HALCON Version 6.1.4

M ’EC

MVTec Software GmbH

HALCON / C++

User’'s Manual

How to use the image analysis tool HALCON, Version 6.1.4,onyown C++ programs

All rights reserved. No part of this publication may be refroed, stored in a retrieval system,
or transmitted in any form or by any means, electronic, meida$ photocopying, recording,
or otherwise, without prior written permission of the psbier.

Edition
Edition
Edition
Edition
Edition
Edition
Edition
Edition
Edition
Edition

Copyright(© 1997-2005 by MVTec Software GmbH, Minchen, Germanm,,m

July 1997

November 1997

March 1998 (HALCON 5.1)
April 1999 (HALCON 5.2)
October 2000 (HALCON 6.0)
July 2001 (HALCON 6.0.1)
February 2002 (HALCON 6.0.2)
June 2002 (HALCON 6.1)

December 2002 (HALCONG6.1.1)
February 2005 (HALCON 6.1.4)

EC

Microsoft, Windows, Windows NT, Windows 2000, Windows XRdaVisual C++ are either
trademarks or registered trademarks of Microsoft Corpamat

All other nationally and internationally recognized tratirks and tradenames are hereby rec-

ognized.

More information about HALCON can be found at:

http://www.mvtec.com/halcon/

About This Manual

This manual describes the interface of HALCON to the prognamg language C++. It pro-
vides all necessary information to understand and use thadad C++ classes in your own
programs. A set of example programs shows how to apply HALEDM to solve typical
image processing tasks.

The reader of this user manual should be familar with basicepts of image analysis and the
programming language C++.

The manual is divided into the following chapters:

Introducing HALCON/C++
A first example shows how easy image processing becomesiH&ihGON/C++.

Basics of the HALCON/C++ Interface
This chapter describes the basics of the HALCON/C++, eayy, o call HALCON oper-
ators in the procedural and object-oriented approach.

The HALCON Parameter Classes
This chapter lists the parameter classes of HALCON.

Creating Applications Using HALCON/C++
This chapter explains how to compile and link C++ progrants WALCON/C++.

Typical Image Processing Problems
This chapter contains example programs for typical imagegssing tasks.

Release Notes

Please note the latest updates of this manual:

Edition 6b, HALCON 6.1.4 (February 2005)
Errors in the example for the class HRegion and in the memipgstion lists of HRe-
gionArray and Hobject have been corrected.

Edition 6a, HALCON 6.1.1 (December 2002)

An error in the description of object-oriented error hanglwas corrected. Besides,
the manual now warns that the user must allocate memory fimubstring parameters
him/herself. Finally, the manual reflects the support of§&

Edition 6, HALCON 6.1 (June 2002)

The manual has been revised and extended significantly: d$iedof the HALCON/C++
interface, e.g., how to call operators in the proceduraliartie object-oriented way or
how to realize error handling, are now described in detadl imew chapter; The section
“Exception Handling” has been extended by an example stgpWwow to use the C++
exception handling mechanisrxfy . . . catch) together with the clas#Exception. Fur-
thermore, the chapter describing the parameter classé®basipdated and now also lists
the new handle classes.

Edition 5b, HALCON 6.0.2 (February 2002)
Errors in the description of the class HException were abec:

Edition 5a, HALCON 6.0.1 (July 2001)
Since HALCON 6.0.1 does not support HP-UX anymore, the spoading references
have been deleted from the manual.

Edition 5, HALCON 6.0 (October 2000)
The manual has been restructured and revised slightlyciediyethe chapter “Creating
Applications Using HALCON/C++".

Contents

Introducing HALCON/C++
1.1 Additional Sources of Information
1.2 AFirstExample e

Basics of the HALCON/C++ Interface

2.1 Calling HALCON Operators. v o v it i e e e e e e
2.1.1 ACloserLook at Parameters.
2.1.2 Calling OperatorsviaClasses.
2.1.3 TheTupleMode.

2.2 ErrorHandling
2.2.1 Object-Oriented Approach.
2.2.2 Procedural Approach.

2.3 Memory Management.

2.4 How to Combine Procedural and Object-Oriented Code.

The HALCON Parameter Classes

3.1 lIconicObjects
3.1.1 Regions e e
3.1.2 Images. e e e
3.1.3 XLDODbjects.
3.1.4 Low-LevellconicObjects.

3.2 ControlParameters
3.2.1 The Basic Class for Control Parameters
3.2.2 Tuples
3.2.3 Classes EncapsulatingHandles.

3.3 AuxiliaryClasses.

Creating Applications With HALCON/C++
4.1 Windows NT/2000/XP.
4.2 UNIX e

Typical Image Processing Problems

5.1 Thresholdinganimage
5.2 EdgeDetection. e
5.3 DynamicThreshold
5.4 Texture Transformation
5.5 Eliminating SmallObjects.
5.6 SelectingOrientedObjects.,
5.7 Smoothing Contours. e

Index

53

Chapter 1

Introducing HALCON/C++

HALCON/C++ is the interface of the image analysis system IZ&IN to the programming lan-
guage C++. Together with the HALCON library, it allows to uke image processing power
of HALCON inside C++ programs. HALCON provides operatorsexing a wide range of ap-
plications, e.g., factory automation, quality controm@e sensing, aerial image interpretation,
medical image analysis, and surveillance tasks.

After pointing out additional sources of information ab&lALCON, we start with a first ex-
ample application. The following chapters describe theaighe HALCON operators in C++
programs in more detaiChapter 2akes a closer look at the basics of the HALCON/C++ inter-
face, whilechapter Jjives an overview of the HALCON's parameter clad$®&sage, HRegion,
HWindow etc. Chapter 4shows how to create applications based on HALCON/C++. Kinal
chapter Joresents typical image processing problems and shows hesie them using HAL-
CON/C++.

1.1 Additional Sources of Information

For further information you may consult the following mafaia

e Getting Started with HALCON
An introduction to HALCON in general, including how to inftand configure HALCON.

e HDevelop User’'s Manual
An introduction to the graphical development environmdrthe HALCON system.

e HALCONY/C User's Manual
How to use the HALCON library in your C programs.

e HALCON/COM User’'s Manual
How to use the HALCON library in your COM programs.

e Extension Package Programmer’s Manual
How to extend the HALCON system with your own operators.

e Frame Grabber Integration Programmer’s Manual
A guide on how to integrate a new frame grabber in the HALCOBteay. Note that
in some cases you might define new operators (using the EateRackage Interface)

2 CHAPTER 1. INTRODUCING HALCON/C++

instead of using the standard HALCON Frame Grabber Integrdnterface in order to
exploit specific hardware features of a frame grabber board.

e HALCON/C++, HALCON/HDevelop, HALCON/C , HALCON/COM
The reference manuals for all HALCON operators (versiom<fe+, HDevelop, C, and
COM).

e Application Guide
Multiple, independent documents called Application Npwestten from the point of view
of developing machine vision applications with HALCON. Badote covers a specific
topic, e.g., how to use shape-based matching to find andZeazbjects.

All these manuals are available as PDF documents. The nefenmanuals are available as
HTML documents as well. For the latest version of the manpkgase check

http://www.mvtec.com/halcon/

1.2 A First Example

Let’s start with a brief sample program before taking a aldsek inside HALCON/C++.

Figure 1.1: The left side shows the input image (a mandrill), and the right side shows the result
of the image processing: the eyes of the monkey.

The input image is shown ifigure 1.10on the left side. The task is to find the eyes of the
monkey by segmentation. The segmentation of the eyes isrpegtl by the C++ program
listed infigure 1.2 the result of the segmentation process is showiigure 1.1on the right
side.

The program is more or less self-explaining. The basic idessifollows: First, all pixels of
the input image are selected which have a gray value of at 1285 on the assumption that
the imagelandrill is a byte image with a gray value range between 0 and 255. Skctme
connected component analysis is performed. The resuledi&kLCON operator is an array of

HALCON / C++, 2005-02-01

1.2.

A FIRST EXAMPLE

#include "HalconCpp.h"

main()

{
HImage Mandrill("monkey"); // read image from file "monkey"
HWindow w; // window with size equal to image
Mandrill.Display(w) ; // display image in window
w.Click(); // wait for mouse click
HRegion Bright = Mandrill >= 128; // select all bright pixels

regions. Each region is isolated in the sense that it doetonoh another region according to
the neighbourhood relationship. Among these regions ttvasare selected which correspond
to the eyes of the monkey. This is done by using shape prepeastithe regions, the size and

HRegionArray Conn = Bright.Connection(); // get connected components

// select regions with a size of at least 500 pixels
HRegionArray Large = Conn.SelectShape("area","and",500,90000) ;

// select the eyes out of the instance variable Large by using
// the anisometry as region feature:

HRegionArray Eyes = Large.SelectShape("anisometry","and",1,1.7);

Eyes.Display(w) ; // display result image in window
w.Click(); // wait for mouse click

Figure 1.2: This program extract the eyes of the monkey.

the anisometry.

This example shows how easy it is to integrate HALCON opesdtoany C++ program. Their
use is very intuitive: You don’t have to care about the undegd data structures and algo-
rithms, you can ignore specific hardware requirements, uf gonsider e.g. input and output
operators. HALCON handles the memory management effigianidl hides details from you,

and provides an easy to use runtime system.

HALCON 6.1.4

4 CHAPTER 1. INTRODUCING HALCON/C++

HALCON / C++, 2005-02-01

Chapter 2

Basics of the HALCON/C++ Interface

In fact, the HALCON/C++ interface provides two differenfapaches to use HALCON's func-
tionality within your C++ program: @rocedural and anobject-oriented approach. The proce-
dural approach corresponds to calling HALCON operatorsatliy as in C or HDevelop, e.g.:

Hobject original_image, smoothed_image;
::read_image(&original_image, "monkey");
::mean_image(original_image, &smoothed_image, 11, 11);

Note that, in comparison with HALCON/C or HDevelop, the ager names are prefixed with
a double colon. In the following, we will leave out this prefikien referencing operators in the
text.

In addition to the procedural approach, HALCON/C++ allowscall HALCON operators in
an object-oriented way, i.e., via a set of classes. For elgntipe code from above can be
“translated” into:

HImage original_image("monkey"), smoothed_image;
smoothed_image = original_image.MeanImage(11, 11);

This simple example already shows that the two approackat re clearly different code: Be-
sides the different operator names (procedural: smadirieind underscores; object-oriented:
capitals), the operator calls differ in the number and typpavameters. Furthermore, func-
tionality may be available in different ways; for examplegages can be read from files via a
constructor of the clagilmage. In general, we recommend to use the object-oriented approa
Note, however, that HDevelop can export programs only inbeg@dural C++ codeSection 2.4
shows how to combine procedural with object-oriented code.

In the following sections, we take a closer look at variossies regarding the use of the HAL-
CON/C++ interfacechapter Jescribes the provided classes in more detail.

2.1 Calling HALCON Operators

How a HALCON operator can be called via the HALCON/C++ inded is described in detail
in the HALCON/C++ reference manual. As an examfilgyre 2.1shows parts of the entry for
the operatomean_image.

Below, we take a closer look at the parameters of an operalipdescribe how to call operators
via classes, and explain another special HALCON concegtufile mode.

5

6 CHAPTER 2. BASICS OF THE HALCON/C++ INTERFACE

Herror ::mean_image (Hobject Image, Hobject *ImageMean,
const HTuple &MaskWidth, const HTuple &MaskHeight)

HImage HImage::MeanImage (const HTuple &MaskWidth,
const HTuple &MaskHeight) const

HImageArray HImageArray::MeanImage (const HTuple &MaskWidth,
const HTuple &MaskHeight) const

Image (inputobject) .. (multichannel-)image(-array)> Hobject: HIimage(Array)(byte /
int2 / uint2 / int4 / real / dvf)

ImageMean (Outputobject) .. (multichannel-)image(-array» Hobject * : Himage(Array)
byte / int2 / uint2 / int4 / real
/ dvf)

MaskWidth (inputcontrol), extent— HTuple.long

MaskHeight (inputcontrol)o, extgnt—» HTuple.long

Figure 2.1: The head and parts of the parameter section of the reference manual entry for
mean_image.

2.1.1 A Closer Look at Parameters

HALCON distinguishes two types of parametersonic and control parameters.lconic pa-
rameters are related to the original image (images, regions, XLD disje whereagontrol
parameters are all kinds of alphanumerical values, such as integejrig-point numbers, or
strings.

A special form of control parameters are the so-cafi@atlies. A well-known representative of
this type is thevindow handle, which provides access to an opened HALCON window, e.g., to
display an image in it. Besides, handles are used when apgsttare complex data, e.g., the
operators for shape-based matching which create and tieeth@isnodel data, or for accessing
input/output devices, e.g., frame grabbers. Classes sulzmg handles are described in detail
in section 3.2.3

Both iconic and control parameters can appear as input atpdioparameters of a HALCON
operator. For example, the operatesn_image expects one iconic input parameter, one iconic
output parameter, and two input control parameters figeee 2.); figure 2.2shows an oper-
ator which has all four parameter types. Note how some pasmé&lisappear” from within
the brackets if you call an operator via a class; this medmams described in more detail in
section 2.1.2

An important concept of HALCON'’s philosophy regarding paeders is thatnput param-
eters are not modified by an operator As a consequence, they are pasbgdalue (e.g.,
Hobject Image in figure 2.) or via a constant reference (e.gonst HTuple &MaskWidth).
This philosophy also holds if an operator is called via aglasth the calling instance acting as
an input parameter. Thus, in the following example code tiggral image is not modified by
the call toMeanImage; the operator’s result, i.e., the smoothed image, is pexvida the return
value instead:

HALCON / C++, 2005-02-01

2.1. CALLING HALCON OPERATORS 7

Herror ::find_1d bar_code (Hobject Image, Hobject *CodeRegion,
const HTuple &BarCodeDescr, const HTuple &GenericName,

const HTuple &GenericValue, HTuple *BarcodeFound,

HTuple *BarCodeElements, HTuple *Orientation)

HRegion HImage::FindldBarCode (const HTuple &BarCodeDescr,

const HTuple &GenericName, const HTuple &GenericValue,

HTuple *BarcodeFound, HTuple *BarCodeElements, HTuple *Orientation)
const

HRegion HBarCodelD::FindldBarCode (const HImage &Image,
const HTuple &GenericName, const HTuple &GenericValue,
HTuple *BarcodeFound, HTuple *BarCodeElements, HTuple *Orientation)

const

Image (inputobject) image> Hobject: Himagd byte / uint2)
CodeRegion (outputobject), regior Hobject * : HRegion
BarCodeDescr (input.control) barcoddd-array ~ HTuple.const char ¥long / double
GenericName (inputcontrol) string(-array)> HTuple.const char *
GenericValue (inputcontrol) number(-array)- HTuple.double/ long
BarcodeFound (outputcontrol), integer HTuple.long *
BarCodeElements (outputcontrol) number-array: HTuple.double *
Orientation (outputcontrol)t angle.rad HTuple.double *

Figure 2.2: The head and parts of the parameter section of the reference manual entry for
find_1d_bar_code.

HImage original_image("monkey"), smoothed_image;
smoothed_image = original_image.MeanImage(11, 11);

In contrast to input parameters, output parameters areyalmadified, thus they must be passed
by reference. Note that operators expect a pointeatoalready declared variablé For exam-
ple, when calling the operat®rind1dBarCode as in the following lines of code, variables of
the classiTuple are declared before passing the corresponding pointarg tie operatok.

HImage image ("barcode/ean13/ean1301") ;
HBarCodelD barcode("EAN 13", 13, 13);
HRegion code_region;

HTuple isfound, elements;

code_region = barcode.FindldBarCode (image, HTuple(), HTuple(),
&isfound, &elements, (HTuplex) _);

The above example shows two other interesting aspects ptibparameters: When calling
operators via classes, one output parameter becomes tha ketlue (seesection 2.1.%or
more details); in the exampl&;indidBarCode returns the bar code region. Secondly, a spe-
cial variable called was specified for the last parameterfahd1dBarCode. This variable is
pre-declared; it tells the operator that it does not needitpud the corresponding parameter.

HALCON 6.1.4

8 CHAPTER 2. BASICS OF THE HALCON/C++ INTERFACE

Herror ::info_framegrabber (const HTuple &Name, const HTuple &Query,
char *Information, char *ValueList)

Herror ::info_framegrabber (const HTuple &Name, const HTuple &Query,
HTuple *Information, HTuple *ValueList)

Name (inputcontrol) it 8y ~ HTuple.const char *
Query (inputcontrol) styin» HTuple.const char *
Information (outputcontrol)o string: (HTuple.) char *
ValueList (outputcontrol) string(-array)» (HTuple.) char % long * / double *

Figure 2.3: The head and parts of the parameter section of the reference manual entry for
info_framegrabber.

Many HALCON operators accept more than one value for cepanameters. For example,
you can call the operatdfeanImage with an array of images (sdmgure 2.3; then, an array of
smoothed images is returned. This is calledttlpbe mode; seesection 2.1.3or more informa-
tion.

Please note thatutput parameters of the type string need special attentionFirst of all, you
must allocate memory for them yourself, e.g., by declarivent as character arrays; secondly,
you don’t pass them by reference, because such paramet@aiaters already. In the following
example code, the operatntfo_framegrabber (see alsdigure 2.3 is called with two output
string parameters to query the currently installed PicfPanhe grabber board:

const char *FGName = "PicPort";
char sInfo[MAX_STRING], sValue[MAX_STRING];

::info_framegrabber (FGName, "info_boards", sInfo, sValue);

Note that it isn’t necessary to allocate memory for outpumgtparameters in the already men-
tionedtuple mode, i.e., when using instances of the cléSaple instead of “plain” strings (also
seesections 2.1.and3.2.2:

HTuple tInfo, tValues;

::info_framegrabber (FGName, "camera_types", &tInfo, &tValues);

2.1.2 Calling Operators via Classes

As already described in the previous section, the HALCON/@ference manual shows via
which classes an operator can be called. For exarfjpie,1dBarCode can be called via objects

of the classiImage or HBarCodeld (seefigure 2.3. In both cases, the corresponding input
parameterImage or BarCodeDescr, respectively) does not appear within the brackets anymore
as itis replaced by the calling instance of the clags §).

There is a further difference to the procedural operatanagigre: The first output parameter
(in the example the bar code regioodeRegion) also disappears from within the brackets and

HALCON / C++, 2005-02-01

2.1. CALLING HALCON OPERATORS 9

HImage image ("barcode/ean13/ean1301") ;
HBarCodelD barcode("EAN 13", 13, 13);
HRegion code_region;

HTuple isfound, elements;

code_region = barcode.FindldBarCode (image, HTuple(), HTuple(),

&isfound, &elements, (HTuplex) _);

code_region = image.FindldBarCode (barcode.GetHandle(), HTuple(), HTuple(),
&isfound, &elements, (HTuplex) _);

Hobject image;

HTuple barcode;

Hobject code_region;
HTuple isfound, elements;

::read_image (&image, "barcode/ean13/ean1301");

::gen_1d_bar_code_descr ("EAN 13", 13, 13, &barcode);

::find_1d_bar_code(image, &code_region, barcode, HTuple(), HTuple(),
&isfound, &elements, (HTuplex) _);

Figure 2.4: Using Find1dBarCode via HBarCode1d, via HImage, or in the procedural approach.

becomes the return value instead of the error code (more @bau handling can be found in
section 2.2

Figure 2.4depicts code examples for the three ways toEaild1dBarCode. When comparing

the object-oriented and the procedural approach, you carihsg the calls to the operators
read_image andgen_1d_bar_code_descr are replaced by special constructors for the classes
HImage andHBarCodeld, respectively. This topic is discussed in more detail below

Please note that the two object-oriented methods seem taadantmetric”: If you call
FindldBarCode Vvia HImage, the reference manual seems to suggest that you must pass the
handleinstead of an instance @BarCode1d. In fact, you can pass both a handle and a class in-
stance, because the latter is automatically “casted” itaralle; the signature was not changed

to keep the HALCON/C++ interface backward compatible asfpossible.

2.1.2.1 Constructors

As can be seen ifigure 2.4 the HALCON/C++ parameter classes provide additional con-
structors which are based on suitable HALCON operators. comstructors foHImage and
HBarCodeld used in the example are basedr@ad_image andgen_1d_bar_code_descr, re-
spectively.

Please note that in the current HALCON version construcoesprovided inconsistently for
the different classes. Below we take a brief look at the mmgtortant classes. A complete
and up-to-date list of available constructors can be founithe corresponding header files in
JHALCONROOT?\include\cpp.

e Images:
The classiImage provides constructors based on the operatessl_image, gen_imagel,
gen_imagel extern, andgen image const.

HALCON 6.1.4

10

CHAPTER 2. BASICS OF THE HALCON/C++ INTERFACE

Pleasebeware of the following pitfall when using the operators themselvesHiaage:
Contrary to intuition, the operators do not modify the imstathey are called from; in-
stead, the created image is the return value of the opertibaid, after the following code
the image is still uninitialized:

HImage image;
image.ReadImage ("barcode/eanl13/ean1301") ; // incorrect

The correct way to calleadImage is as follows:
image = HImage::ReadImage("barcode/eanl13/ean1301"); // correct

Note that this pitfall concerns all operators whefaage appears as an output parameter,
e.g.,GrabImage. More information abouliImage can be found irsection 3.1.2

Regions:

The classHRegion provides constructors based on operators ke rectangle2 or
gen_circle. However, instead of the parameters of these operators;ahstructors
expect instances of auxiliary classes li&e=ctangle2 or HCircle (Seesection 3.3for
more information about these classes).

Please note thailRegion presents the same pitfallas HImage, i.e., operators like
GenRectangle2 do not modify the calling instance éfkegion but return the created
region! More information abouiRegion can be found irsection 3.1.1

XLDs:
The classes for XLDsHKLD, HXLDCont, etc., seesection 3.1.3or more information) do
not provide constructors based on operators.

Windows:

The classHWindow provides constructors based on the operatgfén window and
new_extern window. Note that the former is realized with default values forpatame-
ters, thus becoming the default constructor, i.e., all wimdéhstances are already opened
upon construction!

Of course, you can close a window usifijoseWindow and then open it again using
OpenWindow. In contrast to the iconic parameter classes, you can aaltdbnstructor-
like” operatorOpenWindow via an instance ofiwindow in the intuitive way, i.e., the call-
ing instance is modified; in addition the corresponding el returned. HWindow is
described in more detail ipection 3.2.3.1

Other Handle Classes:

The other classes encapsulating handles, @RarCodeld or HFramegrabber, pro-
vide constructors in a systematic way: If a class appearsnasugput parameter in
an operator, there automatically exists a constructordasethis operator. Thus, in-
stances ofiBarCode1d can be constructed based ggn_1d bar_code_descr as shown
in figure 2.4 instances olHShapeModel based oncreate_shape model, instances of
HFramegrabber based oropen_framegrabber and so on.

In contrast to the iconic parameter classes, handle cladees to call constructor-like

operators via instances of the class in the intuitive way, the calling instance is modi-
fied. For example, you can create an instandéatCode1d with the default constructor
and then initialize it usinGen1dBarCodeDescr as follows:

HBarCodelD barcode;
barcode.GenldBarCodeDescr ("EAN 13", 13, 13);

HALCON / C++, 2005-02-01

2.1. CALLING HALCON OPERATORS 11

If the instance was already initialized, the correspondiata structures are automatically
destroyed before constructing and initializing them ansee(alssection 2.1.2.2 The
handle classes are described in more detaértion 3.2.3.2

2.1.2.2 Destructors

AllHALCON/C++ classes provide default destructors whiciicanatically free the correspond-
ing memory. For some classes, the destructors are basedtablswperators:

e Windows:
The default destructor of the claBBindow closes the window based @lose _window.
Note that the operator itself is no destructor, i.e., youadase a window and then open it
again usin@penWindow.

e Other Handle Classes:
The default destructors of the other classes encapsulaéindles, e.gHShapeModel or
HFramegrabber, apply operators likelear_shape model Or close_framegrabber, re-
spectively. In contrast tolose_window, these operators cannot be called via instances of
the class, as can be seen in the corresponding referencaheaiies; the same holds for
operators likeclear_all _shape models. In fact, there is no need to call these operators
as you can initialize instances anew as describesgation 2.1.2.1

Please note that you must not use operators likeear shape model,
clear_all shape models, Or close _framegrabber together with instances of the
corresponding handle classes!

2.1.3 The Tuple Mode

As already mentioned isection 2.1.1many HALCON operators can be called in the so-called
tuple mode. In this mode, you can, e.g., apply an operator to multipleges or regions with a
single call. The standard case, e.g., calling the operatbraxsingle image, is called trsample
mode. Whether or not an operator supports the tuple mode can bxkethien the reference
manual. For example, take a lookfegure 2.5 which shows an extract of the reference manual
entry for the operatothar_threshold: In the parameter section, the parametesge is de-
scribed as anmage (-array); this signals that you can apply the operator to multiplegesga

at once.

If you call char_threshold with multiple images, i.e., with an image tuple, the outpat p
rameters automatically become tuples as well. Conseqiéml parameterSharacters and
Threshold are described assgion(-array) andinteger (-array), respectively.

The head section of the reference entryfigure 2.5shows how simple and tuple mode are
reflected in the operator’s signatures. In the procedunaitageh, the simple and tuple mode
methods of callinghar_threshold differ only in the type of the output paramet@ireshold:

a pointer to dong or to aHTuple Of long values, respectively. Note that the cléiSaple can
also contain arrays (tuples) of control parameters of miypd; please refer teection 3.2.2or
more information about this class. In contrast to the cdanameters, the iconic parameters
remain instances of the cladsbject in both modes, as this class can contain both single
objects and object arrays (see atsation 3.1.1

HALCON 6.1.4

12 CHAPTER 2. BASICS OF THE HALCON/C++ INTERFACE

Herror ::char_threshold (Hobject Image, Hobject HistoRegion,
Hobject *Characters, const HTuple &Sigma, const HTuple &Percent,
long *Threshold)

Herror ::char threshold (Hobject Image, Hobject HistoRegion,
Hobject *Characters, const HTuple &Sigma, const HTuple &Percent,
HTuple *Threshold)

HRegion HImage: :CharThreshold (const HRegion &HistoRegion,
const HTuple &Sigma, const HTuple &Percent, long *Threshold) const

HRegionArray HImageArray::CharThreshold (const HRegion &HistoRegion,
const HTuple &Sigma, const HTuple &Percent, HTuple *Threshold) const

Image (inputobject) image(-array) Hobject: Himage(Array] byte)
HistoRegion (inputobject)cciiiiii... region Hobject: HRegion
Characters (outputobject) region(-array)» Hobject * : HRegion(Array)
Sigma (inputcontrol) i nben ~ HTuple.double
Percent (inputcontrol)o, number HTuple.double/ long
Threshold (outputcontrol) integer(-array} (HTuple.) long *

Figure 2.5: The head and parts of the parameter section of the reference manual entry for
CharThreshold.

In the object-oriented approach, simple mode and tuple nmoelnods use different classes
for the iconic parametersiImage andHRegion VS. HImageArray andHRegionArray (see
sections 3.1..and 3.1.2for more information about these classes). As in the proedp-
proach, control parameters can be of a basic type (simpleranly) or instances diTuple
(simple and tuple mode).

After this rather theoretic introduction, let's take a loak example code. Irigure 2.6
char_threshold is applied in simple mode, i.e., to a single imagefigure 2.7to two im-
ages at once. Both examples are realized both in the obijectted and in the procedural
approach. The examples highlight some interesting points:

e Creation and initialization of iconic arrays:
In the object-oriented approach, the image array can betrcmbsd very easily bys-
signing the individual images to certain positions in the array gsire well-known array
operator[]. In the procedural approach, you must explicitely createrapty object using
gen_empty_obj and then add the images \Wancat_obj.

e Access to iconic objects:
As expected, in the object-oriented approach, the indalitmages and regions are ac-
cessed via the array operatdr, the number of objects in an array can be queried via the
methodNum (). In the procedural approach, objects must be selectedcérpyfiusing the
operatorselect_obj; the number of objects can be queried vtant _obj.

e Polymorphism of Hobject: (part|)
As already noted, instancesidbject can be used both in simple and in tuple mode. In

HALCON / C++, 2005-02-01

2.2. ERROR HANDLING 13

HImage image("alphal");
HRegion region;
long threshold;

region = image.CharThreshold(image.GetDomain(), 2, 95, &threshold);
image.Display (window) ;
region.Display(window) ;

cout << "Threshold for ’alphal’: " << threshold;
Hobject image;

Hobject region;

long num;

long threshold;

::read_image(&image, "alphal");

::char_threshold(image, image, ®ion, 2, 95, &threshold);
::disp_obj(image, window) ;

::disp_obj(region, window) ;

cout << "Threshold for ’alphal’: " << threshold;

Figure 2.6: Using CharThreshold in simple mode, via HImage, or in the procedural approach
(declaration and opening of window omitted).

contrast, you must use different classes when switching gimnple to tuple mode in the
object-oriented approach.

e Polymorphism of Hobject: (part II)
The classHobject is used for all types of iconic objects. What's more, imaggcis
can be used for parameters expecting a region, as in theocalbir_threshold in the
examples; in this case, tldamain of the image, i.e., the region in which the pixels are
“valid”, is extracted automatically. In the object-oriedtapproach, you must extract the
domain explicitely via the operatGetDomain.

e Array (tuple) indices:
Object-oriented iconic arrays start with the index 0, th@eas true foriTuple. In con-
trast,Hobject arrays start with the index 1!!

Most of the time you will call operators in tuple mode withombticing: As soon as
you divide a region into connected components via the opefatnnection, you end up
with a HRegionArray— thus, any subsequent processing, e.g., morphologicaapes like
DilationCircle or the calculation of the region’s position usingeaCenter is automati-
cally performed on all regions in the array, i.e., in tupledaeoThus, the tuple mode is a simple
mode after all!

2.2 Error Handling

In case of a runtime error, HALCON/C++ by default prints aresponding error message and
terminates the program. In some applications, howeverightrbe useful to slacken this rule
for certain errors. For example, if an application allows tiser to specify an image file to read
interactively, it would be inconvenient if the applicatitstiminates because the user misspelled

HALCON 6.1.4

14 CHAPTER 2. BASICS OF THE HALCON/C++ INTERFACE

HImageArray images;
HRegionArray regions;
HTuple thresholds;

for (int i=1; i<=2; i++)
{

images[i-1] = HImage::ReadImage (HTuple("alpha") + i);
}

regions = images.CharThreshold(images[0].GetDomain(), 2, 95, &thresholds);

for (int i=0; i<images.Num(); i++)

{
images[i] .Display(window) ;
regions[i] .Display (window) ;
cout << "Threshold for ’alpha" << i+l << "’: " << thresholds[i].LQ);
3
Hobject images, image;
Hobject regions, region;
long num;
HTuple thresholds;

::gen_empty_obj (&images) ;

for (int i=1; i<=2; i++)

{
::read_image (&image, HTuple("alpha") + i);
::concat_obj(images, image, &images);

::char_threshold(images, image, ®ions, 2, 95, &thresholds);
::count_obj(images, &num) ;

for (int i=0; i<num; i++)

{

::select_obj(images, &image, i+1);

::disp_obj(image, window) ;

::select_obj(regions, ®ion, i+1);

::disp_obj(region, window);

cout << "Threshold for ’alpha" << i+l << "’: " << thresholds[i].LQ);
}

Figure 2.7: Using CharThreshold in tuple mode, via HImageArray, or in the procedural ap-
proach (declaration and opening of window omitted).

the file name. Therefore, HALCON/C++ allows to integrate ryown error handling. How
to do this in the object-oriented and in the procedural agginds described in the following
sections. Please note that you cannot mix object-oriemdgeocedural error handling.

HALCON / C++, 2005-02-01

2.2. ERROR HANDLING 15

class LIntExport HException {

public:
HException(const HException &except);
HException(const char *f, long 1, const char *p, Herror e, const char *m);
HException(const char *f, long 1, const char *p, const char *m);
HException(const char *f, long 1, const char *p, Herror e);

static Handler InstallHHandler (Handler proc);

void PrintException(void) ;

static Handler handler; /* handler in use */

long line; /* line number where error occured */
const char xfile; /* file name where error occured */
const char *proc; /* Name of procedure/operator */
Herror err; /* error number */

char xmessage; /* error text */

Figure 2.8: Part of the declaration of the class HException.

2.2.1 Object-Oriented Approach

If a runtime error occurs in an object-oriented operatdr, ealinstance of the clad&xception
is created (sekgure 2.8for the declaration of the class). This instance containgfarmation
concerning the error. The important members of an excejptien

line: Number of the program line in which the error occurred
file: Name of the file in which the error occurred

proc: Name of the actual HALCON operator

err: Number of the error, see below

message: Error text

After the generation, the instance ifxception IS passed to a so-callestception handler.
HALCON's default exception handler prints the correspogderror message and terminates
the program.

As an alternative, you can implement and use your own exaepindler. In order to act as a
HALCON exception handler, a procedure must have the foligvgignature:

typedef void (*Handler) (const HException &exception);

You “install” your exception handler procedure vi#lException’s class method
InstallHHandler (see figure2.§. In case of a runtime error, HALCON then calls
your procedure, passing the instance of the actual excepti@ parameter.

The following example shows how to use a user-specific exmephandler together
with the standard C++ exception handling mechanistry (. .catch). The cor-
responding programexample errorhandling.cpp can be found in the subdirectory
J%HALCONROOT%\examples\cpp. It realizes the application mentioned above: You can type
in image files to load; if a file does not exist, the program tgran corresponding message but
continues nevertheless.

At the beginning of the program, a user-specific exceptiordla is installed with the folloing
line:

HALCON 6.1.4

16 CHAPTER 2. BASICS OF THE HALCON/C++ INTERFACE

HException: :InstallHHandler (4MyHalconExceptionHandler) ;

The installed procedure simply hands the exception obgetiteé C++ exception handling via
throw:

void MyHalconExceptionHandler (const HException& except)
{
throw except;

¥

The call toReadImage is then encapsulated bytay block; a possibly ensuing exception is
then evaluated in a correspondiegtch block:

try
{
image = HImage: :ReadImage(filename) ;
}
catch (HException &except)
{

error_num = except.err;
if (error_num == H_MSG_FAIL)

cout << "image not found!" << endl;
else

cout << endl << except.message << endl;

2.2.2 Procedural Approach

As can be seen in the extracts of the reference mangeldtion 2.1in the procedural approach
operators return a value of the typerror. This value can fall into two categories: messages
H_MSG_* and errorsi_ERR_*. There are four different messages:

H.MSG_-TRUE: The operator terminated without an error and the resulteveduhe boolean
value true.

H_MSG_FALSE: The operator terminated without an error and the resulteveduihe boolean
value false.

H.MSG_VOID: The operator terminated without an error and the resulievatid is returned.

H.MSG_FAIL: The operator terminated without an error and the resultevaleans the op-
erator has not performed successfully. This means, e.g.parator is not
responsible or a specific situation has not occurred.

Typically, HALCON operators return the messag#sSG_TRUE if no error occurs.

In case of an error, HALCON by default prints the correspagderror message and termi-
nates the program. You can deactivate (and reactivateyehision by calling the operator
set_check. The following example code checks whether a file could banegdeuccessfully;
in case of an error, it prints the corresponding error messagich can be determined with the
operatorget_error_text.

HALCON / C++, 2005-02-01

2.3. MEMORY MANAGEMENT 17

Herror error_num;
char message [MAX_STRING] ;
long file;

::set_check(" give_error");
error_num = ::open_file("not_existing file", "input", &file);
::set_check("give_error");

if (error_num != H_MSG_TRUE)
{
::get_error_text(error_num, message) ;
cout << "HALCON error " << error_num << ": " << message;

¥

2.3 Memory Management

All of HALCON's classes, i.e., not onlfiImage, HRegion, HTuple, HFramegrabber etc., but
also the clasfobject used when calling operators in the procedural approackaseltheir
allocated memory automatically in their default destru¢see alssection 2.1.2.2 Further-
more, when constructing instances anew, e.g., by cafleang dBarCodeDescr via an already
initialized instance as mentioned $ection 2.1.2.1the already allocated memory is automati-
cally released before allocating it anew. Thus, there iseenirio call the operateflear_obj in
HALCON/C++; what's more, if you do use it HALCON will complaiabout already released
memory.

The only occasion for explicit memory management on yout gawhen using handles
in the procedural approach: The memory allocated when ingea handle, e.g., with
open_framegrabber, is only released when calling the “complementary” operatothe ex-
ampleclose_framegrabber — or at the end of the program.

2.4 How to Combine Procedural and Object-Oriented
Code

As already noted, we recommend to use the object-orientgaph wherever possible. How-
ever, there are some reasons for using the procedural apprea., if you want to quickly
integrate code that is exported by HDevelop, which can ordgte procedural code. Besides,
currently some operators are only available in procedunahf e.g., operators creating affine
transformations likerector_to_rigid.

The least trouble is caused by the basic control parametdysth approaches use the elemen-
tary typeslong etc. and the clagsTuple. Iconic parameters and handles can be converted as
follows:

e Converting Hobject into iconic parameter classes

Hobject p_image;
::read_image (&p_image, "barcode/ean13/ean1301");

HImage o_image (p_image) ;

HALCON 6.1.4

18 CHAPTER 2. BASICS OF THE HALCON/C++ INTERFACE

Iconic parameters can be converted fraobject to, e.g.,HImage simply by calling the
constructor with the procedural variable as a parameter.

e Converting handles into handle classes

HTuple p_barcode;
::gen_1d_bar_code_descr("EAN 13", 13, 13, &p_barcode);

HBarCodelD o_barcode;

o_barcode.SetHandle (p_barcode) ;

o_code_region = o_barcode.FindldBarCode(o_image, HTuple(), HTuple(),
&isfound, &elements,
(HTuplex) _);

Handles cannot be converted directly via a constructorteads you call the method
SetHandle () with the procedural handle as a parameter.

e Converting handle classes into handles

p_barcode = o_barcode.GetHandle();
::decode_1d_bar_code(elements, p_barcode, (HTuplex) _, &result,
(HTuple*) _);

Similarly, a handle can be extracted from the correspondiags via the method
GetHandle (). You can even omit the method, as the handle classes proagieoper-
ators which convert them automatically into handles.

p_barcode = o_barcode;

e Converting iconic parameter classes intélobject
Hobject p_code_region = o_code_region.Id();

Iconic parameters can be converted from classedilikgion back intoHobject via the
methodId (). In contrast to the handle classes no cast operator is @ovid

e Converting HWwindow into a window handle

long p_window;
::open_window(0, O, width/2, height/2, 0, "visible", "", &p_window);
HWindow o_window (0, 0, 100, 100, 0, "visible", "");

p_window = o_window.WindowHandle();
::disp_obj(p_code_region, p_window);

In contrast to other handles, procedural window handlesaare converted into instances
of the classiwindow! However, you can extract the handle from an instanc@ahdow
via the methodiindowHandle ().

As already remarked igection 2.1.2.2you must not use operators lik@ear_shape model,
clear_all shape models, Or close _framegrabber together with instances of the corre-
sponding handle classes!

HALCON / C++, 2005-02-01

Chapter 3

The HALCON Parameter Classes

3.1 Iconic Objects

The base class of the iconic parameter classes in HALCONI€the (abstract) clasibject
which manages entries in the database, i.e., the copyingle@asing of objects. The entries
themselves are represented by the ciaggect (see als®ection 3.1.%1 The classeBEObject
andHobject can contain all types of iconic objects. This has the adegnthat important
methods likeDisplay () can be applied to all iconic objects in the same manner.

Three classes are derived from the root ck®sject:
e ClassHImage for handling images.
e ClassHRegion for handling regions.
e ClassHXLD for handling polygons.

These classes are described in more detail below.

3.1.1 Regions

A region is a set of coordinates in the image plane. Such ametpes not need to be connected
and it may contain holes. A region can be larger than the hoheage format. Regions are
represented by the so-called runlength coding in HALCONe TlassHRegion represents a
region in HALCON/C++. Besides those operators that can lleccaia HRegion (See also
section 2.1.p HRegion provides the following member functions:

e HRegion(void)
Default constructor. It creates an empty region, i.e., tea af this region is zero. Not all
operators can handle the empty region as input, e.g. sorpe ghaperty operators.

e HRegion(const HDChord &line)
Constructing a region from a chord. A chord is a horizontas li

e HRegion(const HDPoint2D &point)
Constructing a region from a discrete 2-dimensional point.

19

20

CHAPTER 3. THE HALCON PARAMETER CLASSES

HRegion(const HRectanglel &rect)
Constructing a region from a rectangle parallel to the cmaite axis. The coordinates do
not need to be discrete.

HRegion(const HRectangle2 &rect)
Constructing a region from an arbitrarily oriented rectandhe coordinates do not need
to be discrete.

HRegion(const HCircle &circle)
Constructing a region from a circle. The radius and centeratmeed to be discrete.

HRegion(const HEllipse &ellipse)
Constructing a region from an arbitrarily oriented ellip§ae radii and center do not need
to be discrete.

HRegion(const char *file)
Constructing a region by reading the representation froen fihis file can be generated
by the member functioliriteRegion.

HRegion(const HRegion ®)
Copy constructor.

HRegion &operator = (const HRegion ®)
Assignment operator.

“HRegion(void)
Destructor. In contrast to the primitive clas®¥ject) this class handles the release of
memory.

void Display(const HWindow &w) const
Output of the region in a window.

HRegion operator * (double scale) const
Zooming the region by an arbitrary factor. The center ofiagak the origin (), 0).

HRegion operator >> (double radius) const

HRegion &operator >>= (double radius)

Erosion of the region with a circle of radiusadius, see reference manual entry of
erosion_circle.

HRegion operator << (double radius) const

HRegion &operator <<= (double radius)

Dilation of the region with a circle of radiugadius, see reference manual entry
dilation_circle.

HRegion operator + (const HDPoint2D &point) const
HRegion &operator += (const HDPoint2D &point)
Translating the region by a 2-dimensional point.

HRegion &operator ++ (void)
Dilation of the region with a cross containing five points.

HRegion operator + (const HRegion ®) const

HRegion &operator += (const HRegion ®)

Minkowsky addition of the region with another region, seterence manual entry of
minkowski_addl.

HALCON / C++, 2005-02-01

3.1. ICONIC OBJECTS 21

e HRegion operator - (const HRegion ®) const
HRegion &operator -= (const HRegion ®)
Minkowsky subtraction of the region with another regiore seference manual entry of
minkowski_subl.

e HRegion &operator -- (void)
Erosion of the region with a cross containing five points.

e HRegion operator ~ (void) const
Complement of the region, see reference manual entepmilement.

e HRegion operator ! (void) const
Transpose the region at the origin, see reference manugl@ranspose_region.

e HRegion operator & (const HRegion ®) const
HRegion &operator &= (const HRegion ®)
Intersection of the region with another region, see refeemnanual entry of
intersection.

e HRegion operator | (const HRegion ®) const
HRegion &operator |= (const HRegion ®)
Union of the region with another region, see reference miaaniey of union2.

e HRegion operator / (const HRegion ®) const
HRegion &operator /= (const HRegion ®)
Subtract another region from the region, see reference ahantry ofdifference.

e HBool operator == (const HRegion ®) const
Boolean test if two regions are identical, see reference ualarentry of
test_equal_region.

e HBool operator >= (const HRegion ®) const
HBool operator > (const HRegion ®) const
HBool operator <= (const HRegion ®) const
HBool operator < (const HRegion ®) const
Boolean test if another region is included in the region bypgishe subset of the corre-
sponding coordinates.

e double Phi(void) const
Orientation of the region by using the angle of the equiviaddlipse, see reference manual
entry ofelliptic_axis.

e double Ra(void) const
Length of the major axis of the equivalent ellipse of the oagsee reference manual entry
of elliptic_axis.

e double Rb(void) const
Length of the minor axis of the equivalent ellipse of the oegisee reference manual entry
of elliptic_axis.

e long Area(void) const
Area of the region, i.e., number of pixels, see referenceualegntry ofarea_center.

e double X(void) const
double Y(void) const

HALCON 6.1.4

22 CHAPTER 3. THE HALCON PARAMETER CLASSES

Center point of the region, see reference manual entay ed_center.

e double Contlength(void) const
Length of the contour of the region, see reference manusf ehtontlength.

e double Compactness(void) const
Compactness of the actual region, see reference manugldnrismpactness.

e double Anisometry(void) const
double Bulkiness(void) const
double StructureFactor(void) const
Shape factors, see reference manual enteeoéntricity.

e double Mi11(void) const
double M20(void) const
double MO2(void) const
double Ia(void) const
double Ib(void) const
Moments of the region, see reference manual entiwnénts_region_2nd.

e HRectanglel SmallestRectanglel(void) const
Smallest surrounding rectangle parallel to the coordiaate, see reference manual entry
of smallest rectanglel.

e HBool In(const HDPoint2D &p) const
Boolean test if a point is inside a region, see reference waiarantry of
test_region_point.

e HBool IsEmpty(void) const;
Boolean test if the region is empty, i.e., the area of theoregs zero.

A program shows the power of the claisegion, seefigure 3.1

First, an aerial imagenteut.tiff) is read from a file. All pixels with a gray value 190 are
selected. This results in one regiaregion).

This region is transformed by the next steps: All holes inrgggon are filled ¥111Up), small
parts of the region are eliminated by two morphological apiens, first an erosion, a kind of
shrinking the region, followed by a dilation, a kind of ergeng the region. The last step is the
zooming of the region. For that the region is first shifted byaaslation vectof—100, —150)

to the upper left corner and then zoomed by the factor tigure 3.2shows the input image
and the result of the opening operation.

3.1.1.1 Region Arrays

The clasgiRegionArray serves as container class for regions. Besides those opsetiaat can
be called viaHRegionArray (see alscsection 2.1.2 HRegionArray provides the following
member functions:

e HRegionArray(void)
Constructor for an empty arrajiym () is 0).

e HRegionArray(const HRegion ®)
Constructor with a single region.

HALCON / C++, 2005-02-01

3.1. ICONIC OBJECTS

#include "HalconCpp.
#include

main ()

{
HImage image ("
HRegion region
HWindow "

w.SetColor("red");
region.Display (w) ;
HRegion filled
filled.Display(w);

// Opening: erosion followed by a dilation

HRegion open =

w.SetColor("green");

open.Display (w) ;

HDPoint2D trans(-

HRegion moved

HRegion zoomed
b

h"

"jostream.h"

mreut") ; //
= image >= 190; //
//
//
//
= region.FillUp(); //

//

(filled >> 4.5) << 4.5;
//

//
100,-150) ; //
= open + trans; //

//

moved * 2.0;

23

Reading an aerial image
Calculating a threshold
Display window

Set color for regions
Display the region

Fill holes in region
Display the region
with a circle mask

Set color for regions
Display the region
Vector for translation
Translation

Zooming the region

Figure 3.1: Sample program for the application of the class HRegion .

R

Figure 3.2: On the left the input image (mreut.tiff), and on the right the region after the
opening (open).

e HRegionArray(const HRegionArray &arr)

Copy constructor.

Destructor.

HRegionArray &operator

“HRegionArray(void)

Assignment operator.

(const HRegionArray &arr)

HALCON 6.1.4

24

CHAPTER 3. THE HALCON PARAMETER CLASSES

long Num(void)
Number of regions in the array, largest indeXis () — 1.

HRegion const &operator [] (long index) const
Reading the elementof the array. The index is in the range. . Num() — 1.

HRegion &operator [] (long index)
Assigning a region to the elemeinof the array. The indexndex can be> Num().

HRegionArray operator () (long min, long max) const
Selecting a subset between the loweén and uppemax index.

HRegionArray &Append(const HRegion ®)
Appending another region to the region array.

HRegionArray &Append(const HRegionArray ®)
Appending another region array to the region array.

void Display(const HWindow &w) const
Display the regions of the array in a window.

HRegionArray operator << (double radius) const
Applying a dilation to all regions using a circular mask, seference manual entry of
dilation_circle.

HRegionArray operator >> (double radius) const
Applying an erosion to all regions using a circular mask, reference manual entry of
erosion_circle.

HRegionArray operator + (const HRegion ®) const
Applying the Minkowsky addition to all regions using anatinegion as mask, see refer-
ence manual entry afinkowski_add1.

HRegionArray operator - (const HRegion ®) const
Applying the Minkowsky subtraction to all regions using #mer region as mask, see
reference manual entry @finkowski_subl.

HRegionArray operator ~ (void) const
Applying the complement operator to each region of the ageg reference manual entry
of complement.

HRegionArray operator & (const HRegionArray ®) const
Intersection of each region of the actual array with the nmfbreg, see reference manual
entry ofintersection.

HRegionArray operator | (const HRegionArray ®) const
Union of each region in the actual array with the uniomreg, see reference manual entry
of union2.

HRegionArray operator / (const HRegionArray ®) const
Difference of each region in the actual array with the unibreg, see reference manual
entry ofdifference.

Most HALCON operators expecting a region for an input part@maccept an instance of
HRegionArray, €.g. Unionl, Intersection, Difference, etc. The constructor instantiat-
ing the region arrayiRegionArray from a single regiomiRegion makes it possible to handle

HALCON / C++, 2005-02-01

3.1. ICONIC OBJECTS 25

operators expecting a single region: Without changing #ta dtructure #RegionArray can
be used as input parameter even in the case of a single region.

Figure 3.3shows a short example how to use the cksssionArray.

#include "HalconCpp.h"
#include "iostream.h"

main ()

{
HImage image("control_unit"); // Reading an image from file
// Segmentation by regiongrowing
HRegionArray regs = image.Regiongrowing(1,1,4,100);

HWindow Ww; // Display window
w.SetColored(12); // Set colors for regions
regs.Display(w) ; // Display the regions
HRegionArray rect; // New array

for (long i = 0; i < regs.Num(); i++) // For all regions in array

{ // Test size and shape of each region
if ((regs[i].Area() > 1000) && (regs[i].Compactness() < 1.5))

rect.Append(regs[i]); // If test true, append region
}
image.Display(w) ; // Display the image
rect.Display(w) ; // Display resulting regions

Figure 3.3: Sample program for use of the class HRegionArray .

Figure 3.4: On the left side the input image (control_unit.tiff), and on the right side the
selected rectangles.

The first step is to read an image. In this case it shows a domtibin a manufacturing

environment, seégure 3.40n the left side. By applying a regiongrowing algorithm frone
HALCON library the image is segmented into regions. Eachoregside the resulting region

HALCON 6.1.4

26 CHAPTER 3. THE HALCON PARAMETER CLASSES

array regs IS now selected according to its size and its compactnessh Eegion of a size
larger than 1000 pixels and of a compactness value smaéerith is appended to the region
arrayrect. After the processing of theor loop only the regions showing on the right side of
figure 3.4are left.

3.1.2 Images

There is more to HALCON images than just a matrix of pixels:HALCON, this matrix is
called achannel, and images may consist of one or more such channels. Forpéxagray
value images consist of a single channel, color images ektchannels. Channels can not
only contain the standard 8 bit pixels (pixel typgte) used to represent gray value images,
HALCON allows images to contain various other data, e.g.iflihitegers (typeint2) or 32 bit
floating point numbers (typeeal) to represent derivatives. Besides the pixel informatgach
HALCON image also stores its so-callddmain in form of a HALCON region. The domain
can be interpreted as a region of interest, i.e., HALCON aipes (with some exceptions)
restrict their processing to this region.

3.1.2.1 Image Objects

The clasdiImage is the root class for all derived image classes. By using ldestInage all
different pixel types can be handled in a unique way (polyph@m). The clasdImage is not
virtual, thus it can be instantiated. Besides those opevd@itat can be called vigRegion (see
alsosection 2.1.2 HRegion provides the following member functions:

e HImage(void)
Default constructor, empty image.

e HImage(const char *file)
Constructing an image by reading from a file, see referenceuai@ntry ofread_image.

e HImage(int width, int height, const char *type)
Constructing an image of a defined size and a specific pixel, tgpe reference manual
entry ofgen_image const.

e HImage(void *ptr, int width, int height, const char *type)
Constructing an image of a defined size and a specific pixel bypcopying memory, see
reference manual entry gkn_imagel.

e HImage(const HImage &image)
Copy constructor.

e virtual “HImage(void)
Destructor.

e HImage &operator = (const HImage &arr)
Assignment operator.

e virtual const char *PixType(void) const
Return the pixel type of the image, see reference manual ehget_image_pointerl.

e int Width(void) const
Return the width of the image, see reference manual eniggtfimage pointeri.

HALCON / C++, 2005-02-01

3.1. ICONIC OBJECTS 27

e int Height(void) const
Return the height of the image, see reference manual enggtoimage _pointerl.

e HPixVal GetPixVal(int x, int y) const
Access a pixel value via théz,y) coordinates, see reference manual entry of
get_grayval.

e HPixVal GetPixVal(long k) const
Linear access of a pixel value.

e virtual void SetPixVal(int x, int y, const HPixVal &val)
Set the pixel value via ther, y) coordinates, see reference manual entryeaf grayval.

e virtual void SetPixVal(long k, const HPixVal &val)
Set the pixel value by linear access.

e virtual void Display(const HWindow &w) const
Display an image in a window.

e HImage operator & (const HRegion ®) const
Reduce the domain of an image, see reference manual entedote_domain.

e HImage operator + (const HImage &add) const
Adding two images, see reference manual entrydaf image.

e HImage operator - (const HImage &sub) const
Subtracting two images, see reference manual entsyiofimage.

e HImage operator * (const HImage &mult) const
Multiplication of two images, see reference manual entryudft _image.

e HImage operator - (void) const
Inverting the values of the image, see reference manuat efimvert_image.

e HImage operator + (double add) const
HImage operator - (double sub) const
HImage operator * (double mult) const
HImage operator / (double div) const
Arithmetic operators, see reference manual entrycafle_image.

e HRegion operator >= (const HImage &image) const
HRegion operator <= (const HImage &image) const
Selecting all pixel with gray values brighter than or equa(dr darker than or equal to,
respectively) those of the input image, see reference nmhantry of dyn_threshold.

e HRegion operator >= (double thresh) const
HRegion operator <= (double thresh) const
HRegion operator == (double thresh) const
HRegion operator != (double thresh) const
Selecting all pixel with gray values brighter than or equakdr darker than or equal
to, or equal to, or not equal to, respectively) a threshae, reference manual entry of
threshold.

Figure 3.5gives an example of the use of the cldsaage.

HALCON 6.1.4

28 CHAPTER 3. THE HALCON PARAMETER CLASSES

#include "HalconCpp.h"
#include "iostream.h"

main ()

{
HImage image("mreut"); // Aerial image
HWindow w; // Output window
image.Display(w) ; // Display image
// Returning the size of the image
cout << "width = " << image.Width();
cout << "height = " << image.Height() << endl;

// Interactive drawing of a region by using the mouse

HRegion mask = w.DrawRegion();

// Reduce the domain of the image to the mask

HImage reduced = image & mask;

w.ClearWindow() ; // Clear the window
reduced.Display(w) ; // Display the reduced image
// Applying the mean filter in the reduced image

HImage mean = reduced.MeanImage(61,61);

mean.Display (w) ;

HRegion reg = bild >= (mean + 3);

reg.Display (w);

Figure 3.5: Sample program for the use of the class HImage .

Figure 3.6: On the left side the input image (mreut.tiff), and on the right side the segmented
regions in the selected image domain.

The example starts by reading a byte image from a file. The sitm extract bright parts from
the image. The used filter and the segmentation proceskigsgiplied only in a pre-chosen
part of the image in order to accelerate the runtime. Thisipaelected by drawing an arbitrary
region with the mouse. This regiaask serves as input for reducing the domain of the original
image (operatog). The mean filter with a mask size 6f x 61 is applied to the resulting region

HALCON / C++, 2005-02-01

3.1. ICONIC OBJECTS 29

reduced. Bright pixels are selected by applying the operater All pixels brighter than the
filtered part of the imageeduced +3 are selectedFigure 3.6shows the result of the sample
program infigure 3.5

3.1.2.2 Pixel Values

#include "HalconCpp.h"
#include <iostream.h>

main ()
{
HByteImage in("mreut"); // Aerial image
HWindow w; // Output window
in.Display(w) ; // Displaying the image
HByteImage out = in; // Copying the image
int width = out.Width(); // Width of the image
int height = out.Height(); // Height of the image
long end = width * height; // Number of pixel of the image

// 1. run: linear accessing

for (long k = 0; k < end; k++) {
int pix = in.GetPixVal(k); // Reading the pixel
out.SetPixVal (k,255-pix); // Setting the pixel

}

// Displaying the transformation

cout << "Transformed !" << endl; out.Display(w); w.Click();

cout << "QOriginal !" << endl; in.Display(w); w.Click();

// 2. run: accessing the image via the coordiantes (x,y)
for (int y=0; y<height; y++) {
for (int x=0; x<width; x++) {
int pix = in.GetPixVal(x,y); // Reading the pixel
out.SetPixVal(x,y,265-pix); // Setting the pixel

}
}
// Displaying the transformation
cout << "Transformed !" << endl; out.Display(w); w.Click();
cout << "QOriginal !" << endl; in.Display(w); w.Click();
}

Figure 3.7: Sample program for the use of the class HPixVal.
The clasgiPixVal is used for accessing the pixel values of the clHssge. Gray values can
be set and returned independent of their types:

e HPixVal(void)
Default constructor.

e HPixVal(const HComplex &Val)
Constructing a pixel value from a complex number.

HALCON 6.1.4

30 CHAPTER 3. THE HALCON PARAMETER CLASSES

e HPixVal(int Val)
Constructing a pixel value from an integent).

e HPixVal(long Val)
Constructing a pixel value from a longidng).

e HPixVal (HByte Val)
Constructing a pixel value from a bytey(te).

e HPixVal(double Val)
Constructing a pixel value from a doublégble).

e HPixVal(const HPixVal &Val)
Copy constructor.

e HPixVal &operator = (const HPixVal &grey)
Assignment operator.

e operator HByte(void) const
Converting a pixel value to byt@ . .. 255).

e operator int(void) const
Converting a pixel value tont.

e operator long(void) const
Converting a pixel value tbong.

e operator double(void) const
Converting a pixel value t@ouble.

e operator HComplex(void) const
Converting a pixel value tOomplex.

The handling of the claggPixVal is explained by an example figure 3.7which inverts an
input image. The input image is a byte image. First, a copyeisegated and the image size
is determined. In the first run the pixels are accessed Iynekr the second run the pixel are
accessed via ther, y)-ccordinates.

3.1.2.3 Image Arrays

The same way which was used to define arrays of regions is os#utdin arrays of images.
The class is namefiilmageArray and contains the following member functions (in addition to
the operators):

e HImageArray(void)
Default constructor: empty array, no element.

e HImageArray(const HImage ®)
Constructing an image array from a single image.

e HImageArray(const HImageArray &arr)
Copy constructor.

e “HImageArray(void)
Destructor.

HALCON / C++, 2005-02-01

3.1.

ICONIC OBJECTS 31

HImageArray &operator = (const HImageArray &arr)
Assignment operator.

long Num(void) const
Returning the number of elements in the array.

HImage const &operator [] (long index) const
Reading the elementof the array. The index is in the range. . Num() — 1.

HImage &operator [] (long index)
Assigning an image to the elementdf the array. The indexndex can be> Num().

HImageArray operator () (long min, long max)
Selecting a subset between the lowen and uppemax index.

HImageArray &Append(const HImage &image)
Appending another image to the image array.

HImageArray &Append(const HImageArray &images)
Appending another image array to the image array.

3.1.2.4 Byte Images

For

each pixel type, there exists a corresponding images dasived fromHImage, €.9.,

HByteImage for the pixel typebyte (standard 8 bit pixels) diInt2Image for the pixel type
int2 (unsigned 16 bit pixels). The most important derived classaturallyiByteImage, as
this pixel type still covers the majority of all applicat®m the field of image processing. The
advantage of the clas®yteImage in comparison to the clagimage is the simplified access
to the pixel values. This is because the claBsxVal is not necessary. Besides the member
functions ofiImage, the classiByteImage contains the following extensions:

HByteImage (void)
Default constructor.

HByteImage (const char *file)
Constructing a byte image by reading a file.

HByteImage (int width, int height)
Constructing an empty byte image of a given size.

HByteImage (HByte *ptr, int width, int height)
Constructing a byte image by copying memory.

HByteImage (const HBytelmage &image)
Copy constructor.

virtual “HBytelImage(void)
Destructor.

HByte &operator[] (long k)
Setting a pixel value by linear accessing.

HByte operator[] (long k) const
Reading a pixel value by linear accessing.

HALCON 6.1.4

32 CHAPTER 3. THE HALCON PARAMETER CLASSES

#include "HalconCpp.h"
#include <iostream.h>

main ()
{
HByteImage in("mreut"); // Aerial image
HWindow w; // Output window
in.Display(w); // Displaying the image
HImage out = in; // Copying the image
int width = out.Width(); // Width of the image
int height = out.Height(); // Height of the image
long end = width * height; // Number of pixel of the image

// 1. run: linear accessing
for (long k = 0; k < end; k++)
out [k] = 2565 - in[k]; // Reading and setting the pixel

// Displaying the transformation
cout << "Transformed !" << endl; out.Display(w); w.Click();
cout << "QOriginal !" << endl; in.Display(w); w.Click();

// // 2. run: accessing the image via the coordinates (x,y)
for (int y=0; y<height; y++)
for (int x=0; x<width; x++)
out(x,y) = 255 - out(x,y); // Reading and setting the pixel

// Displaying the transformation
cout << "Transformed !" << endl; out.Display(w); w.Click();
cout << "QOriginal !" << endl; in.Display(w); w.Click();

Figure 3.8: Sample program for accessing a pixel value using the class HByteImage.

e HByte &operator() (long k)
Setting a pixel value by linear accessing.

e HByte operator() (long k) const
Reading a pixel value by linear accessing.

e HByte &operator() (int x, int y)
Setting a pixel value by accessing it \(ia, y) coordinates.

e HByte operator() (int x, int y) const
Reading a pixel value by accessing it yia y) coordinates.

e HBytelImage operator & (int i)
Applying the logical “and”-operation on each pixel with

e HByteImage operator << (int i)
Applying a left-shift on each pixel with.

HALCON / C++, 2005-02-01

3.1. ICONIC OBJECTS 33

e HByteImage operator >> (int i)
Applying a right-shift on each pixel with.

e HBytelImage operator ~ (void)
Complement of each pixel.

e HByteImage operator & (HBytelmage &ima)
Pixel by pixel logical “and”-operation of two images.

e HByteImage operator | (HBytelmage &ima)
Pixel by pixel logical “or’-operation of two images.

e HByteImage operator ~ (HBytelmage &ima)
Pixel by pixel logical “xor”-operation of two images.

The advantage of the claBByteImage can be seen when accessing each pixelfigaee 3.8
The classHPixVal is not necessary in this example. Furthermore, the membmatiéuns
GetPixVal andSetPixVal are not usediByteImage allows to access pixel values in a nota-
tion like in the programming language C. The result of then@xa infigure 3.8is basically the
same as in the examplefigure 3.7 The program irfigure 3.8is shorter, easy to read, and has
a better runtime performance.

3.1.3 XLD Objects

XLD is the abbreviation forXtended. ine Description. This is a data structure used for describ-
ing areas (e.g., arbitrarily sized regions or polygons)ror @osed or open contour, i.e., also
lines. In contrast to regions, which represent all areasxal precision, XLD objects provide
subpixel precision. There are two basic XLD structurestaors and polygons.

Similarly to images, HALCON/C++ provides both a base cli&sisD and a set of specialized
classes derived frorHXLD, e.g.,HXLDCont for contours orHXLDPoly for polygons. For all
classes there exists a corresponding container classi¥.gArray.

In contrast to the classes described in the previous sectibe XLD classes provide only
member functions corresponding to HALCON operators (seesaction 2.1.2

3.1.4 Low-Level Iconic Objects

As could be seen in the examplesdhapter 2 when calling operators in the procedural ap-
proach, the clasBobject is used for all iconic parameters, be it an image, a regiomyven
an image array. In fact, the claBsbject is HALCON's basic class for accessing the internal
data management, i.e., it handles the keys of the databageeFfmoreHobject serves as the
basis for the clasB0bject and the derived classes, efflmage.

The classiobject has the following member functions:

e Hobject(void)
Default constructor.

e Hobject(const Hobject &obj)
Copy constructor.

HALCON 6.1.4

34 CHAPTER 3. THE HALCON PARAMETER CLASSES

e virtual “Hobject(void)
Destructor.

e Hobject &operator = (const Hobject &obj)
Assignment operator.

e void Reset(void)
Freeing the memory and resetting the corresponding daddeys

As noted above, an instance Bébject can also contain a tuple (array) of iconic objects.
Unfortunately,Hobject provides no special member functions to add objects or s#iem;
instead, you must use the operatggs_empty_obj, concat_obj, select_obj, andcount_obj

as described isection 2.1.3

3.2 Control Parameters

HALCON/C++ can handle different types of alphanumericaitcol parameters for HALCON
operators:

e discrete numberd éng),
¢ floating point numbersdpouble), and
e strings ghar *).

A special form of control parameters are the so-caliaadles, which provide access to more
complex data structures like windows, frame grabber cammes; or models for shape-based
matching. Internally, handles are almost always represehy discrete numberddng); a
notable exception is the handle to a bar code descriptoghwkianHTuple, as can be seen in
figure 2.2 For handles there exist corresponding classes, whichesgited irsection 3.2.3

With the classHTuple, HALCON/C++ provides a container class for control parasret
What's more,HTuple is polymorphic, i.e., it can also contain arrays of contratgmeters
of mixed type. To realize this, the auxiliary cla#3trlVal is introduced, which is described
in the next section.

3.2.1 The Basic Class for Control Parameters

The clasgiCtrlval serves as the basis for the claéSsple and is normally hidden from the
user because it is only used temporarily for type conversidbhe main point is that it can
contain the three elementary types of control parameters,discrete numberaddng), float-
ing point numbersdouble), and strings¢har *). HCtrlVal provides the following member
functions:

e HCtrlVal(void)
Default constructor.

e HCtrlVal(long 1)
Constructing a value frorong.

e HCtrlVal(int 1)
Constructing a value fronint.

HALCON / C++, 2005-02-01

3.2. CONTROL PARAMETERS

e HCtrlVal(double d)
Constructing a value fromouble.

e HCtrlVal(const char *s)
Constructing a value frorahar *.

e HCtrlVal(const HCtrlVal &v)
Copy constructor.

e “HCtrlVal(void)
Destructor.

e HCtrlVal& operator = (const HCtrlVal &v)
Assignment operator.

e int ValType() const
Type of a value.

e operator int(void) const
Conversion taint.

e operator long(void) const
Conversion td.ong.

e operator double(void) const
Conversion taiouble.

e operator const char*(void) const
Conversion tachar *.

e double D() const
Accessing a value and conversiondiauble.

e long L() const
Accessing a value and conversioriimg.

e int I() const
Accessing a value and conversionittx.

e const char *S() const
Accessing a value and conversionctiar *.

e HCtrlVal operator + (const HCtrlVal &val)
Adding two values.

e HCtrlVal operator - (const HCtrlVal &val)
Subtracting two values.

e HCtrlVal operator * (const HCtrlVal &val)
Multiplying two values.

e HCtrlVal operator / (const HCtrlVal &val)
Division of two values.

const

const

const

const

35

HALCON 6.1.4

36

CHAPTER 3. THE HALCON PARAMETER CLASSES

3.2.2 Tuples

The classHTuple is built upon the classiCtrlval; it implements an array of dynamic
length for instances of the cla8€tr1val. The default constructor constructs an empty ar-
ray (lum() == 0). This array can dynamically be expanded via assignmenit® riiemory
management, i.e., reallocation, freeing, is also managetclass. The index for accessing
the array is in the range betwee@ndNum() — 1.

The following member functions reflect only a small portidiie total. For further information
please refer to the fil8Tuple.h in HALCONROOTY\include\cpp.

HTuple (void)
Default constructor. Constructs an empty tuple.

HTuple(long 1)
Constructing an array of lengthfrom a discrete numbeérong at index positiort.

HTuple(int 1)
Constructing an array of lengthfrom a discrete number converted to the internal type
long at index positiorb.

HTuple (HCoord c)
Constructing an array of lengthfrom a coordinate at index positidn

HTuple(double d)
Constructing an array of lengthfrom a floating numbedouble at index positiorn.

HTuple(const char *s)
Constructing an array of lengthfrom a stringchar* at index positior.

HTuple(const HTuple &t)
Copying a tuple.

HTuple(int length, const HTuple \&value)
Constructing an array of the specified length with a constalte, similar to the operator
tuple_gen_const.

“HTuple ()
Destructor.

HTuple &operator = (const HTuple& in)
Assignment operator.

HTuple Sum(void) const
Adding all elements in case they are numbers, similar to flegaiortuple_sum.

HCtrlVal &operator [] (int i)
Setting the—th element.

HCtrlVal operator [] (int i) const
Reading the—th element.

HTuple operator + (const HTuple &val) const
Adding two tuples element by element, similar to the operatple add. The arrays
have to be of the same size.

HALCON / C++, 2005-02-01

3.2. CONTROL PARAMETERS 37

e HTuple operator + (double &val) const
HTuple operator + (int &val) const
Adding a number to each element of the tuple, similar to theraprtuple_add.

e HTuple operator - (const HTuple &val) const
Subtracting two tuples element by element, similar to therafprtuple_sub. The arrays
have to be of the same size.

e HTuple operator - (double &val) const
HTuple operator - (int &val) const
Subtracting a number from each element of the tuple, sintalére operatotuple_sub.

e HTuple operator * (const HTuple &val) const
Multiplying two tuples element by element, similar to theeogtortuple mult. The
arrays have to be of the same size.

e HTuple operator * (double &val) const
HTuple operator * (int &val) const
Multiplying a number with each element of the tuple, simtathe operatotuple mult.

e HTuple operator / (const HTuple &val) const
Division of two tuples element by element, similar to the i@pertuple div. The arrays
have to be of the same size.

e HTuple operator / (double &val) const
HTuple operator / (int &val) const
Division of each element of the tuple by a number, similahi® ¢peratotuple div.

e HTuple Concat(const HTuple &t) const
Concatenating two tuples, similar to the operatople_concat.

e extern ostream& operator<<(ostream &s, const HTuple &t)
Output of a tuple.

e extern istream& operator>>(istream &s, HTuple &t)
Input of a tuple.

Figure 3.9shows a short sample how to use tuples, i.e., the &ihgsle: The default construc-
tor generates an empty tuple. By assigning values to the tugsl automatically expanded, and
the data types of the values are also stored. For accesdrngple the normal array notation
can be used. If the data type of a value is not known in advamcexplicit type conversion has
to be performed, sefegure 3.9

3.2.3 Classes Encapsulating Handles

The perhaps most prominent handle clasBuisndow, which is described irsection 3.2.3.1
Starting with version 6.1, HALCON/C++ also provides clasg®a handles to files or function-
ality like frame grabber access, measuring, or shape-baatching. Sesection 3.2.3.2or an
overview.

HALCON 6.1.4

38

CHAPTER 3. THE HALCON PARAMETER CLASSES

#include "HalconCpp.h"
#include <iostream.h>

main ()

{
HTuple t;
cout << t.Num() << ’\n’; // The length of the tuple is 0
t[0] = 0.815; // Assigning values to the tuple
t[1] = 42;
t[2] = "HAL";
cout << t.Num() << ’\n’; // The length of the tuple is 3
cout << "HTuple = " << t << ’\n’; // Using the << operator
double d = t[0]; // Accessing the tuple, if the
long 1 = t[1]; // the types of the elements
const char *s = t[2]; // are known

// Accessing the tuple, if the types of the elements are known
printf("Values: %g %1d %s\n",t[0].DO,t[1]1.LO,t[2].80));

Figure 3.9: Sample for the use of the class HTuple .

3.2.3.1 Windows

The classHWindow provides the management of HALCON windows in a very convanie
way. The properties of HALCON windows can be easily changedges, regions, and poly-
gons can be displayed, etc. Besides those operators thaiecealled viaHWindow (see also
section 2.1.p HWindow provides the following member functions:

e HWindow(int Row=0, int Column=0,

int Width=-1, int Height=-1,
int Father = 0, const char *Mode = "",
const char *Host = "")

Default constructor. The constructed window is opened.

“HWindow (void)
Destructor. This closes the window.

void Click(void) const
Waiting for a mouse click in the window.

HDPoint2D GetMbutton(int *button) const

HDPoint2D GetMbutton(void) const

Waiting for a mouse click in the window. It returns the cutremouse position in the
window and the number of the button that was pressed, seeférence manual entry of
get_mbutton.

HDPoint2D GetMposition(int *button) const

HDPoint2D GetMposition(void) const

Returning the mouse position and the pressed button witlaiting for a mouse click,
see the reference manual entryget _mposition.

HALCON / C++, 2005-02-01

3.2. CONTROL PARAMETERS 39

e HCircle DrawCircle(void) const
Waiting for the user to draw a circle in the window, see themfice manual entry of
draw_circle.

e HEllipse DrawEllipse(void) const
Waiting for the user to draw an ellipse in the window, see #ference manual entry of
draw_ellipse.

e HRectanglel DrawRectanglel(void) const
Waiting for the user to draw a rectangle parallel to the cowig axis in the window, see
the reference manual entry é@faw_rectanglel.

e HRectangle2 DrawRectangle2(void) const
Waiting for the user to draw a rectangle with an arbitrargotation and size in the win-
dow, see the reference manual entry@edw_rectangle?.

#include "HalconCpp.h"

main ()

{
HImage image("control_unit"); // Reading an image from a file
HWindow w; // Opening an appropiate window
image.Display(w) ; // Display the image
w.SetLut ("change2") ; // Set a lookup table
w.Click(); // Waiting for a mouse click
w.SetLut ("default"); // Set the default lookup table
w.SetPart (100,100,200,200) ; // Set a part of the window
image.Display(w) ;
w.Click();

// Adapting the part to the image again
w.SetPart(0,0,bild.Height ()-1,bild.Width()-1);
image.Display(w) ;

HRegionArray regs = image.Regiongrowing(1,1,4,100);
w.SetDraw("margin") ;

w.SetColored(6) ;

regs.Display(w) ;

w.Click();

image.Display(w);

w.SetShape("rectanglel") ;

regs.Display(w) ;

Figure 3.10: Sample program for the use of the class HWindow .

Figure 3.10shows the typical use of some member functions of the dl@sadow and the
different possibilities of displaying images and regiofitie window is opened after reading
the image from a file. This means, the window is scaled to the i the image. The lookup
table is changed afterwards, and the program waits for a enclick in the window. A part
of the image is zoomed now, and the program waits again for @smalick in the window.
By applying a region growing algorithm from the HALCON libya(Regiongrowing) regions
are generated and displayed in the window. Only the margthefegions is displayed. It is

HALCON 6.1.4

40 CHAPTER 3. THE HALCON PARAMETER CLASSES

displayed in 6 different colors in the window. The exampldswith another way of displaying
the shape of regions. The smallest rectangle parallel tedbedinate axes surrounding each
region is displayed.

3.2.3.2 Other Handle Classes

Starting with version 6.1, HALCON/C++ provides the followg handle classes:

e HBarCodeld
reading 1-dimensional bar codes, e.g., using the opefataridBarCode.

e HBarCode2d
reading matrix bar code, e.g., using the operatmd2dBarCode.

e HBgEsti
estimating the background of a scene, e.g., using the ap@@aiBgEsti.

e HClassBox
classifying data, e.g., using the operalestSampsetBox.

e HFile
accessing disk files, e.g., using the operaigmFile.

e HFramegrabber
accessing frame grabbers, e.g., using the opegatdiimage.

e HFunctionld

working with 1-dimensional functions, e.g., using the @perCreateFunctidPairs.

e HGnuplot
using gnuplot, e.g., using the operatauplotPlotFunctid.

e HMeasure
measuring distances along lines or arcs, e.g., using thaimpMeasurePairs.

e HOCR
optical character recognition, e.g., using the operaé0erMulti.

e HOCV
optical character verification, e.g., using the operat@cvSimple.

e HSerial
accessing a serial interface, e.g., using the opeRatniSerial.

e HShapeModel
shape-based matching, e.g., using the opeFatodShapeModel.

e HSocket
accessing socket connections, e.g., using the opeJatdimage.

e HTemplate
gray value template matching, e.g., using the opemietMatchMg.

HALCON / C++, 2005-02-01

3.3. AUXILIARY CLASSES 41

e HVariationModel

image comparison via a variation model, e.g., using the aiper
CompareVariationModel.

Besides the default constructor, the classes typicallyigeoadditional constructors based on
suitable operators as describedsection 2.1.2.1e.g., the clasiBarCode1d provides a con-
structor based on the operaggm _1d bar_code_descr.

All handle classes listed above provide the meth&sldiandle () andGetHandle (), which
allow to access the underlying handle; furthermore, thesela provide an operator that casts
an instance of the class into the corresponding handle.€eTineshods are typically used when
combining procedural and object-oriented code; for exasiplease refer teection 2.4

3.3 Auxiliary Classes

In section 3.1.1you already got a glimpse of additional classes providetHAyCON/C++:
Instances ofiRegion can be constructed from classes [H#Point2D or HRectanglel. Cur-
rently, these classes are not documented in any of the nean¥alrecommend to have a look
at the header files in the directotyclude/cpp.

Please note that the header filesirtlude/cpp include other classes, which do not appear in
this manual. These classes are used by MVTec internallye&ting purposes; they should not
be used an application.

HALCON 6.1.4

42

HALCON / C++, 2005-02-01

CHAPTER 3. THE HALCON PARAMETER CLASSES

Chapter 4

Creating Applications With
HALCON/C++

The HALCON distribution contains examples for building gphlcation with HALCON/C++.
Here is an overview of the relevant directories files (re&ato %HALCONROOTY%, Windows nota-
tion of paths):

include\cpp\HalconCpp.h:
include file; contains all user-relevant definitions of th@llELON system and the decla-
rations necessary for the C++ interface.

bin\i586-nt4\halcon.lib,halcon.dll:
The HALCON library (Windows NT/2000/XP).

bin\i586-nt4\halconcpp.lib,halconcpp.dll:
The HALCON/C++ library (Windows NT/2000/XP).

bin\i586-nt4\parhalcon.lib,parhalcon.dll,parhalconcpp.lib,parhalconcpp.dll:
The corresponding libraries of Parallel HALCON (Windows/RT00/XP).

1ib\%ARCHITECTUREY\1libhalcon.so:
The HALCON library (UNIX).

1ib\%ARCHITECTURE)\1libhalconcpp.so:
The HALCON/C++ library (UNIX).

1ib\%ARCHITECTURE)\1libparhalcon.so,libparhalconcpp.so:
The corresponding libraries of Parallel HALCON (UNIX).

include\cpp\HProto.h:
External function declarations.

examples\cpp\makefile, makefile.nt:
Example makefiles which can be used to compile the examptggmes (UNIX and Win-
dows NT/2000/XP, respectively).

examples\cpp\make.,ARCHITECTURE),, macros.mak, rules.mak:
Auxiliary makefiles included by the makefiles listed above.

43

44 CHAPTER 4. CREATING APPLICATIONS WITH HALCON/C++

examples\cpp\source\
Directory containing the source files of the example program

examples\cpp\bin\%ARCHITECTUREY\
Destination of the example programs when compiled and ¢inlstng the makefiles.

examples\cpp\i586-nt4\i586-nt4.dsw:
Visual Studio workspace containing projects for all exa@spthe projects themselves are
placed in subdirectories (Windows NT/2000/XP only).

images\:
Images used by the example programs.

help\english.x*:
Files necessary for online information.

doc\pdf\:
Various manuals (in subdirectories).

There are several example programs in the HALCON/C++ digtion. To experiment with
these examples we recommend to create a private copy in yaling directory.

examplel.cpp reads an image and demonstrates several graphics operators
example2.cpp demonstrates the direct pixel access.

example3.cpp is an example for the usage of pixel iterators.
exampled.cpp demonstrates the edge detection with a sobel filter.
exampleb. cpp solves a more complicated problem.

example6.cpp IS a very simple test program.

example7.cpp demonstrates the generic pixel access.

example8.cpp is an example for the usage of the tuple mode.
example9.cpp introduces the XLD structure.

examplel0.cpp demonstrates the usage of several contour structures.
examplell.cpp is another simple example for the usage uf tuples.
exampleerrorhandling.cpp demonstrates the C++ exception hag@eesection 2.2.1L
bottle2.cpp recognizes on numbers on a beer bottle (OCR).
eanl3.cpp reads an EAN13 bar code.

ecc200.cpp reads a Data Matrix (ECC200) code.

engraved2.cpp recognizes engraved characters (OCR).
fuzzy_measurepin.cpp measures distances between pins using the fuzaunesaol.
multi_chars.cpp performs optical character verification (OCV).

HALCON / C++, 2005-02-01

45

pen.cpp uses shape-based matching and the variation nuodamirit
quality inspection.

xing.cpp monitors traffic using background estimation (kgirkan fil-
tering).

Additional examples for using HALCON/C++ can be found in tlsbdirectories
examples\mfc andexamples\motif.

In the following, we briefly describe the relevant enviromnheariables; see the manual
Getting Started with HALCONor more information, especially about how to set these-vari
ables. Note, that under Windows NT/2000/XP, all necessariables are automatically set
during the installation.

While a HALCON program is running, it accesses several fiearnally. To tell HALCON
where to look for these files, the environment variatdeCONROOT has to be seHHALCONROOT
points to the HALCON home director{fALCONROQT is also used in the sample makefile.

The variableARCHITECTURE describes the platform HALCON is used on. The following ta-
ble gives an overview of the currently supported platformd the corresponding values of
ARCHITECTURE.

ARCHITECTURE Operating System (Platform) Compiler
Windows NT 4.0, Windows 2000, Windows XPB _

i586-nt4 . . Visual Studio
on Intel Pentium or compatible

1586-1inux2.2))] gcc 2.95

, , Linux 2.2/2.4 on Intel Pentium (or compatible)

i686-1inux2.2-gcc32 gcc 3.2/3.3

sparc-sun-solaris7 | Solaris 7 on Sparc Workstations cc

mips-sgi-irix6.5 IRIX 6.5 on SGI Workstations (Mips processorsjC

alpha-compag-osf5.1 | Tru64 UNIX 5.1 on Alpha processors cxXX

If user-defined packages are used, the environment valHAbRBONEXTENSIONS has to be set.
HALCON will look for possible extensions and their correagdng help files in the directories
given inHALCONEXTENSIONS.

Two things are important in connection with the example prots: The default directory for
the HALCON operatotread_image to look for images ig,HALCONROOT%\images. If the im-
ages reside in different directories, the appropriate paibkt be set iread_image or the de-
fault image directory must be changed, usingt_system("image_dir","..."). Thisis
also possible with the environment variaHlld.CONIMAGES. It has to be set before starting the
program.

The second remark concerns the output terminal under UNiXhé example programs, no
host name is passed tpen window. Therefore, the window is opened on the machine that
is specified in the environment variald@SPLAY. If output on a different terminal is desired,
this can be done either directly in : open_window(. . ., "hostname", ...) Or by specifying

a host name iDISPLAY.

formerly called DIGITAL UNIX

HALCON 6.1.4

46 CHAPTER 4. CREATING APPLICATIONS WITH HALCON/C++

In order to link and run applications under UNIX, you haveiolude the HALCON library
path$HALCONROOT/1ib/$ARCHITECTURE in the system variablED_LIBRARY_PATH.

4.1 Creating Applications Under Windows NT/2000/XP

Your own C++ programs that use HALCON operators must incltieefile HalconCpp . h,
which contains all user-relevant definitions of the HALCOp$tem and the declarations nec-
essary for the C++ interface. Do this by adding the command

#include "HalconCpp.h"

near the top of your C++ file. In order to create an applicagyon must link the library
halconcpp.lib/.d11 to your program.

The example projects show the necessary Visual C++ settiRgsthe examples the project
should be of the WIN 32 ConsoleApplication type. Please tiwathe Visual C++ compiler
implicitly calls “Update all dependencies” if a new file isdedl to a project. Since HALCON
runs under UNIX as well as under Windows NT/2000/XP, theudel fileHalconCpp.h in-
cludes several UNIX-specific headers as well if includedeuridNIX. Since they don’t exist
under NT, and the Visual C++ compiler is dumb enough to igtiseeoperating-system-specific
cases in the include files, you will get a number of warningsagss about missing header files.
These can safely be ignored.

Please assure that the stacksize is sufficient. Some soptestimage processing problems
require up to 6 MB stacksize, so make sure to set the settingaiocompiler accordingly (See
your compiler manual for additional information on this itop

If you want to use Parallel HALCON , you have to link the libemparhalcon.1ib/.d11 and
parhalconcpp.lib/.d1l1l instead ofhalcon.lib/.d11 andhalconcpp.lib/.d11 in your
project.

Please note thatithin an application you can use only one HALCON language iterface,

be it directly or indirectly, e.g., by including a DLL thates a second interface. Thus, you
cannot use both the HALCON/C++ and the HALCON/COM interfat®ne and the same
application.

4.2 Creating Applications Under UNIX

Your own C++ programs that use HALCON operators must incltieefile HalconCpp . h,
which contains all user-relevant definitions of the HALCOp$tem and the declarations nec-
essary for the C++ interface. Do this by adding the command

#include "HalconCpp.h"

near the top of your C++ file. Using this syntax, the compiterkis forHalconCpp.h in the
current directory only. Alternatively you can tell the coibep where to find the file, giving it
the-I<pathname> command line flag to denote the include file directory.

HALCON / C++, 2005-02-01

4.2. UNIX 47

To create an application, you have to link two libraries tourygrogram: The li-
brary 1ibhalconcpp.so contains the various components of the HALCON/C++ intexfac
libhalcon.so is the HALCON library.

Please take a look at the example makefiles for suitablengsttilf you callgmake without
further arguments, the example applicateam13 will be created. To create the other example
applications (e.gexample2), call

gmake example?2

You can use the example makefiles not only to compile and haleixample programs but also
your own programs (if placed in the subdirectepurce). For example, to compile and link a
source file callechyprogram. cpp call

gmake myprogram

You can link the program to the Parallel HALCON libraries bydang PAR=1 to the make
command, for example

gmake myprogram PAR=1

Please note thatithin an application you can use only one HALCON language iterface,

be it directly or indirectly, e.g., by including a librarydhuses a second interface. Thus, you
cannot use both the HALCON/C++ and the HALCON/C interfacene and the same applica-
tion.

HALCON 6.1.4

48

HALCON / C++, 2005-02-01

CHAPTER 4. CREATING APPLICATIONS WITH HALCON/C++

Chapter 5

Typical Image Processing Problems

This chapter shows the power the HALCON system offers to fohat®ns for image processing
problems. Some typical problems are introduced togethiér sample solutions.

5.1 Thresholding an Image

Some of the most common sequences of HALCON operators m&yikaothe following one:

HByteImage Image("file_xyz");
HRegion Threshold = Image.Threshold(0,120);
HRegionArray ConnectedRegions = Threshold.Connection();

HRegionArray ResultingRegions =
ConnectedRegions.SelectShape("area","and",10,100000) ;

This short program performs the following:
e All pixels are selected with gray values between the rangedd120.
e A connected component analysis is performed.

e Only regions with a size of at least 10 pixel are selecteds $tep can be considered as a
step to remove some of the noise from the image.

5.2 Edge Detection

For the detection of edges the following sequence of HALOO#N operators can be applied:

HByteImage Image("file_xyz");

HByteImage Sobel = Image.SobelAmp("sum_abs",3);
HRegion Max Sobel.Threshold(30,255);
HRegion Edges = Max.Skeleton();

A brief explanation:

e Before applying the sobel operator it might be useful firsapply a low-pass filter to the
image in order to suppress noise.

49

50 CHAPTER 5. TYPICAL IMAGE PROCESSING PROBLEMS

e Besides the sobel operator you can also use filters BikgesImage, PrewittAmp,
RobinsonAmp, KirschAmp, Roberts, BandpassImage, Of Laplace.

e The threshold (in our case 30) must be selected appropideggnding on data.

e The resulting regions are thinned byskeleton operator. This leads to regions with a
pixel width of 1.

5.3 Dynamic Threshold

Another way to detect edges is e.g. the following sequence:

HByteImage Image("file_xyz");
HByteImage Mean = Image.MeanImage(11,11);
HRegion Threshold = Image.DynThreshold(Mean,5,"light");

Again some remarks:

e The size of the filter mask (in our ca$é x 11) is correlated with the size of the objects
which have to be found in the image. In fact, the sizes aregtmmal.

e The dynamic threshold selects the pixels with a positivey geue difference of more
than 5 (brighter) than the local environment (maskx 11).

5.4 Texture Transformation

Texture transformation is useful in order to obtain spe&i@quency bands in animage. Thus, a
texture filter detects specific structures in an image. Iridhewing case this structure depends
on the chosen filter; 16 are available for the oper@tattureLaws.

HByteImage Image("file_xyz");

HByteImage TT = Image.TexturelLaws(Image,"ee",2,5);
HByteImage Mean = TT.MeanImage(71,71);

HRegion Reg Mean.Threshold(30,255) ;

e The mean filteMeanImage is applied with a large mask size in order to smooth the “fre-
guency” image.

e You can also apply several texture transformations and cwarthe results by using the
operatorsiddImage andMultImage.

5.5 Eliminating Small Objects

The following morphological operator eliminates smallextis and smoothes the contours of
regions.

HALCON / C++, 2005-02-01

5.6. SELECTING ORIENTED OBJECTS 51

: :segmentation(Image,&Seg) ;
HCircle Circle(100,100,3.5);
HRegionArray Res = Seg.0Opening(Circle);

e Theterm: :segmentation() is an arbitrary segmentation operator that results in ayarr
of regions §eg).

e The size of the mask (in this case the radius is 3.5) detesiiime size of the resulting
objects.

e You can choose an arbitrary mask shape.

5.6 Selecting Oriented Objects

Another application of morphological operators is the @& of objects having a certain ori-
entation:

: :segmentation(Image,&Seg) ;
HRectangle2 Rect(100,100,0.5,21,2);
HRegionArray Res = Seg.Opening(Rect);

Again, : :segmentation() leads to an array of regionSeg).

The width and height of the rectangle determine the minimizenaf the resulting regions.

The orientation of the rectangle determines the oriemtaifdhe regions.

Lines with the same orientation asct are kept.

5.7 Smoothing Contours

The last example in this user's manual deals again with nadoggfical operators. Often the
margins of contours have to be smoothed for further proogssi.g. fitting lines to a contour.
Or small holes inside a region have to be filled:

: :segmentation(Image,&Seg) ;
HCircle Circle(100,100,3.5);
HRegionArray Res = Seg.Closing(Circle);

e Again, : :segmentation() leads to an array of regionsgg).
e For smoothing the contour a circle mask is recommended.

e The size of the mask determines how much the contour is srmdoth

HALCON 6.1.4

52 CHAPTER 5. TYPICAL IMAGE PROCESSING PROBLEMS

HALCON / C++, 2005-02-01

Index

7

add_image (AddImage), 27,50
area_center (AreaCenter), 13, 21, 22

bandpass_image (BandpassImage), 50
best_match mg (BestMatchMg), 40

channel 26

char_threshold (CharThreshold), 11—

13

classes
auxiliary,41
handle classed0, 11, 40
HBarCodeld, 8-10, 40, 41
HBarCode2d, 40
HBgEsti, 40
HByteImage, 31, 33
HClassBox, 40
HCtrlVal, 34, 36
HFile, 40
HFramegrabber, 10, 11, 17, 40
HFunctionld, 40
HGnuplot, 40

HImage, 1, 5, 8-10, 12, 13, 17-19, 26~

29, 31, 33
HImageArray, 12, 14, 30
HInt2Image, 31
HMeasure, 40
HObject, 19, 33
Hobject, 11-13, 17-20, 33, 34
HOCR, 40
HOCV, 40
HPixVal, 29

HRegion, 1, 10, 12, 17-19, 22-24, 26,

41
HRegionArray, 12, 13, 22, 24, 25
HSerial, 40
HShapeModel, 10, 11, 40
HSocket, 40
HTemplate, 40
HTuple, 7, 11-13, 17, 34, 36-38

53

HVariationModel, 41
HWindow, 1, 10, 11, 18, 37-39
HXLD, 10, 19, 33
HXLDArray, 33
HXLDCont, 10, 33
HXLDPoly, 33
iconic classesl?, 19
clear_all shape models, 11,18
clear_obj, 17
clear_shape_model, 11, 18
close_framegrabber, 11, 17,18
close_window (CloseWindow), 10,11
COM, 46
compactness (Compactness), 22
compare_variation_model
(CompareVariationModel),
41
complement (Complement), 21,24
concat_obj, 12, 34
connection (Comnection), 13
constructors9, 18
contlength (Contlength), 22
control parameters, 34
count_obj, 12, 34
create_funct_1d_pairs
(CreateFunctidPairs), 40
create_shape_model
(CreateShapeModel), 10

destructors]1

difference (Difference), 21,24

dilation_circle (DilationCircle),
13,20, 24

do_ocrmulti (DoOcrMulti), 40

do_ocv_simple (DoOcvSimple), 40

domain (area of definition},3, 26

draw_circle (DrawCircle), 39

draw_ellipse (DrawEllipse), 39

draw_rectanglel (DrawRectanglel),
39

draw_rectangle2 (DrawRectangle2),
39

54

dyn_threshold (DynThreshold), 27

eccentricity (Eccentricity), 22

edges_image (EdgesImage), 50

elliptic_axis (EllipticAxis), 21

erosion_circle (ErosionCircle), 20,
24

fillup (FillUp), 22

find_1d_bar_code (FindildBarCode), 7—
9,40

find_2d_bar_code (Find2dBarCode), 40

find shape model (FindShapeModel),
40

gen_1d_bar_code_descr
(GenldBarCodeDescr), 9, 10, 17,
41

gen_circle (GenCircle), 10

gen_empty_obj, 12, 34

gen_imagel (GenImagel), 9, 26

gen_imagel_extern
(GenImagelExtern), 9

gen_image_const (GenImageConst), 9,
26

gen rectangle2 (GenRectangle?2), 10

get_domain (GetDomain), 13

get_error_text, 16

get_grayval (GetGrayval), 27

get_image_pointerl
(GetImagePointerl), 26, 27

get_mbutton (GetMbutton), 38

get mposition (GetMposition), 38

GetHandle(), 18 41

gnuplot_plot_funct_1d
(GnuplotPlotFunctid), 40

grab_image (GrabImage), 10, 40

HALCON

language interfaces

HALCON/COM, 46

handle classed0, 11, 40

cast operato9, 18, 41

GetHandle(), 18 41

SetHandle(), 18 41
handlesb, 9, 34

window, 6
HBarCodeld, 8-10, 40, 41
HBarCode2d, 40
HBgEsti, 40

HALCON / C++, 2005-02-01

Index

HByteImage, 31, 33
HClassBox, 40
HCtrlVal, 34, 36
DO, 35
10,35
L(), 35
S0, 35
HFile, 40
HFramegrabber, 10, 11, 17, 40
HFunctionld, 40
HGnuplot, 40
HImage, 1, 5, 8-10, 12, 13, 17-19, 26-29,
31, 33
Display(), 27
GetPixVal(), 27
Height (), 27
operator!=, 27
operatorx, 27
operator+, 27
operator-, 27
operator/, 27
operatok=, 27
operator==, 27
operator=, 27
operator=, 27
operator, 27
PixType (), 26
SetPixVal(), 27
Width(), 26
HImageArray, 12, 14, 30
Append (), 31
Num(), 31
HInt2Image, 31
HMeasure, 40
HObject, 19, 33
Hobject, 11-13, 17-20, 33, 34
HOCR, 40
HOCV, 40
HPixVal, 29
HByte (), 30
HRegion, 1, 10, 12, 17-19, 22-24, 26, 41
Anisometry(), 22
Area(), 21
Bulkiness(), 22
Display(), 20
Ia(), 22
Iv(), 22
InQ), 22
IsEmpty (), 22

Index

M02(), 22
M11Q), 22
M200), 22
operator!, 21
operatork, 20
operator++, 20
operator+=, 20
operator+, 20
operator--, 21
operator-=, 21
operator-, 21
operator/=, 21
operator/, 21
operatorx<=, 20
operatox<, 20
operatoxk=, 21
operatok, 21
operator==, 21
operator=, 21
operator>=, 20
operator>, 20
operator, 21
operator=, 21
operatorg, 21
operator|=, 21
operator|, 21
Phi(), 21
Ra(), 21
Rb(), 21

StructureFactor(), 22

X0, 21
Y0, 21

HRegionArray, 12, 13, 22, 24, 25

Append (), 24
Display(), 24
Num(), 24
operator+, 24
operator-, 24
operator/, 24
operatok<, 24
operator>, 24
operator, 24
operator|, 24

55

operator, 36, 37
operator-, 37
operator/, 37
Sum(), 36
HVariationModel, 41
HWindow, 1, 10, 11, 18, 37-39
Click(), 38
HXLD, 10, 19, 33
HXLDArray, 33
HXLDCont, 10, 33
HXLDPoly, 33

iconic classesl7, 19
iconic parameter$
image,26
channel (image matrixg6
domain (area of definition},3, 26
pixel
type, 26
region of interest (ROI)26
info_framegrabber, 8
intersection (Intersection), 21,24
invert_image (InvertImage), 27

kirsch_amp (KirschAmp), 50

language interfaces
HALCON/COM, 46
laplace (Laplace), 50

mean_image (MeanImage), 5,6, 8, 50
measure_pairs (MeasurePairs), 40
methods
constructors9, 18
destructorsll
GetHandle(), 18, 41
operators§g
SetHandle(), 18 41
minkowski_addl (MinkowskiAddl), 20,
24
minkowski_subl (MinkowskiSubl), 21,
24
moments_region_2nd
(MomentsRegion2nd), 22

HSerial, 40 mult_image (MultImage), 27,50
HShapeModel, 10, 11, 40 MultImage, 27
HSocket, 40

new_extern_window

HTemplate, 40 (NewExternWindow), 10

HTuple, 7, 11-13, 17, 34, 36-38
operatorx, 37 object-orienteds

HALCON 6.1.4

56

open_file (OpenFile), 40

open_framegrabber
(OpenFramegrabber), 10,17

open_window (OpenWindow), 10, 11, 45

Parallel HALCON,46, 47
parameters

L7

control,6, 34

handles§, 9, 34

window, 6

iconic, 6

simple model1

tuple mode5, 8, 11
pixel

type,26
prewitt_amp (PrewittAmp), 50
proceduralb
programming language

COM, 46

read_image (ReadImage), 9, 10, 16, 26
45

read_serial (ReadSerial), 40

reduce_domain (ReduceDomain), 27

region of interest (ROI)26

regiongrowing (Regiongrowing), 39

roberts (Roberts), 50

robinson_amp (RobinsonAmp), 50

run_bg esti (RunBgEsti), 40

scale_image (Scalelmage), 27

select_obj, 12, 34

send_image (SendImage), 40

set_check, 16

set_grayval (SetGrayval), 27

SetHandle(), 18,41

simple modell

skeleton (Skeleton), 50

smallest_rectanglel
(SmallestRectanglel), 22

sub_image (SubImage), 27

test_equal_region
(TestEqualRegion), 21

test_region_point
(TestRegionPoint), 22

test_sampset_box (TestSampsetBox),
40

texture_laws (TextureLaws), 50

HALCON / C++, 2005-02-01

Index

threshold (Threshold), 27
transpose_region
(TransposeRegion), 21
tuple modep, 8, 11
tuple_add, 36, 37
tuple_concat, 37
tuple_div, 37
tuple_gen_const, 36
tuple mult, 37
tuple_sub, 37
tuple_sum, 36

unionl (Unionl), 24
union?2 (Union2), 21, 24

vector_to_rigid, 17
window handle6

XLD, 33

	1 Introducing HALCON/C++
	1.1 Additional Sources of Information
	1.2 A First Example

	2 Basics of the HALCON/C++ Interface
	2.1 Calling HALCON Operators
	2.1.1 A Closer Look at Parameters
	2.1.2 Calling Operators via Classes
	2.1.3 The Tuple Mode

	2.2 Error Handling
	2.2.1 Object-Oriented Approach
	2.2.2 Procedural Approach

	2.3 Memory Management
	2.4 How to Combine Procedural and Object-Oriented Code

	3 The HALCON Parameter Classes
	3.1 Iconic Objects
	3.1.1 Regions
	3.1.2 Images
	3.1.3 XLD Objects
	3.1.4 Low-Level Iconic Objects

	3.2 Control Parameters
	3.2.1 The Basic Class for Control Parameters
	3.2.2 Tuples
	3.2.3 Classes Encapsulating Handles

	3.3 Auxiliary Classes

	4 Creating Applications With HALCON/C++
	4.1 Windows NT/2000/XP
	4.2 UNIX

	5 Typical Image Processing Problems
	5.1 Thresholding an Image
	5.2 Edge Detection
	5.3 Dynamic Threshold
	5.4 Texture Transformation
	5.5 Eliminating Small Objects
	5.6 Selecting Oriented Objects
	5.7 Smoothing Contours

	Index

