HALCON Application Note

The Art of Image Acquisition

Provided Functionality

> Connecting to simple and complex configurations of framélgeas and cameras
> Acquiring images in various timing modes

> Configuring frame grabbers and cameras online

Involved Operators

open_framegrabber

info_framegrabber

grab_image, grab_image_async, grab_image_start
set_framegrabber_param, get_framegrabber_param
close_framegrabber, close_all_framegrabbers

gen_imagel, gen_image3, gen_imagel_extern

EC
Copyright(© 2002-2005 by MVTec Software GmbH, Minchen, Germanm,,m

Overview

Obviously, the acquisition of images is a task to be solvedllimachine vision applications.
Unfortunately, this task mainly consists of interactinghspecial, non-standardized hardware
in form of the frame grabber board. To let you concentrateheraictual machine vision prob-
lem, HALCON already provides interfaces performing thigemction for a large number of
frame grabbers (sesection).

Within your HALCON application, the task of image acquisitiis thus reduced to a few lines
of code, i.e., a few operator calls, as can be sesedtion 2 What's more, this simplicity is not
achieved at the cost of limiting the available functionaliysing HALCON, you can acquire
images from various configurations of frame grabbers ancecasn(sesection 3 in different
timing modes (sesection .

Unless specified otherwise, the example programs can bedfonnthe subdirectory
image _acquisition Of the directory/,HALCONROOT%\examples\application_guide. Note
that most programs are preconfigured to work with a certaibh &AN frame grabber interface;
in this case, the name of the program contains the name oftiérédce. To use the program with
another frame grabber, please adapt the parts which opaotimection to the frame grabber.
More example programs for the different HALCON frame grabbtrfaces can be found in the
subdirectoryhdevelop\Image\Framegrabber of the directory,HALCONROOT%\examples.

Please refer to thdALCON/C User’s Manuaand theHALCON/C++ User’s Manualor infor-
mation about how to compile and link the C and C++ example iaiog; among other things,
they describe how to use the example UNIX makefiles which ediotind in the subdirectories
c and cpp of the directory/HALCONROOTY\examples. Under Windows, you can use Visual
Studio workspaces containing the examples, which can belfouthe subdirectory586-nt4
parallel to the source files.

All rights reserved. No part of this publication may be refrced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, medahnphotocopying, recording, or otherwise,
without prior written permission of the publisher.

Edition 1 June 2002 (HALCON 6.1)

Microsoft, Windows, Windows NT, Windows 2000, Windows XRsWal Studio, and Visual Basic are
either trademarks or registered trademarks of MicrosofpG@tion.
Linux is a trademark of Linus Torvalds.

All other nationally and internationally recognized tratirks and tradenames are hereby recognized.

More information about HALCON can be found at:

http://www.mvtec.com/halcon/

Contents

1 The Philosophy Behind the HALCON Frame Grabber Interfaces 4
2 A First Example 5
3 Connecting to Your Frame Grabber 6

3.1 Opening a Connection to a Specified Configuration.
3.2 Connecting to Multiple Boardsand Cameras.

3.3 Requesting Information About the Frame Grabber Interfa. 11
4 Configuring the Acquisition 12
4.1 General Parameters. 12
4.2 Special Parameters e e 13
4.3 Fixedvs. Dynamic Parameters. oo 14
5 The Various Modes of Grabbing Images 15
5.1 Real-Timelmage Acquisition. 15
5.2 Usingan External Trigger. e 23
5.3 Acquiring Images From MultipleCameras 25
6 Miscellaneous 27
6.1 Acquiring Images From Unsupported Frame Grabbers 27
6.2 ErrorHandling 28
6.3 LineScanCameras i 32
A HALCON Images 35
A.1 The Philosophy of HALCON Images. 35
A.2 Image Tuples (Arrays). o o o i e e e e 36
A.3 HALCON Operators for Handlinglmages. 36
B Parameters Describing the Image 38
B.1l ImageSize 38
B.2 Framesvs.Fields 39
B.3 ImageData. 41

HALCON 6.1.4

4 Application Note on Image Acquisition

1 The Philosophy Behind the HALCON Frame Grabber
Interfaces

From the point of view of an user developing software for a Iniae vision application, the
acquisition of images is only a prelude to the actual machisien task. Of course it is impor-
tant that images are acquired at the correct moment or nadiethat the camera and the frame
grabber are configured suitably, but these tasks seem te®bwertary, or at least independent
of the used frame grabber.

The reality, however, looks different. Frame grabbersdiffidely regarding the provided func-
tionality, and even if their functionality is similar, th&®&s (software development kiprovided
by the frame grabber manufacturers do not follow any stahd&herefore, if one decides to
switch to a different frame grabber, this probably meansgvaite the image acquisition part of
the application.

HALCON's answer to this problem are itiame grabber interface@HFGI) which are provided
for currently more than 50 frame grabbers in forndghamically loadable librarie§windows
NT/2000/XP: DLLs; UNIX: shared libraries). HALCON frameajyber interfaces bridge the
gap between the individual frame grabbers and the HALCOMNutih which is independent of
the used frame grabber, computer platform, and programtaimguage (sefigure 1. In other
words, they

e provide a standardized interface to the HALCON user in fofrhloHALCON operators,
and

e encapsulate details specific to the frame grabber, i.eintBection with the frame grab-
ber SDK provided by the manufacturer.

Therefore, if you decide to switch to a different frame grablall you need to do is to install
the corresponding driver and SDK provided by the manufactand to use different parameter
values when calling the HALCON operators; the operatorsgaves stay the same.

camera 00— - ---- o
computer L

HALCON image processing library
halcon.dIl & halconc.dll / halconcpp.dll / halconx.dll

frame
grabber

software

HALCON xyz frame grabber interface
HFGxyz.dll

I
————— frame grabber driver & SDK

I

Figure 1. From the camera to a HALCON application.

In fact, the elementary tasks of image acquisition are @by two HALCON operators:

e open_framegrabber connects to the frame grabber and sets general parametgershe
type of the used camera or the port the camera is connecttgbto,

e grab_image (Or grab_image async, seesection 5.%or the difference) grabs images.

HALCON Application Guide, 2005-02-01

2 A First Example 5

Figure 2: a) Acquired image; b) processed image (automatic segmentation).

If a frame grabber provides additional functionality, e.gn-board modification of the im-
age signal, special grabbing modes, or digital output Jineg available via the operator
set_framegrabber_param (Seesection 4.

Note, that for some frame grabbers not the full functiogalkt available within HALCON;
please refer to the corresponding online documentatiorclwbhan be found in the direc-
tory %HALCONROOT?\doc\html\manuals or via the HALCON folder in the Windows start
menu (if you installed the documentation). The latest imfation can be found under
http://www.mvtec.com/halcon/framegrabber.

If the frame grabber you want to use is not (yet) supported BLEON, you can nevertheless
use it together with HALCON. Please referdection 6.Xfor more details.

2 A First Example

In this section we start with a simple image acquisition taskich uses the frame
grabber in its default configuration and the standard grapbnode. The grabbed im-
ages are then segmented. To follow the example activelyt 8ta HDevelop program
hdevelop\first_example_acquisition_ids.dev; the steps described below start after the
initialization of the application (pre once to reach this point). Note that the program is
preconfigured for the HALCON frame grabber interfa®s; to use it with a different frame
grabber, please adapt the parts which open the connection.

Step 1: Connect to the frame grabber

open_framegrabber (FGName, 1, 1, 0, 0, 0, O, ’default’, -1, ’gray’, -1,
’false’, ’ntsc’, ’default’, -1, -1, FGHandle)

When opening the connection to your frame grabber using pleeadoropen_framegrabber,

the main parameter is thame of the corresponding HALCON frame grabber interface. As a
result, you obtain a so-callddhndle(FGHand1e) which acts as your access to the frame grabber,
e.g., in calls to the operatgtab_image.

HALCON 6.1.4

6 Application Note on Image Acquisition

In the example, default values are used for most other pdeasn€ default’ or -1);
section 4.%akes a closer look at this topic. How to connect to more cemfsthme grabber and
camera configurations is describedsgrction 3

Step 2: Grab an image
grab_image (Image, FGHandle)

After successfully connecting to your frame grabber yougraub images by calling the operator
grab_image with the corresponding handiGHandle. More advanced modes of grabbing
images are described gection 5

Step 3: Grab and process images in a loop

while (Button # 1)

grab_image (Image, FGHandle)

auto_threshold (Image, Regions, 4)

connection (Regions, ConnectedRegions)

get_mposition (WindowHandleButton, Row, Column, Button)
endwhile

In the example, the grabbed images are then automaticajijmesated using the operator
auto_threshold (seefigure 2. This is done in a loop which can be exited by clicking into
a window with the left mouse button.

3 Connecting to Your Frame Grabber

In this section, we show how to connect to different confitjares of frame grabber(s) and
camera(s), ranging from the simple case of one camera ctath&rone frame grabber board
to more complex ones, e.g., multiple synchronized camemasexcted to one or more boards.

3.1 Opening a Connection to a Specified Configuration

With the operatospen_framegrabber you open a connection to a frame grabber, or to be more
exact, via a frame grabber to a camera. This connection ided by four parameters (see
figure J: First, you select a frame grabber (family) with the partengame. If multiple boards

are allowed, you can select one with the parampéerice; depending on the frame grabber
interface, this parameter can contain a string descriliiadpbard or simply a number (in form
of a string!).

Typically, the camera can be connected to the frame grallsbiferent ports, whose number
can be selected via the paramekett (in rare casedineIn). The parameteCameraType
describes the connected camera: For analog cameras, tamgtar usually specifies the used
signal norm, e.g.;ntsc’; more complex frame grabber interfaces use this paranesaiéct

a camera configuration file.

As a resultopen_framegrabber returns éhandlefor the opened connection in the parameter
FGHandle. Note that if you use HALCON’s COM or € interface and call the operator via
the classeHFramegrabberX or HFramegrabber, no handle is returned because the instance of
the class itself acts as your handle.

HALCON Application Guide, 2005-02-01

3.1 Opening a Connection to a Specified Configuration 7

v which frame grabber?
FGHandle Name

== SDK & HFGI A

camera type abc

/ camera type xyz

|

which board? which port? which camera?

Device Port CameraType

Figure 3: Describing a connection with the parameters of open_framegrabber .

i HDevelop - first_example_acquisition_ids.dev
File Edit Ezecute Visualization Operators Suggestions 'Window Help

o= = = T | B sl el e R N

Wicith:
Height:
hame:
Pixel
Port:
Device:

Trigger:

Cnline

Status:

I default
I talze

check box to start online grabbing

A

i Yariable Watch :
leanic Variahles:

-
Image

Region Connecte~

double-click handle to open dialog

Cortrol Yariablss?

nnnnnnnn

s

Figure 4: Online grabbing in HDevelop .

In HDevelop, you can quickly check an opened connection hybteclickingFGHandle in

the Variable Window as shown figure 4 A dialog appears which describes the status of the
connection. If you check the corresponding box, imagesiaelged online and displayed in the
Graphics Window. This mode is very useful to setup your visgstem (illumination, focus,

field of view).

HALCON 6.1.4

8 Application Note on Image Acquisition

3.2 Connecting to Multiple Boards and Cameras

Most HALCON frame grabbers interfaces allow to use multifpeeme grabber boards and
cameras. However, there is more than one way to connect aanaed boards and to ac-
cess these configurations from within HALCON. Below, we diggcthe different configura-
tions; please check the online documentation of the HALC@RIrface for your frame grabber
(see);HALCONROOT?;\doc\html\manuals, the HALCON folder in the Windows start menu, or
http://www.mvtec.com/halcon/framegrabber) which configurations it supports.

a) b)
handle 0_ __| frame grabber m
board 0
handle O_ __| frame grabber M
board 0
handle 1_ __| frame grabber m
board 1
c) d)
port 0
handle 0___ frame grabber —-<
e m handle 0 frame grabber m
port switch board 0 port 1
handie 2 | frame grabber m —-
board 1
e) f) port 0 - ‘
_ frame grabber
m : board 0 port 1
handlie 0| frame grabber handle 0 . i —-
Himage[2] board 0 m Himage[3] !
:_ frame grabber m
board 1

Figure 5: a) single board with single camera; b) multiple boards with one camera each; ¢) mul-
tiple boards with one or more cameras; d) single board with multiple cameras and
port switching; e) single board with multiple cameras and simultaneous grabbing;
f) simultaneous grabbing with multiple boards and cameras.

3.2.1 Single Camera

Figure 5ashows the simplest configuration: a single camera connéctadsingle board, ac-
cessible via a single handle. Some frame grabbers, edpetigital ones, only support this

HALCON Application Guide, 2005-02-01

3.2.2 Multiple Boards 9

configuration; as described in the following section, yon savertheless use multiple cameras
with such frame grabbers by connecting each one to an indaviabard.

3.2.2 Multiple Boards

Figure 5bshows a configuration with multiple cameras, each conndotadseparate board. In
this case you call the operatopen_framegrabber once for each connection as in the HDe-
velop example programdevelop\multiple_boards px.dev. Note that the program is pre-
configured for the HALCONPx interface; to use it with a different frame grabber, pleadsgpa
the parts which open the connection.

open_framegrabber (FGName, 1, 1, 0, 0, 0, O, ’default’, -1, ’default’, -1,
’default’, ’default’, Board0, -1, -1, FGHandleO)

open_framegrabber (FGName, 1, 1, 0, 0, 0, O, ’default’, -1, ’default’, -1,
’default’, ’default’, Boardl, -1, -1, FGHandlel)

In this example, the two calls differ only in the value for fleametebevice (°0’ and’ 1’); of
course, you can use different values for other parametesgthsand even connect to different
frame grabber interfaces.

To grab images from the two cameras, you simply call the dpegaab_image once with the
two handles returned by the two callsdpen_framegrabber:

grab_image (ImageO, FGHandleO)
grab_image (Imagel, FGHandlel)

3.2.3 Multiple Handles Per Board

Many frame grabbers provide multiple input ports and thiswato connect more than one
camera to the board. Depending on the HALCON frame grabberfate, this configuration is
accessed in different ways which are described in this améollowing sections.

The standard HALCON method to connect to the cameras is ®@epia figure 5¢ Each
connection gets its own handle, i.expen framegrabber is called once for each cam-
era with different values for the parametesrt, like in the HDevelop example program
hdevelop\multiple_ports_px.dev (preconfigured for the HALCONPx interface, please
adapt the parts which open the connection for your own frarablggr):

open_framegrabber (FGName, 1, 1, 0, 0, 0, O, ’default’, -1, ’default’, -1,
’default’, ’default’, ’default’, PortO, -1, FGHandleO)

open_framegrabber (FGName, 1, 1, 0, 0, 0, O, ’default’, -1, ’default’, -1,
’default’, ’default’, ’default’, Portl, -1, FGHandlel)

grab_image (ImageO, FGHandleO)

grab_image (Imagel, FGHandlel)

As figure 5cshows, you can also use multiple boards with multiple cotatkcameras.

3.2.4 Port Switching

Some frame grabber interfaces access the cameras not \iglenbndles, but by switching
the input port dynamically (sdegure 59. Thereforeppen_framegrabber is called only once,

HALCON 6.1.4

10 Application Note on Image Acquisition

like in the HDevelop example prograhdevelop\port_switching inspecta.dev (precon-
figured for the HALCONInspecta interface, please adapt the parts which open the connection
for your own frame grabber):

Portl := 4
open_framegrabber (FGName, 1, 1, 0, 0, 0, O, ’default’, -1, ’default’, -1,

Between grabbing images you switch ports using the opegatorf ramegrabber_param (See
section 4.Zor more information about this operator):

while (1)

set_framegrabber_param (FGHandle, ’port’, PortO0)
disp_image (ImageO, WindowHandleO)
set_framegrabber_param (FGHandle, ’port’, Portil)

Note that port switching only works for compatible (simjlacameras because
open_framegrabber iS only called once, i.e., the same set of parameters vakiesed
for all cameras. In contrast, when using multiple handledessribed above, you can specify
different parameter values for the individual camerasi{\widme board-specific limitations).

3.2.5 Simultaneous Grabbing

In the configurations described above, images were grabibed the individual cameras by
multiple calls to the operatatrab_image. In contrast, some frame grabber interfaces allow
to grab images from multiple cameras with a single calgtab_image, which then returns

a multi-channel image (sefegure 5e appendix A.1contains more information about multi-
channel images). This mode is callgdhultaneous grabbin{pr parallel grabbing; like port
switching, it only works for compatible (similar) camer&ar example, you can use this mode
to grab synchronized images from a stereo camera system.

In this mode,open_framegrabber is called only once, as can be seen in the HDevelop ex-
ample programhdevelop\simultaneous_grabbing inspecta.dev (preconfigured for the
HALCON Inspecta interface, please adapt the parts which open the conndotigour own
frame grabber):

TM-6701/6705 1-plane, HD out’
open_framegrabber (FGName, 1, 1, 0, 0, 0, O, ’default’, -1, ’default’, -1,

You can check the number of returned images (channels) tisgngperatorount_channels

* step 2: open correctly sized windows
get_image_pointerl (SimulImages, Pointer, Type, Width, Height)

and extract the individual images, e.g., us#kgompose2, decompose3 etc., depending on the
number of images:

grab_image (SimulImages, FGHandle)
if (num_channels = 2)

Alternatively, you can convert the multi-channel imageoinan image array using
image_to_channels and then select the individual images gilect_obj.

Note that some frame grabber interfaces allow simultangoalsbing also for multiple boards
(seefigure 51). Please refer teection 5.3.2or additional information.

HALCON Application Guide, 2005-02-01

3.3 Requesting Information About the Frame Grabber Interface 11

i Variable Watch =] E3
lconic Yarishles:
Control Yariables:
Generallnfo: ‘HALCON interface for IDS FALCON/EAGLE frame grabber boards.”' =]
Generalvalue:]
Rewisioninfo: ‘Current interface revision.'
Revisionalue: 2.3
Boardsinfao: Info about installed IDS boards.”
BoardsValue: ‘device:1, port:0, board_type: EAGLE'
Partsinfo: FALCOM: port 0,1 (Composite), port 2 (S-Video) - FALCOMplus/duc/guattre: port 0,123 (Composite) - EAGLE(:
Puortsalue: [0.1,2, 3]
CamTypelnfo: "Specify the video signal of the used camera.’
CamTypevalue: [ntsc’, ‘pal’|, 'secam’, 'auto’, 's-ntsc’, 's-pal’, 's-secam’, 's-auto’] =
Defaultsinfo: ‘Default walues (as used for open_framegrabber).’
Defaults’value; [1,1,0,0,0,0,interlaced’, 8, rgb', 1, false’, ‘auto’, 'default’, 0, 1] _|;|
4| | »

Figure 6: An example result of the operator info_framegrabber .

3.3 Requesting Information About the Frame Grabber Interfa ce

As mentioned already, the individual HALCON frame grabbeeifaces are described in de-
tail on HTML pages which can be found in the direct@ALCONROOT%\doc\html\manuals

or in the HALCON folder in the Windows start menu (if you inta the documentation).
Another way to access information about a frame grabberfate is to use the operator

info_framegrabber.

In the HDevelop example prograhilevelop\info_framegrabber_ids.dev (preconfigured
for the HALCON 1IDS interface, please adapt the interface name for your owndrgrab-
ber) this operator is called multiple times to query the mgrsiumber of the interface, the
available boards, port numbers, camera types, and theltgtdues for all parameters of
open_framegrabber; the result, i.e., the values displayed in the HDevelopalzdg Windows,

is depicted irfigure 6

info_framegrabber
info_framegrabber
info_framegrabber
info_framegrabber
info_framegrabber
info_framegrabber

(FGName,
(FGName,
(FGName,
(FGName,
(FGName,
(FGName,

’general’, Generallnfo, GeneralValue)
’revision’, RevisionInfo, RevisionValue)
’info_boards’, BoardsInfo, BoardsValue)
>ports’, PortsInfo, PortsValue)
’camera_types’, CamTypeInfo, CamTypeValue)
’defaults’, DefaultsInfo, DefaultsValue)

The operatotinfo_framegrabber can be called before actually connecting to a frame grabber
with open_framegrabber. The only condition is that the HALCON frame grabber intega
and the frame grabber SDK and driver have been installed.

HALCON 6.1.4

12 Application Note on Image Acquisition
4 Configuring the Acquisition

As explained insection 1 the intention of HALCON's frame grabber interfaces is topde
the user with a common interface for many different framebgess. This interface was kept
as simple as possible; as shown, you can connect to your fyaader and grab a first image
using only two operators.

However, HALCON's second goal is to make the full functiatyadbf a frame grabber available
to the user. As frame grabbers differ widely regarding thevigled functionality, this is a
difficult task to realize within a simple, common interfad@ALCON solves this problem by
dividing the task of configuring a frame grabber connectitn two parts: Those parameters
which are common to most frame grabber interfaces (thexefalledgeneral parametejsare
set when calling the operatopen_framegrabber. In contrast, the functionality which is not
generally available can be configured by setting so-caliettial parametergsing the operator
set_framegrabber_param.

4.1 General Parameters

When opening a connection vigen_framegrabber, you can specify the following general
parameters:

HorizontalResolution, spatial resolution of the transferred image in relation

VerticalResolution to the original size (seappendix B.)

ImageWidth, ImageHeight, size and upper left corner of the transferred image in

StartRow, StartColumn relation to the original size (seppendix B.}

Field grabbing mode for analog cameras, e.g., interlaced-
scan, progressive-scan, field grabbing (see
appendix B.2

BitsPerChannel, ColorSpace data contained in a pixel (number of bits, number of
channels, color encoding, sappendix B.3

Gain amplification factor for the video amplifier on the
frame grabber board (if available)

ExternalTrigger hooking the acquisition of images to an external trig-
ger signal (see alssection 5.2

CameraType, Device, Port, Configuration of frame grabber(s) and camera(s)

Lineln from which images are to be acquired (see
section 3.1

In section 3.1 we already encountered the parameters describing thes fgrabber / camera
configuration. Most of the other parameterspén framegrabber specify the image format;
they are described in more detailappendix B The parameteixternal Trigger activates a
special grabbing mode which is described in detagection 5.2 Finally, the parametetain
can be used to manipulate the acquired images on the frarbbegrboard by configuring the
video amplifier.

Note that when callingpen_framegrabber you must specify values for all parameters, even if
your frame grabber interface does not support some of therses values specified in a camera

HALCON Application Guide, 2005-02-01

4.2 Special Parameters 13

configuration file instead. To alleviate this task, the HALKC@ame grabber interfaces provide
suitable default values which are used if you spee¢dgfault’ or -1 for string or numeric
parameters, respectively. The actually used default sata@ be queried using the operator
info_framegrabber as shown irsection 3.3

After connecting to a frame grabber, you can query the ctwalue of general parameters
using the operatoset_framegrabber_param; some interface even allow to modify general
parameters dynamically. Please refeséation 4.3or more information about these topics.

4.2 Special Parameters

Even the functionality which is not generally available &k frame grabber can be accessed
and configured with a general mechanism: by setting correfipg special parameters via the
operatorset_framegrabber_param. Typical parameters are, for example:

’grab_timeout’ timeout after which the operatogsab_image and
grab_image_async Stop waiting for an image and
return an error (see alsections 5.2.4nd6.2)

’volatile’ enable volating grabbing (see alsection 5.1.3

’continuous_grabbing’ switch on a special acquisition mode which is nec-
essary for some frame grabbers to achieve real-
time performance (see alsection 5.1.b

>trigger_signal’ signal type used for external triggering, e.g., rising
or falling edge

’image_width’, ’image_height’, “doubles” of the some of the general parame-

’start_row’, ’start_column’, ters described isection 4.1 allowing to modify

’gain’, ’external _trigger’, them dynamically, i.e., after opening the connec-

’port’ tion (see als®ection 4.3

Depending on the frame grabber, various other parametgrdeavailable, which allow, e.g.,
to add an offset to the digitized video signal or modify thegbiness or contrast, to specify
the exposure time or to trigger a flash. Some frame grabbsosoffler special parameters for
the use of line scan cameras (see aksction 6.3, or parameters controlling digital output and
input lines.

Which special parameters are provided by a frame grabberface is described in the al-
ready mentioned online documentation. You can also quesyitifiormation by calling the
operatorinfo_framegrabber as shown belowfigure 7 depicts the result of double-clicking
ParametersValue in the Variable Window after executing the line:

info_framegrabber (FGName, ’parameters’, ParametersInfo, ParametersValue)

To set a parameter, you call the operaiet_framegrabber_param, specifying the name of
the parameter to set in the paraméteram and the desired value in the paramétgetue. For
example, irsection 3.2.4he following line was used to switch to part

while (1)

You can also set multiple parameters at once by specifyipgsuforParam andvValue as in
the following line:

HALCON 6.1.4

14 Application Note on Image Acquisition

1 Parameters¥ alue

“wolatile -
‘revigion’

‘hoard

age!

‘brightness'

‘contr st

'gamma’

‘horfiter

IR G R R =]

wertfiter'

9 ‘'show_internal_errors'

10 'hue'

11 'aynclevel

12 ‘trigger_signal'

13 ‘'grab_timeout' -

Figure 7: Querying available special parameters via info_framegrabber .

set_framegrabber_param (FGHandle, [’image_width’,’image_height’], [256,
2561)

For all parameters which can be set wiidt_framegrabber_param, you can query the cur-
rent value using the operatget_framegrabber_param. Some interfaces also allow to query
additional information like minimum and maximum values the parameters. For example,
the HALCON Fire-i interface allows to query the minimum and maximum valuestier
brightness:

get_framegrabber_param (FGHandle, ’brightness_min_value’, MinBrightness)
get_framegrabber_param (FGHandle, ’brightness_max_value’, MaxBrightness)

Thus, you can check a new brightness value against thoselbnes before setting it:

get_framegrabber_param (FGHandle, ’brightness’, CurrentBrightness)

NewBrightness := CurrentBrightness + 10

if (NewBrightness > MaxBrightness)
NewBrightness := MaxBrightness

endif

set_framegrabber_param (FGHandle, ’brightness’, NewBrightness)

4.3 Fixed vs. Dynamic Parameters

The distinction between fixed and dynamic parameters is medaéng to the lifetime of a frame
grabber connectionFixed parameterse.g., theCameraType, are set once when opening the
connection withbpen_framegrabber. In contrast, those parameters which can be modified via
set_framegrabber_param during the use of the connection are caldissthamic parameters

As already noted isection 4.2some frame grabber interfaces allow to modify generalmpara
eters likeImageWidth or ExternalTrigger dynamically viaset_framegrabber_param, by
providing a corresponding special parameter with the saangerbut written with small letters
and underscores, e.gimage_width’ Or ’external_trigger’.

Independent of whether a general parameter can be modifieghdgally, you can query its
current value by calling the operatget_framegrabber_param with its “translated” name,
i.e., capitals replaced by small letters and underscordesgibed above.

HALCON Application Guide, 2005-02-01

5 The Various Modes of Grabbing Images 15
5 The Various Modes of Grabbing Images

Section 2showed that grabbing images is very easy in HALCON- you jalitgrab_image!
But of course there’s more to image grabbing than just to getnage, e.g., how to assure an
exact timing. This section therefore describes more coxgiabbing modes.

5.1 Real-Time Image Acquisition

deadlines. Please keep in mind timaine of the standard operating systems, i.e., neither
Windows NT/2000/XP nor Linux, are real-time operating sysems This means that the op-
erating system itself does not guarantee that your apjdicatill get the necessary processing
time before its deadline expires. From the point of view ofachine vision application running
under a non-real-time operating system, the most you cas assure that real-time behavior is
not already prevented by the application itself.

As a technical term, the attributeal-timemeans that a process guarantees that it meets giﬁ

In a machine vision application, real-time behavior maydwmgiired at multiple points:

Image delay: The camera must “grab” the image, i.e., expose the chipgatdirect moment,
i.e., while the part to be inspected is completely visible.

Frame rate: The most common real-time requirement for a machine visgplieation is to
“reach frame rate”, i.e., acquire and process all imagesdheera produces.

Processing delay:The image processing itself must complete in time to allo@egction to its
results, e.g., to remove a faulty part from the conveyor. bak this point relates only
indirectly to the image acquisition it is ignored in the tlling.

5.1.1 Non-Real-Time Grabbing Using grab_image

Figure 8shows the timing diagram for the standard grabbing modejfiyou use the operator
grab_image from within your application. This operator call is “trangtd” by the HALCON
frame grabber interface and the SDK into the correspondgrpéto the frame grabber board
(marked with’'Grab’).

The frame grabber now waits for the next image. In the exampl&ee-running analog
progressive-scan camera is used, which produces imagéswamsly at a fixed frame rate;
the start of a new image is indicated by a so-calledical sync signalThe frame grabber then
digitizes the incoming analog image signal and transfotrimde an image matrix. If a digital
camera is used, the camera itself performs the digitizimjteansfers a digital signal which is
then transformed into an image matrix by the frame grabbleade refer t@ppendix B.Zor
more information about interlaced grabbing.

The image is then transferred from the frame grabber intopcder memory via the PCI bus
using DMA (direct memory access). This transfer can eitheinmeementalas depicted in
figure § if the frame grabber has only a FIFO buffer, or in a singlesbas depicted ifigure 9

if the frame grabber has a frame buffer on board. The advargathe incremental transfer is
that the transfer is concluded earlier. In contrast, thettmode is more efficient; furthermore,
if the incremental transfer via the PCI bus cannot proceedgdme reason, a FIFO overflow

HALCON 6.1.4

16 Application Note on Image Acquisition

il
Ly

[original " e R original " My original "7 3

expose expose Xpose 'xpose

\

camera

(aneilog) @ L] @ L]

Ve

wait for wait for
frame vsync vsync t
grabber ZE \ F A

: i i

transfer LLLLLLLLLL LLLL L]
(DMA)
Grab Grab
l wait for create wait for % create

image

\ 3

Himage image Himage t
HFGI & SDK : >
software grabfi;nage grab_image \
process process t
application P >
) SRR P delay image frame rate
delay Jorm processing T g
image

Figure 8: Standard timing using grab_image (configuration: free-running progressive-scan cam-
era, frame grabber with incremental image transfer).

results, i.e., image data is lost. Note that in both modedrtresfer performance depends on
whether the PCI bus is used by other devices as well!

When the image is completely stored in the computer membeyHALCON frame grabber
interface transforms it into a HALCON image and returns tbetol to the application which
processes the image and then cghtab_image again. However, even if the processing time
is short in relation to the frame rate, the camera has alrbadyn to transfer the next image
which is therefore “lost”; the application can therefordygorocess every second image.

You can check this behavior wusing the HDevelop example jragr
hdevelop\real_time _grabbing ids.dev (preconfigured for the HALCONIDS inter-
face, please adapt the parts which open the connection fargwn frame grabber), which
determines achievable frame rates for grabbing and primce@sere: calculating a difference
image) first separately and then together as follows:

grab_image (BackgroundImage, FGHandle)
count_seconds (Secondsl)
for i := 1 to 20 by 1
grab_image (Image, FGHandle)
sub_image (BackgroundImage, Image, Differencelmage, 1, 128)
endfor
count_seconds (Seconds2)
TimeGrabImage := (Seconds2-Secondsl)/20
FrameRateGrabImage := 1 / TimeGrabImage

HALCON Application Guide, 2005-02-01

5.1.2 Grabbing Without Delay Using Asynchronously Resettable Cameras 17

original
Jar frame rate T »}
camera expose expose é
anster PN M) PN A .
(analog) ‘ ‘ "
Expose Expose
| 1
wait for wait for
frame vsync digitize vsync digitize t
grabber >
transfer t
(DMA) "
Grab Grab
wait for create wait for create

image Himage image Himage t
HFGI & SDK >

software grab_image grab_image Y
process process t
application >

frame rate
delay Jors processing T 3

image A
:0 EE

Figure 9: Using a asynchronously resettable camera together with grab_image (configuration:
progressive-scan camera, frame grabber with burst transfer, volatile grabbing).

To see the non-deterministic image delay, execute the tpepeab_image in the step mode by
pressind F6 |, the execution time displayed in HDevelop’s status bar wifige between once
and twice the original frame period. Please note that on Usii3tem, the time measurements
are performed with a lower resolution than on Windows system

5.1.2 Grabbing Without Delay Using Asynchronously Resetta ble Cameras

If you use a free-running camera, the camera itself detersnihe exact moment an image is
acquired (exposed). This leads to a delay between the moypnentall grab_image and the
actual image acquisition (ségure 8. The delay is not deterministic, but at least it is limited
by the frame rate; for example, if you use an NTSC camera witlarae rate of 30 Hz, the
maximum delay can be 33 milliseconds.

Of course, such a delay is not acceptable in an applicatetrighio inspect parts at a high rate.
The solution is to use cameras that allow a so-cakachronous reseThis means that upon a
signal from the frame grabber, the camera resets the imageuwct (almost) immediately starts
to expose it. Typically, such a camera does not grab imagasmcmusly but only on demand.

An example timing diagram is shown figure 9 In contrast tdigure 8 the image delay is (al-
most) zero. Furthermore, because the application nowfsgeaihen images are to be grabbed,
all images can be processed successfully; however, thewathirame rate still includes the
processing time and therefore may be too low for some madisien applications.

HALCON 6.1.4

18 Application Note on Image Acquisition

5.1.3 \Volatile Grabbing

As shown infigure 8 after the image has been transferred into the computer myerie
HALCON frame grabber interface needs some time to createraspnding HALCON image
which is then returned in the output parametesge of grab_image. Most of this time (about
3 milliseconds on a 500 MHz Athlon K6 processor for a gray gdlil SC image) is needed to
copy the image data from the buffer which is the destinatidch@ DMA into a newly allocated
area.

You can switch off the copying by using the so-calledatile grabbing which can be enabled
via the operatoget_framegrabber_param (parametervolatile’):

set_framegrabber_param (FGHandle, ’volatile’, ’enable’)

Then, the time needed by the frame grabber interface toecteatHALCON image is signif-
icantly reduced as visualized figure 9 Note that usually volatile grabbing is only supported
for gray value images!

The drawback of volatile grabbing is that grabbed image®aeewritten by subsequent grabs.
To be more exact, the overwriting depends on the number ofentauffers allocated by the
frame grabber interface or SDK. Typically, at least two btdfexist; therefore, you can safely
process an image even if the next image is already being gdadb infigure 11 Some frame
grabber interfaces allow to use more than two buffers, aed &v select their number dynami-
cally viaset_framegrabber_param (parameternum buffers’).

You can check this behavior using the HDevelop example pragr
hdevelop\volatile_grabbing ids.dev (preconfigured for the HALCONIDS inter-
face, please adapt the parts which open the connection far gon frame grabber). After
grabbing a first image and displaying it via

grab_image (FirstImage, FGHandle)
dev_open_window (0, O, Width/2, Height/2, ’black’, FirstWindow)
dev_display (FirstImage)

change the scene and grab a second image which is displagadndividual window:

grab_image (SecondImage, FGHandle)
dev_open_window (0, Width/2 + 8, Width/2, Height/2, ’black’, SecondWindow)
dev_display (SecondImage)

Now, images are grabbed in a loop and displayed in a third evind he two other images are
also displayed each time. If you change the scene beforegrabhyou can see how the first
two images are overwritten in turn, depending on the numbbufbers.

dev_open_window (Height/2 + 66, Width/4 + 4, Width/2, Height/2, ’black’,
ThirdWindow)

for i := 1 to 10 by 1
grab_image (CurrentImage, FGHandle)
dev_set_window (ThirdWindow)
dev_display (CurrentImage)
dev_set_window (FirstWindow)
dev_display (FirstImage)
dev_set_window (SecondWindow)
dev_display (SecondImage)

endfor

HALCON Application Guide, 2005-02-01

5.1.4 Real-Time Grabbing Using grab_image_async 19

Iy
H

I original original original
Jor frame rate T PP frame rate T S g
camera expose expose Xpose Xpose é
canstr PAMA M WY
(analog) L "
_1__ wait for @ _1__ wait for @
' vsync ' vsync
wait for , H
frame vsync digitize digitize
g U ¢
transfer L b et e e L
DMA
() Grab Grab Grab Grab
wait for create wait for create wait for create
image Himage Image Himage Image Himage t
HFGI & SDK : N N >
software grabfir'nagefasync grab_image_async grab_image_async Y
process process process t
application >
SRR | [FTEY STTCRRLIRY »
g frame rate
delay T ey rocessing » !
image delay -7 o P 95 —
image H H —
"negatlve" EE Ef Ef

Figure 10: Grabbing and processing in parallel using grab_image async .

5.1.4 Real-Time Grabbing Using grab_image_async

The main problem with the standard timing usigtpb_image is that the two processes of
image grabbing and image processing run sequentiallypne.after the other. This means that
the time needed for processing the image is included in thdtreg frame rate, with the effect
that the frame rate provided by the camera cannot be reagheeffinition.

This problem can be solved by using the opergjtib_image async. Here, the two pro-
cesses are decoupled and can run asynchronouslyn.anage can be processed while the
next image is already being grabbedFigure 10shows a corresponding timing diagram: The
first call to grab_image_async is processed similar tgrab_image (comparefigure §. The
difference becomes apparent after the transfer of the inmhgeomputer memory: Almost im-
mediately after receiving the image, the frame grabberfaxte automatically commands the
frame grabber to acquire a new image. Thus, the next imagaldgd while the application
processes the previous image. After the processing, thiecappn callsgrab_image_async
again, which waits until the already running image acquisits finished. Thus, the full frame
rate is now reached. Note that some frame grabbers fail thrékee full frame rate even with
grab_image_async; section 5.1.5hows how to solve this problem.

In the HDevelop example prograndevelop\real_time_grabbing_ids.dev, which was al-
ready described isection 5.1.1the reached frame rate for asynchronous processing is dete
mined as follows:

HALCON 6.1.4

20 Application Note on Image Acquisition

grab_image (BackgroundImage, FGHandle)
count_seconds (Secondsl)
for i := 1 to 20 by 1
grab_image_async (Image, FGHandle, -1)
sub_image (BackgroundImage, Image, Differencelmage, 1, 128)
endfor
count_seconds (Seconds2)
TimeGrabImageAsync := (Seconds2-Secondsl)/20
FrameRateGrabImageAsync := 1 / TimeGrabImageAsync

As can be seen ifigure 1Q the first call tograb_image_async has a slightly different effect
than the following ones, as it also triggers the first grab mwamd to the frame grabber. As an
alternative, you can use the operaipab_image_start which just triggers the grab command,
then, the first call tgrab_image async behaves as the other ones. This is visualized, e.g., in
figure 11 as you can see, the advantage of this method is that theeappii can perform some
processing before callingrab_image_async.

In the example, the processing was assumed to be fasterhtbaequisition. If this is not the
case, the image will already be ready when the next cglttb_image_async arrives. In this
case, you can specify how “old” the image is allowed to be gishe parameteMaxDelay.
Please refer tgection 5.1.7or details.

Please note that when usiggab_image_async it iS not obvious anymore which image is
returned by the operator call, because the call is decoupdad the command to the frame
grabber! In contrast tgrab_image, which always triggers the acquisition of a new image,
grab_image_async typically returns an image which has been exposed beforefgeator was
called, i.e., the image delay is negative (figare 10! Keep this effect in mind when changing
parameters dynamically; contrary to intuition, the chawgkenot affect the image returned by
the next call ofgrab_image_async but by the following ones! Another problem appears when
switching dynamically between cameras (seetion 5.3.1L

5.1.5 Continuous Grabbing

For some frame grabbepzab_image async fails to reach the frame rate because the grab
command to the frame grabber comes too late, i.e., afterdhee@ has already started to
transfer the next image (ségure 113.

As a solution to this problem, some frame grabber interfaceside the so-calledontinuous
grabbing modeavhich can be enables only via the operatet_framegrabber_param (param-
eter’ continuous_grabbing’):

set_framegrabber_param (FGHandle, ’continuous_grabbing’, ’enable’)

In this mode, the frame grabber reads images from a freenwgrocamera continuously and
transfers them into computer memory as depictdajure 11b Thus, the frame rate is reached.
If your frame grabber supports continuous grabbing you eanthis effect in the example pro-
gramhdevelop\real_time_grabbing_ids.dev, which was already described in the previous
sections; the program measures the achievable frame ragedb_image_async without and
with continuous grabbing.

We recommend to use continuous grabbing only if you wantdogss every image; otherwise,
images are transmitted over the PCI bus unnecessarilyelihayerhaps blocking other PCI
transfers.

HALCON Application Guide, 2005-02-01

5.1.5 Continuous Grabbing 21
a) :E zi zzf E
I original I original original
Jon frame rate T PP frame rate T s e ame e »
camera expose expose Xpose lxpose t
transfer
(analog)
wait for wait for
frame vsync vsync
grabber
transfer
(DMA)
Grab Grab Grab
wait for create wait for create
image Himage image Himage t
HFGI & SDK . A >
software grab_image_async grab_image_async A
etc process process |t
application >
| frame rate
grab_image_start jt‘ """""""""""""" processing T ’jt
b)
transfer
(analog)
frame digitize
grabber
transfer
(DMA)
Grab Grab Grab
- M
! wait for create wait for create wait for create
! image Himage image Himage image Himage t
HFGI & SDK - . >
; A A
software ! N grab_image_async grab_image_async rab_image_async Y
, 1| etc process process lprocess t
application * >
. grab'_image_start frame rate
' Jom processing v $

|
set ‘continuous_grabbing’

Figure 11: a) grab_image_async fails to continuous

grabbing.

reach frame rate; b) problem solved using

Note that some frame grabber interfaces provide additiomationality in the continuous grab-
bing mode, e.qg., the HALCONRitFlow interface. Please refer to the corresponding documen-
tation for more information.

HALCON 6.1.4

22 Application Note on Image Acquisition

\

camera

Ve

(analog) ‘
-] - wait for @
EXPPSG i vsync
wait for H
frame vsyne t
grabber
transfer t
(DMA)
Grab Grab Grab
wait for create wait for create
image Himage image Himage t
HFGI & SDK A >
software grab_image_async grab_image_async \
process process t
application >
frame rate
delay Jon processing .

image m
) 0 EE

Figure 12: Using a asynchronously resettable camera together with grab_image_async (config-
uration as in figure 9.

5.1.6 Using grab_image_async Together With Asynchronously Resettable Cam-
eras

As described irsection 5.1.2you can acquire images without delay by using an asynclisino
resettable camerakigure 12shows the resulting timing when using such a camera together
with grab_image_async. When comparing the diagram to the ondigure 9 you can see that
a higher frame rate can now be reached, because the pragéssns not included anymore.

5.1.7 Specifying a Maximum Delay

In contrast tograb_image, the operatorgrab_image async has an additional parameter
MaxDelay, which lets you specify how “old” an already grabbed imageyrha in order to

be acceptedFigure 13visualizes the effect of this parameter. There are two ctsdsstin-
guish: If the call tograb_image arrives before the next image has been grabbed (first call in
the example), the parameter has no effect. However, if agerhas been grabbed already (sec-
ond and third call in the example), the elapsed time sincéategrab command to the frame
grabber is compared ttaxDelay. If it is smaller (second call in the example), the image is
accepted; otherwise (third call), a new image is grabbed.

Please note that the delay is not measured starting from ¢imeemt the image is exposed, as
you might perhaps expect! Currently, only a few frame gral8igKs provide this information;

HALCON Application Guide, 2005-02-01

5.2 Using an External Trigger 23

i E . .

camera expose expose expose expose é
transfer /W\/W/\ t
(analog) "
frame t
grabber [RANY @ @
transfer LLLL P]| i
(DMA) | |
Grab Grab Grab
""" > MaxDelay? NO ----»|4--------- > MaxDelay? YES
wait for create l create
image HI HI {
HFGI & SDK N mage mage >
software - "; :
process H process ! process 1 process | t
application . T T >
T
grab_image_async jt jt jt

Figure 13: Specifying a maximum delay for grab_image async (using continuous grabbing).

therefore, the last grab command from the interface to teefrtdme grabber is used as the
starting point instead.

5.2 Using an External Trigger

In the previous section, the software performing the mazhision task decided when to ac-
quire an imagedgoftware trigge). In industrial applications, however, the moment for irmag
acquisition is typically specified externally by the praedself, e.g., in form of a hardware
trigger signal indicating the presence of an object to bpented. Most frame grabber boards
are therefore equipped with at least one input line for sughass, which are calledxternal
triggers

From HALCON's point of view, external triggers are dealt ity the frame grabber board,
the only thing to do is to inform the frame grabber to use tiggar. You can do this simply
by setting the paramet@xternalTrigger Of open_framegrabber t0 ’true’. Some frame
grabber interfaces also allow to enable or disable the grigtynamically using the operator
set_framegrabber_param (parameter external trigger’).

Figure 14ashows the timing diagram when using an external triggerttegevithgrab_image

and a free-running camera. After the callgsab_image, the frame grabber board waits for
the trigger signal. When it appears, the procedure destribéhe previous section follows:
The frame grabber waits for the next image, digitizes it, tadsfers it into computer memory;

HALCON 6.1.4

24 Application Note on Image Acquisition

a)
camera expose expose expose expose t
(analog) L] @ L] L]
wait for wait for wait for
frame trigger vsync trigger t
grabber JA JA JAYAY A
transfer L
(DMA)
Grab Grab

wait for create wait for
image Himage image t
HFGI & SDK 1>

software grab_image grab_image
process! t
application »

Trigger Trigger Trigger
trigger L l [
| EEERERE »
delay
image
b)

P — expose expose expose ! t

ot PWANMAM T AWAMAM | AWAMAM .
(analog)
Expose | . _|.wait for @ Expose | __|- wait for @ Expose | __|- wait for @ Expose
| vsync | vsync | vsync
vtvait for ! ' '
frame rigger M t
N \ '
grabber
transfer t
(DMA)
Grab Grab Grab
wait for create wait for create wait for
image Himage image Himage image t
HFGI & SDK N N N >
software grab_image_async tl “ \ 4
! etc | process | . process | | t
application T 1 : : >
! Trigger Trigger , Trigger , Trigger
trigger : I I . I . I >
o i grab_image_async i grab_image_async
grab_image_start delay delay delay
image image image
=0 =0 =0

Figure 14: Using an external trigger together with: a) free-running camera and grab_image; b)
asynchronously resettable camera and grab_image async .

then, the HALCON frame grabber interface transforms it aatbALCON image and returns the
control to the application which processes the image amu ¢hsgrab_image again, which
causes the frame grabber board to wait for the next triggeasi

The (bad) example ifigure 14awas chosen on purpose to show an unsuitable configuration

HALCON Application Guide, 2005-02-01

5.2.1 Special Parameters for External Triggers 25

for using an external trigger: First of all, because of theefrunning camera there is a non-
deterministic delay between the arrival of the trigger algand the exposure of the image,
which may mean that the object to be inspected is not conipleible anymore. Secondly,
becausgrab_image is used, trigger signals which arrive while the applicai®processing an
image are lost.

Both problems can easily be solved by using an asynchropoestttable camera together with
the operatograb_image_async as depicted iffigure 14b

The C++ example prograrpp\error_handling timeout_picport.cpp (preconfigured for
the HALCONPicPort interface) shows how simple it is to use an external triggére con-
nection is opened witAxternalTrigger set to’true’:

HFramegrabber framegrabber;

framegrabber.OpenFramegrabber (fgname, 1, 1, 0, 0, 0, 0, "default", -1,
"gray", -1, "true", camtype, device,
_1, _1);

Then, images are grabbed:

HImage image;

do
{

image = framegrabber.GrabImageAsync(-1);
} while (button == 0);

The example contains a customized error handler which chetlether there is an external
trigger; this part is described in detail section 6.2.3

5.2.1 Special Parameters for External Triggers

Most frame grabber interfaces allow to further configureuke of external triggering via the
operatorset_framegrabber_param. AsS mentioned insection 4.2 some interfaces allow to
enable and disable the external trigger dynamically viapdw@meter external trigger’.
Another useful parameter igrab_timeout’, which sets a timeout for the acquisition process
(some interfaces provide an additional parameterigger_timeout’ just for triggered grab-
bing). Without such a timeout, the application would hanfpifsome reason no trigger signal
arrives. In contrast, if a timeout is specified, the opesspab_image andgrab_image_async
only wait the specified time and then return an error codeiseran exception, depending on
the programming language us&kection 6.hows how to handle such errors.

Other parameters allow to further specify the form of theger signal (trigger_signal’),
e.g., whether the falling or the rising edge is used as tgger select between multiple trigger
input lines, or even filter trigger signals. Some frame geabbterfaces also allow to influence
the exposure via the trigger signal.

5.3 Acquiring Images From Multiple Cameras

The timing diagrams shown in the previous sections depitteadase of a single camera. Be-
low we discuss some issues which arise when acquiring imiages multiple cameras (see

HALCON 6.1.4

26 Application Note on Image Acquisition

section 3.Zor possible configurations).

5.3.1 Dynamic Port Switching and Asynchronous Grabbing

If you switch dynamically between multiple cameras coneédb a single board as described
in section 3.2.4you must be careful when usingrab_image_async: By default, the frame
grabber interface commands the frame grabber board to lgeafeixt image automatically after
it received the current image — but before the next cafjrafb_image_async! If you switched

to another camera before this call, the frame grabber migiddy be busy grabbing an image
from the first camera.

Some frame grabber interfaces solve this problem by progidithe parameter
’start_async_after_grab async’ for the operator set_framegrabber param which
allows to disable the automatic grab command to the framigbgrraboard.

5.3.2 Simultaneous Grabbing

Some frame grabber interfaces provide special functinaligrab imagesimultaneousljrom
multiple (synchronized) cameras. Typically, the camerascannected to a single frame grab-
ber board; théicPort interface also allows to grab simultaneously from camecasected

to multiple boards. As described section 3.2.5the images are grabbed by a single call to
grab_image Or grab_image_async, Which return them in form of a multi-channel image. De-
pending on the frame grabber interface, it may be necessaswitch on the simultaneous
grabbing via the operateet_framegrabber_param.

Please keep in mind that even if a HALCON frame grabber iaterfsupports simultaneous
grabbing, this might not be true for every frame grabber thdlae interface supports! In order
to grab multiple images simultaneously, a frame grabberdomaist be equipped with multiple
“grabbing units”; for example, an analog frame grabber Baaust be equipped with multiple
A/D converters. Please check this in the documentation of frame grabber board.

Evenif a HALCON frame grabber interface does not providesihecial simultaneous grabbing
mode, you can realize a similar behavior “manually”, e.g.cbnnecting each (asynchronously
resettable) camera to a single frame grabber board and #ieg a common external trigger
signal to synchronize the grabbing.

HALCON Application Guide, 2005-02-01

6 Miscellaneous 27

6 Miscellaneous

6.1 Acquiring Images From Unsupported Frame Grabbers

If you want to use a frame grabber which is currently not sujfgabby HALCON, i.e., for

which no HALCON interface exists there exist two principahys: First, you can create
your own HALCON frame grabber interface; how to do this isaldsed in detail in the

Frame Grabber Integration Programmer’s Manual

As an alternative, you can pass externally created imagesthe raw image matrix, to HAL-
CON using the operatorgen_imagel, gen_image3, Or gen_imagel_extern, which create a
corresponding HALCON image. The main difference betweenojperatorgen_imagel and
gen_imagel extern IS that the former copies the image matrix when creating tAe ZON
image, whereas the latter doesn’t, which is useful if youtwarrealizevolatile grabbingas
described irsection 5.1.3

The C example programc\use_extern_image.c Shows how to use the operator
gen_imagel_extern to pass standard gray value images to HALCON. In this cagejntih
age matrix consists of 8 bit pixels (bytes), which can beesgnted by the data typesigned
char. At the beginning, the program calls a procedure which alie€ memory for the images
to be “grabbed”; in a real application this corresponds &ithage buffer(s) used by the frame
grabber SDK.

unsigned char *image_matrix_ptr;
long width, height;

InitializeBuffer (&image_matrix_ptr, &width, &height);

The example program “simulates” the grabbing of images ajphocedure which reads images
from an image sequence and copies them into the image buiffen, the content of the image
buffer is transformed into a HALCON image (typgte) via gen_imagel_extern. The pa-
rameterClearProc is set to0 to signal that the program itself takes care of freeing thenorg.
The created HALCON image is then displayed. The loop can ldedby clicking into the
HALCON window with any mouse button.

Hobject image;
long window_id;

open_window (0O, O, width, height, O, "visible", "", &window_id);
while (!ButtonPressed(window_id))
{
MyGrabImage ((const unsigned char **) &image _matrix_ptr);
gen_imagel_extern(&image, "byte", width, height,
(long) image_matrix_ptr, (long) 0);
disp_obj(image, window_id);

}

If your frame grabber supplies images with more than 8 bielsixyou must adapt both
the data type for the image matrix and the type of the creat®HGON image (parameter
Type Of gen_imagel_extern). In case of color images HALCON expects the image data in
form of three separate image matrices. You can create a HAL@Gage either by calling
the operatorgen_image3 with the three pointers to the matrices, or by calling therafue

HALCON 6.1.4

28 Application Note on Image Acquisition

Error E=

° enor in operator grab_image: Frame grabber: timeout

Figure 15: Popup dialog in HDevelop signaling a timeout.

gen_imagel_extern three times and then using the operatbénnels_to_image to combine
the three images into a multi-channel image. Please ref@ppendix Afor more information
about HALCON images in general.

6.2 Error Handling

Just as the HALCON frame grabber interfaces encapsulateaimenunication with a frame
grabber board, they also encapsulate occurring errorgniita HALCON error handling mech-
anism. How to catch and react to these errors is describeavpfelr HDevelop programs and
also for programs using HALCON'’s programming languagerfatees.

Some HALCON frame (grabber interfaces provide special patara for
set_framegrabber _param which are related to error handling. The most commonly
used one is the parametegrab_timeout’ which specifies when the frame grabber should
quit waiting for an image. The examples described in theofalhg sections show how to
handle the corresponding HALCON error.

Note that all example programs enable the signaling of lovell@rrors via the operator
set_system, e.g., in HDevelop syntax via

set_system (’do_low_error’, ’true’)

In this mode, low level errors occurring the frame grabbeK0r in the HALCON interface)
in are signaled by a message box.

6.2.1 Error Handling in HDevelop

The HDevelop examplédevelop\error_handling timeout_picport.dev shows how to
handle HALCON errors in a HDevelop program. To “provoke” &rog open_framegrabber
is called withExternalTrigger = ’true’. If there is no trigger, a call tgrab_image results
in a timeout; HDevelop reacts to this error with the popupatjsshown infigure 15and stops
the program.

open_framegrabber (FGName, 1, 1, 0, 0, 0, O, ’default’, -1, ’default’, -1,
>true’, CameraType, Device, -1, -1, FGHandle)

set_framegrabber_param (FGHandle, ’grab_timeout’, 2000)

grab_image (Image, FGHandle)

HALCON lets you modify the reaction to an error with the oferaet_check (in HDevelop:
dev_set_check). If you set it to’~give_error’, the program does not stop in case of an
error but only stores its cause in form of an error code. Tes&this error code in HDevelop,

HALCON Application Guide, 2005-02-01

6.2.2 Error Handling Using HALCON/C 29

you must define a corresponding variable using the opetatorerror_var. Note that this
variable is updated after each operator call; to check thdtref a single operator we therefore
recommend to switch back into the standard error handlingenalirectly after the operator call
as in the following lines:

dev_error_var (ErrorNum, 1)
dev_set_check (’“give_error’)
grab_image (Image, FGHandle)
dev_error_var (ErrorNum, O0)
dev_set_check (’give_error’)

To check whether a timeout occurred, you compare the ermaabla with the code signal-
ing a timeout $322); a list of error codes relating to image acquisition can denfl in the
Frame Grabber Integration Programmer’s Manull the example, the timeout is handled by
disabling the external trigger mode via the operaiet_framegrabber_param (parameter
’external_trigger’). Then, the call tgrab_image is tested again.

if (ErrorNum = 5322)
set_framegrabber_param (FGHandle, ’external_trigger’, ’false’)
dev_error_var (ErrorNum, 1)
dev_set_check (’“give_error’)
grab_image (Image, FGHandle)
dev_error_var (ErrorNum, 0)
dev_set_check (’give_error’)
endif

Now, the error variable should contain the vafusignaling that the operator call succeeded;
for this value HDevelop provides the constantSG_TRUE. If you get another error code, the
program accesses the corresponding error text using thiatopget_error_text.

if (ErrorNum # H_MSG_TRUE)
get_error_text (ErrorNum, ErrorText)
endif

If your frame grabber interface does not provide the paranmetxternal trigger’, you
can realize a similar behavior by closing the connection Hreh opening it again with
ExternalTrigger setto’false’.

6.2.2 Error Handling Using HALCON/C

The mechanism for error handling in a program based on HALGOK similar to the one in
HDevelop; in fact, it is even simpler, because each opegattmmatically returns its error code.
However, if a HALCON error occurs in a C program, the defaulbehandling mode causes
the program to abort.

The C example program\error_handling timeout_picport.c performs the same task as
the HDevelop program in the previous section; if the caftab_image succeeds, the program
grabs and displays images in a loop, which can be exited bkiof into the window. The
following lines show how to test whether a timeout occurred:

HALCON 6.1.4

30 Application Note on Image Acquisition

set_check ("“give_error");

error_num = grab_image (&image, fghandle);
set_check ("give_error");

switch (error_num)

{
case H_ERR_FGTIMEOQOUT:

As you see, in a C program you can use prefined constants foertbbe codes (see the
Frame Grabber Integration Programmer’s Marfag list of image acquisition error codes and
their corresponding constants).

6.2.3 Error Handling Using HALCON/C++

If your application is based on HALCON/C++, there are two neels for error handling: If you
use operators in their C-like form, i.e., preceeded by a ocdlon (e.g., : grab_image), you
can apply the same procedure as described for HALCON/C iprnaous section.

In addition, HALCON/C++ provides an exception handling mm&aism based on the class
HException, which is described in thelALCON/C++ User’'s Manual Whenever a HAL-
CON error occurs, an instance of this class is created. The iea is that you can spec-
ify a procedure which is then called automatically with tmeated instance dfException

as a parameter. How to use this mechanism is explained in #he éample program
cpp\error_handling timeout_picport.cpp, Which performs the same task as the examples
in the previous sections.

In the example programpp\error_handling timeout_picport.cpp (preconfigured for the
HALCON PicPort interface), the procedure which is to be called upon erreerg simple: It
just raises a standard C++ exception with the instané¢Eofeption as a parameter.

void MyHalconExceptionHandler (const HException& except)
{
throw except;

3

In the program, you “install” this procedure via a class métbf HException:

int main(int argc, char xargvl[])
{
HException: :InstallHHandler (4MyHalconExceptionHandler) ;

Now, you react to a timeout with the following lines:

try
{
image = framegrabber.GrabImage() ;
}
catch (HException except)
{
if (except.err == H_ERR_FGTIMEQUT)
{

framegrabber.SetFramegrabberParam("external_trigger", "false");

HALCON Application Guide, 2005-02-01

6.2.4 Error Handling Using HALCON/COM 31

As already noted, if your frame grabber interface does naivide the parameter
’external_trigger’, you can realize a similar behavior by closing the connecdind then
opening it again witlExternalTrigger Setto’false’:

if (except.err == H_ERR_FGTIMEQUT)
{
framegrabber.OpenFramegrabber (fgname, 1, 1, 0, 0, 0, 0, "default",
-1, "gray", -1, "false", camtype,
"default", -1, -1);

Note that when callinQpenFramegrabber via the classiFramegrabber as above, the operator
checks whether it is called with an already opened conneetiol automatically closes it before
opening it with the new parameters.

6.2.4 Error Handling Using HALCON/COM

The HALCON/COM interface uses the standard COM error hagdiechnique where every
method call passes both a numerical and a textual repréisentd the error to the calling
framework. How to use this mechanism is explained in the dli®asic example program
vb\error_ handling timeout_picport\error_handling timeout_picport.vbp, which
performs the same task as the examples in the previouss®ctio

For each method, you can specify an error handler by inggtfti@ following line at the begin-
ning of the method:

On Error GoTo ErrorHandler

At the end of the method, you insert the code for the error leandf a runtime error occurs,
Visual Basic automatically jumps to this code, with the elr@ing described in the variatiier.
However, the returned error number does not correspondtiyite the HALCON error as in
the other programming languages, because low error nurabereserved for COM. To solve
this problem HALCON/COM uses an offset which must be sulbécdo get the HALCON
error code. This offset is accessible as a property of thesikystemX:

ErrorHandler:
Dim sys As New HSystemX
ErrorNum = Err.Number - sys.ErrorBaseHalcon

The following code fragment checks whether the error is duetimeout. If yes, the program
disables the external trigger mode and tries again to gramage. If the grab is successful
the program continues at the point the error occurred; wfilset the Visual Basic default error
handler is invoked. Note that in contrast to the other pnognang languages HALCON/COM

does not provide constants for the error codes.

If (ErrorNum = 5322) Then
Call FG.SetFramegrabberParam("external_trigger", "false")
Set Image = FG.GrabImage
Resume Next

If the error is not caused by a timeout, the error handleegisanew, whereupon the Visual
Basic default error handler is invoked.

HALCON 6.1.4

32 Application Note on Image Acquisition

Else
Err.Raise (Err.Number)
End If

If your frame grabber interface does not provide the parameixternal_trigger’, you

can realize a similar behavior by closing the connection #reh opening it again with
ExternalTrigger Set to’false’. Note that the clasBFramegrabberX does not provide
a method to close the connection; instead you must desteoyattiable with the following line:

Set FG = Nothing

6.3 Line Scan Cameras

From the point of view of HALCON there is no difference betwegea and line scan cameras:
Both acquire images of a certain width an height; whetherhiight is 1, i.e., a single line,
or larger does not matter. In fact, in many line scan appboatthe frame grabber combines
multiple acquired lines to form a so-call@égewnhich further lessens the difference between
the two camera types.

The main problem is therefore whether your frame grabbepatip line scan cameras. If yes,
you can acquire images from it via HALCON exactly as from agaascan camera. With the
parametefimageHeight Of the operatobpen_framegrabber you can sometimes specify the
height of the page; typically, this information is set in ttemera configuration file. Some
HALCON frame grabber interfaces allow to further configuine &cquisition mode via the
operatorset_framegrabber_param.

The images acquired from a line scan camera can then be peacg@sst like images from
area scan cameras. However, line scan images often poseddioreal problem: The ob-
jects to inspect may be spread over multiple images (pages)solve this problem, HAL-
CON provides special operatorsile_images allows to merge images into a larger image,
merge_regions_line_scan andmerge_cont_line_scan_x1d allow to merge the (intermedi-
ate) processing results of subsequent images.

How to use these operators is explained in the HDevelop -ebanmmogram
hdevelop\line scan.dev. The program is based on an image file sequence which is
read using the HALCON virtual frame grabber interf&dée; the task is to extract paper clips
and calculate their orientation. Furthermore, the grayeslin a rectangle surrounding each
clip are determined.

An important parameter for the merging is over how many insageobject can be spread. In
the example, a clip can be spread over 4 images:

MaxImagesRegions := 4

The continuous processing is realized by a simple loop: Ahdteration, a new image is
grabbed, and the regions forming candidates for the clipexsiracted using thresholding.

while (1)
grab_image (Image, FGHandle)
threshold (Image, CurrRegions, 0, 80)

The current regions are then merged with ones extracteceiprévious image using the oper-
atormerge regions_line scan. As a result, two sets of regions are returned: The parameter

HALCON Application Guide, 2005-02-01

6.3 Line Scan Cameras 33

Clips processed so far: 0

Clips processed so far: 0

Figure 16: Merging regions extracted from subsequent line scan images: state after a) 2, b)
3, ¢) 4 images (large coordinate system: tiled image; small coordinate systems:
current image or most recent image).

CurrMergedRegions contains the current regions, possibly extended by fittengspof the pre-
viously extracted regions, whereas the paraniterMergedRegions contains the rest of the
previous regions.

merge_regions_line_scan (CurrRegions, PrevRegions, CurrMergedRegions,
PrevMergedRegions, ImageHeight, ’top’,
MaxImagesRegions)

connection (PrevMergedRegions, ClipCandidates)

select_shape (ClipCandidates, FinishedClips, ’area’, ’and’, 4500, 7000)

The regions irPrevMergedRegions are “finished”; from them, the program selects the clips
via their area further processes them later, e.g., detesihreir position and orientation. The
regions inCurrMergedRegions are renamed and now form the previous regions for the next
iteration.

copy_obj (CurrMergedRegions, PrevRegions, 1, -1)
endwhile

Note that the operatatopy_obj does not copy the regions themselves but only the correspond
ing HALCON objects, which can be thought of as referencebécrctual region data.

Before we show how to merge the images let’s take a lodigate 16 which visualizes the
whole process: After the first two imagésrrMergedRegions contains three clip parts; for
the first one a previously extracted region was merged. Nuatethe regions are described in

HALCON 6.1.4

34 Application Note on Image Acquisition

the coordinate frame of the current image; this means tleattérged part of clip no. 1 has
negative coordinates.

In the next iterationf(gure 161, further clip parts are merged, but no clip is finished yedteN
that the coordinate frame is again fixed to the current imagea consequence the currently
merged regions seem to move into negative coordinates.

After the fourth image figure 164¢, clips no. 1 and 2 are completed; they are returned in
the parametePrevMergedRegions. Note that they are still described in the coordinate
frame of the previous image (depicted with dashed arrow)isaalize them together with
CurrMergedRegions they must be moved to the coordinate system of the currergemaing
the operatomove region:

move_region (FinishedClips, ClipsInCurrentImageCoordinates,
-ImageHeight, 0)

Let’s get back to the task of merging images: To access thewgilaes around a clip, one must
merge those images over which theevMergedRegions can be spread. At the beginning,
therefore an empty image is created which can hold 4 images:

gen_image_const (TiledImage, ’byte’, ImageWidth,
ImageHeight * MaxImagesRegions)

At the end of each iteration, the “oldest” image, i.e., thegm at the top, is cut off from
the tiled image usingrop_part, and the current image is merged at the bottom using
tile_images_offset:

crop_part (TiledImage, TiledImageMinusOldest, ImageHeight, O,
ImageWidth, (MaxImagesRegions - 1) * ImageHeight)
ImagesToTile := [TiledImageMinusOldest,Image]
tile_images_offset (ImagesToTile, TiledImage, [O,
(MaxImagesRegions-1)*ImageHeight], [0, 0], [-1,
-1], [-1, -11, [-1, -1], [-1, -1], ImageWidth,
MaxImagesRegions * ImageHeight)

As noted above, the regions returnedPirevMergedRegions are described in the coordinate
frame of the most recent image (depicted with dashed arrdwgume 16¢; to extract the cor-
responding gray values from the tiled image, they must festioved to its coordinate system
(depicted with longer arrows) using the operaiove_region. Then, the surrounding rectan-
gles are created usirghape_trans, and finally the corresponding gray values are extracted
usingadd_channels:

move_region (FinishedClips, ClipsInTiledImageCoordinates,
(MaxImagesRegions-1) * ImageHeight, 0)

shape_trans (ClipsInTiledImageCoordinates, AroundClips, ’rectanglel’)

add_channels (AroundClips, TiledImage, GrayValuesAroundClips)

HALCON Application Guide, 2005-02-01

A HALCON Images 35

Appendix

A HALCON Images

In the following, we take a closer look at the way HALCON reg@ets and handles images.
Of course, we won'’t bother you with details about the loneleepresentation and the memory
management; HALCON takes care of it in a way to guaranteengperformance.

A.1 The Philosophy of HALCON Images

There are three important concepts behind HALCON'’s imageabd

1. Multiple channels

Typically, one thinks of an image as a matrix of pixels. In HXQN, this matrix is
called achanne] and images may consist of one or more such channels. Forpéxam
gray value images consist of a single channel, color imaggs®e channels.

The advantage of this representation is that many HALCONaipes automatically
process all channels at once; for example, if you want toraabgray level or color
images from another, you can apmyb_image without worrying about the image
type. Whether an operator processes all channels at onckeaeen in the pa-
rameter description in the reference manual: If an imagamater is described as
(multichannel-)image Or (multichannel-)image(-array) (e.g., the parameter
ImageMinuend Of sub_image), all channels are processed,; if it is described®sze
or image (-array) (e.g., the parametdmage of threshold), only the first channel is
processed.

For more information about channels please refappendix A.3.2

2. Various pixel types

Besides the standard 8 bit (typgte) used to represent gray value image, HALCON
allows images to contain various other data, e.g. 16 biger®(typeint2 or uint2) or
32 bit floating point numbers (typesal) to represent derivatives.

Most of the time you need not worry about pixel types, becad&eCON operators
that output images automatically use a suitable pixel typa. example, the operator
derivate_gauss creates aeal image to store the result of the derivation. As another
example, if you connect to a frame grabber selecting a vali& for the parameter
BitsPerChannel, a subsequengrab_image returns aruint2 image.

3. Arbitrarily-shaped region of interest

Besides the pixel information, each HALCON image also ftaseso-calledlomainin
form of a HALCON region. The domain can be interpreted as ®f interest, i.e.,
HALCON operators (with some exceptions) restrict theirgessing to this region.

The image domain inherits the full flexibility of a HALCON req, i.e., it can be of
arbitrary shape and size, can have holes, or even consistcoihnected points. For
more information about domains please refeappendix A.3.3

HALCON 6.1.4

36 Application Note on Image Acquisition

The power of HALCON's approach lies in the fact that it offéud flexibility but does not
require you to worry about options you don’'t need at the mdmEar example, if all you do
is grab and process standard 8 bit gray value images, yolgoanei channels and pixel types.
At the moment you decide to use color images instead, all y&ad o do is to add some lines
to decompose the image into its channels. And if your camieaane grabber provides images
with more than 8 bit pixel information, HALCON is ready forishas well.

A.2 Image Tuples (Arrays)

Another powerful mechanism of HALCON is the so-calleghle processinglf you want to
process multiple images in the same way, e.g., to smooth,tgem can call the operator
(e.g.,mean_image) once passing it all images as a tuple (array), instead ¢ihgat multi-
ple times. Furthermore, some operators always return irgges, e.g.gen_gauss_pyramid
Or inspect_shape_model.

Whether an operator supports tuple processing can be se#re iparameter description
in the reference manual: If an input image parameter is destrasimage(-array) or
(multichannel-)image(-array) (e.g., the paramet@mage Of mean_image), it Supports tu-
ple processing; if it is described d@sage or (multichannel-)image (e.g., the parameter
Image of find_1d_bar_code), only one image is processed.

For information about creating or accessing image tupleasd refer tappendix A.3.6

A.3 HALCON Operators for Handling Images

Below you find a brief overview of operators that allow to ¢esd ALCON images or to modify
“technical aspects” like the image size or the number of nkémn

A.3.1 Creation

HALCON images are created automatically when you use opeydike grab_image or

read_image. YOU can also create images from scratch using the opergted in the HDe-
velop menwWperators > Image > Creation, €.¢.,gen_image_const Of gen_imagel_extern

(see alssection 6.).

A.3.2 Channels

Operators for manipulating channels can be found in the le@vmenulperators >
Image > Channel. You can query the number of channels of an image with theasper
tor count_channels. Channels can be accessed usiltgess_channel (which extracts a
specified channel without copying)page_to_channels (which converts a multi-channel im-
age into an image tuple), atecompose2 etc. (which converts a multi-channel image into
2 or more single-channel images). Vice versa, you can cieatellti-channel image using
channels_to_image Or compose? etc., and add channels to an image usipgend channel.

HALCON Application Guide, 2005-02-01

A.3.3 Domain 37

A.3.3 Domain

Operators for manipulating the domain of an image can beddanthe HDevelop menu
Operators > Image > Domain. Upon creation of an image, its domain is set to the full im-
age size. You can set it to a specified region usinghge domain. In contrast, the operator
reduce_domain takes the original domain into account; the new domain isktuthe inter-
section of the original domain with the specified region.aB&ealso take a look at the operator
add_channels, which can be seen as complementarydduce_domain.

A.3.4 Access

Operators for accessing infomation about a HALCON imagehlmifound in the HDevelop
menuOperators > Image > Access. For exampleget_image pointer1 returns the size of
an image and a pointer to the image matrix of its first channel.

A.3.5 Manipulation

You can change the size of an image using the operafisigge format Or crop_part,

or other operators from the HDevelop mef@perators > Image > Format. The menu
Operators > Image > Type-Conversion lists operators which change the pixel type, e.qg.,
convert_image _type. Operators to modify the pixel values, can be found in the umen
Operators > Image > Manipulation, €.g.,paint_gray, which copies pixels from one im-
age into another.

A.3.6 Image Tuples

Operators for creating and accessing image tuples can bl fou the HDevelop menu
Operators > Object > Manipulation. Image tuples can be created using the operators
gen_empty_obj and concat_obj, while the operatoselect_obj allows to access an indi-
vidual image that is part of a tuple.

HALCON 6.1.4

38 Application Note on Image Acquisition
B Parameters Describing the Image

When opening a connection witlpen_framegrabber, you can specify the desired image for-
mat, e.g., ist size or the number of bits per pixel, using @upeters, which are described in the
following.

B.1 Image Size

The following 6 parameters influence the size of the grabbmeagdjesHorizontalResolution
andVerticalResolution specify thespatial resolutiorof the image in relation to the original
size. For example, if you chooserticalResolution = 2, you get an image with half the
height of the original as depicted figure 17b Another name for this process is (vertical and
horizontal)subsampling

With the parametersmageWidth, ImageHeight, StartRow, andStartColumn you can grab
only a part of the (possibly subsampled) image; this is addledimage croppingIn figure 17
image part to be grabbed is marked with a rectangle in thenaligor subsampled) image; to
the right, the resulting image is depicted. Note that thaltiegy HALCON image always starts
with the coordinateg0,0), i.e., the information contained in the parametgtartRow and
StartColumn cannot be recovered from the resulting image.

Depending on the involved components, both subsamplingraage cropping may be exe-
cuted at different points during the transfer of an imagenfibhe camera into HALCON: in

the camera, in the frame grabber, or in the software. Pleatgethat in most cases you get no
direct effect on the performance in form of a higher frame;raxceptions are CMOS cam-
eras which adapt their frame rate to the requested imageSudesampling or cropping on the
software side has no effect on the frame rate; besides, yoadaeve a similar result using
reduce_domain. If the frame grabber executes the subsampling or cropognay get a pos-

itive effect if the PCI bus is the bottleneck of your applioatand prevents you from getting the

a)

c)

[{=1:] MACHINE VISION APPLICATI
[-= S~ =

- =

Pattern Matching, Blob Analysis
OCR, OCV, Bar Code Reading, Mearun
Easv Programming in ActiveX (COM),

b) d)

Figure 17: The effect of image resolution (subsampling) and image cropping (ImageWidth
= 200, ImageHeight = 100, StartRow = 50, StartColumn = 100):
a) HorizontalResolution (HR) = VerticalResolution (VR) = 1; b) HR = 1,
VR=2;c)HR=2,VR=1;d)HR=VR =2.

HALCON Application Guide, 2005-02-01

B.2 Frames vs. Fields 39

full frame rate. Some frame grabber interfaces alttyimamic image croppingia the operator
set_framegrabber_param.

Note that HALCON itself does not differentiate between aamed line scan cameras as both
produce images — the former in form of frames, the latter rfof so-calledpagescreated
from successive lines (number specified in the paranietgteHeight). Section 6.3ontains
additional information regarding the use of line scan ca®er

B.2 Frames vs. Fields

The parameteField is relevant only for analog cameras that produce signalevigig the
video standards originally developed for TV, e.g., NTSCALRn these standards, the camera
transmits images (also callé@&meg in form of two so-calledields one containing all odd lines
of a frame, the other all even lines of the next frame. On tamé& grabber board, these two
fields are thennterlaced the resulting frame is transferred via the PCI bus into thpguter
memory using DMA dlirect memory acce¥s

Figure 18visualizes this process and demonstrates its major dralu Itiaa moving object is
observed (in the example a dark square with the letter g, fiosition of the object changes
from field to field, the resulting frame shows a distortionted vertical object boundaries (also
calledpicket-fence effekt Such a distortion seriously impairs the accuracy of mesasants;
industrial vision systems therefore often use so-cgledjressive scagameras which trans-
fer full frames (sedigure 19. Some cameras also “mix” interlacing with progressivensas
depicted irfigure 20

You can also acquire the individual fields by specifyiigrticalResolution = 2. Via the
parametefField you can then select which fields are to be acquired (seefigigie 21): If
you select first’ or *second’, all you get odd or all even fields, respectively; if you selec
‘next’, you get every field. The latter mode has the advantage offaehiteld rate, at the

B R BN

camera

odd field even field odd field even field odd field

transfer camera
to frame grabber
(analog signal)

frame grabber

interlacing
transfer frame

grabber to

software (DMA)

Figure 18: Interlaced grabbing (Field = ’interlaced’).

interlacing

Vv ~

software

HALCON 6.1.4

40 Application Note on Image Acquisition

camera

-
|

full frame full frame full frame

transfer camera
to frame grabber
(analog signal)

frame grabber

transfer frame
grabber to
software (DMA)

Vv~

software

=

Figure 19: Progressive scan grabbing (Field = ’progressive’).

— —

odd field even field odd field even field odd field

camera

M

transfer camera t

to frame grabber

H

(analog signal)
frame grabber t t t : t

b interlacing b interlacing

Figure 20: Special form of interlaced grabbing supported by some cameras.

N

A

transfer frame
grabber to
software (DMA)

VY ~

A

software

T
I

cost, however, of the so-callegbrtical jitter: Objects may seem to move up and down (like
the square ifigure 21), while structures that are one pixel wide appear and desapfiike the
upper part of the 'T’).

By specifying Field = ’first’, ’second’, or ’next’ for a full resolution image
(VerticalResolution = 1), you can select with which field the interlacing starts.

Figure 22shows a timing diagram for usingrab_image together with an interlaced-scan cam-
era. Here, you can in some cases increase the processing fagerby specifyingnext’ for
the parameteField. The frame grabber then starts to digitize an image when éxefreld

HALCON Application Guide, 2005-02-01

B.3 Image Data 41

R E = B

a)

camera

T T T | |
odd field even field odd field even field odd field

transfer camera
to frame grabber
(analog signal)

frame grabber

transfer frame
grabber to
software (DMA)

vV~

s

software

b)

frame grabber

L

g~ 0 gl

i

transfer frame
grabber to
software (DMA)

software

c)

frame grabber

i

transfer frame
grabber to
software (DMA)

vV~

Z
Py

s

=

software

Figure 21: Three ways of field grabbing: a) *first’; b) ’second’; C) ’next’ .

arrives; in the example therefore only one field is lost.

B.3 Image Data

The parameters described in the previous sections coatedition the size of the im-
ages. Thdmage datai.e., the data contained in a pixel, is described with theupeaters
BitsPerChannel andColorSpace. To understand these parameters, a quick look at the HAL-
CON'’s way to represent images is necessary: A HALCON imagesists of one or more ma-
trices of pixels, which are callezhannels Gray value images are represented as single-channel
images, while color images consist of three channels, fgthe red, green, and blue part of
an RGB image. Each image matrix (channel) consistExals which may be of differendata
types e.g., standard 8 bit (typegyte) or 16 bit integers (typent2 or uint?2) or 32 bit floating

HALCON 6.1.4

42 Application Note on Image Acquisition

| 1""'ar.'gm'a';'”""ffamé'ra:él"’i { { { {

camera ! expose ! expose !expose !expose !expose !expose ‘xpose

\ 3

T odd field even field odd field even field odd field even field odd field
T 173" 074 -
wait for wait for
frame vsync digitize digitize vsync digitize digitize t
RV G '
transfer L |||||||||||| i
(DMA)
Grab Grab
l wait for create wait for create
image Himage | 'Mage Himage {
HFGI & SDK >
software grab_image grab_image
process process t
application >
e framerate v}
processing

Figure 22: Grabbing interlaced images starting with the *next’ field.

point numbers (typeeal). For detailed information about HALCON images pleaserréfe
appendix A

The two parameters correspond to the two main aspects of DN'€images: With the pa-
rameterColorSpace you can select whether the resulting HALCON image is to berayls-
channel) gray value image (valugray’) or a (multi-channel) color image (e.g., valtegb’).
The parameteBitsPerChannel specifies how many bits ateansmittedper pixel per channel
from the frame grabber to the computer; the pixel type of tih¢. EBION image is then chosen
to accommodate the transmitted number of pixels.

For example, if a frame grabber is able to transmit 10 bit gralpe images, one selects
ColorSpace = ’gray’ andBitsPerChannel = 10 and gets a single-channel HALCON im-
age of the type'uint2’, i.e., 16 bit per channel. Another example concerns RGB @sag
Some frame grabbers allow the valigand5 for BitsPerChannel. In the first case, & 8 =
24 bit are transmitted per pixel, while in the second casg 8 5 = 15 (padded to 16) bit are
transmitted; in both cases, a three-chanmgtte’ image results.

HALCON Application Guide, 2005-02-01

	1 Application Note on Image Acquisition
	1 The Philosophy Behind the HALCON Frame Grabber Interfaces
	2 A First Example
	3 Connecting to Your Frame Grabber
	3.1 Opening a Connection to a Specified Configuration
	3.2 Connecting to Multiple Boards and Cameras
	3.2.1 Single Camera
	3.2.2 Multiple Boards
	3.2.3 Multiple Handles Per Board
	3.2.4 Port Switching
	3.2.5 Simultaneous Grabbing

	3.3 Requesting Information About the Frame Grabber Interface

	4 Configuring the Acquisition
	4.1 General Parameters
	4.2 Special Parameters
	4.3 Fixed vs. Dynamic Parameters

	5 The Various Modes of Grabbing Images
	5.1 Real-Time Image Acquisition
	5.1.1 Non-Real-Time Grabbing Using grab_image
	5.1.2 Grabbing Without Delay Using Asynchronously Resettable Cameras
	5.1.3 Volatile Grabbing
	5.1.4 Real-Time Grabbing Using grab_image_async
	5.1.5 Continuous Grabbing
	5.1.6 Using grab_image_async Together With Asynchronously Resettable Cameras
	5.1.7 Specifying a Maximum Delay

	5.2 Using an External Trigger
	5.2.1 Special Parameters for External Triggers

	5.3 Acquiring Images From Multiple Cameras
	5.3.1 Dynamic Port Switching and Asynchronous Grabbing
	5.3.2 Simultaneous Grabbing

	6 Miscellaneous
	6.1 Acquiring Images From Unsupported Frame Grabbers
	6.2 Error Handling
	6.2.1 Error Handling in HDevelop
	6.2.2 Error Handling Using HALCON/C
	6.2.3 Error Handling Using HALCON/C++
	6.2.4 Error Handling Using HALCON/COM

	6.3 Line Scan Cameras

	A HALCON Images
	A.1 The Philosophy of HALCON Images
	A.2 Image Tuples (Arrays)
	A.3 HALCON Operators for Handling Images
	A.3.1 Creation
	A.3.2 Channels
	A.3.3 Domain
	A.3.4 Access
	A.3.5 Manipulation
	A.3.6 Image Tuples

	B Parameters Describing the Image
	B.1 Image Size
	B.2 Frames vs. Fields
	B.3 Image Data

