformation

hom_mat2d_translate (MovementOfObject, - Row1, - Column1,

MoveAndCrop)

hom_mat2d_invert (MoveAndCrop, InverseMoveAndCrop)

In fact, the cropping can be interpreted as an additional affine transformation: a translation by the
negated coordinates of the upper left corner of the cropping rectangle (see figure 22a). We there-
fore “add” this transformation to the transformation describing the movement of the object using
the operator hom_mat2d_translate, and then invert this extended transformation with the operator
hom_mat2d_invert.



4.4 Using the Estimated Scale 43

Column

Row

model image search image

Column

Row

Scale = 0.5Scale = 1

Figure 23: The center of the ROI acts as the point of reference for the scaling.

Step 3: Transform the cropped image

affine_trans_image (CroppedNumberROIImage, RectifiedROIImage,

InverseMoveAndCrop, ’constant’, ’true’)

reduce_domain (RectifiedROIImage, NumberROI,

RectifiedNumberROIImage)

Using the inverted extended transformation, the cropped image can easily be rectified with the operator
affine_trans_image (figure 22c) and then be reduced to the original number ROI (figure 22d) in order
to extract the numbers.

4.4 Using the Estimated Scale

Similarly to the rotation (compare section 4.3 on page 32), the scaling is performed around the center
of the ROI – if you didn’t use set_shape_model_origin, that is. This is depicted in figure 23a at the
example of an ROI whose center does not coincide with the center of the IC.

The estimated scale, which is returned in the parameter Scale, can be used similarly to the po-
sition and orientation. However, there is no convenience operator like vector_angle_to_rigid
that creates an affine transformation including the scale; therefore, the scaling must be added sepa-
rately. How to achieve this is explained below; in the corresponding example HDevelop program hde-
velop\multiple_scales.dev, the task is to find nuts of varying sizes and to determine suitable points
for grasping them (see figure 24).

Step 1: Specify grasping points

RowUpperPoint := 284

ColUpperPoint := 278

RowLowerPoint := 362

ColLowerPoint := 278

In the example program, the grasping points are specified directly in the model image; they are marked
with arrows in figure 24c. To be able to transform them together with the XLD model, their coordinates
must be moved so that they lie on the XLD model:

M
at

ch
in

g
R

es
ul

ts



44 Application Note on Shape-Based Matching

a) b) c)

d)

Figure 24: Determining grasping points on nuts of varying sizes: a) ring-shaped ROI; b) model; c) grasping
points defined on the model nut; d) results of the matching.

area_center (ModelROI, Area, CenterROIRow, CenterROIColumn)

RowUpperPointRef := RowUpperPoint - CenterROIRow

ColUpperPointRef := ColUpperPoint - CenterROIColumn

RowLowerPointRef := RowLowerPoint - CenterROIRow

ColLowerPointRef := ColLowerPoint - CenterROIColumn

Step 2: Determine the complete transformation

find_scaled_shape_model (SearchImage, ModelID, -rad(30), rad(60), 0.6, 1.4,

0.9, 0, 0, ’interpolation’, 0, 0.8, RowCheck,

ColumnCheck, AngleCheck, ScaleCheck, Score)

for i := 0 to |Score| - 1 by 1

vector_angle_to_rigid (0, 0, 0, RowCheck[i], ColumnCheck[i],

AngleCheck[i], MovementOfObject)

hom_mat2d_scale (MovementOfObject, ScaleCheck[i], ScaleCheck[i],

RowCheck[i], ColumnCheck[i], MoveAndScalingOfObject)

affine_trans_contour_xld (ShapeModel, ModelAtNewPosition,

MoveAndScalingOfObject)

After the matching, first the translational and rotational part of the transformation is determined with the
operator vector_angle_to_rigid as in the previous sections. Then, the scaling is added using the
operator hom_mat2d_scale. Note that the position of the match is used as the point of reference; this
becomes necessary because the scaling is performed “after” the translation and rotation. The resulting,
complete transformation can be used as before to display the model at the position of the matches.



5 Miscellaneous 45

Step 3: Calculate the transformed grasping points

affine_trans_pixel (MoveAndScalingOfObject, RowUpperPointRef,

ColUpperPointRef, RowUpperPointCheck,

ColUpperPointCheck)

affine_trans_pixel (MoveAndScalingOfObject, RowLowerPointRef,

ColLowerPointRef, RowLowerPointCheck,

ColLowerPointCheck)

Of course, the affine transformation can also be applied to other points in the model image with the
operator affine_trans_pixel. In the example, this is used to calculate the position of the grasping
points for all nuts; they are marked with arrows in figure 24d.

As noted in section 4.3.2 on page 34, you must use affine_trans_pixel and not !
affine_trans_point_2d.

5 Miscellaneous

5.1 Adapting to a Changed Camera Orientation

As shown in the sections above, HALCON’s shape-based matching allows to localize objects even if their
position and orientation in the image or their scale changes. However, the shape-based matching fails
if the camera observes the scene under an oblique angle, i.e., if it is not pointed perpendicularly at the
plane in which the objects move, because an object then appears distorted due to perspective projection;
even worse, the distortion changes with the position and orientation of the object.

In such a case we recommend to rectify images before applying the matching. This is a three-step
process: First, you must calibrate the camera, i.e., determine its position and orientation and other
parameters, using the operator camera_calibration. Secondly, the calibration data is used to create a
mapping function via the operator gen_image_to_world_plane_map, which is then applied to images
with the operator map_image. For detailed information please refer to the Application Note on 3D
Machine Vision.

5.2 Reusing Models

If you want to reuse created models in other HALCON applications, all you need to do is to store the
relevant information in files and then read it again. The following example code stems from the HDevelop
program hdevelop\reuse_model.dev. First, a model is created:

create_scaled_shape_model (ImageROI, 0, -rad(30), rad(60), 0, 0.6, 1.4, 0,

’none’, ’use_polarity’, 60, 10, ModelID)

Then, the model is stored in a file using the operator write_shape_model. With the model, HALCON
automatically saves the XLD contour, the reference point, and the parameters that were used in the call
to create_shape_model.

M
is

ce
lla

ne
ou

s



46 Application Note on Shape-Based Matching

write_shape_model (ModelID, ModelFile)

In the example program, all shape models are cleared to represent the start of another application.

The model, the XLD contour, and the reference point are now read from the files using the
operator read_shape_model. Then, the XLD contours and the reference are accessed using
get_shape_model_contours and get_shape_model_origin, respectively, Furthermore, the param-
eters used to create the model are accessed with the operator get_shape_model_params:

read_shape_model (ModelFile, ReusedModelID)

get_shape_model_contours (ReusedShapeModel, ReusedModelID, 1)

get_shape_model_origin (ReusedModelID, ReusedRefPointRow,

ReusedRefPointCol)

get_shape_model_params (ReusedModelID, NumLevels, AngleStart, AngleExtent,

AngleStep, ScaleMin, ScaleMax, ScaleStep, Metric,

MinContrast)

Now, the model can be used as if it was created in the application itself:

find_scaled_shape_model (SearchImage, ReusedModelID, AngleStart,

AngleExtent, ScaleMin, ScaleMax, 0.9, 0, 0,

’interpolation’, 0, 0.8, RowCheck, ColumnCheck,

AngleCheck, ScaleCheck, Score)

for i := 0 to |Score| - 1 by 1

vector_angle_to_rigid (ReusedRefPointRow, ReusedRefPointCol, 0,

RowCheck[i], ColumnCheck[i], AngleCheck[i],

MovementOfObject)

hom_mat2d_scale (MovementOfObject, ScaleCheck[i], ScaleCheck[i],

RowCheck[i], ColumnCheck[i], MoveAndScalingOfObject)

affine_trans_contour_xld (ReusedShapeModel, ModelAtNewPosition,

MoveAndScalingOfObject)

dev_display (ModelAtNewPosition)

endfor


	1 Application Note on Shape-Based Matching
	1 A First Example
	2 Creating a Suitable Model
	2.1 A Closer Look at the Region of Interest
	2.1.1 How to Create a Region
	2.1.2 How to Combine and Mask Regions
	2.1.3 Using Image Processing to Create and Modify Regions
	Example 1: Determining the ROI Using Blob Analysis
	Example 2: Further Processing the Result of inspect_shape_model
	2.1.4 How the ROI Influences the Search

	2.2 Which Information is Stored in the Model?
	2.2.1 Which Pixels are Part of the Model?
	2.2.2 How Subsampling is Used to Speed Up the Search
	2.2.3 Allowing a Range of Orientation
	2.2.4 Allowing a Range of Scale
	2.2.5 Which Pixels are Compared with the Model?

	2.3 Synthetic Model Images

	3 Optimizing the Search Process
	3.1 Restricting the Search Space
	3.1.1 Searching in a Region of Interest
	3.1.2 Restricting the Range of Orientation and Scale
	3.1.3 Visibility
	3.1.4 Thoroughness vs. Speed

	3.2 Searching for Multiple Instances of the Object
	3.3 Searching for Multiple Models Simultaneously
	3.4 A Closer Look at the Accuracy
	3.5 How to Optimize the Matching Speed

	4 Using the Results of Matching
	4.1 Introducing Affine Transformations
	4.2 Creating and Applying Affine Transformations With HALCON
	4.3 Using the Estimated Position and Orientation
	4.3.1 Displaying the Matches
	4.3.2 Dealing with Multiple Matches
	4.3.3 Dealing with Multiple Models
	4.3.4 Aligning Other ROIs
	4.3.5 Rectifying the Search Results

	4.4 Using the Estimated Scale

	5 Miscellaneous
	5.1 Adapting to a Changed Camera Orientation
	5.2 Reusing Models



