
HALCON Application Note

The Art of Image Acquisition

Provided Functionality

⊲ Connecting to simple and complex configurations of frame grabbers and cameras

⊲ Acquiring images in various timing modes

⊲ Configuring frame grabbers and cameras online

Involved Operators

open framegrabber

info framegrabber

grab image, grab image async, grab image start

set framegrabber param, get framegrabber param

close framegrabber, close all framegrabbers

gen image1, gen image3, gen image1 extern

Copyright c© 2002-2005 by MVTec Software GmbH, München, GermanyMVTec Software GmbH

Overview

Obviously, the acquisition of images is a task to be solved inall machine vision applications.
Unfortunately, this task mainly consists of interacting with special, non-standardized hardware
in form of the frame grabber board. To let you concentrate on the actual machine vision prob-
lem, HALCON already provides interfaces performing this interaction for a large number of
frame grabbers (seesection 1).

Within your HALCON application, the task of image acquisition is thus reduced to a few lines
of code, i.e., a few operator calls, as can be seen insection 2. What’s more, this simplicity is not
achieved at the cost of limiting the available functionality: Using HALCON, you can acquire
images from various configurations of frame grabbers and cameras (seesection 3) in different
timing modes (seesection 5).

Unless specified otherwise, the example programs can be found in the subdirectory
image acquisition of the directory%HALCONROOT%\examples\application guide. Note
that most programs are preconfigured to work with a certain HALCON frame grabber interface;
in this case, the name of the program contains the name of the interface. To use the program with
another frame grabber, please adapt the parts which open theconnection to the frame grabber.
More example programs for the different HALCON frame grabber interfaces can be found in the
subdirectoryhdevelop\Image\Framegrabber of the directory%HALCONROOT%\examples.

Please refer to theHALCON/C User’s Manualand theHALCON/C++ User’s Manualfor infor-
mation about how to compile and link the C and C++ example programs; among other things,
they describe how to use the example UNIX makefiles which can be found in the subdirectories
c andcpp of the directory%HALCONROOT%\examples. Under Windows, you can use Visual
Studio workspaces containing the examples, which can be found in the subdirectoryi586-nt4
parallel to the source files.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without prior written permission of the publisher.

Edition 1 June 2002 (HALCON 6.1)

Microsoft, Windows, Windows NT, Windows 2000, Windows XP, Visual Studio, and Visual Basic are
either trademarks or registered trademarks of Microsoft Corporation.
Linux is a trademark of Linus Torvalds.

All other nationally and internationally recognized trademarks and tradenames are hereby recognized.

More information about HALCON can be found at:

http://www.mvtec.com/halcon/

3

Contents

1 The Philosophy Behind the HALCON Frame Grabber Interfaces 4

2 A First Example 5

3 Connecting to Your Frame Grabber 6

3.1 Opening a Connection to a Specified Configuration. 6

3.2 Connecting to Multiple Boards and Cameras. 8

3.3 Requesting Information About the Frame Grabber Interface 11

4 Configuring the Acquisition 12

4.1 General Parameters. 12

4.2 Special Parameters. 13

4.3 Fixed vs. Dynamic Parameters. 14

5 The Various Modes of Grabbing Images 15

5.1 Real-Time Image Acquisition. 15

5.2 Using an External Trigger. 23

5.3 Acquiring Images From Multiple Cameras. 25

6 Miscellaneous 27

6.1 Acquiring Images From Unsupported Frame Grabbers. 27

6.2 Error Handling . 28

6.3 Line Scan Cameras. 32

A HALCON Images 35

A.1 The Philosophy of HALCON Images. 35

A.2 Image Tuples (Arrays) . 36

A.3 HALCON Operators for Handling Images. 36

B Parameters Describing the Image 38

B.1 Image Size . 38

B.2 Frames vs. Fields. 39

B.3 Image Data . 41

HALCON 6.1.4

4 Application Note on Image Acquisition

1 The Philosophy Behind the HALCON Frame Grabber
Interfaces

From the point of view of an user developing software for a machine vision application, the
acquisition of images is only a prelude to the actual machinevision task. Of course it is impor-
tant that images are acquired at the correct moment or rate, and that the camera and the frame
grabber are configured suitably, but these tasks seem to be elementary, or at least independent
of the used frame grabber.

The reality, however, looks different. Frame grabbers differ widely regarding the provided func-
tionality, and even if their functionality is similar, the SDKs (software development kit) provided
by the frame grabber manufacturers do not follow any standard. Therefore, if one decides to
switch to a different frame grabber, this probably means to rewrite the image acquisition part of
the application.

HALCON’s answer to this problem are itsframe grabber interfaces(HFGI) which are provided
for currently more than 50 frame grabbers in form ofdynamically loadable libraries(Windows
NT/2000/XP: DLLs; UNIX: shared libraries). HALCON frame grabber interfaces bridge the
gap between the individual frame grabbers and the HALCON library, which is independent of
the used frame grabber, computer platform, and programminglanguage (seefigure 1). In other
words, they

• provide a standardized interface to the HALCON user in form of 11 HALCON operators,
and

• encapsulate details specific to the frame grabber, i.e., theinteraction with the frame grab-
ber SDK provided by the manufacturer.

Therefore, if you decide to switch to a different frame grabber, all you need to do is to install
the corresponding driver and SDK provided by the manufacturer and to use different parameter
values when calling the HALCON operators; the operators themselves stay the same.

computer

camera

software
frame

grabber

HFGxyz.dll

HALCON xyz frame grabber interface

frame grabber driver & SDK

HALCON application
HDevelop / C / C++ / Visual Basic

halcon.dll & halconc.dll / halconcpp.dll / halconx.dll

HALCON image processing library

Figure 1: From the camera to a HALCON application.

In fact, the elementary tasks of image acquisition are covered by two HALCON operators:

• open framegrabber connects to the frame grabber and sets general parameters, e.g., the
type of the used camera or the port the camera is connected to,then

• grab image (or grab image async, seesection 5.1for the difference) grabs images.

HALCON Application Guide, 2005-02-01

2 A First Example 5

b)a)

Figure 2: a) Acquired image; b) processed image (automatic segmentation).

If a frame grabber provides additional functionality, e.g., on-board modification of the im-
age signal, special grabbing modes, or digital output lines, it is available via the operator
set framegrabber param (seesection 4).

Note, that for some frame grabbers not the full functionality is available within HALCON;
please refer to the corresponding online documentation which can be found in the direc-
tory %HALCONROOT%\doc\html\manuals or via the HALCON folder in the Windows start
menu (if you installed the documentation). The latest information can be found under
http://www.mvtec.com/halcon/framegrabber.

If the frame grabber you want to use is not (yet) supported by HALCON, you can nevertheless
use it together with HALCON. Please refer tosection 6.1for more details.

2 A First Example

In this section we start with a simple image acquisition task, which uses the frame
grabber in its default configuration and the standard grabbing mode. The grabbed im-
ages are then segmented. To follow the example actively, start the HDevelop program
hdevelop\first example acquisition ids.dev; the steps described below start after the
initialization of the application (pressF5 once to reach this point). Note that the program is
preconfigured for the HALCON frame grabber interfaceIDS; to use it with a different frame
grabber, please adapt the parts which open the connection.

Step 1: Connect to the frame grabber

open_framegrabber (FGName, 1, 1, 0, 0, 0, 0, ’default’, -1, ’gray’, -1,

’false’, ’ntsc’, ’default’, -1, -1, FGHandle)

When opening the connection to your frame grabber using the operatoropen framegrabber,
the main parameter is theName of the corresponding HALCON frame grabber interface. As a
result, you obtain a so-calledhandle(FGHandle) which acts as your access to the frame grabber,
e.g., in calls to the operatorgrab image.

HALCON 6.1.4

6 Application Note on Image Acquisition

In the example, default values are used for most other parameters (’default’ or -1);
section 4.1takes a closer look at this topic. How to connect to more complex frame grabber and
camera configurations is described insection 3.

Step 2: Grab an image

grab_image (Image, FGHandle)

After successfully connecting to your frame grabber you cangrab images by calling the operator
grab image with the corresponding handleFGHandle. More advanced modes of grabbing
images are described insection 5.

Step 3: Grab and process images in a loop

while (Button # 1)

grab_image (Image, FGHandle)

auto_threshold (Image, Regions, 4)

connection (Regions, ConnectedRegions)

get_mposition (WindowHandleButton, Row, Column, Button)

endwhile

In the example, the grabbed images are then automatically segmented using the operator
auto threshold (seefigure 2). This is done in a loop which can be exited by clicking into
a window with the left mouse button.

3 Connecting to Your Frame Grabber

In this section, we show how to connect to different configurations of frame grabber(s) and
camera(s), ranging from the simple case of one camera connected to one frame grabber board
to more complex ones, e.g., multiple synchronized cameras connected to one or more boards.

3.1 Opening a Connection to a Specified Configuration

With the operatoropen framegrabber you open a connection to a frame grabber, or to be more
exact, via a frame grabber to a camera. This connection is described by four parameters (see
figure 3): First, you select a frame grabber (family) with the parameterName. If multiple boards
are allowed, you can select one with the parameterDevice; depending on the frame grabber
interface, this parameter can contain a string describing the board or simply a number (in form
of a string!).

Typically, the camera can be connected to the frame grabber at different ports, whose number
can be selected via the parameterPort (in rare casesLineIn). The parameterCameraType
describes the connected camera: For analog cameras, this parameter usually specifies the used
signal norm, e.g.,’ntsc’; more complex frame grabber interfaces use this parameter to select
a camera configuration file.

As a result,open framegrabber returns ahandlefor the opened connection in the parameter
FGHandle. Note that if you use HALCON’s COM or C++ interface and call the operator via
the classesHFramegrabberX or HFramegrabber, no handle is returned because the instance of
the class itself acts as your handle.

HALCON Application Guide, 2005-02-01

3.1 Opening a Connection to a Specified Configuration 7

camera type abc

camera type xyz

port 0

port 1

port 0

port 1

Name Device Port CameraType

which camera?which port?which board?

FGHandle

which frame grabber?

SDK & HFGI A

SDK & HFGI B

board 0

frame

grabber

board 1

frame

grabber

Figure 3: Describing a connection with the parameters of open framegrabber .

check box to start online grabbing

double-click handle to open dialog

Figure 4: Online grabbing in HDevelop .

In HDevelop, you can quickly check an opened connection by double-clickingFGHandle in
the Variable Window as shown infigure 4. A dialog appears which describes the status of the
connection. If you check the corresponding box, images are grabbed online and displayed in the
Graphics Window. This mode is very useful to setup your vision system (illumination, focus,
field of view).

HALCON 6.1.4

8 Application Note on Image Acquisition

3.2 Connecting to Multiple Boards and Cameras

Most HALCON frame grabbers interfaces allow to use multipleframe grabber boards and
cameras. However, there is more than one way to connect cameras and boards and to ac-
cess these configurations from within HALCON. Below, we describe the different configura-
tions; please check the online documentation of the HALCON interface for your frame grabber
(see%HALCONROOT%\doc\html\manuals, the HALCON folder in the Windows start menu, or
http://www.mvtec.com/halcon/framegrabber) which configurations it supports.

frame grabber

board 0

frame grabber

board 1

frame grabber

board 0

frame grabber

board 0

frame grabber

board 0

frame grabber

board 1

frame grabber

board 0

frame grabber

board 1

frame grabber

board 0

port 0handle 0

a)

handle 1 port 0

handle 0 port 0

b)

handle 0

port 0

port 1port switch

d)

port 0

port 1

port 0

HImage[3]

handle 0

f)

port 1

port 0

handle 0

HImage[2]

e)

port 0handle 2

port 1

port 0

handle 0

handle 1

c)

Figure 5: a) single board with single camera; b) multiple boards with one camera each; c) mul-
tiple boards with one or more cameras; d) single board with multiple cameras and
port switching; e) single board with multiple cameras and simultaneous grabbing;
f) simultaneous grabbing with multiple boards and cameras.

3.2.1 Single Camera

Figure 5ashows the simplest configuration: a single camera connectedto a single board, ac-
cessible via a single handle. Some frame grabbers, especially digital ones, only support this

HALCON Application Guide, 2005-02-01

3.2.2 Multiple Boards 9

configuration; as described in the following section, you can nevertheless use multiple cameras
with such frame grabbers by connecting each one to an individual board.

3.2.2 Multiple Boards

Figure 5bshows a configuration with multiple cameras, each connectedto a separate board. In
this case you call the operatoropen framegrabber once for each connection as in the HDe-
velop example programhdevelop\multiple boards px.dev. Note that the program is pre-
configured for the HALCONPx interface; to use it with a different frame grabber, please adapt
the parts which open the connection.

open_framegrabber (FGName, 1, 1, 0, 0, 0, 0, ’default’, -1, ’default’, -1,

’default’, ’default’, Board0, -1, -1, FGHandle0)

open_framegrabber (FGName, 1, 1, 0, 0, 0, 0, ’default’, -1, ’default’, -1,

’default’, ’default’, Board1, -1, -1, FGHandle1)

In this example, the two calls differ only in the value for theparameterDevice (’0’ and’1’); of
course, you can use different values for other parameters aswell, and even connect to different
frame grabber interfaces.

To grab images from the two cameras, you simply call the operator grab image once with the
two handles returned by the two calls toopen framegrabber:

grab_image (Image0, FGHandle0)

grab_image (Image1, FGHandle1)

3.2.3 Multiple Handles Per Board

Many frame grabbers provide multiple input ports and thus allow to connect more than one
camera to the board. Depending on the HALCON frame grabber interface, this configuration is
accessed in different ways which are described in this and the following sections.

The standard HALCON method to connect to the cameras is depicted in figure 5c: Each
connection gets its own handle, i.e.,open framegrabber is called once for each cam-
era with different values for the parameterPort, like in the HDevelop example program
hdevelop\multiple ports px.dev (preconfigured for the HALCONPx interface, please
adapt the parts which open the connection for your own frame grabber):

open_framegrabber (FGName, 1, 1, 0, 0, 0, 0, ’default’, -1, ’default’, -1,

’default’, ’default’, ’default’, Port0, -1, FGHandle0)

open_framegrabber (FGName, 1, 1, 0, 0, 0, 0, ’default’, -1, ’default’, -1,

’default’, ’default’, ’default’, Port1, -1, FGHandle1)

grab_image (Image0, FGHandle0)

grab_image (Image1, FGHandle1)

As figure 5cshows, you can also use multiple boards with multiple connected cameras.

3.2.4 Port Switching

Some frame grabber interfaces access the cameras not via multiple handles, but by switching
the input port dynamically (seefigure 5d). Therefore,open framegrabber is called only once,

HALCON 6.1.4

10 Application Note on Image Acquisition

like in the HDevelop example programhdevelop\port switching inspecta.dev (precon-
figured for the HALCONInspecta interface, please adapt the parts which open the connection
for your own frame grabber):

Port1 := 4

open_framegrabber (FGName, 1, 1, 0, 0, 0, 0, ’default’, -1, ’default’, -1,

Between grabbing images you switch ports using the operatorset framegrabber param (see
section 4.2for more information about this operator):

while (1)

set_framegrabber_param (FGHandle, ’port’, Port0)

disp_image (Image0, WindowHandle0)

set_framegrabber_param (FGHandle, ’port’, Port1)

Note that port switching only works for compatible (similar) cameras because
open framegrabber is only called once, i.e., the same set of parameters values is used
for all cameras. In contrast, when using multiple handles asdescribed above, you can specify
different parameter values for the individual cameras (with some board-specific limitations).

3.2.5 Simultaneous Grabbing

In the configurations described above, images were grabbed from the individual cameras by
multiple calls to the operatorgrab image. In contrast, some frame grabber interfaces allow
to grab images from multiple cameras with a single call tograb image, which then returns
a multi-channel image (seefigure 5e; appendix A.1contains more information about multi-
channel images). This mode is calledsimultaneous grabbing(or parallel grabbing); like port
switching, it only works for compatible (similar) cameras.For example, you can use this mode
to grab synchronized images from a stereo camera system.

In this mode,open framegrabber is called only once, as can be seen in the HDevelop ex-
ample programhdevelop\simultaneous grabbing inspecta.dev (preconfigured for the
HALCON Inspecta interface, please adapt the parts which open the connectionfor your own
frame grabber):

TM-6701/6705 1-plane, HD out’

open_framegrabber (FGName, 1, 1, 0, 0, 0, 0, ’default’, -1, ’default’, -1,

You can check the number of returned images (channels) usingthe operatorcount channels

* step 2: open correctly sized windows

get_image_pointer1 (SimulImages, Pointer, Type, Width, Height)

and extract the individual images, e.g., usingdecompose2, decompose3 etc., depending on the
number of images:

grab_image (SimulImages, FGHandle)

if (num_channels = 2)

Alternatively, you can convert the multi-channel image into an image array using
image to channels and then select the individual images viaselect obj.

Note that some frame grabber interfaces allow simultaneousgrabbing also for multiple boards
(seefigure 5f). Please refer tosection 5.3.2for additional information.

HALCON Application Guide, 2005-02-01

3.3 Requesting Information About the Frame Grabber Interface 11

Figure 6: An example result of the operator info framegrabber .

3.3 Requesting Information About the Frame Grabber Interfa ce

As mentioned already, the individual HALCON frame grabber interfaces are described in de-
tail on HTML pages which can be found in the directory%HALCONROOT%\doc\html\manuals

or in the HALCON folder in the Windows start menu (if you installed the documentation).
Another way to access information about a frame grabber interface is to use the operator
info framegrabber.

In the HDevelop example programhdevelop\info framegrabber ids.dev (preconfigured
for the HALCON IDS interface, please adapt the interface name for your own frame grab-
ber) this operator is called multiple times to query the version number of the interface, the
available boards, port numbers, camera types, and the default values for all parameters of
open framegrabber; the result, i.e., the values displayed in the HDevelop Variable Windows,
is depicted infigure 6.

info_framegrabber (FGName, ’general’, GeneralInfo, GeneralValue)

info_framegrabber (FGName, ’revision’, RevisionInfo, RevisionValue)

info_framegrabber (FGName, ’info_boards’, BoardsInfo, BoardsValue)

info_framegrabber (FGName, ’ports’, PortsInfo, PortsValue)

info_framegrabber (FGName, ’camera_types’, CamTypeInfo, CamTypeValue)

info_framegrabber (FGName, ’defaults’, DefaultsInfo, DefaultsValue)

The operatorinfo framegrabber can be called before actually connecting to a frame grabber
with open framegrabber. The only condition is that the HALCON frame grabber interface
and the frame grabber SDK and driver have been installed.

HALCON 6.1.4

12 Application Note on Image Acquisition

4 Configuring the Acquisition

As explained insection 1, the intention of HALCON’s frame grabber interfaces is to provide
the user with a common interface for many different frame grabbers. This interface was kept
as simple as possible; as shown, you can connect to your framegrabber and grab a first image
using only two operators.

However, HALCON’s second goal is to make the full functionality of a frame grabber available
to the user. As frame grabbers differ widely regarding the provided functionality, this is a
difficult task to realize within a simple, common interface.HALCON solves this problem by
dividing the task of configuring a frame grabber connection into two parts: Those parameters
which are common to most frame grabber interfaces (therefore calledgeneral parameters) are
set when calling the operatoropen framegrabber. In contrast, the functionality which is not
generally available can be configured by setting so-calledspecial parametersusing the operator
set framegrabber param.

4.1 General Parameters

When opening a connection viaopen framegrabber, you can specify the following general
parameters:

HorizontalResolution,
VerticalResolution

spatial resolution of the transferred image in relation
to the original size (seeappendix B.1)

ImageWidth, ImageHeight,
StartRow, StartColumn

size and upper left corner of the transferred image in
relation to the original size (seeappendix B.1)

Field grabbing mode for analog cameras, e.g., interlaced-
scan, progressive-scan, field grabbing (see
appendix B.2)

BitsPerChannel, ColorSpace data contained in a pixel (number of bits, number of
channels, color encoding, seeappendix B.3)

Gain amplification factor for the video amplifier on the
frame grabber board (if available)

ExternalTrigger hooking the acquisition of images to an external trig-
ger signal (see alsosection 5.2)

CameraType, Device, Port,
LineIn

Configuration of frame grabber(s) and camera(s)
from which images are to be acquired (see
section 3.1).

In section 3.1, we already encountered the parameters describing the frame grabber / camera
configuration. Most of the other parameters ofopen framegrabber specify the image format;
they are described in more detail inappendix B. The parameterExternalTrigger activates a
special grabbing mode which is described in detail insection 5.2. Finally, the parameterGain
can be used to manipulate the acquired images on the frame grabber board by configuring the
video amplifier.

Note that when callingopen framegrabber you must specify values for all parameters, even if
your frame grabber interface does not support some of them oruses values specified in a camera

HALCON Application Guide, 2005-02-01

4.2 Special Parameters 13

configuration file instead. To alleviate this task, the HALCON frame grabber interfaces provide
suitable default values which are used if you specify’default’ or -1 for string or numeric
parameters, respectively. The actually used default values can be queried using the operator
info framegrabber as shown insection 3.3.

After connecting to a frame grabber, you can query the current value of general parameters
using the operatorset framegrabber param; some interface even allow to modify general
parameters dynamically. Please refer tosection 4.3for more information about these topics.

4.2 Special Parameters

Even the functionality which is not generally available forall frame grabber can be accessed
and configured with a general mechanism: by setting corresponding special parameters via the
operatorset framegrabber param. Typical parameters are, for example:

’grab timeout’ timeout after which the operatorsgrab image and
grab image async stop waiting for an image and
return an error (see alsosections 5.2.1and6.2)

’volatile’ enable volating grabbing (see alsosection 5.1.3)

’continuous grabbing’ switch on a special acquisition mode which is nec-
essary for some frame grabbers to achieve real-
time performance (see alsosection 5.1.5)

’trigger signal’ signal type used for external triggering, e.g., rising
or falling edge

’image width’, ’image height’,
’start row’, ’start column’,
’gain’, ’external trigger’,
’port’

“doubles” of the some of the general parame-
ters described insection 4.1, allowing to modify
them dynamically, i.e., after opening the connec-
tion (see alsosection 4.3)

Depending on the frame grabber, various other parameters may be available, which allow, e.g.,
to add an offset to the digitized video signal or modify the brightness or contrast, to specify
the exposure time or to trigger a flash. Some frame grabbers also offer special parameters for
the use of line scan cameras (see alsosection 6.3), or parameters controlling digital output and
input lines.

Which special parameters are provided by a frame grabber interface is described in the al-
ready mentioned online documentation. You can also query this information by calling the
operatorinfo framegrabber as shown below;figure 7depicts the result of double-clicking
ParametersValue in the Variable Window after executing the line:

info_framegrabber (FGName, ’parameters’, ParametersInfo, ParametersValue)

To set a parameter, you call the operatorset framegrabber param, specifying the name of
the parameter to set in the parameterParam and the desired value in the parameterValue. For
example, insection 3.2.4the following line was used to switch to port0:

while (1)

You can also set multiple parameters at once by specifying tuples forParam andValue as in
the following line:

HALCON 6.1.4

14 Application Note on Image Acquisition

Figure 7: Querying available special parameters via info framegrabber .

set_framegrabber_param (FGHandle, [’image_width’,’image_height’], [256,

256])

For all parameters which can be set withset framegrabber param, you can query the cur-
rent value using the operatorget framegrabber param. Some interfaces also allow to query
additional information like minimum and maximum values forthe parameters. For example,
the HALCON Fire-i interface allows to query the minimum and maximum values forthe
brightness:

get_framegrabber_param (FGHandle, ’brightness_min_value’, MinBrightness)

get_framegrabber_param (FGHandle, ’brightness_max_value’, MaxBrightness)

Thus, you can check a new brightness value against those boundaries before setting it:

get_framegrabber_param (FGHandle, ’brightness’, CurrentBrightness)

NewBrightness := CurrentBrightness + 10

if (NewBrightness > MaxBrightness)

NewBrightness := MaxBrightness

endif

set_framegrabber_param (FGHandle, ’brightness’, NewBrightness)

4.3 Fixed vs. Dynamic Parameters

The distinction between fixed and dynamic parameters is maderelating to the lifetime of a frame
grabber connection.Fixed parameters, e.g., theCameraType, are set once when opening the
connection withopen framegrabber. In contrast, those parameters which can be modified via
set framegrabber param during the use of the connection are calleddynamic parameters.

As already noted insection 4.2, some frame grabber interfaces allow to modify general param-
eters likeImageWidth or ExternalTrigger dynamically viaset framegrabber param, by
providing a corresponding special parameter with the same name but written with small letters
and underscores, e.g.,’image width’ or ’external trigger’.

Independent of whether a general parameter can be modified dynamically, you can query its
current value by calling the operatorget framegrabber param with its “translated” name,
i.e., capitals replaced by small letters and underscores asdescribed above.

HALCON Application Guide, 2005-02-01

5 The Various Modes of Grabbing Images 15

5 The Various Modes of Grabbing Images

Section 2showed that grabbing images is very easy in HALCON– you just call grab image!
But of course there’s more to image grabbing than just to get an image, e.g., how to assure an
exact timing. This section therefore describes more complex grabbing modes.

5.1 Real-Time Image Acquisition

As a technical term, the attributereal-timemeans that a process guarantees that it meets given
deadlines. Please keep in mind thatnone of the standard operating systems, i.e., neither !
Windows NT/2000/XP nor Linux, are real-time operating systems. This means that the op-
erating system itself does not guarantee that your application will get the necessary processing
time before its deadline expires. From the point of view of a machine vision application running
under a non-real-time operating system, the most you can do is assure that real-time behavior is
not already prevented by the application itself.

In a machine vision application, real-time behavior may be required at multiple points:

Image delay: The camera must “grab” the image, i.e., expose the chip, at the correct moment,
i.e., while the part to be inspected is completely visible.

Frame rate: The most common real-time requirement for a machine vision application is to
“reach frame rate”, i.e., acquire and process all images thecamera produces.

Processing delay:The image processing itself must complete in time to allow a reaction to its
results, e.g., to remove a faulty part from the conveyor belt. As this point relates only
indirectly to the image acquisition it is ignored in the following.

5.1.1 Non-Real-Time Grabbing Using grab image

Figure 8shows the timing diagram for the standard grabbing mode, i.e., if you use the operator
grab image from within your application. This operator call is “translated” by the HALCON
frame grabber interface and the SDK into the corresponding signal to the frame grabber board
(marked with’Grab’).

The frame grabber now waits for the next image. In the example, a free-running analog
progressive-scan camera is used, which produces images continuously at a fixed frame rate;
the start of a new image is indicated by a so-calledvertical sync signal. The frame grabber then
digitizes the incoming analog image signal and transforms it into an image matrix. If a digital
camera is used, the camera itself performs the digitizing and transfers a digital signal which is
then transformed into an image matrix by the frame grabber. Please refer toappendix B.2for
more information about interlaced grabbing.

The image is then transferred from the frame grabber into computer memory via the PCI bus
using DMA (direct memory access). This transfer can either beincrementalas depicted in
figure 8, if the frame grabber has only a FIFO buffer, or in a single burst as depicted infigure 9,
if the frame grabber has a frame buffer on board. The advantage of the incremental transfer is
that the transfer is concluded earlier. In contrast, the burst mode is more efficient; furthermore,
if the incremental transfer via the PCI bus cannot proceed for some reason, a FIFO overflow

HALCON 6.1.4

16 Application Note on Image Acquisition

create
HImage

frame rate
original

frame rate
original

frame rate
original

delay
image

frame rate
processing

expose expose expose expose

application

HFGI & SDK

delay image

frame

grabber

camera t

t

t

t

t

t
software

create
HImage

digitize digitize
wait for
vsync

wait for
vsync

wait for
image

grab_image

wait for
image

Grab Grab
(DMA)

transfer

(analog)

transfer

process process
grab_image

Figure 8: Standard timing using grab image (configuration: free-running progressive-scan cam-
era, frame grabber with incremental image transfer).

results, i.e., image data is lost. Note that in both modes thetransfer performance depends on
whether the PCI bus is used by other devices as well!

When the image is completely stored in the computer memory, the HALCON frame grabber
interface transforms it into a HALCON image and returns the control to the application which
processes the image and then callsgrab image again. However, even if the processing time
is short in relation to the frame rate, the camera has alreadybegun to transfer the next image
which is therefore “lost”; the application can therefore only process every second image.

You can check this behavior using the HDevelop example program
hdevelop\real time grabbing ids.dev (preconfigured for the HALCONIDS inter-
face, please adapt the parts which open the connection for your own frame grabber), which
determines achievable frame rates for grabbing and processing (here: calculating a difference
image) first separately and then together as follows:

grab_image (BackgroundImage, FGHandle)

count_seconds (Seconds1)

for i := 1 to 20 by 1

grab_image (Image, FGHandle)

sub_image (BackgroundImage, Image, DifferenceImage, 1, 128)

endfor

count_seconds (Seconds2)

TimeGrabImage := (Seconds2-Seconds1)/20

FrameRateGrabImage := 1 / TimeGrabImage

HALCON Application Guide, 2005-02-01

5.1.2 Grabbing Without Delay Using Asynchronously Resettable Cameras 17

frame rate
original

delay
image

= 0

create
HImage

frame rate
processing

expose expose

application

HFGI & SDK

frame

grabber

camera t

t

t

t

t

t
software grab_image

digitize

Expose

wait for
vsync

Grab

Expose

wait for
vsync digitize

wait for
image

create
HImage

(DMA)

transfer

(analog)

transfer

process process

Grab

wait for
image

grab_image

Figure 9: Using a asynchronously resettable camera together with grab image (configuration:
progressive-scan camera, frame grabber with burst transfer, volatile grabbing).

To see the non-deterministic image delay, execute the operator grab image in the step mode by
pressing F6 ; the execution time displayed in HDevelop’s status bar willrange between once
and twice the original frame period. Please note that on UNIXsystem, the time measurements
are performed with a lower resolution than on Windows systems.

5.1.2 Grabbing Without Delay Using Asynchronously Resetta ble Cameras

If you use a free-running camera, the camera itself determines the exact moment an image is
acquired (exposed). This leads to a delay between the momentyou callgrab image and the
actual image acquisition (seefigure 8). The delay is not deterministic, but at least it is limited
by the frame rate; for example, if you use an NTSC camera with aframe rate of 30 Hz, the
maximum delay can be 33 milliseconds.

Of course, such a delay is not acceptable in an application that is to inspect parts at a high rate.
The solution is to use cameras that allow a so-calledasynchronous reset. This means that upon a
signal from the frame grabber, the camera resets the image chip and (almost) immediately starts
to expose it. Typically, such a camera does not grab images continuously but only on demand.

An example timing diagram is shown infigure 9. In contrast tofigure 8, the image delay is (al-
most) zero. Furthermore, because the application now specifies when images are to be grabbed,
all images can be processed successfully; however, the achieved frame rate still includes the
processing time and therefore may be too low for some machinevision applications.

HALCON 6.1.4

18 Application Note on Image Acquisition

5.1.3 Volatile Grabbing

As shown infigure 8, after the image has been transferred into the computer memory, the
HALCON frame grabber interface needs some time to create a corresponding HALCON image
which is then returned in the output parameterImage of grab image. Most of this time (about
3 milliseconds on a 500 MHz Athlon K6 processor for a gray value NTSC image) is needed to
copy the image data from the buffer which is the destination of the DMA into a newly allocated
area.

You can switch off the copying by using the so-calledvolatile grabbing, which can be enabled
via the operatorset framegrabber param (parameter’volatile’):

set_framegrabber_param (FGHandle, ’volatile’, ’enable’)

Then, the time needed by the frame grabber interface to create the HALCON image is signif-
icantly reduced as visualized infigure 9. Note that usually volatile grabbing is only supported
for gray value images!

The drawback of volatile grabbing is that grabbed images areoverwritten by subsequent grabs.
To be more exact, the overwriting depends on the number of image buffers allocated by the
frame grabber interface or SDK. Typically, at least two buffers exist; therefore, you can safely
process an image even if the next image is already being grabbed as infigure 11. Some frame
grabber interfaces allow to use more than two buffers, and even to select their number dynami-
cally viaset framegrabber param (parameter’num buffers’).

You can check this behavior using the HDevelop example program
hdevelop\volatile grabbing ids.dev (preconfigured for the HALCONIDS inter-
face, please adapt the parts which open the connection for your own frame grabber). After
grabbing a first image and displaying it via

grab_image (FirstImage, FGHandle)

dev_open_window (0, 0, Width/2, Height/2, ’black’, FirstWindow)

dev_display (FirstImage)

change the scene and grab a second image which is displayed inan individual window:

grab_image (SecondImage, FGHandle)

dev_open_window (0, Width/2 + 8, Width/2, Height/2, ’black’, SecondWindow)

dev_display (SecondImage)

Now, images are grabbed in a loop and displayed in a third window. The two other images are
also displayed each time. If you change the scene before eachgrab you can see how the first
two images are overwritten in turn, depending on the number of buffers.

dev_open_window (Height/2 + 66, Width/4 + 4, Width/2, Height/2, ’black’,

ThirdWindow)

for i := 1 to 10 by 1

grab_image (CurrentImage, FGHandle)

dev_set_window (ThirdWindow)

dev_display (CurrentImage)

dev_set_window (FirstWindow)

dev_display (FirstImage)

dev_set_window (SecondWindow)

dev_display (SecondImage)

endfor

HALCON Application Guide, 2005-02-01

5.1.4 Real-Time Grabbing Using grab image async 19

frame rate
original

frame rate
original

frame rate
original

delay
image

create
HImage

"negative"
image
delay

frame rate
processing

expose expose expose expose

application

HFGI & SDK

frame

grabber

camera t

t

t

t

t

t
software

wait for
vsync

wait for
image

Grab

grab_image_async

wait for
vsync

wait for
vsync

digitize digitize digitize

(DMA)

transfer

(analog)

transfer

create
HImage

create
HImage

grab_image_async grab_image_async

wait for
image

wait for
image

process process process

Grab Grab Grab

Figure 10: Grabbing and processing in parallel using grab image async .

5.1.4 Real-Time Grabbing Using grab image async

The main problem with the standard timing usinggrab image is that the two processes of
image grabbing and image processing run sequentially, i.e., one after the other. This means that
the time needed for processing the image is included in the resulting frame rate, with the effect
that the frame rate provided by the camera cannot be reached by definition.

This problem can be solved by using the operatorgrab image async. Here, the two pro-
cesses are decoupled and can run asynchronously, i.e.,an image can be processed while the !
next image is already being grabbed. Figure 10shows a corresponding timing diagram: The
first call to grab image async is processed similar tograb image (comparefigure 8). The
difference becomes apparent after the transfer of the imageinto computer memory: Almost im-
mediately after receiving the image, the frame grabber interface automatically commands the
frame grabber to acquire a new image. Thus, the next image is grabbed while the application
processes the previous image. After the processing, the application callsgrab image async

again, which waits until the already running image acquisition is finished. Thus, the full frame
rate is now reached. Note that some frame grabbers fail to reach the full frame rate even with
grab image async; section 5.1.5shows how to solve this problem.

In the HDevelop example programhdevelop\real time grabbing ids.dev, which was al-
ready described insection 5.1.1, the reached frame rate for asynchronous processing is deter-
mined as follows:

HALCON 6.1.4

20 Application Note on Image Acquisition

grab_image (BackgroundImage, FGHandle)

count_seconds (Seconds1)

for i := 1 to 20 by 1

grab_image_async (Image, FGHandle, -1)

sub_image (BackgroundImage, Image, DifferenceImage, 1, 128)

endfor

count_seconds (Seconds2)

TimeGrabImageAsync := (Seconds2-Seconds1)/20

FrameRateGrabImageAsync := 1 / TimeGrabImageAsync

As can be seen infigure 10, the first call tograb image async has a slightly different effect
than the following ones, as it also triggers the first grab command to the frame grabber. As an
alternative, you can use the operatorgrab image start which just triggers the grab command;
then, the first call tograb image async behaves as the other ones. This is visualized, e.g., in
figure 11; as you can see, the advantage of this method is that the application can perform some
processing before callinggrab image async.

In the example, the processing was assumed to be faster than the acquisition. If this is not the
case, the image will already be ready when the next call tograb image async arrives. In this
case, you can specify how “old” the image is allowed to be using the parameterMaxDelay.
Please refer tosection 5.1.7for details.

Please note that when usinggrab image async it is not obvious anymore which image is
returned by the operator call, because the call is decoupledfrom the command to the frame
grabber! In contrast tograb image, which always triggers the acquisition of a new image,
grab image async typically returns an image which has been exposed before theoperator was
called, i.e., the image delay is negative (seefigure 10)! Keep this effect in mind when changing
parameters dynamically; contrary to intuition, the changewill not affect the image returned by
the next call ofgrab image async but by the following ones! Another problem appears when
switching dynamically between cameras (seesection 5.3.1).

5.1.5 Continuous Grabbing

For some frame grabbersgrab image async fails to reach the frame rate because the grab
command to the frame grabber comes too late, i.e., after the camera has already started to
transfer the next image (seefigure 11a).

As a solution to this problem, some frame grabber interfacesprovide the so-calledcontinuous
grabbing modewhich can be enables only via the operatorset framegrabber param (param-
eter’continuous grabbing’):

set_framegrabber_param (FGHandle, ’continuous_grabbing’, ’enable’)

In this mode, the frame grabber reads images from a free-running camera continuously and
transfers them into computer memory as depicted infigure 11b. Thus, the frame rate is reached.
If your frame grabber supports continuous grabbing you can test this effect in the example pro-
gramhdevelop\real time grabbing ids.dev, which was already described in the previous
sections; the program measures the achievable frame rate for grab image async without and
with continuous grabbing.

We recommend to use continuous grabbing only if you want to process every image; otherwise,
images are transmitted over the PCI bus unnecessarily, thereby perhaps blocking other PCI
transfers.

HALCON Application Guide, 2005-02-01

5.1.5 Continuous Grabbing 21

frame rate
original

frame rate
original

frame rate
original

frame rate
processing

create
HImage

create
HImage

frame rate
processing

expose expose expose expose

a)

b)

HFGI & SDK

application

HFGI & SDK

application

frame

grabber

camera

frame

grabber

t

t

t

t

t

t

t

t

t

t

t

software

software

wait for
vsync

wait for
image

Grab

digitize digitize
wait for
vsync

(DMA)

transfer

(analog)

transfer

wait for
image

digitize digitize

wait for
image

digitize

wait for
image

(DMA)

transfer

(analog)

transfer

wait for
image

create
HImage

grab_image_async

create
HImage

grab_image_async grab_image_async

create
HImage

process process

grab_image_async
etc

grab_image_async
etc

process process process

Grab

Grab

Grab

Grab Grab Grab

grab_image_start

set ’continuous_grabbing’

grab_image_start

Figure 11: a) grab image async fails to reach frame rate; b) problem solved using continuous
grabbing.

Note that some frame grabber interfaces provide additionalfunctionality in the continuous grab-
bing mode, e.g., the HALCONBitFlow interface. Please refer to the corresponding documen-
tation for more information.

HALCON 6.1.4

22 Application Note on Image Acquisition

delay
image

= 0

create
HImage

frame rate
original

frame rate
processing

expose expose

HFGI & SDK

application

frame

grabber

camera t

t

t

t

t

t
software

digitize
wait for
vsync

wait for
image

digitize

create
HImage

Expose

(DMA)

transfer

(analog)

transfer

process process

Grab

wait for
image

Grab

grab_image_async

wait for
vsyncExpose

Grab

grab_image_async

Figure 12: Using a asynchronously resettable camera together with grab image async (config-
uration as in figure 9.

5.1.6 Using grab image async Together With Asynchronously Resettable Cam-
eras

As described insection 5.1.2, you can acquire images without delay by using an asynchronously
resettable camera.Figure 12shows the resulting timing when using such a camera together
with grab image async. When comparing the diagram to the one infigure 9, you can see that
a higher frame rate can now be reached, because the processing time is not included anymore.

5.1.7 Specifying a Maximum Delay

In contrast tograb image, the operatorgrab image async has an additional parameter
MaxDelay, which lets you specify how “old” an already grabbed image may be in order to
be accepted.Figure 13visualizes the effect of this parameter. There are two casesto distin-
guish: If the call tograb image arrives before the next image has been grabbed (first call in
the example), the parameter has no effect. However, if an image has been grabbed already (sec-
ond and third call in the example), the elapsed time since thelast grab command to the frame
grabber is compared toMaxDelay. If it is smaller (second call in the example), the image is
accepted; otherwise (third call), a new image is grabbed.

Please note that the delay is not measured starting from the moment the image is exposed, as
you might perhaps expect! Currently, only a few frame grabber SDKs provide this information;

HALCON Application Guide, 2005-02-01

5.2 Using an External Trigger 23

create
HImage

create
HImage

exposeexpose expose expose

HFGI & SDK

application

frame

grabber

camera t

t

t

t

t

t
software

digitizedigitize digitize digitize

wait for
image

wait for
image

(DMA)

transfer

(analog)

transfer

> MaxDelay? NO > MaxDelay? YES

process process process process

grab_image_async

GrabGrabGrabGrab

Figure 13: Specifying a maximum delay for grab image async (using continuous grabbing).

therefore, the last grab command from the interface to the the frame grabber is used as the
starting point instead.

5.2 Using an External Trigger

In the previous section, the software performing the machine vision task decided when to ac-
quire an image (software trigger). In industrial applications, however, the moment for image
acquisition is typically specified externally by the process itself, e.g., in form of a hardware
trigger signal indicating the presence of an object to be inspected. Most frame grabber boards
are therefore equipped with at least one input line for such signals, which are calledexternal
triggers.

From HALCON’s point of view, external triggers are dealt with by the frame grabber board,
the only thing to do is to inform the frame grabber to use the trigger. You can do this simply
by setting the parameterExternalTrigger of open framegrabber to ’true’. Some frame
grabber interfaces also allow to enable or disable the trigger dynamically using the operator
set framegrabber param (parameter’external trigger’).

Figure 14ashows the timing diagram when using an external trigger together withgrab image

and a free-running camera. After the call tograb image, the frame grabber board waits for
the trigger signal. When it appears, the procedure described in the previous section follows:
The frame grabber waits for the next image, digitizes it, andtransfers it into computer memory;

HALCON 6.1.4

24 Application Note on Image Acquisition

delay
image

delay
image

= 0

create
HImage

create
HImage

create
HImage

expose

delay
image

= 0

delay
image

= 0

exposeexpose expose expose

HFGI & SDK

application

expose

HFGI & SDK

application

a)

b)

expose

trigger

frame

grabber

camera

frame

grabber

camera

trigger

t

t

t

t

t

t
software

t

t

t

t

t

t
software

wait for
trigger

wait for
vsync

wait for
trigger

wait for
image

(DMA)

transfer

(analog)

transfer

wait for
trigger

wait for
vsync

(DMA)

transfer

(analog)

transfer

Trigger

Trigger

digitize

process

Trigger Trigger

wait for
image

digitize

wait for
image

process

Trigger

process

Trigger

wait for
image

wait for
vsync

digitize

Grab

wait for
vsync

digitize

Trigger

wait for
image

grab_image_async

grab_image

Grab

Grab

Expose

grab_image

Grab

ExposeExpose Expose

etc

grab_image_start
grab_image_async grab_image_async

GrabGrab

Figure 14: Using an external trigger together with: a) free-running camera and grab image; b)
asynchronously resettable camera and grab image async .

then, the HALCON frame grabber interface transforms it intoa HALCON image and returns the
control to the application which processes the image and then callsgrab image again, which
causes the frame grabber board to wait for the next trigger signal.

The (bad) example infigure 14awas chosen on purpose to show an unsuitable configuration

HALCON Application Guide, 2005-02-01

5.2.1 Special Parameters for External Triggers 25

for using an external trigger: First of all, because of the free-running camera there is a non-
deterministic delay between the arrival of the trigger signal and the exposure of the image,
which may mean that the object to be inspected is not completely visible anymore. Secondly,
becausegrab image is used, trigger signals which arrive while the applicationis processing an
image are lost.

Both problems can easily be solved by using an asynchronously resettable camera together with
the operatorgrab image async as depicted infigure 14b.

The C++ example programcpp\error handling timeout picport.cpp (preconfigured for
the HALCONPicPort interface) shows how simple it is to use an external trigger:The con-
nection is opened withExternalTrigger set to’true’:

HFramegrabber framegrabber;

framegrabber.OpenFramegrabber(fgname, 1, 1, 0, 0, 0, 0, "default", -1,

"gray", -1, "true", camtype, device,

-1, -1);

Then, images are grabbed:

HImage image;

do

{

image = framegrabber.GrabImageAsync(-1);

} while (button == 0);

The example contains a customized error handler which checks whether there is an external
trigger; this part is described in detail insection 6.2.3.

5.2.1 Special Parameters for External Triggers

Most frame grabber interfaces allow to further configure theuse of external triggering via the
operatorset framegrabber param. As mentioned insection 4.2, some interfaces allow to
enable and disable the external trigger dynamically via theparameter’external trigger’.
Another useful parameter is’grab timeout’, which sets a timeout for the acquisition process
(some interfaces provide an additional parameter’trigger timeout’ just for triggered grab-
bing). Without such a timeout, the application would hang iffor some reason no trigger signal
arrives. In contrast, if a timeout is specified, the operatorsgrab image andgrab image async

only wait the specified time and then return an error code or raise an exception, depending on
the programming language used.Section 6.2shows how to handle such errors.

Other parameters allow to further specify the form of the trigger signal (’trigger signal’),
e.g., whether the falling or the rising edge is used as the trigger, select between multiple trigger
input lines, or even filter trigger signals. Some frame grabber interfaces also allow to influence
the exposure via the trigger signal.

5.3 Acquiring Images From Multiple Cameras

The timing diagrams shown in the previous sections depictedthe case of a single camera. Be-
low we discuss some issues which arise when acquiring imagesfrom multiple cameras (see

HALCON 6.1.4

26 Application Note on Image Acquisition

section 3.2for possible configurations).

5.3.1 Dynamic Port Switching and Asynchronous Grabbing

If you switch dynamically between multiple cameras connected to a single board as described
in section 3.2.4you must be careful when usinggrab image async: By default, the frame
grabber interface commands the frame grabber board to grab the next image automatically after
it received the current image — but before the next call ofgrab image async! If you switched
to another camera before this call, the frame grabber might already be busy grabbing an image
from the first camera.

Some frame grabber interfaces solve this problem by providing the parameter
’start async after grab async’ for the operator set framegrabber param which
allows to disable the automatic grab command to the frame grabber board.

5.3.2 Simultaneous Grabbing

Some frame grabber interfaces provide special functionality to grab imagessimultaneouslyfrom
multiple (synchronized) cameras. Typically, the cameras are connected to a single frame grab-
ber board; thePicPort interface also allows to grab simultaneously from cameras connected
to multiple boards. As described insection 3.2.5, the images are grabbed by a single call to
grab image or grab image async, which return them in form of a multi-channel image. De-
pending on the frame grabber interface, it may be necessary to switch on the simultaneous
grabbing via the operatorset framegrabber param.

Please keep in mind that even if a HALCON frame grabber interface supports simultaneous
grabbing, this might not be true for every frame grabber board the interface supports! In order
to grab multiple images simultaneously, a frame grabber board must be equipped with multiple
“grabbing units”; for example, an analog frame grabber board must be equipped with multiple
A/D converters. Please check this in the documentation of your frame grabber board.

Even if a HALCON frame grabber interface does not provide thespecial simultaneous grabbing
mode, you can realize a similar behavior “manually”, e.g., by connecting each (asynchronously
resettable) camera to a single frame grabber board and then using a common external trigger
signal to synchronize the grabbing.

HALCON Application Guide, 2005-02-01

6 Miscellaneous 27

6 Miscellaneous

6.1 Acquiring Images From Unsupported Frame Grabbers

If you want to use a frame grabber which is currently not supported by HALCON, i.e., for
which no HALCON interface exists there exist two principal ways: First, you can create
your own HALCON frame grabber interface; how to do this is described in detail in the
Frame Grabber Integration Programmer’s Manual.

As an alternative, you can pass externally created images, i.e., the raw image matrix, to HAL-
CON using the operatorsgen image1, gen image3, or gen image1 extern, which create a
corresponding HALCON image. The main difference between the operatorsgen image1 and
gen image1 extern is that the former copies the image matrix when creating the HALCON
image, whereas the latter doesn’t, which is useful if you want to realizevolatile grabbingas
described insection 5.1.3.

The C example programc\use extern image.c shows how to use the operator
gen image1 extern to pass standard gray value images to HALCON. In this case, the im-
age matrix consists of 8 bit pixels (bytes), which can be represented by the data typeunsigned
char. At the beginning, the program calls a procedure which allocates memory for the images
to be “grabbed”; in a real application this corresponds to the image buffer(s) used by the frame
grabber SDK.

unsigned char *image_matrix_ptr;

long width, height;

InitializeBuffer(&image_matrix_ptr, &width, &height);

The example program “simulates” the grabbing of images witha procedure which reads images
from an image sequence and copies them into the image buffer.Then, the content of the image
buffer is transformed into a HALCON image (typebyte) via gen image1 extern. The pa-
rameterClearProc is set to0 to signal that the program itself takes care of freeing the memory.
The created HALCON image is then displayed. The loop can be exited by clicking into the
HALCON window with any mouse button.

Hobject image;

long window_id;

open_window (0, 0, width, height, 0, "visible", "", &window_id);

while (!ButtonPressed(window_id))

{

MyGrabImage((const unsigned char **) &image_matrix_ptr);

gen_image1_extern(&image, "byte", width, height,

(long) image_matrix_ptr, (long) 0);

disp_obj(image, window_id);

}

If your frame grabber supplies images with more than 8 bit pixels, you must adapt both
the data type for the image matrix and the type of the created HALCON image (parameter
Type of gen image1 extern). In case of color images HALCON expects the image data in
form of three separate image matrices. You can create a HALCON image either by calling
the operatorgen image3 with the three pointers to the matrices, or by calling the operator

HALCON 6.1.4

28 Application Note on Image Acquisition

Figure 15: Popup dialog in HDevelop signaling a timeout.

gen image1 extern three times and then using the operatorchannels to image to combine
the three images into a multi-channel image. Please refer toappendix Afor more information
about HALCON images in general.

6.2 Error Handling

Just as the HALCON frame grabber interfaces encapsulate thecommunication with a frame
grabber board, they also encapsulate occurring errors within the HALCON error handling mech-
anism. How to catch and react to these errors is described below, for HDevelop programs and
also for programs using HALCON’s programming language interfaces.

Some HALCON frame grabber interfaces provide special parameters for
set framegrabber param which are related to error handling. The most commonly
used one is the parameter’grab timeout’ which specifies when the frame grabber should
quit waiting for an image. The examples described in the following sections show how to
handle the corresponding HALCON error.

Note that all example programs enable the signaling of low level errors via the operator
set system, e.g., in HDevelop syntax via

set_system (’do_low_error’, ’true’)

In this mode, low level errors occurring the frame grabber SDK (or in the HALCON interface)
in are signaled by a message box.

6.2.1 Error Handling in HDevelop

The HDevelop examplehdevelop\error handling timeout picport.dev shows how to
handle HALCON errors in a HDevelop program. To “provoke” an error, open framegrabber

is called withExternalTrigger = ’true’. If there is no trigger, a call tograb image results
in a timeout; HDevelop reacts to this error with the popup dialog shown infigure 15and stops
the program.

open_framegrabber (FGName, 1, 1, 0, 0, 0, 0, ’default’, -1, ’default’, -1,

’true’, CameraType, Device, -1, -1, FGHandle)

set_framegrabber_param (FGHandle, ’grab_timeout’, 2000)

grab_image (Image, FGHandle)

HALCON lets you modify the reaction to an error with the operator set check (in HDevelop:
dev set check). If you set it to’˜give error’, the program does not stop in case of an
error but only stores its cause in form of an error code. To access this error code in HDevelop,

HALCON Application Guide, 2005-02-01

6.2.2 Error Handling Using HALCON/C 29

you must define a corresponding variable using the operatordev error var. Note that this
variable is updated after each operator call; to check the result of a single operator we therefore
recommend to switch back into the standard error handling mode directly after the operator call
as in the following lines:

dev_error_var (ErrorNum, 1)

dev_set_check (’~give_error’)

grab_image (Image, FGHandle)

dev_error_var (ErrorNum, 0)

dev_set_check (’give_error’)

To check whether a timeout occurred, you compare the error variable with the code signal-
ing a timeout (5322); a list of error codes relating to image acquisition can be found in the
Frame Grabber Integration Programmer’s Manual. In the example, the timeout is handled by
disabling the external trigger mode via the operatorset framegrabber param (parameter
’external trigger’). Then, the call tograb image is tested again.

if (ErrorNum = 5322)

set_framegrabber_param (FGHandle, ’external_trigger’, ’false’)

dev_error_var (ErrorNum, 1)

dev_set_check (’~give_error’)

grab_image (Image, FGHandle)

dev_error_var (ErrorNum, 0)

dev_set_check (’give_error’)

endif

Now, the error variable should contain the value2 signaling that the operator call succeeded;
for this value HDevelop provides the constantH MSG TRUE. If you get another error code, the
program accesses the corresponding error text using the operatorget error text.

if (ErrorNum # H_MSG_TRUE)

get_error_text (ErrorNum, ErrorText)

endif

If your frame grabber interface does not provide the parameter ’external trigger’, you
can realize a similar behavior by closing the connection andthen opening it again with
ExternalTrigger set to’false’.

6.2.2 Error Handling Using HALCON/C

The mechanism for error handling in a program based on HALCON/C is similar to the one in
HDevelop; in fact, it is even simpler, because each operatorautomatically returns its error code.
However, if a HALCON error occurs in a C program, the default error handling mode causes
the program to abort.

The C example programc\error handling timeout picport.c performs the same task as
the HDevelop program in the previous section; if the call tograb image succeeds, the program
grabs and displays images in a loop, which can be exited by clicking into the window. The
following lines show how to test whether a timeout occurred:

HALCON 6.1.4

30 Application Note on Image Acquisition

set_check ("~give_error");

error_num = grab_image (&image, fghandle);

set_check ("give_error");

switch (error_num)

{

case H_ERR_FGTIMEOUT:

As you see, in a C program you can use prefined constants for theerror codes (see the
Frame Grabber Integration Programmer’s Manualfor a list of image acquisition error codes and
their corresponding constants).

6.2.3 Error Handling Using HALCON/C++

If your application is based on HALCON/C++, there are two methods for error handling: If you
use operators in their C-like form, i.e., preceeded by a double colon (e.g.,::grab image), you
can apply the same procedure as described for HALCON/C in theprevious section.

In addition, HALCON/C++ provides an exception handling mechanism based on the class
HException, which is described in theHALCON/C++ User’s Manual. Whenever a HAL-
CON error occurs, an instance of this class is created. The main idea is that you can spec-
ify a procedure which is then called automatically with the created instance ofHException
as a parameter. How to use this mechanism is explained in the C++ example program
cpp\error handling timeout picport.cpp, which performs the same task as the examples
in the previous sections.

In the example programcpp\error handling timeout picport.cpp (preconfigured for the
HALCON PicPort interface), the procedure which is to be called upon error isvery simple: It
just raises a standard C++ exception with the instance ofHException as a parameter.

void MyHalconExceptionHandler(const HException& except)

{

throw except;

}

In the program, you “install” this procedure via a class method ofHException:

int main(int argc, char *argv[])

{

HException::InstallHHandler(&MyHalconExceptionHandler);

Now, you react to a timeout with the following lines:

try

{

image = framegrabber.GrabImage();

}

catch (HException except)

{

if (except.err == H_ERR_FGTIMEOUT)

{

framegrabber.SetFramegrabberParam("external_trigger", "false");

HALCON Application Guide, 2005-02-01

6.2.4 Error Handling Using HALCON/COM 31

As already noted, if your frame grabber interface does not provide the parameter
’external trigger’, you can realize a similar behavior by closing the connection and then
opening it again withExternalTrigger set to’false’:

if (except.err == H_ERR_FGTIMEOUT)

{

framegrabber.OpenFramegrabber(fgname, 1, 1, 0, 0, 0, 0, "default",

-1, "gray", -1, "false", camtype,

"default", -1, -1);

Note that when callingOpenFramegrabber via the classHFramegrabber as above, the operator
checks whether it is called with an already opened connection and automatically closes it before
opening it with the new parameters.

6.2.4 Error Handling Using HALCON/COM

The HALCON/COM interface uses the standard COM error handling technique where every
method call passes both a numerical and a textual representation of the error to the calling
framework. How to use this mechanism is explained in the Visual Basic example program
vb\error handling timeout picport\error handling timeout picport.vbp, which
performs the same task as the examples in the previous sections.

For each method, you can specify an error handler by inserting the following line at the begin-
ning of the method:

On Error GoTo ErrorHandler

At the end of the method, you insert the code for the error handler. If a runtime error occurs,
Visual Basic automatically jumps to this code, with the error being described in the variableErr.
However, the returned error number does not correspond directly to the HALCON error as in
the other programming languages, because low error numbersare reserved for COM. To solve
this problem HALCON/COM uses an offset which must be subtracted to get the HALCON
error code. This offset is accessible as a property of the classHSystemX:

ErrorHandler:

Dim sys As New HSystemX

ErrorNum = Err.Number - sys.ErrorBaseHalcon

The following code fragment checks whether the error is due to a timeout. If yes, the program
disables the external trigger mode and tries again to grab animage. If the grab is successful
the program continues at the point the error occurred; otherwise, the Visual Basic default error
handler is invoked. Note that in contrast to the other programming languages HALCON/COM
does not provide constants for the error codes.

If (ErrorNum = 5322) Then

Call FG.SetFramegrabberParam("external_trigger", "false")

Set Image = FG.GrabImage

Resume Next

If the error is not caused by a timeout, the error handler raises it anew, whereupon the Visual
Basic default error handler is invoked.

HALCON 6.1.4

32 Application Note on Image Acquisition

Else

Err.Raise (Err.Number)

End If

If your frame grabber interface does not provide the parameter ’external trigger’, you
can realize a similar behavior by closing the connection andthen opening it again with
ExternalTrigger set to’false’. Note that the classHFramegrabberX does not provide
a method to close the connection; instead you must destroy the variable with the following line:

Set FG = Nothing

6.3 Line Scan Cameras

From the point of view of HALCON there is no difference between area and line scan cameras:
Both acquire images of a certain width an height; whether theheight is 1, i.e., a single line,
or larger does not matter. In fact, in many line scan applications the frame grabber combines
multiple acquired lines to form a so-calledpagewhich further lessens the difference between
the two camera types.

The main problem is therefore whether your frame grabber supports line scan cameras. If yes,
you can acquire images from it via HALCON exactly as from an area scan camera. With the
parameterImageHeight of the operatoropen framegrabber you can sometimes specify the
height of the page; typically, this information is set in thecamera configuration file. Some
HALCON frame grabber interfaces allow to further configure the acquisition mode via the
operatorset framegrabber param.

The images acquired from a line scan camera can then be processed just like images from
area scan cameras. However, line scan images often pose an additional problem: The ob-
jects to inspect may be spread over multiple images (pages).To solve this problem, HAL-
CON provides special operators:tile images allows to merge images into a larger image,
merge regions line scan andmerge cont line scan xld allow to merge the (intermedi-
ate) processing results of subsequent images.

How to use these operators is explained in the HDevelop example program
hdevelop\line scan.dev. The program is based on an image file sequence which is
read using the HALCON virtual frame grabber interfaceFile; the task is to extract paper clips
and calculate their orientation. Furthermore, the gray values in a rectangle surrounding each
clip are determined.

An important parameter for the merging is over how many images an object can be spread. In
the example, a clip can be spread over 4 images:

MaxImagesRegions := 4

The continuous processing is realized by a simple loop: At each iteration, a new image is
grabbed, and the regions forming candidates for the clips are extracted using thresholding.

while (1)

grab_image (Image, FGHandle)

threshold (Image, CurrRegions, 0, 80)

The current regions are then merged with ones extracted in the previous image using the oper-
atormerge regions line scan. As a result, two sets of regions are returned: The parameter

HALCON Application Guide, 2005-02-01

6.3 Line Scan Cameras 33

a)

b)

c)

4

3
2

1

5 6

3

3

4

1

2

1

2

Figure 16: Merging regions extracted from subsequent line scan images: state after a) 2, b)
3, c) 4 images (large coordinate system: tiled image; small coordinate systems:
current image or most recent image).

CurrMergedRegions contains the current regions, possibly extended by fitting parts of the pre-
viously extracted regions, whereas the parameterPrevMergedRegions contains the rest of the
previous regions.

merge_regions_line_scan (CurrRegions, PrevRegions, CurrMergedRegions,

PrevMergedRegions, ImageHeight, ’top’,

MaxImagesRegions)

connection (PrevMergedRegions, ClipCandidates)

select_shape (ClipCandidates, FinishedClips, ’area’, ’and’, 4500, 7000)

The regions inPrevMergedRegions are “finished”; from them, the program selects the clips
via their area further processes them later, e.g., determines their position and orientation. The
regions inCurrMergedRegions are renamed and now form the previous regions for the next
iteration.

copy_obj (CurrMergedRegions, PrevRegions, 1, -1)

endwhile

Note that the operatorcopy obj does not copy the regions themselves but only the correspond-
ing HALCON objects, which can be thought of as references to the actual region data.

Before we show how to merge the images let’s take a look atfigure 16, which visualizes the
whole process: After the first two imagesCurrMergedRegions contains three clip parts; for
the first one a previously extracted region was merged. Note that the regions are described in

HALCON 6.1.4

34 Application Note on Image Acquisition

the coordinate frame of the current image; this means that the merged part of clip no. 1 has
negative coordinates.

In the next iteration (figure 16b), further clip parts are merged, but no clip is finished yet. Note
that the coordinate frame is again fixed to the current image;as a consequence the currently
merged regions seem to move into negative coordinates.

After the fourth image (figure 16c), clips no. 1 and 2 are completed; they are returned in
the parameterPrevMergedRegions. Note that they are still described in the coordinate
frame of the previous image (depicted with dashed arrow); tovisualize them together with
CurrMergedRegions they must be moved to the coordinate system of the current image using
the operatormove region:

move_region (FinishedClips, ClipsInCurrentImageCoordinates,

-ImageHeight, 0)

Let’s get back to the task of merging images: To access the gray values around a clip, one must
merge those images over which thePrevMergedRegions can be spread. At the beginning,
therefore an empty image is created which can hold 4 images:

gen_image_const (TiledImage, ’byte’, ImageWidth,

ImageHeight * MaxImagesRegions)

At the end of each iteration, the “oldest” image, i.e., the image at the top, is cut off from
the tiled image usingcrop part, and the current image is merged at the bottom using
tile images offset:

crop_part (TiledImage, TiledImageMinusOldest, ImageHeight, 0,

ImageWidth, (MaxImagesRegions - 1) * ImageHeight)

ImagesToTile := [TiledImageMinusOldest,Image]

tile_images_offset (ImagesToTile, TiledImage, [0,

(MaxImagesRegions-1)*ImageHeight], [0, 0], [-1,

-1], [-1, -1], [-1, -1], [-1, -1], ImageWidth,

MaxImagesRegions * ImageHeight)

As noted above, the regions returned inPrevMergedRegions are described in the coordinate
frame of the most recent image (depicted with dashed arrow infigure 16c); to extract the cor-
responding gray values from the tiled image, they must first be moved to its coordinate system
(depicted with longer arrows) using the operatormove region. Then, the surrounding rectan-
gles are created usingshape trans, and finally the corresponding gray values are extracted
usingadd channels:

move_region (FinishedClips, ClipsInTiledImageCoordinates,

(MaxImagesRegions-1) * ImageHeight, 0)

shape_trans (ClipsInTiledImageCoordinates, AroundClips, ’rectangle1’)

add_channels (AroundClips, TiledImage, GrayValuesAroundClips)

HALCON Application Guide, 2005-02-01

A HALCON Images 35

Appendix

A HALCON Images

In the following, we take a closer look at the way HALCON represents and handles images.
Of course, we won’t bother you with details about the low-level representation and the memory
management; HALCON takes care of it in a way to guarantee optimal performance.

A.1 The Philosophy of HALCON Images

There are three important concepts behind HALCON’s image objects:

1. Multiple channels

Typically, one thinks of an image as a matrix of pixels. In HALCON, this matrix is
called achannel, and images may consist of one or more such channels. For example,
gray value images consist of a single channel, color images of three channels.

The advantage of this representation is that many HALCON operators automatically
process all channels at once; for example, if you want to subtract gray level or color
images from another, you can applysub image without worrying about the image
type. Whether an operator processes all channels at once canbe seen in the pa-
rameter description in the reference manual: If an image parameter is described as
(multichannel-)image or (multichannel-)image(-array) (e.g., the parameter
ImageMinuend of sub image), all channels are processed; if it is described asimage

or image(-array) (e.g., the parameterImage of threshold), only the first channel is
processed.

For more information about channels please refer toappendix A.3.2.

2. Various pixel types

Besides the standard 8 bit (typebyte) used to represent gray value image, HALCON
allows images to contain various other data, e.g. 16 bit integers (typeint2 or uint2) or
32 bit floating point numbers (typereal) to represent derivatives.

Most of the time you need not worry about pixel types, becauseHALCON operators
that output images automatically use a suitable pixel type.For example, the operator
derivate gauss creates areal image to store the result of the derivation. As another
example, if you connect to a frame grabber selecting a value> 8 for the parameter
BitsPerChannel, a subsequentgrab image returns anuint2 image.

3. Arbitrarily-shaped region of interest

Besides the pixel information, each HALCON image also stores its so-calleddomainin
form of a HALCON region. The domain can be interpreted as a region of interest, i.e.,
HALCON operators (with some exceptions) restrict their processing to this region.

The image domain inherits the full flexibility of a HALCON region, i.e., it can be of
arbitrary shape and size, can have holes, or even consist of unconnected points. For
more information about domains please refer toappendix A.3.3.

HALCON 6.1.4

36 Application Note on Image Acquisition

The power of HALCON’s approach lies in the fact that it offersfull flexibility but does not
require you to worry about options you don’t need at the moment. For example, if all you do
is grab and process standard 8 bit gray value images, you can ignore channels and pixel types.
At the moment you decide to use color images instead, all you need to do is to add some lines
to decompose the image into its channels. And if your camera /frame grabber provides images
with more than 8 bit pixel information, HALCON is ready for this as well.

A.2 Image Tuples (Arrays)

Another powerful mechanism of HALCON is the so-calledtuple processing: If you want to
process multiple images in the same way, e.g., to smooth them, you can call the operator
(e.g.,mean image) once passing it all images as a tuple (array), instead of calling it multi-
ple times. Furthermore, some operators always return imagetuples, e.g.,gen gauss pyramid

or inspect shape model.

Whether an operator supports tuple processing can be seen inthe parameter description
in the reference manual: If an input image parameter is described asimage(-array) or
(multichannel-)image(-array) (e.g., the parameterImage of mean image), it supports tu-
ple processing; if it is described asimage or (multichannel-)image (e.g., the parameter
Image of find 1d bar code), only one image is processed.

For information about creating or accessing image tuples please refer toappendix A.3.6.

A.3 HALCON Operators for Handling Images

Below you find a brief overview of operators that allow to create HALCON images or to modify
“technical aspects” like the image size or the number of channels.

A.3.1 Creation

HALCON images are created automatically when you use operators like grab image or
read image. You can also create images from scratch using the operatorslisted in the HDe-
velop menuOperators ⊲ Image ⊲ Creation, e.g.,gen image const or gen image1 extern

(see alsosection 6.1).

A.3.2 Channels

Operators for manipulating channels can be found in the HDevelop menuOperators ⊲

Image ⊲ Channel. You can query the number of channels of an image with the opera-
tor count channels. Channels can be accessed usingaccess channel (which extracts a
specified channel without copying),image to channels (which converts a multi-channel im-
age into an image tuple), ordecompose2 etc. (which converts a multi-channel image into
2 or more single-channel images). Vice versa, you can createa multi-channel image using
channels to image or compose2 etc., and add channels to an image usingappend channel.

HALCON Application Guide, 2005-02-01

A.3.3 Domain 37

A.3.3 Domain

Operators for manipulating the domain of an image can be found in the HDevelop menu
Operators ⊲ Image ⊲ Domain. Upon creation of an image, its domain is set to the full im-
age size. You can set it to a specified region usingchange domain. In contrast, the operator
reduce domain takes the original domain into account; the new domain is equal to the inter-
section of the original domain with the specified region. Please also take a look at the operator
add channels, which can be seen as complementary toreduce domain.

A.3.4 Access

Operators for accessing infomation about a HALCON image canbe found in the HDevelop
menuOperators ⊲ Image ⊲ Access. For example,get image pointer1 returns the size of
an image and a pointer to the image matrix of its first channel.

A.3.5 Manipulation

You can change the size of an image using the operatorschange format or crop part,
or other operators from the HDevelop menuOperators ⊲ Image ⊲ Format. The menu
Operators ⊲ Image ⊲ Type-Conversion lists operators which change the pixel type, e.g.,
convert image type. Operators to modify the pixel values, can be found in the menu
Operators ⊲ Image ⊲ Manipulation, e.g.,paint gray, which copies pixels from one im-
age into another.

A.3.6 Image Tuples

Operators for creating and accessing image tuples can be found in the HDevelop menu
Operators ⊲ Object ⊲ Manipulation. Image tuples can be created using the operators
gen empty obj and concat obj, while the operatorselect obj allows to access an indi-
vidual image that is part of a tuple.

HALCON 6.1.4

38 Application Note on Image Acquisition

B Parameters Describing the Image

When opening a connection withopen framegrabber, you can specify the desired image for-
mat, e.g., ist size or the number of bits per pixel, using 9 parameters, which are described in the
following.

B.1 Image Size

The following 6 parameters influence the size of the grabbed images:HorizontalResolution
andVerticalResolution specify thespatial resolutionof the image in relation to the original
size. For example, if you chooseVerticalResolution = 2, you get an image with half the
height of the original as depicted infigure 17b. Another name for this process is (vertical and
horizontal)subsampling.

With the parametersImageWidth, ImageHeight, StartRow, andStartColumn you can grab
only a part of the (possibly subsampled) image; this is also called image cropping. In figure 17,
image part to be grabbed is marked with a rectangle in the original (or subsampled) image; to
the right, the resulting image is depicted. Note that the resulting HALCON image always starts
with the coordinates(0,0), i.e., the information contained in the parametersStartRow and
StartColumn cannot be recovered from the resulting image.

Depending on the involved components, both subsampling andimage cropping may be exe-
cuted at different points during the transfer of an image from the camera into HALCON: in
the camera, in the frame grabber, or in the software. Please note that in most cases you get no
direct effect on the performance in form of a higher frame rate; exceptions are CMOS cam-
eras which adapt their frame rate to the requested image size. Subsampling or cropping on the
software side has no effect on the frame rate; besides, you can achieve a similar result using
reduce domain. If the frame grabber executes the subsampling or cropping you may get a pos-
itive effect if the PCI bus is the bottleneck of your application and prevents you from getting the

a)

b)

c)

d)

Figure 17: The effect of image resolution (subsampling) and image cropping (ImageWidth
= 200, ImageHeight = 100, StartRow = 50, StartColumn = 100):
a) HorizontalResolution (HR) = VerticalResolution (VR) = 1; b) HR = 1,
VR = 2; c) HR = 2, VR = 1; d) HR = VR = 2.

HALCON Application Guide, 2005-02-01

B.2 Frames vs. Fields 39

full frame rate. Some frame grabber interfaces allowdynamic image croppingvia the operator
set framegrabber param.

Note that HALCON itself does not differentiate between areaand line scan cameras as both
produce images – the former in form of frames, the latter in form of so-calledpagescreated
from successive lines (number specified in the parameterImageHeight). Section 6.3contains
additional information regarding the use of line scan cameras.

B.2 Frames vs. Fields

The parameterField is relevant only for analog cameras that produce signals following the
video standards originally developed for TV, e.g., NTSC or PAL. In these standards, the camera
transmits images (also calledframes) in form of two so-calledfields, one containing all odd lines
of a frame, the other all even lines of the next frame. On the frame grabber board, these two
fields are theninterlaced; the resulting frame is transferred via the PCI bus into the computer
memory using DMA (direct memory access).

Figure 18visualizes this process and demonstrates its major draw back: If a moving object is
observed (in the example a dark square with the letter ’T’), the position of the object changes
from field to field, the resulting frame shows a distortion at the vertical object boundaries (also
calledpicket-fence effect). Such a distortion seriously impairs the accuracy of measurements;
industrial vision systems therefore often use so-calledprogressive scancameras which trans-
fer full frames (seefigure 19). Some cameras also “mix” interlacing with progressive scan as
depicted infigure 20.

You can also acquire the individual fields by specifyingVerticalResolution = 2. Via the
parameterField you can then select which fields are to be acquired (see alsofigure 21): If
you select’first’ or ’second’, all you get odd or all even fields, respectively; if you select
’next’, you get every field. The latter mode has the advantage of a higher field rate, at the

transfer camera

transfer frame

camera

frame grabber

t

t

software

to frame grabber
(analog signal)

grabber to
software (DMA)

odd field even field odd field even field odd field

interlacing interlacing

Figure 18: Interlaced grabbing (Field = ’interlaced’).

HALCON 6.1.4

40 Application Note on Image Acquisition

transfer camera

transfer frame

camera

frame grabber

t

t

software

to frame grabber
(analog signal)

grabber to
software (DMA)

full frame full frame full frame

Figure 19: Progressive scan grabbing (Field = ’progressive’).

transfer camera

transfer frame

camera

frame grabber

t

t

software

to frame grabber
(analog signal)

grabber to
software (DMA)

odd field even field odd field even field odd field

interlacing interlacing

Figure 20: Special form of interlaced grabbing supported by some cameras.

cost, however, of the so-calledvertical jitter: Objects may seem to move up and down (like
the square infigure 21), while structures that are one pixel wide appear and disappear (like the
upper part of the ’T’).

By specifying Field = ’first’, ’second’, or ’next’ for a full resolution image
(VerticalResolution = 1), you can select with which field the interlacing starts.

Figure 22shows a timing diagram for usinggrab image together with an interlaced-scan cam-
era. Here, you can in some cases increase the processing frame rate by specifying’next’ for
the parameterField. The frame grabber then starts to digitize an image when the next field

HALCON Application Guide, 2005-02-01

B.3 Image Data 41

a)

b)

c)

transfer camera

transfer frame

camera

t

frame grabber

t

software

transfer frame

frame grabber

software

t

transfer frame

frame grabber

software

t

to frame grabber
(analog signal)

grabber to
software (DMA)

grabber to
software (DMA)

grabber to
software (DMA)

odd field even field odd field even field odd field

Figure 21: Three ways of field grabbing: a) ’first’; b) ’second’; c) ’next’ .

arrives; in the example therefore only one field is lost.

B.3 Image Data

The parameters described in the previous sections concentrated on the size of the im-
ages. Theimage data, i.e., the data contained in a pixel, is described with the parameters
BitsPerChannel andColorSpace. To understand these parameters, a quick look at the HAL-
CON’s way to represent images is necessary: A HALCON image consists of one or more ma-
trices of pixels, which are calledchannels. Gray value images are represented as single-channel
images, while color images consist of three channels, e.g.,for the red, green, and blue part of
an RGB image. Each image matrix (channel) consists ofpixels, which may be of differentdata
types, e.g., standard 8 bit (typebyte) or 16 bit integers (typeint2 or uint2) or 32 bit floating

HALCON 6.1.4

42 Application Note on Image Acquisition

frame rate
processing

create
HImage

expose expose expose exposeexpose expose expose

frame rateoriginal

application

HFGI & SDK

frame

grabber

camera t

t

t

t

t

t
software grab_image

wait for
image

wait for
vsync

wait for
image

create
HImage

odd field odd field odd field odd fieldeven field even field even field

digitize digitizedigitize

GrabGrab

digitize
wait for
vsync

(DMA)

transfer

(analog)

transfer

process process
grab_image

Figure 22: Grabbing interlaced images starting with the ’next’ field.

point numbers (typereal). For detailed information about HALCON images please refer to
appendix A.

The two parameters correspond to the two main aspects of HALCON’s images: With the pa-
rameterColorSpace you can select whether the resulting HALCON image is to be a (single-
channel) gray value image (value’gray’) or a (multi-channel) color image (e.g., value’rgb’).
The parameterBitsPerChannel specifies how many bits aretransmittedper pixel per channel
from the frame grabber to the computer; the pixel type of the HALCON image is then chosen
to accommodate the transmitted number of pixels.

For example, if a frame grabber is able to transmit 10 bit grayvalue images, one selects
ColorSpace = ’gray’ andBitsPerChannel = 10 and gets a single-channel HALCON im-
age of the type’uint2’, i.e., 16 bit per channel. Another example concerns RGB images:
Some frame grabbers allow the values8 and5 for BitsPerChannel. In the first case, 3× 8 =
24 bit are transmitted per pixel, while in the second case only 3× 5 = 15 (padded to 16) bit are
transmitted; in both cases, a three-channel’byte’ image results.

HALCON Application Guide, 2005-02-01

	1 Application Note on Image Acquisition
	1 The Philosophy Behind the HALCON Frame Grabber Interfaces
	2 A First Example
	3 Connecting to Your Frame Grabber
	3.1 Opening a Connection to a Specified Configuration
	3.2 Connecting to Multiple Boards and Cameras
	3.2.1 Single Camera
	3.2.2 Multiple Boards
	3.2.3 Multiple Handles Per Board
	3.2.4 Port Switching
	3.2.5 Simultaneous Grabbing

	3.3 Requesting Information About the Frame Grabber Interface

	4 Configuring the Acquisition
	4.1 General Parameters
	4.2 Special Parameters
	4.3 Fixed vs. Dynamic Parameters

	5 The Various Modes of Grabbing Images
	5.1 Real-Time Image Acquisition
	5.1.1 Non-Real-Time Grabbing Using grab_image
	5.1.2 Grabbing Without Delay Using Asynchronously Resettable Cameras
	5.1.3 Volatile Grabbing
	5.1.4 Real-Time Grabbing Using grab_image_async
	5.1.5 Continuous Grabbing
	5.1.6 Using grab_image_async Together With Asynchronously Resettable Cameras
	5.1.7 Specifying a Maximum Delay

	5.2 Using an External Trigger
	5.2.1 Special Parameters for External Triggers

	5.3 Acquiring Images From Multiple Cameras
	5.3.1 Dynamic Port Switching and Asynchronous Grabbing
	5.3.2 Simultaneous Grabbing

	6 Miscellaneous
	6.1 Acquiring Images From Unsupported Frame Grabbers
	6.2 Error Handling
	6.2.1 Error Handling in HDevelop
	6.2.2 Error Handling Using HALCON/C
	6.2.3 Error Handling Using HALCON/C++
	6.2.4 Error Handling Using HALCON/COM

	6.3 Line Scan Cameras

	A HALCON Images
	A.1 The Philosophy of HALCON Images
	A.2 Image Tuples (Arrays)
	A.3 HALCON Operators for Handling Images
	A.3.1 Creation
	A.3.2 Channels
	A.3.3 Domain
	A.3.4 Access
	A.3.5 Manipulation
	A.3.6 Image Tuples

	B Parameters Describing the Image
	B.1 Image Size
	B.2 Frames vs. Fields
	B.3 Image Data

