HALCON Application Note

How to Use Shape-Based Matching to
Find and Localize Objects

Provided Functionality

> Finding objects starting based on a single model image

> Localizing objects with subpixel accuracy

Typical Applications

> Object recognition and localization
> Intermediate machine vision steps, e.g., alignment of ROIs
> Completeness check

> Parts inspection

Involved Operators

create_shape model, create_scaled_shape_model
inspect_shape model, get_shape model_params
set_shape_model_origin, get_shape_model_origin
find_shape_model, find_shape_models
find_scaled_shape_model, find_scaled_shape_models
write_shape_model, read_shape_model
clear_shape_model, clear_all_shape_models

EC
Copyright(© 2002-2005 by MVTec Software GmbH, Minchen, Germanm,,m

Overview

HALCON's operators foshape-based matchirepable you to find and localize objects based
on a single model image, i.e., froomaodel This method is robust to noise, clutter, occlusion,
and arbitrary non-linear illumination changes. Objectslacalized with subpixel accuracy in
2D, i.e., found even if they are rotated or scaled.

The process of shape-based matching gsstion 1for a quick overview) is divided into two
distinct phases: In a first phase, you specify and create dtemThis model can be stored in
a file to be reused in different applications. Detailed infation about this phase can be found
in section 2 In the second phase, the model is used to find and localizéjactoSection 3
describes how to optimize the outcome of this phase by céisigithe search space.

Shape-based matching is a powerful tool for various machisien tasks, ranging from inter-
mediate image processing, e.g., to place ROIs automati@atb align them to a moving part,
to complex tasks, e.g., recognize and localize a part inatnabion application. Examples can
be found insection 4

Unless specified otherwise, the example programs can bedfonnthe subdirectory
shape_matching of the directory/,HALCONROOT%\examples\application guide.

All rights reserved. No part of this publication may be reqrced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, medahnphotocopying, recording, or otherwise,
without prior written permission of the publisher.

Edition 1 June 2002 (HALCON 6.1)
Edition 1la May 2003 (HALCON 6.1.2)

Microsoft, Windows, Windows NT, Windows 2000, and WindowB Xre either trademarks or registered
trademarks of Microsoft Corporation.

All other nationally and internationally recognized tratirks and tradenames are hereby recognized.

More information about HALCON can be found at:

http://www.mvtec.com/halcon/

Contents

1 AFirst Example 4

2 Creating a Suitable Model 6
2.1 ACIloserLook atthe Regionofinterest. 6
2.2 Which Information is Stored inthe Model? 12
2.3 SyntheticModellmages. e 18

3 Optimizing the Search Process 20
3.1 Restrictingthe Search Space., 20
3.2 Searching for Multiple Instances of the Object 23
3.3 Searching for Multiple Models Simultaneously 24
3.4 ACloserLookatthe Accuracy 26
3.5 Howto Optimize the MatchingSpeed 28

4 Using the Results of Matching 30
4.1 Introducing Affine Transformations. 30
4.2 Creating and Applying Affine Transformations With HALGIO 30
4.3 Using the Estimated Position and Orientation 32
4.4 Usingthe EstimatedScale, 42

5 Miscellaneous 44
5.1 Adaptingto a Changed Camera Orientation 44
5.2 ReusingModels 45

HALCON 6.1.4

4 Application Note on Shape-Based Matching
1 A First Example

In this section we give a quick overview of the matching pesceTo follow the example ac-
tively, start the HDevelop prograidevelop\first_example shape matching.dev, which
locates the print on an IC; the steps described below st thie initialization of the applica-
tion (pres once to reach this point).

Step 1: Select the object in the model image

Rowl := 188
Columnl := 182
Row2 := 298

Column2 := 412
gen_rectanglel (ROI, Rowl, Columnl, Row2, Column2)
reduce_domain (ModelImage, ROI, ImageROI)

After grabbing the so-callechodel imagei.e., a representative image of the object to find,
the first task is to create a region containing the objecthéexample program, a rectangu-
lar region is created using the operagenh_rectanglel; alternatively, you can draw the region
interactively using, e.gdraw_rectanglel or use a region that results from a previous segmen-
tation process. Then, an image containing just the seleetgdn is created using the operator
reduce_domain. The resultis shown ifigure 1

Step 2. Create the model

inspect_shape_model (ImageROI, ShapeModelImages, ShapeModelRegions, 8, 30)
create_shape_model (ImageROI, NumLevels, O, rad(360), O, ’none’,
’use_polarity’, 30, 10, ModellID)

With the operatokreate_shape_model, the so-callednodelis created, i.e., the internal data
structure describing the searched object. Before this,egemmend to apply the operator
inspect_shape model, which helps you to find suitable parameters for the modedtme.
inspect_shape model shows the effect of two parameters: thember of pyramid levelsn
which the model is created, and the minimgontrastthat object points must have to be in-
cluded in the model. As a result, the operataspect_shape model returns the model points

i¥.)
\ -
l\. \

:
.Lcasu‘tmmeﬂ
JARAN 2@!

@

Figure 1. @ specifying the object; @ the internal model (4 pyramid levels).

HALCON Application Guide, 2005-02-01

1 A First Example 5

Figure 2: Finding the object in other images.

on the selected pyramid levels as showrfigure 1, thus, you can check whether the model
contains the relevant information to describe the objeattafest.

When actually creating the model with the operatbeate_shape model, you can specify
additional parameters besid@siLevels andContrast: First of all, you can restrict the range
of angles the object can assume (parametepieStart and AngleExtent) and the angle
steps at which the model is creatadgleStep). With the help of the parameteptimization
you can reduce the number of model points; this is usefulerctise of very large models. The
parameteMetric lets you specify whether thaolarity of the model points must be observed.
Finally, you can specify the minimum contrast object pomtsst have in theearch image$o

be compared with the modelinContrast). The creation of the model is described in detalil
in section 2

As a result, the operatarreate_shape model returns ahandlefor the newly created model
(ModelID), which can then be used to specify the model, e.g., in callshe operator
find _shape model. Note that if you use HALCON’s COM or C++ interface and cak thper-
ator via the classésShapeModelX or HShapeModel, no handle is returned because the instance
of the class itself acts as your handle.

If not only the orientation but also the scale of the seardfigect is allowed to vary, you must
use the operatareate_scaled_shape model to create the model; then, you can describe the
allowed range of scaling with three parameters similar éoréimge of angles.

Step 3: Find the object again

for i := 1 to 20 by 1
grab_image (SearchImage, FGHandle)
find_shape_model (SearchImage, ModelID, O, rad(360), 0.8, 1, 0.5,
’interpolation’, 0, 0.9, RowCheck, ColumnCheck,
AngleCheck, Score)
endfor

To find the object again in a&earch image all you need to do is call the operator
find shape model; figure 2 shows the result for one of the example images. Besides the

HALCON 6.1.4

6 Application Note on Shape-Based Matching

already mentionetlodelID, find shape model provides further parameters to optimize the
search process: The parametgnigleStart, AngleExtent, andNumLevels, which you al-
ready specified when creating the model, allow you to use masteictive values in the search
process; by using the valuefor NumLevels, the value specified when creating the model is
used. With the paramet#inScore you can specify how many of the model points must be
found; a value oD .5 means that half of the model must be found. Furthermore, gawspecify
how many instances of the object are expected in the imagel§tches) and how much two
instances of the object may overlap in the imagexQverlap). To compute the position of the
found object with subpixel accuracy the parameig&sPixel should be set to a value different
from none’. Finally, the parametetreediness describes the used search heuristics, rang-
ing from “safe but slow” (valu®) to “fast but unsafe” (value). How to optimize the search
process is described in detailsection 3

The operatorfind_shape model returns the position and orientation of the found object in-
stances in the parametetsw, Column, andAngle, and their corespondingcore, i.e., how
much of the model was found.

If you use the operatorfind scaled shape model (after creating the model using
create_scaled shape model), the scale of the found object is returr@chle.

2 Creating a Suitable Model

A prerequisite for a successful matching process is, ofsmua suitable model for the object
you want to find. A model is suitable if it describes thignificantparts of the object, i.e.,
those parts that characterize it and allow to discrimirtatkearly from other objects or from the
background. On the other hand, the model should not conlatite i.e., points not belonging
to the object (see, e.digure 4.

2.1 A Closer Look at the Region of Interest

When creating the model, the first step is to seleeggon of interes{ROI), i.e., the part of the
image which serves as the model. In HALCONggiondefines an area in an image or, more
generally, a set of points. A region can have an arbitrarpshiés points do not even need to
be connected. Thus, the region of the model can have anagbginape as well.

The sections below describe how to create simple and morgleamegions. The following
code fragment shows the typical next steps after creatirRCin

reduce_domain (ModelImage, ROI, ImageROI)
create_shape_model (ImageROI, O, O, rad(360), O, ’none’, ’use_polarity’,
30, 10, ModelID)

Note that the region of interest used when creating a shapkelnefluences the matching
results: Its center of gravity is used as th&rence poinbf the model (sesection 4for more
information).

HALCON Application Guide, 2005-02-01

2.1.1 How to Create a Region

. §f§§§§§§ﬁmm
Q
L

W

N

7

i

N

Ui

—

jﬁ
7Z

Figure 3: Creating an ROI from two regions.

2.1.1 How to Create a Region

HALCON offers multiple operators to create regions, raggifrom standard shapes
like rectangles den rectangle2) or ellipses gen ellipse) to free-form shapes (e.g.,
gen_region polygon_filled). These operators can be found in the HDevelop menu
Operators > Regions > Creation.

However, to use these operators you need the “parametetbecthape you want to create,
e.g., the position, size and, orientation of a rectanglehergosition and radius of a circle.
Therefore, they are typically combined with the operatorthe HDevelop menQperators >
Graphics > Drawing, which let you draw a shape on the displayed image and thamréie

shape parameters:

draw_rectanglel (WindowHandle, ROIRowl, ROIColumnl, ROIRow2, ROIColumn2)
gen_rectanglel (ROI, ROIRowl, ROIColumnl, ROIRow2, ROIColumn2)

2.1.2 How to Combine and Mask Regions

You can create more complex regions by adding or subtrastangdard regions using the op-
eratorsunion2 anddifference. For example, to create an ROI containing the square and the
cross infigure 3 the following code fragment was used:

draw_rectanglel (WindowHandle, ROI1Rowl, ROI1Columnl, ROI1Row2,
ROI1Column2)

gen_rectanglel (ROI1, ROI1Rowl, ROI1Columnl, ROI1Row2, ROI1Column2)

draw_rectanglel (WindowHandle, ROI2Rowl, ROI2Columnl, ROI2Row2,
ROI2Column2)

gen_rectanglel (ROI2, ROI2Rowl, ROI2Columnl, ROI2Row2, ROI2Column2)

union2 (ROI1, ROI2, ROI)

Similarly, you can subtract regions using the operatdiference. This method is useful to
“mask” those parts of a region containing clutter, i.e.,Hagpntrast points that are not part of
the object. Irfigure 4 e.g., the task is to find the three capacitors. When usinggdescircular
ROI, the created model contains many clutter points, whrehcaused by reflections on the

HALCON 6.1.4

8 Application Note on Shape-Based Matching

model for ring-shaped ROI

Figure 4: Masking the part of a region containing clutter.

metallic surface. Thus, the other two capacitors are natdo'he solution to this problem is
to use a ring-shaped ROI, which can be created by the follplimes of code:

draw_circle (WindowHandle, ROI1Row, ROI1Column, ROI1Radius)
gen_circle (ROI1, ROI1Row, ROI1Column, ROI1Radius)
gen_circle (ROI2, ROI1Row, ROI1Column, ROI1Radius-8)
difference (ROI1, ROI2, ROI)

Note that the ROI should not be too “thin”, otherwise it vdn@s at higher pyramid levels! As a
rule of thumb, an ROI should m#VvmEevels—1 pixels wide; in the example, the width of 8 pixels
therefore allows to use 4 pyramid levels.

For this task even better results can be obtaineddigg a synthetic model image This is
described irsection 2.3

HALCON Application Guide, 2005-02-01

2.1.3 Using Image Processing to Create and Modify Regions 9

Figure 5: Using image processing to create an ROI: a) extract bright regions; b) select the card;
¢) the logo forms the ROI; d) result of the matching.

2.1.3 Using Image Processing to Create and Modify Regions

In the previous sections, regions were created expliciiglgpecifying their shape parameters.
Especially for complex ROIs this method can be inconvenard time-consuming. In the
following, we therefore show you how to extract and modifgioms using image processing
operators.

Example 1: Determining the ROI Using Blob Analysis

To follow the example actively, start the HDevelop program
hdevelop\create roi via vision.dev, which locates the MVTec logo on a pendu-
lum (seefigure 5; we start after the initialization of the application (p once). The
main idea is to “zoom in” on the desired region in multiplepsteFirst, find the bright region
corresponding to the card, then extract the dark charagoteits

Step 1: Extract the bright regions

threshold (ModelImage, BrightRegions, 200, 255)
connection (BrightRegions, ConnectedRegions)
fill_up (ConnectedRegions, FilledRegions)

First, all bright regions are extracted using a simple tmo&ting operationthreshold); the
operatorconnection forms connected components. The extracted regions ardfitleehup

HALCON 6.1.4

10 Application Note on Shape-Based Matching

via £i11 up; thus, the region corresponding to the card also encompaissalark characters
(seefigure 53.

Step 2: Select the region of the card
select_shape (FilledRegions, Card, ’area’, ’and’, 1800, 1900)

The region corresponding to the card can be selected froiisthad regions with the operator
select_shape. In HDevelop, you can determine suitable features and sals@ng the dialog
Visualization > Region Info; just click into a region, and the dialog immediately digla
its feature valuegrigure 5bshows the result of the operator.

Step 3: Use the card as an ROI for the next steps
reduce_domain (ModelImage, Card, ImageCard)

Now, we can restrict the next image processing steps to therref the card using the operator
reduce_domain. This iterative focusing has an important advantage: Imés&ricted region of
the card, the logo characters are much easier to extractritihe full image.

Step 4: Extract the logo

threshold (ImageCard, DarkRegions, 0, 230)

connection (DarkRegions, ConnectedRegions)

select_shape (ConnectedRegions, Characters, ’area’, ’and’, 150, 450)
unionl (Characters, CharacterRegion)

The logo characters are extracted similarly to the cartfis®a last step, the separate character
regions are combined using the operaiotoni.

Step 5: Enlarge the region using morphology

dilation_circle (CharacterRegion, ROI, 1.5)

reduce_domain (ModelImage, ROI, ImageROI)

create_shape_model (ImageROI, O, O, rad(360), O, ’none’, ’use_polarity’,
30, 10, ModelID)

Finally, the region corresponding to the logo is enlargedhdly using the operator
dilation_circle. Figure 5cshows the resulting ROI, which is then used to create theeshap
model.

Example 2: Further Processing the Result of inspect _shape _model

You can also combine the interactive ROI specification wittage processing. A useful
method in the presence of clutter in the model image is toteradirst model region inter-
actively and then process this region to obtain an improvéd. Rigure 6shows an exam-
ple; the task is to locate the arrows. To follow the examplevely, start the HDevelop pro-
gramhdevelop\process_shape model.dev; we start after the initialization of the application

(pres once).
Step 1. Select the arrow

gen_rectanglel (ROI, 361, 131, 406, 171)

First, an initial ROl is created around the arrow, withoyirtg to exclude clutter (sefiggure 63.

HALCON Application Guide, 2005-02-01

2.1.3 Using Image Processing to Create and Modify Regions 11

a)
model for model for model for
Contrast = 30 Contrast = 90 Contrast = 134
b) _ ~
- ~ - F
- 1
=]
- L
processed region final ROI final model

- *a
/-.

d)

Figure 6: Processing the result of inspect_shape model: a) interactive ROI; b) models for dif-
ferent values of Contrast; c) processed model region and corresponding ROI and
model; d) result of the search.

Step 2. Create a first model region

reduce_domain (ModelImage, ROI, ImageROI)
inspect_shape_model (ImageROI, ShapeModellImage, ShapeModelRegion, 1, 30)

Figure 6bshows the shape model regions that would be created forafitfealues of the pa-
rameterContrast. AS you can see, you cannot remove the clutter without losinagacteristic
points of the arrow itself.

Step 3: Process the model region

f£i1l_up (ShapeModelRegion, FilledModelRegion)
opening_circle (FilledModelRegion, ROI, 3.5)

You can solve this problem by exploiting the fact that therap® inspect_shape model
returns the shape model region; thus, you can process atik@ther region. The main idea to

HALCON 6.1.4

12 Application Note on Shape-Based Matching

get rid of the clutter is to use morphological operatpeéning circle, which eliminates small
regions. Before this, the operatot11l_up must be called to fill the inner part of the arrow,
because only the boundary points are part of the (originajehregion.Figure 6¢cshows the
resulting region.

Step 4. Create the final model

reduce_domain (ModelImage, ROI, ImageROI)
create_shape_model (ImageROI, 3, 0, rad(360), O, ’none’, ’use_polarity’,
30, 10, ModelID)

The processed region is then used to create the mfiglete 6¢cshows the corresponding ROI
and the final model region. Now, all arrows are located sisfaby.

2.1.4 How the ROI Influences the Search

Note that the ROI used when creating the model also influetheeeesults of the subsequent
matching: The center point of the ROI acts as the so-ca@ltedt of referencef the model for
the estimated position, rotation, and scale. You can gunerydference point using the opera-
tor get_shape model origin and modify it usingset_shape model origin; please refer to
sections 3.4nd4.3for additional information.

The point of reference also influences the search itself: Bjeat is only found if the point
of reference lies within the image, or more exactly, withite lomain of the image (see
alsosection 3.1.1 Please note that this test is always performed for ther@igoint of
reference, i.e., the center point of the ROI, even if you rhedithe reference point using
set_shape_model_origin.

2.2 Which Information is Stored in the Model?

As the nameshape-based pattern matchisgggests, objects are represented and recognized by
their shape There exist multiple ways to determine or describe the slwd@n object. Here,

the shape is extracted by selecting all those points wbostastexceeds a certain threshold,;
typically, the points correspond to the contours of the cibjsee, e.gfigure 1). Section 2.2.1
takes a closer look at the corresponding parameters.

To speed up the matching process, a so-caftedje pyramids created, consisting of the origi-
nal, full-sized image and a set of downsampled images. Tlkem®then created and searched
on the different pyramid levels (ssection 2.2.2or details).

If the object is allowed to appear rotated or scaled, theespwnding information is used al-
ready when creating the model. This also speeds up the mgtphocess, at the cost of higher
memory requirements for the created mod@action 2.2.&ndsection 2.2.4lescribe the corre-
sponding parameters.

In the following, all parameters belong to the operatosate shape model if not stated oth-
erwise.

HALCON Application Guide, 2005-02-01

2.2.1 Which Pixels are Part of the Model? 13

a)

b)

Figure 7: Selecting significant pixels via Contrast: a) complete object but with clutter; b) no
clutter but incomplete object; c) hysteresis threshold; d) minimum contour size.

2.2.1 Which Pixels are Part of the Model?

For the model those pixels are selected whasatrast i.e., gray value difference to
neighboring pixels, exceeds a threshold specified by thanpaterContrast when calling
create_shape model. In order to obtain a suitable model the contrast should lose in
such a way that theignificantpixels of the object are included, i.e., those pixels thatrabter-
ize it and allow to discriminate it clearly from other objectr from the background. Obviously,
the model should not contain clutter, i.e., pixels that dbb@bong to the object.

In some cases it is impossible to find a single valueCtartrast that removes the clutter but
not also parts of the objedtigure 7shows an example; the task is to create a model for the outer
rim of a drill-hole: If the complete rim is selected, the mbdlso contains clutterfigure 73; if

the clutter is removed, parts of the rim are missiinguie 7b.

To solve such problems, the parametetitrast provides two additional methods: hysteresis
thresholding and selection of contour parts based on theer sBoth methods are used by
specifying atuple of values forContrast instead of a single value.

Hysteresis thresholdin@ee also the operataysteresis_threshold) uses two thresholds, a
lower and an upper threshold. For the model, first pixels laae a contrast higher than the
upper threshold are selected; then, pixels that have aastritigher than the lower threshold
and that are connected to a high-contrast pixel, eithectlrer via another pixel with contrast
above the lower threshold, are added. This method enabletoyselect contour parts whose
contrast varies from pixel to pixel. Returning to the exaenpl the drill-hole: As you can see
in figure 7¢ with a hysteresis threshold you can create a model for thgptie rim without
clutter. The following line of code shows how to specify titthresholds in a tuple:

inspect_shape_model (ImageROI, ModelImages, ModelRegions, 1, [26,52])

HALCON 6.1.4

14 Application Note on Shape-Based Matching

The second method to remove clutter is to specify a minimam sie., number of pixels, for the
contour component$sigure 7dshows the result for the example task. The minimum size must
be specified in the third element of the tuple; if you don’t Wanuse a hysteresis threshold, set
the first two elements to the same value:

inspect_shape_model (ImageROI, ModelImages, ModelRegions, 1, [26,26,12])

Alternative methods to remove clutter are to modify the R&described isection 2.1or create
a synthetic model (sesection 2.3.

2.2.2 How Subsampling is Used to Speed Up the Search

To speed up the matching process, a so-catteae pyramids created, both for the model
image and for the search images. The pyramid consists ofrip@al, full-sized image and a

set of downsampled images. For example, if the the origmalge (first pyramid level) is of

the size 600x400, the second level image is of the size 3@)xAeé third level 150x100, and

so on. The object is then searched first on the highest pyriawvedl i.e., in the smallest image.
The results of this fast search are then used to limit theekaaithe next pyramid image, whose
results are used on the next lower level until the lowestllsveeached. Using this iterative

method, the search is both fast and accur&igure 8depicts 4 levels of an example image
pyramid together with the corresponding model regions.

You can specify how many pyramid levels are used via the pet@mfumnLevels. We recom-
mend to choose the highest pyramid level at which the modehaas at least 10-15 pixels and
in which the shape of the model still resembles the shapeeobHject. You can inspect the
model image pyramid using the operatarspect_shape model, €.g., as shown in the HDe-
velop progranhdevelop\first_example_shape matching.dev:

inspect_shape_model (ImageROI, ShapeModelImages, ShapeModelRegions, 8, 30)
area_center (ShapeModelRegions, AreaModelRegions, RowModelRegions,
ColumnModelRegions)

HeightPyramid := |ShapeModelRegions |
for i := 1 to HeightPyramid by 1

if (AreaModelRegions[i-1] >= 15)

NumLevels := i

endif
endfor
create_shape_model (ImageROI, NumLevels, O, rad(360), O, ’none’,

’use_polarity’, 30, 10, ModellID)

After the call to the operator, the model regions on the setepyramid levels are displayed in
HDevelop’s Graphics Window; you can have a closer look amtlising the online zooming
(menu entryisualization > Online Zooming). The code lines following the operator call
loop through the pyramid and determine the highest level biclnthe model contains at least
15 points. This value is then used in the call to the operateste_shape model.

A much easier method is tet HALCON select a suitable value itselby specifying the valué
for NumLevels. You can then query the used value via the opergiorshape model params.

The operatorinspect_shape model returns the pyramid images in form of an image tu-
ple (array); the individual images can be accessed like tbdetregions with the operator
select_obj. Please note thatbject tuples start with the index 1, whereas control parame

HALCON Application Guide, 2005-02-01

2.2.2 How Subsampling is Used to Speed Up the Search 15

EE!H!!IHIIIIH

;ilhiim“idi Z_)

i,

iy b
R

Saplve’

'.LC@GG@NML%%
JARAN 20CB3

Saplve SaRD R AR —

LC3EE4NML=10 Lg@m@@d’mwgg:n e b
JARAN 2CBY JoRFen 203 Ly ol

Figure 8: The image and the model region at four pyramid levels (original size and zoomed to
equal size).

ter tuples start with the index O!

You can enforce a further reduction of model points via theapeeterOptimization. This

HALCON 6.1.4

16 Application Note on Shape-Based Matching

may be useful to speed up the matching in the case of pantigldage models. Please note
that regardless of your selection all points passing thérasicriterion are displayed, i.e., you
cannot check which points are part of the model.

2.2.3 Allowing a Range of Orientation

If the object’s rotation may vary in the search images you specify the allowed range in
the parametekngleExtent and the starting angle of this range in the paramiigileStart
(unit: rad). Note that the range of rotation is defined re&ato the model image, i.e., a starting
angle ofo corresponds to the orientation the object has in the modey@nTherefore, to allow
rotations up to +/-5 e.g., you should set the starting angle-tad (5) and the angle extent to
rad(10).

We recommend to limit the allowed range of rotation as mucpassible in order to speed up
the search process and to minimize the required memory. tRateyou can further limit the
allowed range when calling the operafdmd _shape model (seesection 3.1.2 If you want to
reuse a model for different tasks requiring a different mofangles and if memory is not an
issue, you can therefore use a large range when creatingdtielmnd a smaller range for the
search.

If the object is (almost) symmetric you should limit the alled range. Otherwise, the search
process will find multiple, almost equally good matches angame object at different angles;
which match (at which angle) is returned as the best canftirer§ump” from image to image.
The suitable range of rotation depends on the symmetry: Emss-shaped or square object the
allowed extent must be less thar’9fbr a rectangular object less than 188nd for a circular
object 0.

To speed up the matching process, the model is precomputetiffierent angles within the
allowed range, at steps specified with the paramgtgileStep. If you select the valu®,
HALCON automatically chooses an optimal step sizg to obtain the highest possible accu-
racy by determining the smallest rotation that is still disgble in the image. The underlying
algorithm is explained ifigure 9 The rotated version of the cross-shaped object is clessty d
cernible from the original if the point that lies farthegtrin the center of the object is moved by
at least 2 pixels. Therefore, the corresponding angleis calculated as follows:

d? 2
P=P+0PF-2-1-1-cos¢p = qﬁopt:arccos(l—ZlQ)zarccos(l—l—z)

with [being the maximum distance between the center and the dipecidary and! = 2
pixels.

I~
\d
o) \

Figure 9: Determining the minimum angle step size from the extent of the model.

HALCON Application Guide, 2005-02-01

2.2.4 Allowing a Range of Scale 17

The automatically determined angle step sizg is suitable for most applications; therefore,
we recommend to select the value.QYou can query the used value after the creation via the
operatorget_shape model_params. By selecting a higher value you can speed up the search
process, however, at the cost of a decreased accuracy dftthated orientation. Note that for
very high values the matching may fail altogether!

The value chosen faimgleStep should not deviate too much from the optimal valgéggt <
» < 3¢.p,). Note that choosing a very small step size does not resalhimcreased angle
accuracy!

2.2.4 Allowing a Range of Scale

Similarly to the range of orientation, you can specify anwakd range of scale with the param-
etersScaleMin, ScaleMax, andScaleStep of the operatorreate_scaled shape model.

Again, we recommend to limit the allowed range of scale asmascpossible in order to speed
up the search process and to minimize the required memotg. tNat you can further limit the
allowed range when calling the operafdmd _scaled_shape model (Seesection 3.1.p

Note that if you are searching for the object on a large rarigeaes you shouldreate the &2
model based on a large scalbecause HALCON cannot “guess” model points when precom-
puting model instances at scales larger than the original @n the other handiumLevels
should be chosen such that the highest level contains ermmaadhl points also for the smallest
scale.

If you select the valu® for the parameteBcaleStep, HALCON automatically chooses a
suitable step size to obtain the highest possible accurgayetermining the smallest scale
change that is still discernible in the image. Similarly he tangle step size (sdéigure 9, a
scaled object is clearly discernible from the original & fhoint that lies farthest from the center
of the object is moved by at least 2 pixels. Therefore, theesponding scale chandes,,; is

calculated as follows: J 5
AS = 7 = Asopt = 7

with [being the maximum distance between the center and the dipectdary and! = 2
pixels.

The automatically determined scale step size is suitablenfust applications; thereforaye <&
recommend to select the value .0 You can query the used value after the creation via the
operatorget_shape model params. By selecting a higher value you can speed up the search
process, however, at the cost of a decreased accuracy dfttheted scale. Note that for very
high values the matching may fail altogether!

The value chosen fatcaleStep should not deviate too much from the optimal val@Aéopt <
As < 3As,,). Note that choosing a very small step size does not resalt imcreased scale
accuracy!

2.2.5 Which Pixels are Compared with the Model?

For efficiency reasons the model contains information thiéénces the search process: With
the parameteMinContrast you can specify which contrast a point in a search image ntust a

HALCON 6.1.4

18 Application Note on Shape-Based Matching

least have in order to be compared with the model. The maionfubés parameter is to exclude
noise, i.e., gray value fluctuations, from the matching pssc You can determine the noise by
examining the gray values with the HDevelop dialtigualization > Pixel Info;then, set
the minimum contrast to a value larger than the noise.

The parameteletric lets you specify whether theolarity, i.e., the direction of the contrast
must be observed. If you choose the valuee_polarity’ the polarity is observed, i.e., the
points in the search image must show the same direction afdh&ast as the corresponding
points in the model. If, for example, the model is a brighteatbjon a dark background, the
object is found in the search images only if it is also brigiien the background.

You can choose to ignore the polarity globally by selectingne t value
’ignore_global polarity’. In this mode, an object is recognized also if the direction
of its contrast reverses, e.g., if your object can appedn bsta dark shape on a light back-
ground and vice versa. This flexibility, however, is obtaira the cost of a slightly lower
recognition speed.

If you select the value ignore_local polarity’, the object is found even if the contrast
changes locally. This mode can be useful, e.g., if the olgesists of a part with a medium
gray value, within which either darker of brighter sub-altgelie. Please note however, that
the recognition speed may decrease dramatically in thissmespecially if you allowed a large
range of rotation (segection 2.2.3

2.3 Synthetic Model Images

Depending on the application it may be difficult to create itafle model because there is no
“good” model image containing a perfect, easy to extradaimse of the object. An example of
such a case was already showrséattion 2.1.2The task of locating the capacitors seems to be
simple at first, as they are prominent bright circles on a dadkground. But because of the
clutter inside and outside the circle even the model regyiftiom the ring-shaped ROI is faulty:
Besides containing clutter points also parts of the cirobenaissing.

In such cases, it may be better to usgyathetic model imageHow to create such an image
to locate the capacitors is explained below. To follow tharegle actively, start the HDevelop
programhdevelop\synthetic_circle.dev; we start after the initialization of the application

(pres once).

Step 1: Create an XLD contour

RadiusCircle := 43

SizeSynthImage := 2*RadiusCircle + 10

gen_ellipse_contour_x1ld (Circle, SizeSynthImage / 2, SizeSynthImage / 2, O,
RadiusCircle, RadiusCircle, 0, 6.28318,
’positive’, 1.5)

First, we create a circular region using the operagen_ellipse_contour_x1ld (see
figure 103. You can determine a suitable radius by inspecting the @awaith the HDevelop
dialog Visualization > Online Zooming. Note that the synthetic image should be larger
than the region because pixels around the region are useudaeubating the image pyramid.

Step 2: Create an image and insert the XLD contour

gen_image_const (EmptyImage, ’byte’, SizeSynthImage, SizeSynthImage)
paint_x1d (Circle, EmptyImage, SyntheticModelImage, 128)

HALCON Application Guide, 2005-02-01

2.3 Synthetic Model Images 19

Figure 10: Locating the capacitors using a synthetic model: a) paint region into synthetic image;
b) corresponding model; ¢) result of the search.

Then, we create an empty image using the opergéarimage _const and insert the XLD
contour with the operatgraint_x1d. In figure 10athe resulting image is depicted.

Step 3: Create the model

create_scaled_shape_model (SyntheticModelImage, O, O, O, 0.01, 0.8, 1.2, 0,
’none’, ’use_polarity’, 30, 10, ModellID)

Now, the model is created from the synthetic imaggure 10dshows the corresponding model
region,figure 10ethe search results.

Note how the image itself, i.e., its domain, acts as the RGiimexample.

HALCON 6.1.4

20 Application Note on Shape-Based Matching
3 Optimizing the Search Process

The actual matching is performed by the operatorsind shape model,
find_scaled_shape_model, find shape_models, Or find_scaled_shape_models. In
the following, we show how to select suitable parametersttiese operators to adapt and
optimize it for your matching task.

3.1 Restricting the Search Space

An important concept in the context of finding objects is tbathe so-calledsearch space
Quite literally, this term specifies where to search for thgeot. However, this space encom-
passes not only the 2 dimensions of the image, but also o#inameters like the possible range
of scales and orientations or the question of how much of tijeco must be visible. The more
you can restrict the search space, the faster the searchewill

3.1.1 Searching in a Region of Interest

The obvious way to restrict the search space is to apply tkeatqrfind shape model to a
region of interest only instead of the whole image as showfigime 11 This can be realized
in a few lines of code:

Step 1: Create a region of interest

Rowl := 141
Columnl := 163
Row2 := 360

Column2 := 477
gen_rectanglel (SearchROI, Rowl, Columnl, Row2, Column2)

Figure 11: Searching in a region of interest.

HALCON Application Guide, 2005-02-01

3.1.2 Restricting the Range of Orientation and Scale 21

First, you create a region, e.g., with the operagjai rectanglel (seesection 2.1.%or more
ways to create regions).

Step 2: Restrict the search to the region of interest

for i :=1 to 20 by 1
grab_image (SearchImage, FGHandle)
reduce_domain (SearchlImage, SearchROI, SearchImageR0I)
find_shape_model (SearchImageROI, ModelID, O, rad(360), 0.8, 1, 0.5,
’interpolation’, 0, 0.9, RowCheck, ColumnCheck,
AngleCheck, Score)
endfor

The region of interest is then applied to each search imageg tise operatoreduce_domain.
In this example, the searching speed is almost doubled tisimgiethod.

Note that by restricting the search to a region of interestactually restrict the position of the
point of referencef the model, i.e., the center of gravity of the model ROI (seetion 2.1.1
This means that the size of the search ROI corresponds txtiet ®f the allowed movement;
for example, if your object can mowe 10 pixels vertically and- 15 pixels horizontally you can
restrict the search to an ROI of the size<ZD. In order to assure a correct boundary treatment
on higher pyramid levels, we recommend to enlarge the RQMyp-ev¢is—1 pixels; to continue
the example, if you specifiestimLevels = 4, you can restrict the search to an ROI of the size
36x46.

Please note that even if you modify the point of referencegsstt_shape_model _origin, the
original one, i.e., the center point of the model ROI, is udedng the search. Thus, you must
always specify the search ROI relative to the original rfiee point.

3.1.2 Restricting the Range of Orientation and Scale

When creating the model with the operatorcreate shape model (or
create_scaled shape model), you already specified the allowed range of orientation
and scalesection 2.2.3and section 2.2.4 When calling the operatofind shape model

(or find_scaled shape model) you can futher limit these ranges with the parameters
AngleStart, AngleExtent, ScaleMin, andScaleMax. This is useful if you can restrict
these ranges by other information, which can, e.g., be &daby suitable image processing
operations.

Another reason for using a larger range when creating theehmody be that you want to reuse
the model for other matching tasks.

3.1.3 Visibility

With the parameteMinScore you can specify how much of the object — more precisely: of
the model — must be visible. A typical use of this mechanisno iallow a certain degree of
occlusion as demonstratedfigure 12 The security ring is found iftinScore is set to0.7.

Let’s take a closer look at the term “visibility”: When comp®y a part of a search image with
the model, the matching process calculates the so-csdle@ which is a measure of how many
model points could be matched to points in the search imagging from 0 to 1). A model
point may be “invisible” and thus not matched because of iplelteasons:

HALCON 6.1.4

22 Application Note on Shape-Based Matching

a)

Figure 12: Searching for partly occluded objects: a) model of the security ring; b) search result
for MinScore = 0.8; ¢) search result for MinScore = 0.7.

e Parts of the object’s contour are occluded, e.g., dgjure 12

IIl Please note than object must not be clipped at the image border this case is not
treated as an occlusion! More precisely, the smallest mgt@asurrounding the model
must not be clipped.

e Parts of the contour have a contrast lower than specifiedeip#itameteMinContrast
when creating the model (ssection 2.2.h

e The polarity of the contrast changes globally or locallye(section 2.2.h

e If the object is deformed, parts of the contour may be viskhleappear at an incorrect
position and therefore do not fit the model anymore. Note tiateffect also occurs if
camera observes the scene under an oblique asgdtipn 5.1shows how to handle this
case.

Besides these obvious reasons, which have their root iretirels image, there are some not so
obvious reasons caused by the matching process itself:

e As described irsection 2.2.3HALCON precomputes the model for intermediate angles
within the allowed range of orientation. During the searalgandidate match is then
compared to all precomputed model instances. If you seleetiee for the parameter
AngleStep that is significantly larger than the automatically seldetenimum value, the
effect depicted ifigure 13can occur: If the object lies between two precomputed angles
points lying far from the center are not matched to a modeitpand therefore the score
decreases.

Of course, the same line of reasoning applies to the paranset€leStep (See
section 2.2.4

e Another stumbling block lies in the use of an image pyramidciiwas introduced in
section 2.2.2When comparing a candidate match with the model, the spdatiinimum
score must be reached on each pyramid level. However, aareliff levels the score may
vary, with only the score on the lowest level being returnethe paramete$core; this
sometimes leads to the apparently paradox situationMix8core must be set signifi-
cantly lower than the resultirgcore.

&= Recommendation: The higheMinScore, the faster the search!

HALCON Application Guide, 2005-02-01

3.1.4 Thoroughness vs. Speed 23

i

AngleStep = 20 AngleStep = 30

Figure 13: The effect of a large AngleStep on the matching.

3.1.4 Thoroughness vs. Speed

With the parametetreediness you can influence the search algorithm itself and thereluetra
thoroughness against speed. If you select the \@ltlee search is thorough, i.e., if the object is
present (and within the allowed search space and reachengitiimum score), it will be found.
In this mode, however, even very unlikely match candidatesaéso examined thoroughly,
thereby slowing down the matching process considerably.

The main idea behind the “greedy” search algorithm is tolo#athe comparison of a candi-
date with the model when it seems unlikely that the minimuoreavill be reached. In other
words, the goal is not to waste time on hopeless candidates gfeediness, however, can have
unwelcome consequences: In some cases a perfectly vid@etas not found because the
comparison “starts out on a wrong foot” and is thereforesifeesl as a hopeless candidate and
broken off.

You can adjust th@reediness of the search, i.e., how early the comparison is broken gff, b
selecting values betwe@n(no break off: thorough but slow) and(earliest break off: fast but
unsafe). Note that the paramet@tisediness andMinScore interact, i.e., you may have to
specify a lower minimum score in order to use a greedier Bed&enerally, you can reach a
higher speed with a high greediness and a sufficiently lodver@imum score.

3.2 Searching for Multiple Instances of the Object

All you have to do to search for more than one instance of thecols to set the parameter
NumMatches accordingly. The operatdind_shape model (Or find scaled_shape model)
then returns the matching results as tuples in the parasteies Column, Angle, Scale, and
Score. If you select the value, all matches are returned.

Note that a search for multiple objects is only slightly stshan a search for a single object.

A second parameteMax0Overlap, lets you specify how much two matches may overlap (as a
fraction). Infigure 14h e.g., the two security rings overlap by a factor of appratity 0.2.

In order to speed up the matching as far as possible, howtbeeoyverlap is calculated not for
the models themselves but for their smallest surroundic@ngle. This must be kept in mind
when specifying the maximum overlap; in most cases, thezeddarger value is needed (e.g.,
compardigure 14bandfigure 144.

HALCON 6.1.4

24 Application Note on Shape-Based Matching

a) c)

A y

Figure 14: A closer look at overlapping matches: a) model of the security ring; b) model overlap;
¢) smallest rectangle surrounding the model; d) rectangle overlap; e) pathological
case.

Figure 14eshows a “pathological” case: Even though the rings thenesale not overlap, their
surrounding rectangles do to a large degree. Unfortundteseffect cannot be prevented.

3.3 Searching for Multiple Models Simultaneously

If you are searching for instances of multiple models in algirimage, you can of course
call the operatof ind_shape model (Or find_scaled_shape_model) multiple times. A much
faster alternative is to use the operatdiad _shape models Or find _scaled shape models
instead. These operators expect similar parameters, hatfotlowing differences:

e With the parametatodelIDs you can specify &upleof model IDs instead of a single one.
As when searching for multiple instances (seetion 3.2, the matching result parameters
Row etc. return tuples of values.

e The output parametefodel shows to which model each found instance belongs. Note
that the parameter does not return the model IDs themseliélsdindex of the model ID
in the tupleModelIDs (starting with 0).

e The search is always performed in a single image. Howevercga restrict the search to
a certain region for each model individually by passing aagmtuple (see below for an
example).

e You can either use the same search parameters for each nyxsjedifying single values
for AngleStart etc., or pass a tuple containing individual values for eackdeh

e You can also search for multiple instances of multiple medélyou search for a certain
number of objects independent of their type (model ID), gpehis (single) value in the

HALCON Application Guide, 2005-02-01

3.3 Searching for Multiple Models Simultaneously 25

oL S=Saes
© O 000

Figure 15: Searching for multiple models : a) models of ring and nut; b) search ROlIs for the two
models.

parameteiNumMatches. By passing a tuple of values, you can specify for each model
individually how many instances are to be found. In this éyplou can mix concrete
values with the value; the tuple[3,0], e.g., specifies to return the best 3 instances of the
first model and all instances of the second model.

Similarly, if you specify a single value fdfaxOverlap, the operators check whether a
found instance is overlapped by any of the other instana=pendent of their type. By

specifying a tuple of values, each instance is only checkgihat all other instances of

the same type.

The example HDevelop prograrhdevelop\multiple models.dev uses the operator
find scaled_shape models to search simultaneously for the rings and nuts depicted in
figure 15

Step 1: Create the models

create_scaled_shape_model (ImageROIRing, O, -rad(22.5), rad(45), 0, 0.8,
1.2, 0, ’none’, ’use_polarity’, 60, 10,
ModelIDRing)

create_scaled_shape_model (ImageROINut, O, -rad(30), rad(60), 0, 0.6, 1.4,
0, ’none’, ’use_polarity’, 60, 10, ModelIDNut)

ModelIDs := [ModelIDRing, ModelIDNut]

First, two models are created, one for the rings and one fontlts. The two model IDs are
then concatenated into a tuple using the operadet gn.

Step 2: Specify individual search ROIs

gen_rectanglel (SearchROIRing, 110, 10, 130, Width - 10)
gen_rectanglel (SearchROINut, 315, 10, 335, Width - 10)
SearchR0Is := [SearchROIRing,SearchROINut]

add_channels (SearchROIs, SearchImage, SearchImageReduced)

HALCON 6.1.4

26 Application Note on Shape-Based Matching

In the example, the rings and nuts appear in non-overlagpang of the search image; there-
fore, it is possible to restrict the search space for eachemiodividually. As explained in
section 3.1.1a search ROI corresponds to the extent of the allowed maverieis, narrow
horizontal ROIs can be used in the example fgpae 150).

The two ROIs are concatenated into a region array (tuplegusie operatoconcat_obj and
then “added” to the search image using the operadidrchannels. The result of this operator
is an array of two images, both having the same image malmxgdbmain of the first image is
restricted to the first ROI, the domain of the second imagkéasecond ROI.

Step 3: Find all instances of the two models

find_scaled_shape_models (SearchImageReduced, ModelIDs, [-rad(22.5),
-rad(30)], [rad(45), rad(60)], [0.8, 0.6], [1.2,
1.4], 0.8, 0, 0, ’interpolation’, 0, 0.9,
RowCheck, ColumnCheck, AngleCheck, ScaleCheck,
Score, ModelIndex)

Now, the operatorfind scaled _shape models is applied to the created image array. Be-
cause the two models allow different ranges of rotation aradirsy, tuples are specified for

the corresponding parameters. In contrast, the other paessnare are valid for both models.
Section 4.3.3hows how to access the matching results.

3.4 A Closer Look at the Accuracy

During the matching process, candidate matches are cothpatie instances of the model
at different positions, angles, and scales; for each igstathe resulting matching score is
calculated. If you set the paramefaibPixel t0 *none’, the result parameteRow, Column,
Angle, andScale contain the corresponding values of the best match. In #ss,dhe accuracy
of the position is therefore 1 pixel, while the accuracy a&f tirientation and scale is equal to
the values selected for the parametiatgleStep andScaleStep, respectively, when creating
the model (sesection 2.2.&ndsection 2.2.%

If you set the paramete&fubPixel t0 ’interpolation’, HALCON examines the matching
scores at the neighboring positions, angles, and scaleactbe best match and determines the
maximum by interpolation. Using this method, the posit®thierefore estimated with subpixel
accuracy £ 2—10 pixel in typical applications). The accuracy of the estiethorientation and
scale depends on the size of the object, like the optimakgaior the parametesigleStep
andScaleStep (seesection 2.2.3andsection 2.2.% The larger the size, the more accurately
the orientation and scale can be determined. For exampies rhaximum distance between the
center and the boundary 190 pixel, the orientation is typically determined with an ay

1o

Ofﬁtzl—o.

Recommendation: Because the interpolation is very fast, you can SebPixel to
’interpolation’ in most applications.

When you choose the values’least squares’, ’least_squares high’, or
’least_squares_very high’, a least-squares adjustment is used instead of an interpo-
lation, resulting in a higher accuracy. However, this mdthequires additional computation
time.

Please note that thaccuracy of the estimated position may decrease if you modgifthe

HALCON Application Guide, 2005-02-01

3.4 A Closer Look at the Accuracy 27

model rotation rotation inaccuracy

original

new p. of ref.

p. of ref.

Figure 16: Effect of inaccuracy of the estimated orientation on a moved point of reference.

point of referenceusingset_shape_model_origin! This effect is visualized iriigure 16 As
you can see in the right-most column, an inaccuracy in thenaged orientation “moves” the
modified point of reference, while the original point of nefiece is not affected. The resulting
positional error depends on multiple factors, e.g., theatfbf the reference point and the ori-
entation of the found object. The main point to keep in minth& the error increases linearly
with the distanceof the modified point of reference from the original one (camgpthe two
rows infigure 16.

An inaccuracy in the estimated scale also results in an a@rrtire estimated position, which
again increases linearly with the distance between thefieddind the original reference point.

For maximum accuracy in case the reference point is moveddhition should be determined
using the least-squares adjustment. Note that the accaf#oy estimated orientation and scale
is not influenced by modifying the reference point.

HALCON 6.1.4

28 Application Note on Shape-Based Matching

3.5 How to Optimize the Matching Speed

In the following, we show how to optimize the matching prac@s two steps. Please note
that in order to optimize the matching it is very importanhtive aset of representativetest
images from your application in which the object appears in all allowed variations regayd
its position, orientation, occlusion, and illumination.

Step 1: Assure that all objects are found

Before tuning the parameters for speed, we recommend toditidgs such that the matching
succeeds in all test images, i.e., that all object instaace$ound. If this is not the case when
using the default values, check whether one of the followitgations applies:

Is the object clipped at the image border?

Unfortunately, this failure cannot be prevented, i.e., yaust assure that the object is not
clipped (seesection 3.1.8

Is the search algorithm “too greedy”?

As described irsection 3.1.4in some cases a perfectly visible object is not found if the
Greediness is too high. Select the valueto force a thorough search.

Is the object partly occluded?

If the object should be recognized in this state nevertselesduce the parameter
MinScore.

Does the matching fail on the highest pyramid level?

As described irsection 3.1.3in some cases the minimum score is not reached on the
highest pyramid level even though the score on the lowest isvmuch higher. Test
this by reducingiumLevels in the call tofind shape model. Alternatively, reduce the
MinScore.

Does the object have a low contrast?

If the object should be recognized in this state nevertselesduce the parameter
MinContrast (Operatorcreate_shape modell).

Is the polarity of the contrast inverted globally or locally?

If the object should be recognized in this state nevertkelese the appropriate value for
the parameteretric when creating the model (ssection 2.2.h If only a small part of
the object is affected, it may be better to reduceMheScore instead.

Does the object overlap another instance of the object?

If the object should be recognized in this state nevertselesrease the parameter
Max0Overlap (Seesection 3.2

Are multiple matches found on the same object?

If the object is almost symmetric, restrict the allowed ramg rotation as described in
section 2.2.2r decrease the parameteixOverlap (Seesection 3.2

Step 2: Tune the parameters regarding speed

The speed of the matching process depends both on the matlehathe search parameters.
To make matters more difficult, the search parameters demetite chosen model parameters.
We recommend the following procedure:

HALCON Application Guide, 2005-02-01

3.5 How to Optimize the Matching Speed 29

Increase th&linScore as far as possible, i.e., as long as the matching succeeds.

Now, increase th@reediness until the matching fails. Try reducing théinScore; if
this does not help restore the previous values.

If possible, use a larger value fdtmLevels when creating the model.

Restrict the allowed range of rotation and scale as far asilpesas described in
section 2.2.3andsection 2.2.4 Alternatively, adjust the corresponding parameters when
calling find _shape model or find scaled_shape model.

Restrict the search to a region of interest as describsdation 3.1.1

The following methods are more “risky”, i.e., the matchingynfail if you choose unsuitable
parameter values.

Increase th&linContrast as long as the matching succeeds.

If you a searching for a particularly large object, it sommegs helps to select a higher point
reduction with the paramet@ptimization (Seesection 2.2.2

Increase théngleStep (and theScaleStep) as long as the matching succeeds.

HALCON 6.1.4

30 Application Note on Shape-Based Matching
4 Using the Results of Matching

As results, the operatofind shape model, find scaled shape model etc. return

the position of the match in the parametess andColumn,

its orientation in the parametengle,

the scaling factor in the parametrale, and

the matching score in the parametebre.

The matching score, which is a measure of the similarity betwthe model and the matched
object, can be used “as itis”, since it is an absolute value.

In contrast, the results regarding the position, orieatatand scale are worth a closer look
as they are determined relative to the created model. Béfiisewe introduce HALCON'’s
powerful operators for the so-calledfine transformationsvhich, when used together with the
shape-based matching, enable you to easily realize apphesdike image rectification or the
alignment of ROIs with a few lines of code.

4.1 Introducing Affine Transformations

“Affine transformation” is a technical term in mathematiesdribing a certain group of trans-
formations. Figure 17shows the types that occur in the context of the shape-baa&zhing:
An object can beranslated(moved) along the two axemtated andscaled In figure 17d all
three transformations were applied in a sequence.

Note that for the rotation and the scaling there exists aiappgint, calledfixed pointor point

of reference The transformation is performed around this pointfitjure 17h e.qg., the IC is
rotated around its center, frgure 17earound its upper right corner. The point is called fixed
point because it remains unchanged by the transformation.

The transformation can be thought of as a mathematicalictstn that defines how to calculate
the coordinates of object points after the transformatimrtunately, you need not worry about
the mathematical part; HALCON provides a set of operatoas gt you specify and apply
tranformations in a simple way.

4.2 Creating and Applying Affine Transformations With HALCO N

HALCON allows to transform not only regions, but also imagesd XLD con-
tours by providing the operatoraffine trans region, affine trans image, and
affine_trans_contour_x1d. The transformation ifigure 17dcorresponds to the line

affine_trans_region (IC, TransformedIC, ScalingRotationTranslation,
>false’)

The parameteBcalingRotationTranslation iS a so-callechomogeneous transformation
matrix that describes the desired transformation. You can créa&enatrix by adding sim-
ple transformations step by step. First, an identity masroreated:

hom_mat2d_identity (EmptyTransformation)

HALCON Application Guide, 2005-02-01

4.2 Creating and Applying Affine Transformations With HALCON 31

column/y

Yy row / x

a) b)
[T TTTT

b

d)

f)
1]

Figure 17: Typical affine transformations: a) translation along two axes; b) rotation around the
IC center; c¢) scaling around the IC center; d) combining a, b, and c; e) rotation
around the upper right corner; f) scaling around the right IC center.

Then, the scaling around the center of the IC is added:

hom_mat2d_scale (EmptyTransformation, 0.5, 0.5, RowCenterIC,
ColumnCenterIC, Scaling)

Similarly, the rotation and the translation are added:

hom_mat2d_rotate (Scaling, rad(90), RowCenterIC, ColumnCenterIC,
ScalingRotation)
hom_mat2d_translate (ScalingRotation, 100, 200, ScalingRotationTranslation)

Please note that in these operators the coordinate axeso@led withx andy instead ofRow
andColumn! Figure 17eclarifies the relation.

Tranformation matrices can also be constructed by a sortavietse engineering”. In other
words, if the result of the transformation is known for sonoéngs of the object, you can de-
termine the corresponding transformation matrix. If, etge position of the IC center and
its orientation after the transformation is known, you cattge corresponding matrix via the
operatorvector_angle_to_rigid.

HALCON 6.1.4

32

a) | Column , Column
. I .
model image | search image |
|
| : Angle
|
L]
| Angle =0
N N = o— - _
Row |
| N -
HEHEEE Row
T
I 1
|
| Column | Column
b)
. | . |
model image search image
Angle =0

Row

Application Note on Shape-Based Matching

Row

Figure 18: The position and orientation of a match: a) The center of the ROI acts as the default
point of reference; b) In the model image, the orientation is always O.

vector_angle_to_rigid (RowCenterIC, ColumnCenterIC, O,
TransformedRowCenterIC, TransformedColumnCenterIC,
rad(90), RotationTranslation)

and then use this matrix to compute the transformed region:

affine_trans_region (IC, TransformedIC, RotationTranslation, ’false’)

4.3 Using the Estimated Position and Orientation

There are two things to keep in mind about the position anehtaiion returned in the param-
etersRow, Column, andAngle: First, by defaultthe center of the ROI acts as the point of
reference for both transformations, i.e., the rotation is performeduad this point, and the
returned position denotes the position of the ROI centehénsearch image. This is depicted
in figure 18awith the example of an ROl whose center does not coincide tvéltenter of the
IC.

Secondly, in the model image the object is taken as not htae, its angle i9, even if it
seems to be rotated, e.g., adigure 18b

After creating a model, you can change its point of referemg¢gh the operator
set_shape model_origin. Note that this operator expects not the absolute positidhe
new reference point as parameters, butlistanceto the default reference point! An example
can be foundsection 4.3.4please note that by modifying the point of reference, thaiexy
of the estimated position may decrease @sstion 3.4.

HALCON Application Guide, 2005-02-01

4.3.1 Displaying the Matches 33

4.3.1 Displaying the Matches

Especially during the development of a matching applicatics useful to display the matching
results overlaid on the search image. This can be realizadew steps (see, e.g., the HDevelop
programhdevelop\first_example_shape matching.dev):

Step 1: Determine the point of reference

gen_rectanglel (ROI, Rowl, Columnl, Row2, Column2)
area_center (ROI, Area, CenterROIRow, CenterROIColumn)

You can determine the center of the ROI, i.e., the point oknezice, with the operator
area_center.

Step 2: Create an XLD contour containing the model

inspect_shape_model (ImageROI, ShapeModelImages, ShapeModelRegions, 8, 30)
ShapeModelRegion := ShapeModelRegions[1]
gen_contours_skeleton_x1d (ShapeModelRegion, ShapeModel, 1, ’filter’)

Below, we want to display the model at the extracted posaiath orientation. The correspond-
ing region can be accessed via the operatsfpect_shape model. However, if you call the
operator withNumLevels > 1 as in the example, an array (tuple) of regions is returnéith, w
the desired region at the first position; you can select thg@nefrom the array via the operator
select_obj. We recommend to transform this region into an XLD contoungshe operator
gen_contours_skeleton x1d because XLD contours can be transformed more precisely and
quickly.

Step 3: Determine the affine transformation

find_shape_model (SearchImage, ModelID, O, rad(360), 0.8, 1, 0.5,
’interpolation’, 0, 0.9, RowCheck, ColumnCheck,
AngleCheck, Score)
if (|Score| = 1)
vector_angle_to_rigid (CenterROIRow, CenterROIColumn, O, RowCheck,
ColumnCheck, AngleCheck, MovementOfObject)

After the call of the operatafind_shape model, the results are checked; if the matching failed,
empty tuples are returned in the paramegersre etc. For a successful match, the correspond-
ing affine transformation can be constructed with the operaictor_angle to_rigid from

the movement of the center of the ROI (s=etion 4.2

Step 4: Transform the XLD

affine_trans_contour_xld (ShapeModel, ModelAtNewPosition,
MovementOfObject)
dev_display (ModelAtNewPosition)

Now, you can apply the tranformation to the XLD version of thedel using the operator
affine _trans_contour_x1d and display itfigure 2shows the result.

HALCON 6.1.4

34 Application Note on Shape-Based Matching

3
)

Figure 19: Displaying multiple matches; the used model is depicted in figure 12a.

4.3.2 Dealing with Multiple Matches

If multiple instances of the object are searched and foureparameterBow, Column, Angle,
andScore containtuples The HDevelop programhdevelop\multiple_objects.dev shows
how to access these results in a loop:

Step 1: Determine the affine transformation

find_shape_model (SearchImage, ModelID, 0, rad(360), 0.75, 0, 0.55,
’interpolation’, 0, 0.8, RowCheck, ColumnCheck,
AngleCheck, Score)
for j := 0 to [Score| - 1 by 1
vector_angle_to_rigid (CenterROIRow, CenterROIColumn, O,
RowCheck[j], ColumnCheck[j], AngleCheckl[j],
MovementOfObject)

The transformation corresponding to the movement of thelmiatdetermined as in the previous
section; the only difference is that the position of the paihreference is extracted from the
tuple via the loop variable.

Step 2: Use the transformation

affine_trans_point_2d (MovementOfObject, CenterROIRow - 120 + 0.5,
CenterROIColumn + 0.5, RowArrowHead,
ColumnArrowHead)
disp_arrow (WindowHandle, RowCheck[j], ColumnCheck[j],
RowArrowHead - 0.5, ColumnArrowHead - 0.5, 2)

In this example, the transformation is also used to disptegreow that visualizes the orientation
(seefigure 19.

Note that the operatatffine trans point_2d and the HALCON regions (and XLDs) use
different definitions of the position of a pixel For a region, a pixel is positioned at its middle,
for affine trans point_2d at its upper left corner. Therefore, 5 must be added to the pixel
coordinates before transforming them and subtracted dgdare creating the regions.

HALCON Application Guide, 2005-02-01

4.3.3 Dealing with Multiple Models 35

4.3.3 Dealing with Multiple Models

When searching for multiple models simultaneously as dasdrin section 3.3 it is use-

ful to store the information about the models, i.e., the nexiee point and the model re-
gion or XLD contour, in tuples. The following example coderas from the already partly
described HDevelop programdevelop\multiple models.dev, which uses the operator
find scaled shape models to search simultaneously for the rings and nuts depicted in
figure 15

Step 1: Inspect the models

inspect_shape_model (ImageROIRing, PyramidImage, ModelRegionRing, 1, 30)
gen_contours_skeleton_x1ld (ModelRegionRing, ShapeModelRing, 1, ’filter’)
area_center (ModelROIRing, Area, CenterROIRowRing, CenterROIColumnRing)
inspect_shape_model (ImageROINut, PyramidImage, ModelRegionNut, 1, 30)
gen_contours_skeleton_x1d (ModelRegionNut, ShapeModelNut, 1, ’filter’)
area_center (ModelROINut, Area, CenterROIRowNut, CenterROIColumnNut)

As in the previous sections, the XLD contours correspontbrie two models are created with
the operatordnspect_shape model andgen_contours_skeleton x1d, the reference points
are determined usingrea_center.

Step 2: Save the information about the models in tuples

NumContoursRing := |ShapeModelRing]

NumContoursNut := |ShapeModelNut |

ShapeModels := [ShapeModelRing,ShapeModelNut]
StartContoursInTuple := [1, NumContoursRing+1]
NumContoursInTuple := [NumContoursRing, NumContoursNut]
CenterROIRows := [CenterROIRowRing, CenterROIRowNut]
CenterROIColumns := [CenterROIColumnRing, CenterROIColumnNut]

To facilitate the access to the shape models later, the XUidocws and the reference points
are saved in tuples in analogy to the model IDs @astion 3.3 However, when concatenating
XLD contours with the operatotoncat_obj, one must keep in mind that XLD objects are
already tuples as they may consist of multiple contours! ciesas the contours belonging to a
certain model, you therefore need the number of contoursnod@el and the starting index in
the concatenated tuple. The former is determined usingpkeatorcount_obj; the contours
of the ring start with the index 1, the contours of the nut wiith index 1 plus the number of
contours of the ring.

HALCON 6.1.4

36 Application Note on Shape-Based Matching

Step 3: Access the found instances

find_scaled_shape_models (SearchImageReduced, ModelIDs, [-rad(22.5),
-rad(30)], [rad(45), rad(60)], [0.8, 0.6], [1.2,
1.4], 0.8, 0, 0, ’interpolation’, 0, 0.9,
RowCheck, ColumnCheck, AngleCheck, ScaleCheck,
Score, ModelIndex)
for i := 0 to [Score| - 1 by 1
Model := ModellIndex[i]
vector_angle_to_rigid (CenterROIRows[Model], CenterROIColumns[Model],
0, RowCheck[i], ColumnCheck[i], AngleCheckl[i],
MovementOfObject)
hom_mat2d_scale (MovementOfObject, ScaleCheck[i], ScaleCheck[i],
RowCheck[i], ColumnCheck[i], MoveAndScalingOfObject)
copy_obj (ShapeModels, ShapeModel, StartContoursInTuple [Model],
NumContoursInTuple [Modell)
affine_trans_contour_x1ld (ShapeModel, ModelAtNewPosition,
MoveAndScalingOfObject)
dev_display (ModelAtNewPosition)
endfor

As already described isection 4.3.2in case of multiple matches the output paramekers
etc. contain tuples of values, which are typically accessealoop, using the loop variable
as the index into the tuples. When searching for multiple @®d second index is involved:
The output parameteéfodel indicates to which model a match belongs by storing the irdex
the corresponding model ID in the tuple of IDs specified ingheameteModelIDs. This may
sound confusing, but can be realized in an elegant way indtie:d-or each found instance, the
model ID index is used to select the corresponding inforomeftiom the tuples created above.

As already noted, the XLD representing the model can coon§istultiple contours; therefore,
you cannot access them directly using the operaétect_obj. Instead, the contours belong-
ing to the model are selected via the operatgiy_obj, specifying the start index of the model
in the concatenated tuple and the number of contours as pteesn Note thatopy_obj does
not copy the contours, but only the corresponding HALCONeots, which can be thought of
as references to the contours.

4.3.4 Aligning Other ROIs

The results of the matching can be usedlign ROIs for other image processing steps. i.e., to
position them relative to the image part acting as the motlels method is very useful, e.g.,
if the object to be inspected is allowed to move or if multiplstances of the object are to be
inspected at once as in the example application descrided/be

In the example applicationdevelop\align measurements.dev the task is to inspect razor
blades by measuring the width and the distance of theirlftedtigure 20ashows the model
ROI, figure 20bthe corresponding model region.

The inspection task is realized with the following steps:

HALCON Application Guide, 2005-02-01

4.3.4 Aligning Other ROIs 37

a)

d)

Figure 20: Aligning ROIs for inspecting parts of a razor: a) ROIs for the model; b) the model; c)
measuring ROIs; d) inspection results with zoomed faults.

Step 1: Position the measurement ROIs for the model blade

RectlRow := 244

Rect1Col := 73

DistColRectlRect2 := 17

Rect2Row := RectlRow

Rect2Col := Rectl1Col + DistColRectlRect?2

RectPhi := rad(90)
RectLengthl := 122
RectLength2 := 2

First, two rectangular measurement ROIs are placed oveedie of the razor blade acting as
the model as shown ifigure 20¢

HALCON 6.1.4

38 Application Note on Shape-Based Matching

Step 2: Move the reference point to the center of the first mease ROI

DistRectl1CenterRow := RectlRow - CenterROIRow
DistRect1CenterCol := RectlCol - CenterROIColumn
set_shape_model_origin (ModelID, DistRectlCenterRow, DistRectiCenterCol)

Now, the reference point of the model is moved to the centéheffirst measure ROI using
the operatoset_shape model origin. As already mentioned, the operator expects not the
absolute position of the new reference point, but its distdn the default reference point. Note
that this step is only included to show how to use_shape model_origin; as described in
section 3.4the accuracy of the estimated position may decrease wheg asnodified point

of reference.

Step 3: Find all razor blades

find_shape_model (SearchImage, ModelID, 0, O, 0.8, 0, 0.5, ’interpolation’,
0, 0.7, RowCheck, ColumnCheck, AngleCheck, Score)

Then, all instances of the model object are searched foreimtiage.

Step 4: Determine the affine transformation

for i := 0 to |Score|-1 by 1
vector_angle_to_rigid (RectlRow, Recti1Col, O, RowCheck[i],
ColumnCheck[i], AngleCheck[i],
MovementOfObject)

For each razor blade, the transformation representingpggipn and orientation is calculated.
Because the reference point was moved to the center of thenBiasure ROI, these coordinates
are now used in the call teector_to_rigid.

Step 5: Create measurement objects at the corresponding ptisns

RectPhiCheck := RectPhi + AngleCheck[i]
gen_measure_rectangle2 (RowCheck[i], ColumnCheck[i],
RectPhiCheck, RectLengthl, RectlLength2,
Width, Height, ’bilinear’,
MeasureHandlel)
affine_trans_point_2d (MovementOfObject, Rect2Row+0.5,
Rect2C0l1+0.5, Rect2RowTmp, Rect2ColTmp)
Rect2RowCheck := Rect2RowTmp-0.5
Rect2ColCheck := Rect2ColTmp-0.5
gen_measure_rectangle2 (Rect2RowCheck, Rect2ColCheck,
RectPhiCheck, RectLengthl, RectLength2,
Width, Height, ’bilinear’,
MeasureHandle2)

Because the center of the first measure ROI serves as themrregepoint of the model, the
returned position of the match can be used directly in thetoalen measure_rectangle?2.
Unfortunately, there is only one point of reference. Therefthe new position of the second
measure ROI must be calculated explicitly using the operatéine trans point_2d. AS
remarked irsection 4.3.2the code adding and subtracting 0.5 to and from the pointioates
is necessary because the operattfine trans point_2d and the HALCON regions (and
XLDs) use different definitions of the position of a pixel

HALCON Application Guide, 2005-02-01

4.3.5 Rectifying the Search Results 39

In the example application, the individual razor bladesoalg translated but not rotated relative
to the model position. Instead of applying the full affinenstormation to the measure ROIs
and then creating new measure objects, one can therefotieausperatotranslate measure

to translate the measure objects themselves. The exanggeapr contains the corresponding
code; you can switch between the two methods by modifyingravie at the top of the pro-
gram.

Step 6: Measure the width and the distance of the “teeth”

measure_pairs (SearchImage, MeasureHandlel, 2, 25, ’negative’,
’all’, RowEdgell, ColEdgell, Ampll, RowEdge21,
ColEdge21, Amp21, Widthl, Distancel)

measure_pairs (SearchImage, MeasureHandle2, 2, 25, ’negative’,
’all’, RowEdgel2, ColEdgel2, Ampl2, RowEdge22,
ColEdge22, Amp22, Width2, Distance2)

Now, the actual measurements are performed using the opaeaisure pairs.

Step 7: Inspect the measurements

NumberTeethl := |Width1]
if (NumberTeethl < 37)
for j := 0 to NumberTeethl - 2 by 1
if (Distancel[j] > 4.0)
RowFault := round(0.5%(RowEdgel1l[j+1] + RowEdge21[j]))
ColFault := round(0.5*(ColEdgell[j+1] + ColEdge21[jl))
disp_rectangle?2 (WindowHandle, RowFault, ColFault, O,
4, 4)

Finally, the measurements are inspected. If a “tooth” isdbort or missing completely, no
edges are extracted at this point resulting in an incornecther of extracted edge pairs. In this
case, the faulty position can be determined by checking istartte of the teethFigure 20d
shows the inspection results for the example.

Please note that the example program is not able to dispéafatht if it occurs at the first or
the last tooth.

4.3.5 Rectifying the Search Results

In the previous section, the matching results were usedteree the so-callefbrward trans-
formation i.e., how objects are transformed from the model into tle@deimage. Using this
transformation, ROIs specified in the model image can betipasd correctly in the search
image.

You can also determine thaverse transformatiomvhich transforms objects from the search
image back into the model image. With this transformatiany ganrectify the search image
(or parts of it), i.e., transform it such that the matchedeobis positioned as it was in the model
image. This method is useful if the following image procegsstep is not invariant against
rotation, e.g., OCR or the variation model. Note that imagmification can also be useful
beforeapplying shape-based matching, e.g., if the camera ols#reescene under an oblique
angle; seesection 5.Xfor more information.

HALCON 6.1.4

40 Application Note on Shape-Based Matching

b)
Acni/lIc
Contents
* ActivWiew
* ActivZoom, ActivLineProfile
* ActivGeoCalib, ActivAlignment
* ActivMeasure
* ActivBarcode :
c) d)
——— . |
NISE
61404
All rights reserved.
e) 6140

Figure 21: Rectifying the search results: a) ROIs for the model and for the number extraction;
b) the model; c) number ROI at matched position; d) rectified search image (only
relevant part shown); e) extracted numbers.

The inverse transformation can be determined and appliea ifiew steps, which are
described below; in the corresponding example applicabbrthe HDevelop program
hdevelop\rectify_results.dev the task is to extract the serial number on CD covers (see
figure 2J).

Step 1. Calculate the inverse transformation

hom_mat2d_invert (MovementOfObject, InverseMovementOfObject)

You can invert a transformation easily using the operatarmat2d_invert.

HALCON Application Guide, 2005-02-01

4.3.5 Rectifying the Search Results 41

Step 2: Rectify the search image

affine_trans_image (SearchImage, RectifiedSearchImage,
InverseMovement0fObject, ’constant’, ’false’)

Now, you can apply the inverse transformation to the seanchgée using the operator
affine_trans_image. Figure 21dshows the resulting rectified image of a different CD; unde-
fined pixels are marked in grey.

Step 3: Extract the numbers

reduce_domain (RectifiedSearchImage, NumberROI,
RectifiedNumberROIImage)

threshold (RectifiedNumberROIImage, Numbers, 0, 128)

connection (Numbers, IndividualNumbers)

Now, the serial number is positioned correctly within thegoral ROl and can be extracted
without problemsFigure 21eshows the result, which could then, e.g., be used as the faput
OCR.

Unfortunately, the operatarffine_trans_image transforms the full image even if you restrict
its domain with the operatareduce_domain. In a time-critical application it may therefore
be necessary to crop the search image before transforminghi corresponding steps are
visualized infigure 22

Step 1: Crop the search image

smallest_rectanglel (NumberROIAtNewPosition, Rowl, Columnl, Row2,
Column?2)
crop_rectanglel (SearchImage, CroppedNumberROIImage, Rowl, Columni,
Row2, Column?2)

First, the smallest axis-parallel rectangle surroundimg transformed number ROI is com-
puted using the operatemallest_rectanglel, and the search image is cropped to this part.
Figure 22bshows the resulting image overlaid on a grey rectangle tibtéie the comparison
with the subsequent images.

Step 2: Create an extended affine transformation

hom_mat2d_translate (MovementOfObject, - Rowl, - Columnli,
MoveAndCrop)
hom_mat2d_invert (MoveAndCrop, InverseMoveAndCrop)

In fact, the cropping can be interpreted as an additionalatfiansformation: a translation by
the negated coordinates of the upper left corner of the angpectangle (seégure 223. We
therefore “add” this transformation to the transformati@scribing the movement of the object
using the operataiom mat2d_translate, and then invert this extended transformation with
the operatohom mat2d_invert.

Step 3: Transform the cropped image

affine_trans_image (CroppedNumberROIImage, RectifiedROIImage,
InverseMoveAndCrop, ’constant’, ’true’)
reduce_domain (RectifiedROIImage, NumberROI,
RectifiedNumberROIImage)

HALCON 6.1.4

42 Application Note on Shape-Based Matching

i Columnl
T
a) |
l
translate(-Row1,-Column1) :
I
I
I
l
I
l
I
I
I
l
&l
|
— T S T e — U e s T T T, — : ;
Row1l
b) 6;405“54 c) d)
| S — .
:] 61404 61404

Figure 22: Rectifying only part of the search image: a) smallest image part containing the ROI,;
b) cropped search image; c) result of the rectification; d) rectified image reduced to
the original number ROI.

Using the inverted extended transformation, the croppedjercan easily be rectified with the
operatoraffine_trans_image (figure 22¢ and then be reduced to the original number ROI
(figure 2249 in order to extract the numbers.

4.4 Using the Estimated Scale

Similarly to the rotation (comparsection 4.3, the scaling is performed around the center of
the ROI —if you didn't useset_shape_model_origin, thatis. This is depicted ifigure 23aat
the example of an ROl whose center does not coincide withehtec of the IC.

The estimated scale, which is returned in the paransetere, can be used similarly to the posi-
tion and orientation. However, there is no convenienceaipetike vector_angle to rigid
that creates an affine transformation including the scalexefore, the scaling must be added
separately. How to achieve this is explained below; in theesponding example HDevelop
programhdevelop\multiple_scales.dev, the task is to find nuts of varying sizes and to
determine suitable points for grasping them (Sgere 29.

HALCON Application Guide, 2005-02-01

4.4 Using the Estimated Scale 43

| Column , Column

. I .
model image | search image |

| Scale=1 —Scale = 0.5

Figure 23: The center of the ROI acts as the point of reference for the scaling.

0 O -0

d)

Figure 24: Determining grasping points on nuts of varying sizes: a) ring-shaped ROI; b) model,
¢) grasping points defined on the model nut; d) results of the matching.

Step 1. Specify grasping points

RowUpperPoint := 284
ColUpperPoint := 278
RowLowerPoint := 362
ColLowerPoint := 278

In the example program, the grasping points are specifiedttirin the model image; they are
marked with arrows ifigure 24c

Step 2: Determine the complete transformation

find_scaled_shape_model (SearchImage, ModelID, -rad(30), rad(60), 0.6, 1.4,
0.9, 0, 0, ’interpolation’, 0, 0.8, RowCheck,
ColumnCheck, AngleCheck, ScaleCheck, Score)
for i := 0 to [Score| - 1 by 1
vector_angle_to_rigid (CenterROIRow, CenterROIColumn, O, RowCheck[i],
ColumnCheck[i], AngleCheck[i], MovementOfObject)
hom_mat2d_scale (MovementOfObject, ScaleCheck[i], ScaleCheck[i],
RowCheck[i], ColumnCheck[i], MoveAndScalingOfObject)
affine_trans_contour_x1d (ShapeModel, ModelAtNewPosition,
MoveAndScalingOfObject)

HALCON 6.1.4

44 Application Note on Shape-Based Matching

After the matching, first the translational and rotatioreattf the transformation is determined
with the operatorvector_angle to_rigid as in the previous sections. Then, the scaling is
added using the operathsm mat2d_scale. Note that the position of the match, i.e., the trans-
formed center of the ROI, is used as the point of reference bgcomes necessary because the
scaling is performed “after” the translation and rotatidhe resulting, complete transformation
can be used as before to display the model at the positioreaohttiches.

Step 3: Calculate the transformed grasping points

affine_trans_point_2d (MoveAndScalingOfObject, RowUpperPoint+0.5,
ColUpperPoint+0.5, TmpRowUpperPoint,
TmpColUpperPoint)

affine_trans_point_2d (MoveAndScalingOfObject, RowLowerPoint+0.5,
ColLowerPoint+0.5, TmpRowLowerPoint,
TmpColLowerPoint)

RowUpperPointCheck := TmpRowUpperPoint-0.5
ColUpperPointCheck := TmpColUpperPoint-0.5
RowLowerPointCheck := TmpRowLowerPoint-0.5
ColLowerPointCheck := TmpColLowerPoint-0.5

Of course, the affine transformation can also be appliedtergioints in the model image with
the operatonffine trans_point_2d. In the example, this is used to calculate the position of
the grasping points for all nuts; they are marked with arrowigure 24d

As noted insection 4.3.2the code adding and subtracting 0.5 to and from the pointdoates
is necessary because the operattfine trans point_2d and the HALCON regions (and
XLDs) use different definitions of the position of a pixel

5 Miscellaneous

5.1 Adapting to a Changed Camera Orientation

As shown in the sections above, HALCON's shape-based nmgciiows to localize objects
even if their position and orientation in the image or thealse changes. However, the shape-
based matching fails if the camera observes the scene undssligue angle, i.e., if it is not
pointed perpendicularily at the plane in which the objects@) because an object then appears
distorted due to perspective projection; even worse, tsi@dion changes with the position and
orientation of the object.

In such a case we recommend to rectify imalgefreapplying the matching. This is a three-
step process: First, you musalibrate the camera, i.e., determine its position and orienta-
tion and other parameters, using the operat@iera_calibration. Secondly, the calibration
data is used to create a mapping function via the opegainrimage_to_world_plane map,
which is then applied to images with the operatep_image. For more information please
refer to the HDevelop example progragm world plane.dev, which can be found in the
hdevelop\Applications\FA of the directory/,HALCONROOTY \examples.

HALCON Application Guide, 2005-02-01

5.2 Reusing Models 45

5.2 Reusing Models

If you want to reuse created models in other HALCON applaradi all you need to do is to

store the relevant information in files and then read it aghine following example code stems
from the HDevelop prograrhdevelop\reuse_model.dev. First, a model is created and the
corresponding XLD contour and the reference point are detesd:

create_scaled_shape_model (ImageROI, O, -rad(30), rad(60), 0, 0.6, 1.4, O,

’none’, ’use_polarity’, 60, 10, ModellID)
inspect_shape_model (ImageROI, ShapeModellImage, ShapeModelRegion, 1, 30)
gen_contours_skeleton_x1d (ShapeModelRegion, ShapeModel, 1, ’filter’)
area_center (ModelROI, Area, CenterROIRow, CenterROIColumn)

Then, this information is stored in files using the operat@tite_shape model (for the model),
write_contour_x1d arc_info (for the XLD contour), andirite_tuple (for the reference
point, whose coordinates have been concatenated intoeftrgt):

write_shape_model (ModelID, ModelFile)
write_contour_xld_arc_info (ShapeModel, XLDFile)
ReferencePoint := [CenterROIRow, CenterROIColumn]
write_tuple (ReferencePoint, RefPointFile)

In the example program, all shape models are cleared toseqiréhe start of another applica-
tion.

The model, the XLD contour, and the reference point are naad reom the files using
the operatorgead_shape_model, read_contour_xld_arc_info, and read_tuple, respec-
tively. Furthermore, the parameters used to create the Inameeaccessed with the operator
get_shape_model_params:

read_shape_model (ModelFile, ReusedModelID)

read_contour_x1d_arc_info (ReusedShapeModel, XLDFile)

read_tuple (RefPointFile, ReusedReferencePoint)

ReusedCenterROIRow := ReusedReferencePoint [0]

ReusedCenterR0OICol := ReusedReferencePoint[1]

get_shape_model_params (ReusedModelID, NumLevels, AngleStart, AngleExtent,
AngleStep, ScaleMin, ScaleMax, ScaleStep, Metric,
MinContrast)

Now, the model can be used as if it was created in the apmic#self:

find_scaled_shape_model (SearchImage, ReusedModelID, AngleStart,
AngleExtent, ScaleMin, ScaleMax, 0.9, 0, O,
’interpolation’, 0, 0.8, RowCheck, ColumnCheck,
AngleCheck, ScaleCheck, Score)
for i := 0 to [Score| - 1 by 1
vector_angle_to_rigid (ReusedCenterROIRow, ReusedCenterR0OICol, O,
RowCheck[i], ColumnCheck[i], AngleCheck[i],
MovementOfObject)
hom_mat2d_scale (MovementOfObject, ScaleCheck[i], ScaleCheck[i],
RowCheck[i], ColumnCheck[i], MoveAndScalingOfObject)
affine_trans_contour_x1ld (ReusedShapeModel, ModelAtNewPosition,
MoveAndScalingOfObject)
dev_display (ModelAtNewPosition)
endfor

HALCON 6.1.4

46

HALCON Application Guide, 2005-02-01

Application Note on Shape-Based Matching

	1 Application Note on Shape-Based Matching
	1 A First Example
	2 Creating a Suitable Model
	2.1 A Closer Look at the Region of Interest
	2.1.1 How to Create a Region
	2.1.2 How to Combine and Mask Regions
	2.1.3 Using Image Processing to Create and Modify Regions
	Example 1: Determining the ROI Using Blob Analysis
	Example 2: Further Processing the Result of inspect_shape_model
	2.1.4 How the ROI Influences the Search

	2.2 Which Information is Stored in the Model?
	2.2.1 Which Pixels are Part of the Model?
	2.2.2 How Subsampling is Used to Speed Up the Search
	2.2.3 Allowing a Range of Orientation
	2.2.4 Allowing a Range of Scale
	2.2.5 Which Pixels are Compared with the Model?

	2.3 Synthetic Model Images

	3 Optimizing the Search Process
	3.1 Restricting the Search Space
	3.1.1 Searching in a Region of Interest
	3.1.2 Restricting the Range of Orientation and Scale
	3.1.3 Visibility
	3.1.4 Thoroughness vs. Speed

	3.2 Searching for Multiple Instances of the Object
	3.3 Searching for Multiple Models Simultaneously
	3.4 A Closer Look at the Accuracy
	3.5 How to Optimize the Matching Speed

	4 Using the Results of Matching
	4.1 Introducing Affine Transformations
	4.2 Creating and Applying Affine Transformations With HALCON
	4.3 Using the Estimated Position and Orientation
	4.3.1 Displaying the Matches
	4.3.2 Dealing with Multiple Matches
	4.3.3 Dealing with Multiple Models
	4.3.4 Aligning Other ROIs
	4.3.5 Rectifying the Search Results

	4.4 Using the Estimated Scale

	5 Miscellaneous
	5.1 Adapting to a Changed Camera Orientation
	5.2 Reusing Models

