
HALCON Version 6.1.4

MVTec Software GmbH

HALCON / C++

User’s Manual

How to use the image analysis tool HALCON, Version 6.1.4, in your own C++ programs

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without prior written permission of the publisher.

Edition 1 July 1997

Edition 2 November 1997

Edition 3 March 1998 (HALCON 5.1)

Edition 4 April 1999 (HALCON 5.2)

Edition 5 October 2000 (HALCON 6.0)

Edition 5a July 2001 (HALCON 6.0.1)

Edition 5b February 2002 (HALCON 6.0.2)

Edition 6 June 2002 (HALCON 6.1)

Edition 6a December 2002 (HALCON 6.1.1)

Edition 6b February 2005 (HALCON 6.1.4)

Copyright c© 1997-2005 by MVTec Software GmbH, München, GermanyMVTec Software GmbH

Microsoft, Windows, Windows NT, Windows 2000, Windows XP, and Visual C++ are either
trademarks or registered trademarks of Microsoft Corporation.

All other nationally and internationally recognized trademarks and tradenames are hereby rec-
ognized.

More information about HALCON can be found at:

http://www.mvtec.com/halcon/

About This Manual

This manual describes the interface of HALCON to the programming language C++. It pro-
vides all necessary information to understand and use the provided C++ classes in your own
programs. A set of example programs shows how to apply HALCON/C++ to solve typical
image processing tasks.

The reader of this user manual should be familar with basic concepts of image analysis and the
programming language C++.

The manual is divided into the following chapters:

• Introducing HALCON/C++
A first example shows how easy image processing becomes usingHALCON/C++.

• Basics of the HALCON/C++ Interface
This chapter describes the basics of the HALCON/C++, e.g., how to call HALCON oper-
ators in the procedural and object-oriented approach.

• The HALCON Parameter Classes
This chapter lists the parameter classes of HALCON.

• Creating Applications Using HALCON/C++
This chapter explains how to compile and link C++ programs with HALCON/C++.

• Typical Image Processing Problems
This chapter contains example programs for typical image processing tasks.

Release Notes

Please note the latest updates of this manual:

• Edition 6b, HALCON 6.1.4 (February 2005)
Errors in the example for the class HRegion and in the member function lists of HRe-
gionArray and Hobject have been corrected.

• Edition 6a, HALCON 6.1.1 (December 2002)
An error in the description of object-oriented error handling was corrected. Besides,
the manual now warns that the user must allocate memory for output string parameters
him/herself. Finally, the manual reflects the support of gcc-3.2.

• Edition 6, HALCON 6.1 (June 2002)
The manual has been revised and extended significantly: The basics of the HALCON/C++
interface, e.g., how to call operators in the procedural andin the object-oriented way or
how to realize error handling, are now described in detail ina new chapter; The section
“Exception Handling” has been extended by an example showing how to use the C++
exception handling mechanism (try...catch) together with the classHException. Fur-
thermore, the chapter describing the parameter classes hasbeen updated and now also lists
the new handle classes.

• Edition 5b, HALCON 6.0.2 (February 2002)
Errors in the description of the class HException were corrected.

• Edition 5a, HALCON 6.0.1 (July 2001)
Since HALCON 6.0.1 does not support HP-UX anymore, the corresponding references
have been deleted from the manual.

• Edition 5, HALCON 6.0 (October 2000)
The manual has been restructured and revised slightly, especially the chapter “Creating
Applications Using HALCON/C++”.

Contents

1 Introducing HALCON/C++ 1
1.1 Additional Sources of Information. 1
1.2 A First Example. 2

2 Basics of the HALCON/C++ Interface 5
2.1 Calling HALCON Operators. 5

2.1.1 A Closer Look at Parameters. 6
2.1.2 Calling Operators via Classes. 8
2.1.3 The Tuple Mode. 11

2.2 Error Handling . 13
2.2.1 Object-Oriented Approach. 15
2.2.2 Procedural Approach. 16

2.3 Memory Management. 17
2.4 How to Combine Procedural and Object-Oriented Code. 17

3 The HALCON Parameter Classes 19
3.1 Iconic Objects. 19

3.1.1 Regions. 19
3.1.2 Images . 26
3.1.3 XLD Objects . 33
3.1.4 Low-Level Iconic Objects. 33

3.2 Control Parameters. 34
3.2.1 The Basic Class for Control Parameters. 34
3.2.2 Tuples. 36
3.2.3 Classes Encapsulating Handles. 37

3.3 Auxiliary Classes. 41

4 Creating Applications With HALCON/C++ 43
4.1 Windows NT/2000/XP. 46
4.2 UNIX . 46

5 Typical Image Processing Problems 49
5.1 Thresholding an Image. 49
5.2 Edge Detection. 49
5.3 Dynamic Threshold. 50
5.4 Texture Transformation. 50
5.5 Eliminating Small Objects. 50
5.6 Selecting Oriented Objects. 51
5.7 Smoothing Contours. 51

Index 53

Chapter 1

Introducing HALCON/C++

HALCON/C++ is the interface of the image analysis system HALCON to the programming lan-
guage C++. Together with the HALCON library, it allows to usethe image processing power
of HALCON inside C++ programs. HALCON provides operators covering a wide range of ap-
plications, e.g., factory automation, quality control, remote sensing, aerial image interpretation,
medical image analysis, and surveillance tasks.

After pointing out additional sources of information aboutHALCON, we start with a first ex-
ample application. The following chapters describe the useof the HALCON operators in C++
programs in more detail:Chapter 2takes a closer look at the basics of the HALCON/C++ inter-
face, whilechapter 3gives an overview of the HALCON’s parameter classesHImage, HRegion,
HWindow etc. Chapter 4shows how to create applications based on HALCON/C++. Finally,
chapter 5presents typical image processing problems and shows how tosolve them using HAL-
CON/C++.

1.1 Additional Sources of Information

For further information you may consult the following manuals:

• Getting Started with HALCON
An introduction to HALCON in general, including how to install and configure HALCON.

• HDevelop User’s Manual
An introduction to the graphical development environment of the HALCON system.

• HALCON/C User’s Manual
How to use the HALCON library in your C programs.

• HALCON/COM User’s Manual
How to use the HALCON library in your COM programs.

• Extension Package Programmer’s Manual
How to extend the HALCON system with your own operators.

• Frame Grabber Integration Programmer’s Manual
A guide on how to integrate a new frame grabber in the HALCON system. Note that
in some cases you might define new operators (using the Extension Package Interface)

1

2 CHAPTER 1. INTRODUCING HALCON/C++

instead of using the standard HALCON Frame Grabber Integration Interface in order to
exploit specific hardware features of a frame grabber board.

• HALCON/C++ , HALCON/HDevelop, HALCON/C , HALCON/COM
The reference manuals for all HALCON operators (versions for C++, HDevelop, C, and
COM).

• Application Guide
Multiple, independent documents called Application Notes, written from the point of view
of developing machine vision applications with HALCON. Each Note covers a specific
topic, e.g., how to use shape-based matching to find and localize objects.

All these manuals are available as PDF documents. The reference manuals are available as
HTML documents as well. For the latest version of the manualsplease check

http://www.mvtec.com/halcon/

1.2 A First Example

Let’s start with a brief sample program before taking a closer look inside HALCON/C++.

Figure 1.1: The left side shows the input image (a mandrill), and the right side shows the result
of the image processing: the eyes of the monkey.

The input image is shown infigure 1.1on the left side. The task is to find the eyes of the
monkey by segmentation. The segmentation of the eyes is performed by the C++ program
listed in figure 1.2, the result of the segmentation process is shown infigure 1.1on the right
side.

The program is more or less self-explaining. The basic idea is as follows: First, all pixels of
the input image are selected which have a gray value of at least 128, on the assumption that
the imageMandrill is a byte image with a gray value range between 0 and 255. Secondly, the
connected component analysis is performed. The result of the HALCON operator is an array of

HALCON / C++, 2005-02-01

1.2. A FIRST EXAMPLE 3

#include "HalconCpp.h"

main()

{

HImage Mandrill("monkey"); // read image from file "monkey"

HWindow w; // window with size equal to image

Mandrill.Display(w); // display image in window

w.Click(); // wait for mouse click

HRegion Bright = Mandrill >= 128; // select all bright pixels

HRegionArray Conn = Bright.Connection(); // get connected components

// select regions with a size of at least 500 pixels

HRegionArray Large = Conn.SelectShape("area","and",500,90000);

// select the eyes out of the instance variable Large by using

// the anisometry as region feature:

HRegionArray Eyes = Large.SelectShape("anisometry","and",1,1.7);

Eyes.Display(w); // display result image in window

w.Click(); // wait for mouse click

}

Figure 1.2: This program extract the eyes of the monkey.

regions. Each region is isolated in the sense that it does nottouch another region according to
the neighbourhood relationship. Among these regions thosetwo are selected which correspond
to the eyes of the monkey. This is done by using shape properties of the regions, the size and
the anisometry.

This example shows how easy it is to integrate HALCON operators in any C++ program. Their
use is very intuitive: You don’t have to care about the underlying data structures and algo-
rithms, you can ignore specific hardware requirements, if you consider e.g. input and output
operators. HALCON handles the memory management efficiently and hides details from you,
and provides an easy to use runtime system.

HALCON 6.1.4

4 CHAPTER 1. INTRODUCING HALCON/C++

HALCON / C++, 2005-02-01

Chapter 2

Basics of the HALCON/C++ Interface

In fact, the HALCON/C++ interface provides two different approaches to use HALCON’s func-
tionality within your C++ program: aprocedural and anobject-oriented approach. The proce-
dural approach corresponds to calling HALCON operators directly as in C or HDevelop, e.g.:

Hobject original_image, smoothed_image;

::read_image(&original_image, "monkey");

::mean_image(original_image, &smoothed_image, 11, 11);

Note that, in comparison with HALCON/C or HDevelop, the operator names are prefixed with
a double colon. In the following, we will leave out this prefixwhen referencing operators in the
text.

In addition to the procedural approach, HALCON/C++ allows to call HALCON operators in
an object-oriented way, i.e., via a set of classes. For example, the code from above can be
“translated” into:

HImage original_image("monkey"), smoothed_image;

smoothed_image = original_image.MeanImage(11, 11);

This simple example already shows that the two approaches result in clearly different code: Be-
sides the different operator names (procedural: small letters and underscores; object-oriented:
capitals), the operator calls differ in the number and type of parameters. Furthermore, func-
tionality may be available in different ways; for example, images can be read from files via a
constructor of the classHImage. In general, we recommend to use the object-oriented approach.
Note, however, that HDevelop can export programs only into procedural C++ code.Section 2.4
shows how to combine procedural with object-oriented code.

In the following sections, we take a closer look at various issues regarding the use of the HAL-
CON/C++ interface;chapter 3describes the provided classes in more detail.

2.1 Calling HALCON Operators

How a HALCON operator can be called via the HALCON/C++ interface is described in detail
in the HALCON/C++ reference manual. As an example,figure 2.1shows parts of the entry for
the operatormean image.

Below, we take a closer look at the parameters of an operator call, describe how to call operators
via classes, and explain another special HALCON concept, the tuple mode.

5

6 CHAPTER 2. BASICS OF THE HALCON/C++ INTERFACE

Herror ::mean image (Hobject Image, Hobject *ImageMean,

const HTuple &MaskWidth, const HTuple &MaskHeight)

HImage HImage::MeanImage (const HTuple &MaskWidth,

const HTuple &MaskHeight) const

HImageArray HImageArray::MeanImage (const HTuple &MaskWidth,

const HTuple &MaskHeight) const

Image (input object) . . (multichannel-)image(-array); Hobject: HImage(Array)(byte /
int2 / uint2 / int4 / real / dvf)

ImageMean (output object) . . (multichannel-)image(-array); Hobject * : HImage(Array)(
byte / int2 / uint2 / int4 / real
/ dvf)

MaskWidth (input control) . extent.x ; HTuple.long

MaskHeight (input control) . extent.y ; HTuple.long

Figure 2.1: The head and parts of the parameter section of the reference manual entry for
mean image.

2.1.1 A Closer Look at Parameters

HALCON distinguishes two types of parameters:iconic andcontrol parameters.Iconic pa-
rameters are related to the original image (images, regions, XLD objects), whereascontrol
parameters are all kinds of alphanumerical values, such as integers, floating-point numbers, or
strings.

A special form of control parameters are the so-calledhandles. A well-known representative of
this type is thewindow handle, which provides access to an opened HALCON window, e.g., to
display an image in it. Besides, handles are used when operators share complex data, e.g., the
operators for shape-based matching which create and then use the model data, or for accessing
input/output devices, e.g., frame grabbers. Classes encapsulating handles are described in detail
in section 3.2.3.

Both iconic and control parameters can appear as input and output parameters of a HALCON
operator. For example, the operatormean image expects one iconic input parameter, one iconic
output parameter, and two input control parameters (seefigure 2.1); figure 2.2shows an oper-
ator which has all four parameter types. Note how some parameters “disappear” from within
the brackets if you call an operator via a class; this mechanism is described in more detail in
section 2.1.2.

An important concept of HALCON’s philosophy regarding parameters is thatinput param-
eters are not modified by an operator. As a consequence, they are passedby value (e.g.,
Hobject Image in figure 2.1) or via a constant reference (e.g.,const HTuple &MaskWidth).
This philosophy also holds if an operator is called via a class, with the calling instance acting as
an input parameter. Thus, in the following example code the original image is not modified by
the call toMeanImage; the operator’s result, i.e., the smoothed image, is provided via the return
value instead:

HALCON / C++, 2005-02-01

2.1. CALLING HALCON OPERATORS 7

Herror ::find 1d bar code (Hobject Image, Hobject *CodeRegion,

const HTuple &BarCodeDescr, const HTuple &GenericName,

const HTuple &GenericValue, HTuple *BarcodeFound,

HTuple *BarCodeElements, HTuple *Orientation)

HRegion HImage::Find1dBarCode (const HTuple &BarCodeDescr,

const HTuple &GenericName, const HTuple &GenericValue,

HTuple *BarcodeFound, HTuple *BarCodeElements, HTuple *Orientation)

const

HRegion HBarCode1D::Find1dBarCode (const HImage &Image,

const HTuple &GenericName, const HTuple &GenericValue,

HTuple *BarcodeFound, HTuple *BarCodeElements, HTuple *Orientation)

const

Image (input object) . image; Hobject: HImage(byte / uint2)

CodeRegion (output object) . region; Hobject * : HRegion

BarCodeDescr (input control) barcode1d-array ; HTuple.const char */ long / double

GenericName (input control) .string(-array); HTuple.const char *

GenericValue (input control) number(-array); HTuple.double/ long

BarcodeFound (output control) . integer; HTuple.long *

BarCodeElements (output control) .number-array; HTuple.double *

Orientation (output control) . angle.rad; HTuple.double *

Figure 2.2: The head and parts of the parameter section of the reference manual entry for
find 1d bar code.

HImage original_image("monkey"), smoothed_image;

smoothed_image = original_image.MeanImage(11, 11);

In contrast to input parameters, output parameters are always modified, thus they must be passed
by reference. Note that operators expect a pointer toan already declared variable! For exam-
ple, when calling the operatorFind1dBarCode as in the following lines of code, variables of
the classHTuple are declared before passing the corresponding pointers using the operator&.

HImage image("barcode/ean13/ean1301");

HBarCode1D barcode("EAN 13", 13, 13);

HRegion code_region;

HTuple isfound, elements;

code_region = barcode.Find1dBarCode(image, HTuple(), HTuple(),

&isfound, &elements, (HTuple*) _);

The above example shows two other interesting aspects of output parameters: When calling
operators via classes, one output parameter becomes the return value (seesection 2.1.2for
more details); in the example,Find1dBarCode returns the bar code region. Secondly, a spe-
cial variable called was specified for the last parameter ofFind1dBarCode. This variable is
pre-declared; it tells the operator that it does not need to output the corresponding parameter.

HALCON 6.1.4

8 CHAPTER 2. BASICS OF THE HALCON/C++ INTERFACE

Herror ::info framegrabber (const HTuple &Name, const HTuple &Query,

char *Information, char *ValueList)

Herror ::info framegrabber (const HTuple &Name, const HTuple &Query,

HTuple *Information, HTuple *ValueList)

Name (input control) . string ; HTuple.const char *

Query (input control) . string ; HTuple.const char *

Information (output control) .string; (HTuple.) char *

ValueList (output control) string(-array); (HTuple.) char */ long * / double *

Figure 2.3: The head and parts of the parameter section of the reference manual entry for
info framegrabber.

Many HALCON operators accept more than one value for certainparameters. For example,
you can call the operatorMeanImage with an array of images (seefigure 2.1); then, an array of
smoothed images is returned. This is called thetuple mode; seesection 2.1.3for more informa-
tion.

Please note thatoutput parameters of the type string need special attention: First of all, you!
must allocate memory for them yourself, e.g., by declaring them as character arrays; secondly,
you don’t pass them by reference, because such parameters are pointers already. In the following
example code, the operatorinfo framegrabber (see alsofigure 2.3) is called with two output
string parameters to query the currently installed PicPortframe grabber board:

const char *FGName = "PicPort";

char sInfo[MAX_STRING], sValue[MAX_STRING];

::info_framegrabber(FGName, "info_boards", sInfo, sValue);

Note that it isn’t necessary to allocate memory for output string parameters in the already men-
tionedtuple mode, i.e., when using instances of the classHTuple instead of “plain” strings (also
seesections 2.1.3and3.2.2):

HTuple tInfo, tValues;

::info_framegrabber(FGName, "camera_types", &tInfo, &tValues);

2.1.2 Calling Operators via Classes

As already described in the previous section, the HALCON/C++ reference manual shows via
which classes an operator can be called. For example,Find1dBarCode can be called via objects
of the classHImage or HBarCode1d (seefigure 2.2). In both cases, the corresponding input
parameter (Image orBarCodeDescr, respectively) does not appear within the brackets anymore
as it is replaced by the calling instance of the class (this).

There is a further difference to the procedural operator signature: The first output parameter
(in the example the bar code regionCodeRegion) also disappears from within the brackets and

HALCON / C++, 2005-02-01

2.1. CALLING HALCON OPERATORS 9

HImage image("barcode/ean13/ean1301");

HBarCode1D barcode("EAN 13", 13, 13);

HRegion code_region;

HTuple isfound, elements;

code_region = barcode.Find1dBarCode(image, HTuple(), HTuple(),

&isfound, &elements, (HTuple*) _);

code_region = image.Find1dBarCode(barcode.GetHandle(), HTuple(), HTuple(),

&isfound, &elements, (HTuple*) _);

Hobject image;

HTuple barcode;

Hobject code_region;

HTuple isfound, elements;

::read_image(&image, "barcode/ean13/ean1301");

::gen_1d_bar_code_descr("EAN 13", 13, 13, &barcode);

::find_1d_bar_code(image, &code_region, barcode, HTuple(), HTuple(),

&isfound, &elements, (HTuple*) _);

Figure 2.4: Using Find1dBarCode via HBarCode1d, via HImage, or in the procedural approach.

becomes the return value instead of the error code (more about error handling can be found in
section 2.2).

Figure 2.4depicts code examples for the three ways to callFind1dBarCode. When comparing
the object-oriented and the procedural approach, you can see that the calls to the operators
read image andgen 1d bar code descr are replaced by special constructors for the classes
HImage andHBarCode1d, respectively. This topic is discussed in more detail below.

Please note that the two object-oriented methods seem to be “asymmetric”: If you call
Find1dBarCode via HImage, the reference manual seems to suggest that you must pass the
handle instead of an instance ofHBarCode1d. In fact, you can pass both a handle and a class in-
stance, because the latter is automatically “casted” into ahandle; the signature was not changed
to keep the HALCON/C++ interface backward compatible as faras possible.

2.1.2.1 Constructors

As can be seen infigure 2.4, the HALCON/C++ parameter classes provide additional con-
structors which are based on suitable HALCON operators. Theconstructors forHImage and
HBarCode1d used in the example are based onread image andgen 1d bar code descr, re-
spectively.

Please note that in the current HALCON version constructorsare provided inconsistently for
the different classes. Below we take a brief look at the most important classes. A complete
and up-to-date list of available constructors can be found in the corresponding header files in
%HALCONROOT%\include\cpp.

• Images:
The classHImage provides constructors based on the operatorsread image, gen image1,
gen image1 extern, andgen image const.

HALCON 6.1.4

10 CHAPTER 2. BASICS OF THE HALCON/C++ INTERFACE

Pleasebeware of the following pitfall when using the operators themselves viaHImage:
Contrary to intuition, the operators do not modify the instance they are called from; in-
stead, the created image is the return value of the operator!Thus, after the following code
the image is still uninitialized:

HImage image;

image.ReadImage("barcode/ean13/ean1301"); // incorrect

The correct way to callReadImage is as follows:

image = HImage::ReadImage("barcode/ean13/ean1301"); // correct

Note that this pitfall concerns all operators whereHImage appears as an output parameter,
e.g.,GrabImage. More information aboutHImage can be found insection 3.1.2.

• Regions:
The classHRegion provides constructors based on operators likegen rectangle2 or
gen circle. However, instead of the parameters of these operators, theconstructors
expect instances of auxiliary classes likeHRectangle2 or HCircle (seesection 3.3for
more information about these classes).

Please note thatHRegion presents the same pitfallas HImage, i.e., operators like
GenRectangle2 do not modify the calling instance ofHRegion but return the created
region! More information aboutHRegion can be found insection 3.1.1.

• XLDs:
The classes for XLDs (HXLD, HXLDCont, etc., seesection 3.1.3for more information) do
not provide constructors based on operators.

• Windows:
The classHWindow provides constructors based on the operatorsopen window and
new extern window. Note that the former is realized with default values for allparame-
ters, thus becoming the default constructor, i.e., all window instances are already opened
upon construction!

Of course, you can close a window usingCloseWindow and then open it again using
OpenWindow. In contrast to the iconic parameter classes, you can call the “constructor-
like” operatorOpenWindow via an instance ofHWindow in the intuitive way, i.e., the call-
ing instance is modified; in addition the corresponding handle is returned.HWindow is
described in more detail insection 3.2.3.1.

• Other Handle Classes:
The other classes encapsulating handles, e.g.,HBarCode1d or HFramegrabber, pro-
vide constructors in a systematic way: If a class appears as an output parameter in
an operator, there automatically exists a constructor based on this operator. Thus, in-
stances ofHBarCode1d can be constructed based ongen 1d bar code descr as shown
in figure 2.4, instances ofHShapeModel based oncreate shape model, instances of
HFramegrabber based onopen framegrabber and so on.

In contrast to the iconic parameter classes, handle classesallow to call constructor-like
operators via instances of the class in the intuitive way, i.e., the calling instance is modi-
fied. For example, you can create an instance ofHBarCode1d with the default constructor
and then initialize it usingGen1dBarCodeDescr as follows:

HBarCode1D barcode;

barcode.Gen1dBarCodeDescr("EAN 13", 13, 13);

HALCON / C++, 2005-02-01

2.1. CALLING HALCON OPERATORS 11

If the instance was already initialized, the correspondingdata structures are automatically
destroyed before constructing and initializing them anew (see alsosection 2.1.2.2). The
handle classes are described in more detail insection 3.2.3.2.

2.1.2.2 Destructors

All HALCON/C++ classes provide default destructors which automatically free the correspond-
ing memory. For some classes, the destructors are based on suitable operators:

• Windows:
The default destructor of the classHWindow closes the window based onclose window.
Note that the operator itself is no destructor, i.e., you canclose a window and then open it
again usingOpenWindow.

• Other Handle Classes:
The default destructors of the other classes encapsulatinghandles, e.g.,HShapeModel or
HFramegrabber, apply operators likeclear shape model or close framegrabber, re-
spectively. In contrast toclose window, these operators cannot be called via instances of
the class, as can be seen in the corresponding reference manual entries; the same holds for
operators likeclear all shape models. In fact, there is no need to call these operators
as you can initialize instances anew as described insection 2.1.2.1.

Please note that you must not use operators likeclear shape model,
clear all shape models, or close framegrabber together with instances of the
corresponding handle classes!

2.1.3 The Tuple Mode

As already mentioned insection 2.1.1, many HALCON operators can be called in the so-called
tuple mode. In this mode, you can, e.g., apply an operator to multiple images or regions with a
single call. The standard case, e.g., calling the operator with a single image, is called thesimple
mode. Whether or not an operator supports the tuple mode can be checked in the reference
manual. For example, take a look atfigure 2.5, which shows an extract of the reference manual
entry for the operatorchar threshold: In the parameter section, the parameterImage is de-
scribed as animage(-array); this signals that you can apply the operator to multiple images
at once.

If you call char threshold with multiple images, i.e., with an image tuple, the output pa-
rameters automatically become tuples as well. Consequently, the parametersCharacters and
Threshold are described asregion(-array) andinteger(-array), respectively.

The head section of the reference entry infigure 2.5shows how simple and tuple mode are
reflected in the operator’s signatures. In the procedural approach, the simple and tuple mode
methods of callingchar threshold differ only in the type of the output parameterThreshold:
a pointer to along or to aHTuple of long values, respectively. Note that the classHTuple can
also contain arrays (tuples) of control parameters of mixedtype; please refer tosection 3.2.2for
more information about this class. In contrast to the control parameters, the iconic parameters
remain instances of the classHobject in both modes, as this class can contain both single
objects and object arrays (see alsosection 3.1.4).

HALCON 6.1.4

12 CHAPTER 2. BASICS OF THE HALCON/C++ INTERFACE

Herror ::char threshold (Hobject Image, Hobject HistoRegion,

Hobject *Characters, const HTuple &Sigma, const HTuple &Percent,

long *Threshold)

Herror ::char threshold (Hobject Image, Hobject HistoRegion,

Hobject *Characters, const HTuple &Sigma, const HTuple &Percent,

HTuple *Threshold)

HRegion HImage::CharThreshold (const HRegion &HistoRegion,

const HTuple &Sigma, const HTuple &Percent, long *Threshold) const

HRegionArray HImageArray::CharThreshold (const HRegion &HistoRegion,

const HTuple &Sigma, const HTuple &Percent, HTuple *Threshold) const

Image (input object) . image(-array); Hobject: HImage(Array)(byte)

HistoRegion (input object) . region; Hobject: HRegion

Characters (output object) region(-array); Hobject * : HRegion(Array)

Sigma (input control) . number ; HTuple.double

Percent (input control) . number; HTuple.double/ long

Threshold (output control) . integer(-array); (HTuple.) long *

Figure 2.5: The head and parts of the parameter section of the reference manual entry for
CharThreshold.

In the object-oriented approach, simple mode and tuple modemethods use different classes
for the iconic parameters:HImage andHRegion vs. HImageArray andHRegionArray (see
sections 3.1.1and3.1.2 for more information about these classes). As in the procedural ap-
proach, control parameters can be of a basic type (simple mode only) or instances ofHTuple
(simple and tuple mode).

After this rather theoretic introduction, let’s take a lookat example code. Infigure 2.6,
char threshold is applied in simple mode, i.e., to a single image, infigure 2.7to two im-
ages at once. Both examples are realized both in the object-oriented and in the procedural
approach. The examples highlight some interesting points:

• Creation and initialization of iconic arrays:
In the object-oriented approach, the image array can be constructed very easily byas-
signing the individual images to certain positions in the array using the well-known array
operator[]. In the procedural approach, you must explicitely create anempty object using
gen empty obj and then add the images viaconcat obj.

• Access to iconic objects:
As expected, in the object-oriented approach, the individual images and regions are ac-
cessed via the array operator[]; the number of objects in an array can be queried via the
methodNum(). In the procedural approach, objects must be selected explicitely using the
operatorselect obj; the number of objects can be queried viacount obj.

• Polymorphism of Hobject: (part I)
As already noted, instances ofHobject can be used both in simple and in tuple mode. In

HALCON / C++, 2005-02-01

2.2. ERROR HANDLING 13

HImage image("alpha1");

HRegion region;

long threshold;

region = image.CharThreshold(image.GetDomain(), 2, 95, &threshold);

image.Display(window);

region.Display(window);

cout << "Threshold for ’alpha1’: " << threshold;

Hobject image;

Hobject region;

long num;

long threshold;

::read_image(&image, "alpha1");

::char_threshold(image, image, ®ion, 2, 95, &threshold);

::disp_obj(image, window);

::disp_obj(region, window);

cout << "Threshold for ’alpha1’: " << threshold;

Figure 2.6: Using CharThreshold in simple mode, via HImage, or in the procedural approach
(declaration and opening of window omitted).

contrast, you must use different classes when switching from simple to tuple mode in the
object-oriented approach.

• Polymorphism of Hobject: (part II)
The classHobject is used for all types of iconic objects. What’s more, image objects
can be used for parameters expecting a region, as in the call to char threshold in the
examples; in this case, thedomain of the image, i.e., the region in which the pixels are
“valid”, is extracted automatically. In the object-oriented approach, you must extract the
domain explicitely via the operatorGetDomain.

• Array (tuple) indices:
Object-oriented iconic arrays start with the index 0, the same is true forHTuple. In con-
trast,Hobject arrays start with the index 1!!

Most of the time you will call operators in tuple mode withoutnoticing: As soon as
you divide a region into connected components via the operator Connection, you end up
with a HRegionArray– thus, any subsequent processing, e.g., morphological operations like
DilationCircle or the calculation of the region’s position usingAreaCenter is automati-
cally performed on all regions in the array, i.e., in tuple mode. Thus, the tuple mode is a simple
mode after all!

2.2 Error Handling

In case of a runtime error, HALCON/C++ by default prints a corresponding error message and
terminates the program. In some applications, however, it might be useful to slacken this rule
for certain errors. For example, if an application allows the user to specify an image file to read
interactively, it would be inconvenient if the applicationterminates because the user misspelled

HALCON 6.1.4

14 CHAPTER 2. BASICS OF THE HALCON/C++ INTERFACE

HImageArray images;

HRegionArray regions;

HTuple thresholds;

for (int i=1; i<=2; i++)

{

images[i-1] = HImage::ReadImage(HTuple("alpha") + i);

}

regions = images.CharThreshold(images[0].GetDomain(), 2, 95, &thresholds);

for (int i=0; i<images.Num(); i++)

{

images[i].Display(window);

regions[i].Display(window);

cout << "Threshold for ’alpha" << i+1 << "’: " << thresholds[i].L();

}

Hobject images, image;

Hobject regions, region;

long num;

HTuple thresholds;

::gen_empty_obj(&images);

for (int i=1; i<=2; i++)

{

::read_image(&image, HTuple("alpha") + i);

::concat_obj(images, image, &images);

}

::char_threshold(images, image, ®ions, 2, 95, &thresholds);

::count_obj(images, &num);

for (int i=0; i<num; i++)

{

::select_obj(images, &image, i+1);

::disp_obj(image, window);

::select_obj(regions, ®ion, i+1);

::disp_obj(region, window);

cout << "Threshold for ’alpha" << i+1 << "’: " << thresholds[i].L();

}

Figure 2.7: Using CharThreshold in tuple mode, via HImageArray, or in the procedural ap-
proach (declaration and opening of window omitted).

the file name. Therefore, HALCON/C++ allows to integrate your own error handling. How
to do this in the object-oriented and in the procedural approach is described in the following
sections. Please note that you cannot mix object-oriented and procedural error handling.

HALCON / C++, 2005-02-01

2.2. ERROR HANDLING 15

class LIntExport HException {

public:

HException(const HException &except);

HException(const char *f, long l, const char *p, Herror e, const char *m);

HException(const char *f, long l, const char *p, const char *m);

HException(const char *f, long l, const char *p, Herror e);

static Handler InstallHHandler(Handler proc);

void PrintException(void);

static Handler handler; /* handler in use */

long line; /* line number where error occured */

const char *file; /* file name where error occured */

const char *proc; /* Name of procedure/operator */

Herror err; /* error number */

char *message; /* error text */

};

Figure 2.8: Part of the declaration of the class HException.

2.2.1 Object-Oriented Approach

If a runtime error occurs in an object-oriented operator call, an instance of the classHException
is created (seefigure 2.8for the declaration of the class). This instance contains all information
concerning the error. The important members of an exceptionare:

line: Number of the program line in which the error occurred
file: Name of the file in which the error occurred
proc: Name of the actual HALCON operator
err: Number of the error, see below
message: Error text

After the generation, the instance ofHException is passed to a so-calledexception handler.
HALCON’s default exception handler prints the corresponding error message and terminates
the program.

As an alternative, you can implement and use your own exception handler. In order to act as a
HALCON exception handler, a procedure must have the following signature:

typedef void (*Handler)(const HException &exception);

You “install” your exception handler procedure viaHException’s class method
InstallHHandler (see figure 2.8). In case of a runtime error, HALCON then calls
your procedure, passing the instance of the actual exception as a parameter.

The following example shows how to use a user-specific exception handler together
with the standard C++ exception handling mechanism (try...catch). The cor-
responding programexample errorhandling.cpp can be found in the subdirectory
%HALCONROOT%\examples\cpp. It realizes the application mentioned above: You can type
in image files to load; if a file does not exist, the program prints a corresponding message but
continues nevertheless.

At the beginning of the program, a user-specific exception handler is installed with the folloing
line:

HALCON 6.1.4

16 CHAPTER 2. BASICS OF THE HALCON/C++ INTERFACE

HException::InstallHHandler(&MyHalconExceptionHandler);

The installed procedure simply hands the exception object to the C++ exception handling via
throw:

void MyHalconExceptionHandler(const HException& except)

{

throw except;

}

The call toReadImage is then encapsulated by atry block; a possibly ensuing exception is
then evaluated in a correspondingcatch block:

try

{

image = HImage::ReadImage(filename);

}

catch (HException &except)

{

error_num = except.err;

if (error_num == H_MSG_FAIL)

cout << "image not found!" << endl;

else

cout << endl << except.message << endl;

}

2.2.2 Procedural Approach

As can be seen in the extracts of the reference manual insection 2.1, in the procedural approach
operators return a value of the typeHerror. This value can fall into two categories: messages
H MSG * and errorsH ERR *. There are four different messages:

H MSG TRUE: The operator terminated without an error and the result value is the boolean
value true.

H MSG FALSE: The operator terminated without an error and the result value is the boolean
value false.

H MSG VOID: The operator terminated without an error and the result value void is returned.

H MSG FAIL: The operator terminated without an error and the result value means the op-
erator has not performed successfully. This means, e.g. an operator is not
responsible or a specific situation has not occurred.

Typically, HALCON operators return the messageH MSG TRUE if no error occurs.

In case of an error, HALCON by default prints the corresponding error message and termi-
nates the program. You can deactivate (and reactivate) thisreaction by calling the operator
set check. The following example code checks whether a file could be opened successfully;
in case of an error, it prints the corresponding error message, which can be determined with the
operatorget error text.

HALCON / C++, 2005-02-01

2.3. MEMORY MANAGEMENT 17

Herror error_num;

char message[MAX_STRING];

long file;

::set_check("~give_error");

error_num = ::open_file("not_existing_file", "input", &file);

::set_check("give_error");

if (error_num != H_MSG_TRUE)

{

::get_error_text(error_num, message);

cout << "HALCON error " << error_num << ": " << message;

}

2.3 Memory Management

All of HALCON’s classes, i.e., not onlyHImage, HRegion, HTuple, HFramegrabber etc., but
also the classHobject used when calling operators in the procedural approach, release their
allocated memory automatically in their default destructor (see alsosection 2.1.2.2). Further-
more, when constructing instances anew, e.g., by callingGen1dBarCodeDescr via an already
initialized instance as mentioned insection 2.1.2.1, the already allocated memory is automati-
cally released before allocating it anew. Thus, there is no need to call the operatorclear obj in
HALCON/C++; what’s more, if you do use it HALCON will complain about already released
memory.

The only occasion for explicit memory management on your part is when using handles
in the procedural approach: The memory allocated when creating a handle, e.g., with
open framegrabber, is only released when calling the “complementary” operator, in the ex-
ampleclose framegrabber — or at the end of the program.

2.4 How to Combine Procedural and Object-Oriented
Code

As already noted, we recommend to use the object-oriented approach wherever possible. How-
ever, there are some reasons for using the procedural approach, e.g., if you want to quickly
integrate code that is exported by HDevelop, which can only create procedural code. Besides,
currently some operators are only available in procedural form, e.g., operators creating affine
transformations likevector to rigid.

The least trouble is caused by the basic control parameters as both approaches use the elemen-
tary typeslong etc. and the classHTuple. Iconic parameters and handles can be converted as
follows:

• Converting Hobject into iconic parameter classes

Hobject p_image;

::read_image(&p_image, "barcode/ean13/ean1301");

HImage o_image(p_image);

HALCON 6.1.4

18 CHAPTER 2. BASICS OF THE HALCON/C++ INTERFACE

Iconic parameters can be converted fromHobject to, e.g.,HImage simply by calling the
constructor with the procedural variable as a parameter.

• Converting handles into handle classes

HTuple p_barcode;

::gen_1d_bar_code_descr("EAN 13", 13, 13, &p_barcode);

HBarCode1D o_barcode;

o_barcode.SetHandle(p_barcode);

o_code_region = o_barcode.Find1dBarCode(o_image, HTuple(), HTuple(),

&isfound, &elements,

(HTuple*) _);

Handles cannot be converted directly via a constructor; instead, you call the method
SetHandle() with the procedural handle as a parameter.

• Converting handle classes into handles

p_barcode = o_barcode.GetHandle();

::decode_1d_bar_code(elements, p_barcode, (HTuple*) _, &result,

(HTuple*) _);

Similarly, a handle can be extracted from the correspondingclass via the method
GetHandle(). You can even omit the method, as the handle classes provide cast oper-
ators which convert them automatically into handles.

p_barcode = o_barcode;

• Converting iconic parameter classes intoHobject

Hobject p_code_region = o_code_region.Id();

Iconic parameters can be converted from classes likeHRegion back intoHobject via the
methodId(). In contrast to the handle classes no cast operator is provided.

• Converting HWindow into a window handle

long p_window;

::open_window(0, 0, width/2, height/2, 0, "visible", "", &p_window);

HWindow o_window(0, 0, 100, 100, 0, "visible", "");

p_window = o_window.WindowHandle();

::disp_obj(p_code_region, p_window);

In contrast to other handles, procedural window handles cannot be converted into instances
of the classHWindow! However, you can extract the handle from an instance ofHWindow

via the methodWindowHandle().

As already remarked insection 2.1.2.2, you must not use operators likeclear shape model,
clear all shape models, or close framegrabber together with instances of the corre-
sponding handle classes!

HALCON / C++, 2005-02-01

Chapter 3

The HALCON Parameter Classes

3.1 Iconic Objects

The base class of the iconic parameter classes in HALCON/C++is the (abstract) classHObject
which manages entries in the database, i.e., the copying or releasing of objects. The entries
themselves are represented by the classHobject (see alsosection 3.1.4). The classesHObject
andHobject can contain all types of iconic objects. This has the advantage that important
methods likeDisplay() can be applied to all iconic objects in the same manner.

Three classes are derived from the root classHObject:

• ClassHImage for handling images.

• ClassHRegion for handling regions.

• ClassHXLD for handling polygons.

These classes are described in more detail below.

3.1.1 Regions

A region is a set of coordinates in the image plane. Such a region does not need to be connected
and it may contain holes. A region can be larger than the actual image format. Regions are
represented by the so-called runlength coding in HALCON. The classHRegion represents a
region in HALCON/C++. Besides those operators that can be called via HRegion (see also
section 2.1.2), HRegion provides the following member functions:

• HRegion(void)

Default constructor. It creates an empty region, i.e., the area of this region is zero. Not all
operators can handle the empty region as input, e.g. some shape property operators.

• HRegion(const HDChord &line)

Constructing a region from a chord. A chord is a horizontal line.

• HRegion(const HDPoint2D &point)

Constructing a region from a discrete 2-dimensional point.

19

20 CHAPTER 3. THE HALCON PARAMETER CLASSES

• HRegion(const HRectangle1 &rect)

Constructing a region from a rectangle parallel to the coordinate axis. The coordinates do
not need to be discrete.

• HRegion(const HRectangle2 &rect)

Constructing a region from an arbitrarily oriented rectangle. The coordinates do not need
to be discrete.

• HRegion(const HCircle &circle)

Constructing a region from a circle. The radius and center donot need to be discrete.

• HRegion(const HEllipse &ellipse)

Constructing a region from an arbitrarily oriented ellipse. The radii and center do not need
to be discrete.

• HRegion(const char *file)

Constructing a region by reading the representation from file. This file can be generated
by the member functionWriteRegion.

• HRegion(const HRegion ®)

Copy constructor.

• HRegion &operator = (const HRegion ®)

Assignment operator.

• ~HRegion(void)

Destructor. In contrast to the primitive class (Hobject) this class handles the release of
memory.

• void Display(const HWindow &w) const

Output of the region in a window.

• HRegion operator * (double scale) const

Zooming the region by an arbitrary factor. The center of scaling is the origin (0, 0).

• HRegion operator >> (double radius) const

HRegion &operator >>= (double radius)

Erosion of the region with a circle of radiusradius, see reference manual entry of
erosion circle.

• HRegion operator << (double radius) const

HRegion &operator <<= (double radius)

Dilation of the region with a circle of radiusradius, see reference manual entry
dilation circle.

• HRegion operator + (const HDPoint2D &point) const

HRegion &operator += (const HDPoint2D &point)

Translating the region by a 2-dimensional point.

• HRegion &operator ++ (void)

Dilation of the region with a cross containing five points.

• HRegion operator + (const HRegion ®) const

HRegion &operator += (const HRegion ®)

Minkowsky addition of the region with another region, see reference manual entry of
minkowski add1.

HALCON / C++, 2005-02-01

3.1. ICONIC OBJECTS 21

• HRegion operator - (const HRegion ®) const

HRegion &operator -= (const HRegion ®)

Minkowsky subtraction of the region with another region, see reference manual entry of
minkowski sub1.

• HRegion &operator -- (void)

Erosion of the region with a cross containing five points.

• HRegion operator ~ (void) const

Complement of the region, see reference manual entry ofcomplement.

• HRegion operator ! (void) const

Transpose the region at the origin, see reference manual entry of transpose region.

• HRegion operator & (const HRegion ®) const

HRegion &operator &= (const HRegion ®)

Intersection of the region with another region, see reference manual entry of
intersection.

• HRegion operator | (const HRegion ®) const

HRegion &operator |= (const HRegion ®)

Union of the region with another region, see reference manual entry ofunion2.

• HRegion operator / (const HRegion ®) const

HRegion &operator /= (const HRegion ®)

Subtract another region from the region, see reference manual entry ofdifference.

• HBool operator == (const HRegion ®) const

Boolean test if two regions are identical, see reference manual entry of
test equal region.

• HBool operator >= (const HRegion ®) const

HBool operator > (const HRegion ®) const

HBool operator <= (const HRegion ®) const

HBool operator < (const HRegion ®) const

Boolean test if another region is included in the region by using the subset of the corre-
sponding coordinates.

• double Phi(void) const

Orientation of the region by using the angle of the equivalent ellipse, see reference manual
entry ofelliptic axis.

• double Ra(void) const

Length of the major axis of the equivalent ellipse of the region, see reference manual entry
of elliptic axis.

• double Rb(void) const

Length of the minor axis of the equivalent ellipse of the region, see reference manual entry
of elliptic axis.

• long Area(void) const

Area of the region, i.e., number of pixels, see reference manual entry ofarea center.

• double X(void) const

double Y(void) const

HALCON 6.1.4

22 CHAPTER 3. THE HALCON PARAMETER CLASSES

Center point of the region, see reference manual entry ofarea center.

• double Contlength(void) const

Length of the contour of the region, see reference manual entry of contlength.

• double Compactness(void) const

Compactness of the actual region, see reference manual entry of compactness.

• double Anisometry(void) const

double Bulkiness(void) const

double StructureFactor(void) const

Shape factors, see reference manual entry ofeccentricity.

• double M11(void) const

double M20(void) const

double M02(void) const

double Ia(void) const

double Ib(void) const

Moments of the region, see reference manual entry ofmoments region 2nd.

• HRectangle1 SmallestRectangle1(void) const

Smallest surrounding rectangle parallel to the coordinateaxis, see reference manual entry
of smallest rectangle1.

• HBool In(const HDPoint2D &p) const

Boolean test if a point is inside a region, see reference manual entry of
test region point.

• HBool IsEmpty(void) const;

Boolean test if the region is empty, i.e., the area of the region is zero.

A program shows the power of the classHRegion, seefigure 3.1.

First, an aerial image (mreut.tiff) is read from a file. All pixels with a gray value≥ 190 are
selected. This results in one region (region).

This region is transformed by the next steps: All holes in theregion are filled (FillUp), small
parts of the region are eliminated by two morphological operations, first an erosion, a kind of
shrinking the region, followed by a dilation, a kind of enlarging the region. The last step is the
zooming of the region. For that the region is first shifted by atranslation vector(−100,−150)
to the upper left corner and then zoomed by the factor two.Figure 3.2shows the input image
and the result of the opening operation.

3.1.1.1 Region Arrays

The classHRegionArray serves as container class for regions. Besides those operators that can
be called viaHRegionArray (see alsosection 2.1.2), HRegionArray provides the following
member functions:

• HRegionArray(void)

Constructor for an empty array (Num() is 0).

• HRegionArray(const HRegion ®)

Constructor with a single region.

HALCON / C++, 2005-02-01

3.1. ICONIC OBJECTS 23

#include "HalconCpp.h"

#include "iostream.h"

main ()

{

HImage image("mreut"); // Reading an aerial image

HRegion region = image >= 190; // Calculating a threshold

HWindow w; // Display window

w.SetColor("red"); // Set color for regions

region.Display(w); // Display the region

HRegion filled = region.FillUp(); // Fill holes in region

filled.Display(w); // Display the region

// Opening: erosion followed by a dilation with a circle mask

HRegion open = (filled >> 4.5) << 4.5;

w.SetColor("green"); // Set color for regions

open.Display(w); // Display the region

HDPoint2D trans(-100,-150); // Vector for translation

HRegion moved = open + trans; // Translation

HRegion zoomed = moved * 2.0; // Zooming the region

}

Figure 3.1: Sample program for the application of the class HRegion .

Figure 3.2: On the left the input image (mreut.tiff), and on the right the region after the
opening (open).

• HRegionArray(const HRegionArray &arr)

Copy constructor.

• ~HRegionArray(void)

Destructor.

• HRegionArray &operator = (const HRegionArray &arr)

Assignment operator.

HALCON 6.1.4

24 CHAPTER 3. THE HALCON PARAMETER CLASSES

• long Num(void)

Number of regions in the array, largest index isNum() − 1.

• HRegion const &operator [] (long index) const

Reading the elementi of the array. The index is in the range0 . . . Num()− 1.

• HRegion &operator [] (long index)

Assigning a region to the elementi of the array. The indexindex can be≥ Num().

• HRegionArray operator () (long min, long max) const

Selecting a subset between the lowermin and uppermax index.

• HRegionArray &Append(const HRegion ®)

Appending another region to the region array.

• HRegionArray &Append(const HRegionArray ®)

Appending another region array to the region array.

• void Display(const HWindow &w) const

Display the regions of the array in a window.

• HRegionArray operator << (double radius) const

Applying a dilation to all regions using a circular mask, seereference manual entry of
dilation circle.

• HRegionArray operator >> (double radius) const

Applying an erosion to all regions using a circular mask, seereference manual entry of
erosion circle.

• HRegionArray operator + (const HRegion ®) const

Applying the Minkowsky addition to all regions using another region as mask, see refer-
ence manual entry ofminkowski add1.

• HRegionArray operator - (const HRegion ®) const

Applying the Minkowsky subtraction to all regions using another region as mask, see
reference manual entry ofminkowski sub1.

• HRegionArray operator ~ (void) const

Applying the complement operator to each region of the array, see reference manual entry
of complement.

• HRegionArray operator & (const HRegionArray ®) const

Intersection of each region of the actual array with the union of reg, see reference manual
entry ofintersection.

• HRegionArray operator | (const HRegionArray ®) const

Union of each region in the actual array with the union ofreg, see reference manual entry
of union2.

• HRegionArray operator / (const HRegionArray ®) const

Difference of each region in the actual array with the union of reg, see reference manual
entry ofdifference.

Most HALCON operators expecting a region for an input parameter accept an instance of
HRegionArray, e.g. Union1, Intersection, Difference, etc. The constructor instantiat-
ing the region arrayHRegionArray from a single regionHRegion makes it possible to handle

HALCON / C++, 2005-02-01

3.1. ICONIC OBJECTS 25

operators expecting a single region: Without changing the data structure aHRegionArray can
be used as input parameter even in the case of a single region.

Figure 3.3shows a short example how to use the classHRegionArray.

#include "HalconCpp.h"

#include "iostream.h"

main ()

{

HImage image("control_unit"); // Reading an image from file

// Segmentation by regiongrowing

HRegionArray regs = image.Regiongrowing(1,1,4,100);

HWindow w; // Display window

w.SetColored(12); // Set colors for regions

regs.Display(w); // Display the regions

HRegionArray rect; // New array

for (long i = 0; i < regs.Num(); i++) // For all regions in array

{ // Test size and shape of each region

if ((regs[i].Area() > 1000) && (regs[i].Compactness() < 1.5))

rect.Append(regs[i]); // If test true, append region

}

image.Display(w); // Display the image

rect.Display(w); // Display resulting regions

}

Figure 3.3: Sample program for use of the class HRegionArray .

Figure 3.4: On the left side the input image (control unit.tiff), and on the right side the
selected rectangles.

The first step is to read an image. In this case it shows a control unit in a manufacturing
environment, seefigure 3.4on the left side. By applying a regiongrowing algorithm fromthe
HALCON library the image is segmented into regions. Each region inside the resulting region

HALCON 6.1.4

26 CHAPTER 3. THE HALCON PARAMETER CLASSES

arrayregs is now selected according to its size and its compactness. Each region of a size
larger than 1000 pixels and of a compactness value smaller than1.5 is appended to the region
arrayrect. After the processing of thefor loop only the regions showing on the right side of
figure 3.4are left.

3.1.2 Images

There is more to HALCON images than just a matrix of pixels: InHALCON, this matrix is
called achannel, and images may consist of one or more such channels. For example, gray
value images consist of a single channel, color images of three channels. Channels can not
only contain the standard 8 bit pixels (pixel typebyte) used to represent gray value images,
HALCON allows images to contain various other data, e.g. 16 bit integers (typeint2) or 32 bit
floating point numbers (typereal) to represent derivatives. Besides the pixel information,each
HALCON image also stores its so-calleddomain in form of a HALCON region. The domain
can be interpreted as a region of interest, i.e., HALCON operators (with some exceptions)
restrict their processing to this region.

3.1.2.1 Image Objects

The classHImage is the root class for all derived image classes. By using the classHImage all
different pixel types can be handled in a unique way (polymorphism). The classHImage is not
virtual, thus it can be instantiated. Besides those operators that can be called viaHRegion (see
alsosection 2.1.2), HRegion provides the following member functions:

• HImage(void)

Default constructor, empty image.

• HImage(const char *file)

Constructing an image by reading from a file, see reference manual entry ofread image.

• HImage(int width, int height, const char *type)

Constructing an image of a defined size and a specific pixel type, see reference manual
entry ofgen image const.

• HImage(void *ptr, int width, int height, const char *type)

Constructing an image of a defined size and a specific pixel type by copying memory, see
reference manual entry ofgen image1.

• HImage(const HImage &image)

Copy constructor.

• virtual ~HImage(void)

Destructor.

• HImage &operator = (const HImage &arr)

Assignment operator.

• virtual const char *PixType(void) const

Return the pixel type of the image, see reference manual entry of get image pointer1.

• int Width(void) const

Return the width of the image, see reference manual entry ofget image pointer1.

HALCON / C++, 2005-02-01

3.1. ICONIC OBJECTS 27

• int Height(void) const

Return the height of the image, see reference manual entry ofget image pointer1.

• HPixVal GetPixVal(int x, int y) const

Access a pixel value via the(x, y) coordinates, see reference manual entry of
get grayval.

• HPixVal GetPixVal(long k) const

Linear access of a pixel value.

• virtual void SetPixVal(int x, int y, const HPixVal &val)

Set the pixel value via the(x, y) coordinates, see reference manual entry ofset grayval.

• virtual void SetPixVal(long k, const HPixVal &val)

Set the pixel value by linear access.

• virtual void Display(const HWindow &w) const

Display an image in a window.

• HImage operator & (const HRegion ®) const

Reduce the domain of an image, see reference manual entry ofreduce domain.

• HImage operator + (const HImage &add) const

Adding two images, see reference manual entry ofadd image.

• HImage operator - (const HImage &sub) const

Subtracting two images, see reference manual entry ofsub image.

• HImage operator * (const HImage &mult) const

Multiplication of two images, see reference manual entry ofmult image.

• HImage operator - (void) const

Inverting the values of the image, see reference manual entry of invert image.

• HImage operator + (double add) const

HImage operator - (double sub) const

HImage operator * (double mult) const

HImage operator / (double div) const

Arithmetic operators, see reference manual entry ofscale image.

• HRegion operator >= (const HImage &image) const

HRegion operator <= (const HImage &image) const

Selecting all pixel with gray values brighter than or equal to (or darker than or equal to,
respectively) those of the input image, see reference manual entry ofdyn threshold.

• HRegion operator >= (double thresh) const

HRegion operator <= (double thresh) const

HRegion operator == (double thresh) const

HRegion operator != (double thresh) const

Selecting all pixel with gray values brighter than or equal to (or darker than or equal
to, or equal to, or not equal to, respectively) a threshold, see reference manual entry of
threshold.

Figure 3.5gives an example of the use of the classHImage.

HALCON 6.1.4

28 CHAPTER 3. THE HALCON PARAMETER CLASSES

#include "HalconCpp.h"

#include "iostream.h"

main ()

{

HImage image("mreut"); // Aerial image

HWindow w; // Output window

image.Display(w); // Display image

// Returning the size of the image

cout << "width = " << image.Width();

cout << "height = " << image.Height() << endl;

// Interactive drawing of a region by using the mouse

HRegion mask = w.DrawRegion();

// Reduce the domain of the image to the mask

HImage reduced = image & mask;

w.ClearWindow(); // Clear the window

reduced.Display(w); // Display the reduced image

// Applying the mean filter in the reduced image

HImage mean = reduced.MeanImage(61,61);

mean.Display(w);

HRegion reg = bild >= (mean + 3);

reg.Display(w);

}

Figure 3.5: Sample program for the use of the class HImage .

Figure 3.6: On the left side the input image (mreut.tiff), and on the right side the segmented
regions in the selected image domain.

The example starts by reading a byte image from a file. The aim is to extract bright parts from
the image. The used filter and the segmentation process itself is applied only in a pre-chosen
part of the image in order to accelerate the runtime. This part is selected by drawing an arbitrary
region with the mouse. This regionmask serves as input for reducing the domain of the original
image (operator&). The mean filter with a mask size of61×61 is applied to the resulting region

HALCON / C++, 2005-02-01

3.1. ICONIC OBJECTS 29

reduced. Bright pixels are selected by applying the operator>=. All pixels brighter than the
filtered part of the imagereduced +3 are selected.Figure 3.6shows the result of the sample
program infigure 3.5.

3.1.2.2 Pixel Values

#include "HalconCpp.h"

#include <iostream.h>

main ()

{

HByteImage in("mreut"); // Aerial image

HWindow w; // Output window

in.Display(w); // Displaying the image

HByteImage out = in; // Copying the image

int width = out.Width(); // Width of the image

int height = out.Height(); // Height of the image

long end = width * height; // Number of pixel of the image

// 1. run: linear accessing

for (long k = 0; k < end; k++) {

int pix = in.GetPixVal(k); // Reading the pixel

out.SetPixVal(k,255-pix); // Setting the pixel

}

// Displaying the transformation

cout << "Transformed !" << endl; out.Display(w); w.Click();

cout << "Original !" << endl; in.Display(w); w.Click();

// 2. run: accessing the image via the coordiantes (x,y)

for (int y=0; y<height; y++) {

for (int x=0; x<width; x++) {

int pix = in.GetPixVal(x,y); // Reading the pixel

out.SetPixVal(x,y,255-pix); // Setting the pixel

}

}

// Displaying the transformation

cout << "Transformed !" << endl; out.Display(w); w.Click();

cout << "Original !" << endl; in.Display(w); w.Click();

}

Figure 3.7: Sample program for the use of the class HPixVal.

The classHPixVal is used for accessing the pixel values of the classHImage. Gray values can
be set and returned independent of their types:

• HPixVal(void)

Default constructor.

• HPixVal(const HComplex &Val)

Constructing a pixel value from a complex number.

HALCON 6.1.4

30 CHAPTER 3. THE HALCON PARAMETER CLASSES

• HPixVal(int Val)

Constructing a pixel value from an integer (int).

• HPixVal(long Val)

Constructing a pixel value from a long (long).

• HPixVal(HByte Val)

Constructing a pixel value from a byte (byte).

• HPixVal(double Val)

Constructing a pixel value from a double (double).

• HPixVal(const HPixVal &Val)

Copy constructor.

• HPixVal &operator = (const HPixVal &grey)

Assignment operator.

• operator HByte(void) const

Converting a pixel value to byte(0 . . . 255).

• operator int(void) const

Converting a pixel value toint.

• operator long(void) const

Converting a pixel value tolong.

• operator double(void) const

Converting a pixel value todouble.

• operator HComplex(void) const

Converting a pixel value toComplex.

The handling of the classHPixVal is explained by an example infigure 3.7which inverts an
input image. The input image is a byte image. First, a copy is generated and the image size
is determined. In the first run the pixels are accessed linearly. In the second run the pixel are
accessed via the(x, y)-ccordinates.

3.1.2.3 Image Arrays

The same way which was used to define arrays of regions is used to obtain arrays of images.
The class is namedHImageArray and contains the following member functions (in addition to
the operators):

• HImageArray(void)

Default constructor: empty array, no element.

• HImageArray(const HImage ®)

Constructing an image array from a single image.

• HImageArray(const HImageArray &arr)

Copy constructor.

• ~HImageArray(void)

Destructor.

HALCON / C++, 2005-02-01

3.1. ICONIC OBJECTS 31

• HImageArray &operator = (const HImageArray &arr)

Assignment operator.

• long Num(void) const

Returning the number of elements in the array.

• HImage const &operator [] (long index) const

Reading the elementi of the array. The index is in the range0 . . . Num()− 1.

• HImage &operator [] (long index)

Assigning an image to the elementi of the array. The indexindex can be≥ Num().

• HImageArray operator () (long min, long max)

Selecting a subset between the lowermin and uppermax index.

• HImageArray &Append(const HImage &image)

Appending another image to the image array.

• HImageArray &Append(const HImageArray &images)

Appending another image array to the image array.

3.1.2.4 Byte Images

For each pixel type, there exists a corresponding image class derived fromHImage, e.g.,
HByteImage for the pixel typebyte (standard 8 bit pixels) orHInt2Image for the pixel type
int2 (unsigned 16 bit pixels). The most important derived class is naturallyHByteImage, as
this pixel type still covers the majority of all applications in the field of image processing. The
advantage of the classHByteImage in comparison to the classHImage is the simplified access
to the pixel values. This is because the classHPixVal is not necessary. Besides the member
functions ofHImage, the classHByteImage contains the following extensions:

• HByteImage(void)

Default constructor.

• HByteImage(const char *file)

Constructing a byte image by reading a file.

• HByteImage(int width, int height)

Constructing an empty byte image of a given size.

• HByteImage(HByte *ptr, int width, int height)

Constructing a byte image by copying memory.

• HByteImage(const HByteImage &image)

Copy constructor.

• virtual ~HByteImage(void)

Destructor.

• HByte &operator[] (long k)

Setting a pixel value by linear accessing.

• HByte operator[] (long k) const

Reading a pixel value by linear accessing.

HALCON 6.1.4

32 CHAPTER 3. THE HALCON PARAMETER CLASSES

#include "HalconCpp.h"

#include <iostream.h>

main ()

{

HByteImage in("mreut"); // Aerial image

HWindow w; // Output window

in.Display(w); // Displaying the image

HImage out = in; // Copying the image

int width = out.Width(); // Width of the image

int height = out.Height(); // Height of the image

long end = width * height; // Number of pixel of the image

// 1. run: linear accessing

for (long k = 0; k < end; k++)

out[k] = 255 - in[k]; // Reading and setting the pixel

// Displaying the transformation

cout << "Transformed !" << endl; out.Display(w); w.Click();

cout << "Original !" << endl; in.Display(w); w.Click();

// // 2. run: accessing the image via the coordinates (x,y)

for (int y=0; y<height; y++)

for (int x=0; x<width; x++)

out(x,y) = 255 - out(x,y); // Reading and setting the pixel

// Displaying the transformation

cout << "Transformed !" << endl; out.Display(w); w.Click();

cout << "Original !" << endl; in.Display(w); w.Click();

}

Figure 3.8: Sample program for accessing a pixel value using the class HByteImage.

• HByte &operator() (long k)

Setting a pixel value by linear accessing.

• HByte operator() (long k) const

Reading a pixel value by linear accessing.

• HByte &operator()(int x, int y)

Setting a pixel value by accessing it via(x, y) coordinates.

• HByte operator()(int x, int y) const

Reading a pixel value by accessing it via(x, y) coordinates.

• HByteImage operator & (int i)

Applying the logical “and”-operation on each pixel withi.

• HByteImage operator << (int i)

Applying a left-shift on each pixel withi.

HALCON / C++, 2005-02-01

3.1. ICONIC OBJECTS 33

• HByteImage operator >> (int i)

Applying a right-shift on each pixel withi.

• HByteImage operator ~ (void)

Complement of each pixel.

• HByteImage operator & (HByteImage &ima)

Pixel by pixel logical “and”-operation of two images.

• HByteImage operator | (HByteImage &ima)

Pixel by pixel logical “or”-operation of two images.

• HByteImage operator ^ (HByteImage &ima)

Pixel by pixel logical “xor”-operation of two images.

The advantage of the classHByteImage can be seen when accessing each pixel, seefigure 3.8.
The classHPixVal is not necessary in this example. Furthermore, the member functions
GetPixVal andSetPixVal are not used.HByteImage allows to access pixel values in a nota-
tion like in the programming language C. The result of the example infigure 3.8is basically the
same as in the example infigure 3.7. The program infigure 3.8is shorter, easy to read, and has
a better runtime performance.

3.1.3 XLD Objects

XLD is the abbreviation for eXtendedL ineDescription. This is a data structure used for describ-
ing areas (e.g., arbitrarily sized regions or polygons) or any closed or open contour, i.e., also
lines. In contrast to regions, which represent all areas at pixel precision, XLD objects provide
subpixel precision. There are two basic XLD structures: contours and polygons.

Similarly to images, HALCON/C++ provides both a base classHXLD and a set of specialized
classes derived fromHXLD, e.g.,HXLDCont for contours orHXLDPoly for polygons. For all
classes there exists a corresponding container class, e.g., HXLDArray.

In contrast to the classes described in the previous sections, the XLD classes provide only
member functions corresponding to HALCON operators (see alsosection 2.1.2).

3.1.4 Low-Level Iconic Objects

As could be seen in the examples inchapter 2, when calling operators in the procedural ap-
proach, the classHobject is used for all iconic parameters, be it an image, a region, oreven
an image array. In fact, the classHobject is HALCON’s basic class for accessing the internal
data management, i.e., it handles the keys of the database. Furthermore,Hobject serves as the
basis for the classHObject and the derived classes, e.g.,HImage.

The classHobject has the following member functions:

• Hobject(void)

Default constructor.

• Hobject(const Hobject &obj)

Copy constructor.

HALCON 6.1.4

34 CHAPTER 3. THE HALCON PARAMETER CLASSES

• virtual ~Hobject(void)

Destructor.

• Hobject &operator = (const Hobject &obj)

Assignment operator.

• void Reset(void)

Freeing the memory and resetting the corresponding database key.

As noted above, an instance ofHobject can also contain a tuple (array) of iconic objects.
Unfortunately,Hobject provides no special member functions to add objects or select them;
instead, you must use the operatorsgen empty obj, concat obj, select obj, andcount obj

as described insection 2.1.3.

3.2 Control Parameters

HALCON/C++ can handle different types of alphanumerical control parameters for HALCON
operators:

• discrete numbers (long),

• floating point numbers (double), and

• strings (char *).

A special form of control parameters are the so-calledhandles, which provide access to more
complex data structures like windows, frame grabber connections, or models for shape-based
matching. Internally, handles are almost always represented by discrete numbers (long); a
notable exception is the handle to a bar code descriptor, which is anHTuple, as can be seen in
figure 2.2. For handles there exist corresponding classes, which are described insection 3.2.3.

With the classHTuple, HALCON/C++ provides a container class for control parameters.
What’s more,HTuple is polymorphic, i.e., it can also contain arrays of control parameters
of mixed type. To realize this, the auxiliary classHCtrlVal is introduced, which is described
in the next section.

3.2.1 The Basic Class for Control Parameters

The classHCtrlVal serves as the basis for the classHTuple and is normally hidden from the
user because it is only used temporarily for type conversion. The main point is that it can
contain the three elementary types of control parameters, i.e., discrete numbers (long), float-
ing point numbers (double), and strings (char *). HCtrlVal provides the following member
functions:

• HCtrlVal(void)

Default constructor.

• HCtrlVal(long l)

Constructing a value fromlong.

• HCtrlVal(int l)

Constructing a value fromint.

HALCON / C++, 2005-02-01

3.2. CONTROL PARAMETERS 35

• HCtrlVal(double d)

Constructing a value fromdouble.

• HCtrlVal(const char *s)

Constructing a value fromchar *.

• HCtrlVal(const HCtrlVal &v)

Copy constructor.

• ~HCtrlVal(void)

Destructor.

• HCtrlVal& operator = (const HCtrlVal &v)

Assignment operator.

• int ValType() const

Type of a value.

• operator int(void) const

Conversion toint.

• operator long(void) const

Conversion tolong.

• operator double(void) const

Conversion todouble.

• operator const char*(void) const

Conversion tochar *.

• double D() const

Accessing a value and conversion todouble.

• long L() const

Accessing a value and conversion tolong.

• int I() const

Accessing a value and conversion toint.

• const char *S() const

Accessing a value and conversion tochar *.

• HCtrlVal operator + (const HCtrlVal &val) const

Adding two values.

• HCtrlVal operator - (const HCtrlVal &val) const

Subtracting two values.

• HCtrlVal operator * (const HCtrlVal &val) const

Multiplying two values.

• HCtrlVal operator / (const HCtrlVal &val) const

Division of two values.

HALCON 6.1.4

36 CHAPTER 3. THE HALCON PARAMETER CLASSES

3.2.2 Tuples

The classHTuple is built upon the classHCtrlVal; it implements an array of dynamic
length for instances of the classHCtrlVal. The default constructor constructs an empty ar-
ray (Num() == 0). This array can dynamically be expanded via assignments. The memory
management, i.e., reallocation, freeing, is also managed by the class. The index for accessing
the array is in the range between0 andNum() − 1.

The following member functions reflect only a small portion of the total. For further information
please refer to the fileHTuple.h in %HALCONROOT%\include\cpp.

• HTuple(void)

Default constructor. Constructs an empty tuple.

• HTuple(long l)

Constructing an array of length1 from a discrete numberlong at index position0.

• HTuple(int l)

Constructing an array of length1 from a discrete number converted to the internal type
long at index position0.

• HTuple(HCoord c)

Constructing an array of length1 from a coordinate at index position0.

• HTuple(double d)

Constructing an array of length1 from a floating numberdouble at index position0.

• HTuple(const char *s)

Constructing an array of length1 from a stringchar* at index position0.

• HTuple(const HTuple &t)

Copying a tuple.

• HTuple(int length, const HTuple \&value)

Constructing an array of the specified length with a constantvalue, similar to the operator
tuple gen const.

• ~HTuple()

Destructor.

• HTuple &operator = (const HTuple& in)

Assignment operator.

• HTuple Sum(void) const

Adding all elements in case they are numbers, similar to the operatortuple sum.

• HCtrlVal &operator [] (int i)

Setting thei−th element.

• HCtrlVal operator [] (int i) const

Reading thei−th element.

• HTuple operator + (const HTuple &val) const

Adding two tuples element by element, similar to the operator tuple add. The arrays
have to be of the same size.

HALCON / C++, 2005-02-01

3.2. CONTROL PARAMETERS 37

• HTuple operator + (double &val) const

HTuple operator + (int &val) const

Adding a number to each element of the tuple, similar to the operatortuple add.

• HTuple operator - (const HTuple &val) const

Subtracting two tuples element by element, similar to the operatortuple sub. The arrays
have to be of the same size.

• HTuple operator - (double &val) const

HTuple operator - (int &val) const

Subtracting a number from each element of the tuple, similarto the operatortuple sub.

• HTuple operator * (const HTuple &val) const

Multiplying two tuples element by element, similar to the operatortuple mult. The
arrays have to be of the same size.

• HTuple operator * (double &val) const

HTuple operator * (int &val) const

Multiplying a number with each element of the tuple, similarto the operatortuple mult.

• HTuple operator / (const HTuple &val) const

Division of two tuples element by element, similar to the operatortuple div. The arrays
have to be of the same size.

• HTuple operator / (double &val) const

HTuple operator / (int &val) const

Division of each element of the tuple by a number, similar to the operatortuple div.

• HTuple Concat(const HTuple &t) const

Concatenating two tuples, similar to the operatortuple concat.

• extern ostream& operator<<(ostream &s, const HTuple &t)

Output of a tuple.

• extern istream& operator>>(istream &s, HTuple &t)

Input of a tuple.

Figure 3.9shows a short sample how to use tuples, i.e., the classHTuple: The default construc-
tor generates an empty tuple. By assigning values to the tuple it is automatically expanded, and
the data types of the values are also stored. For accessing the tuple the normal array notation
can be used. If the data type of a value is not known in advance,an explicit type conversion has
to be performed, seefigure 3.9.

3.2.3 Classes Encapsulating Handles

The perhaps most prominent handle class isHWindow, which is described insection 3.2.3.1.
Starting with version 6.1, HALCON/C++ also provides classes for handles to files or function-
ality like frame grabber access, measuring, or shape-basedmatching. Seesection 3.2.3.2for an
overview.

HALCON 6.1.4

38 CHAPTER 3. THE HALCON PARAMETER CLASSES

#include "HalconCpp.h"

#include <iostream.h>

main ()

{

HTuple t;

cout << t.Num() << ’\n’; // The length of the tuple is 0

t[0] = 0.815; // Assigning values to the tuple

t[1] = 42;

t[2] = "HAL";

cout << t.Num() << ’\n’; // The length of the tuple is 3

cout << "HTuple = " << t << ’\n’; // Using the << operator

double d = t[0]; // Accessing the tuple, if the

long l = t[1]; // the types of the elements

const char *s = t[2]; // are known

// Accessing the tuple, if the types of the elements are known

printf("Values: %g %ld %s\n",t[0].D(),t[1].L(),t[2].S());

}

Figure 3.9: Sample for the use of the class HTuple .

3.2.3.1 Windows

The classHWindow provides the management of HALCON windows in a very convenient
way. The properties of HALCON windows can be easily changed,images, regions, and poly-
gons can be displayed, etc. Besides those operators that canbe called viaHWindow (see also
section 2.1.2), HWindow provides the following member functions:

• HWindow(int Row=0, int Column=0,

int Width=-1, int Height=-1,

int Father = 0, const char *Mode = "",

const char *Host = "")

Default constructor. The constructed window is opened.

• ~HWindow(void)

Destructor. This closes the window.

• void Click(void) const

Waiting for a mouse click in the window.

• HDPoint2D GetMbutton(int *button) const

HDPoint2D GetMbutton(void) const

Waiting for a mouse click in the window. It returns the current mouse position in the
window and the number of the button that was pressed, see the reference manual entry of
get mbutton.

• HDPoint2D GetMposition(int *button) const

HDPoint2D GetMposition(void) const

Returning the mouse position and the pressed button withoutwaiting for a mouse click,
see the reference manual entry ofget mposition.

HALCON / C++, 2005-02-01

3.2. CONTROL PARAMETERS 39

• HCircle DrawCircle(void) const

Waiting for the user to draw a circle in the window, see the reference manual entry of
draw circle.

• HEllipse DrawEllipse(void) const

Waiting for the user to draw an ellipse in the window, see the reference manual entry of
draw ellipse.

• HRectangle1 DrawRectangle1(void) const

Waiting for the user to draw a rectangle parallel to the coordinate axis in the window, see
the reference manual entry ofdraw rectangle1.

• HRectangle2 DrawRectangle2(void) const

Waiting for the user to draw a rectangle with an arbitrary orientation and size in the win-
dow, see the reference manual entry ofdraw rectangle2.

#include "HalconCpp.h"

main ()

{

HImage image("control_unit"); // Reading an image from a file

HWindow w; // Opening an appropiate window

image.Display(w); // Display the image

w.SetLut("change2"); // Set a lookup table

w.Click(); // Waiting for a mouse click

w.SetLut("default"); // Set the default lookup table

w.SetPart(100,100,200,200); // Set a part of the window

image.Display(w);

w.Click();

// Adapting the part to the image again

w.SetPart(0,0,bild.Height()-1,bild.Width()-1);

image.Display(w);

HRegionArray regs = image.Regiongrowing(1,1,4,100);

w.SetDraw("margin");

w.SetColored(6);

regs.Display(w);

w.Click();

image.Display(w);

w.SetShape("rectangle1");

regs.Display(w);

}

Figure 3.10: Sample program for the use of the class HWindow .

Figure 3.10shows the typical use of some member functions of the classHWindow and the
different possibilities of displaying images and regions.The window is opened after reading
the image from a file. This means, the window is scaled to the size of the image. The lookup
table is changed afterwards, and the program waits for a mouse click in the window. A part
of the image is zoomed now, and the program waits again for a mouse click in the window.
By applying a region growing algorithm from the HALCON library (Regiongrowing) regions
are generated and displayed in the window. Only the margin ofthe regions is displayed. It is

HALCON 6.1.4

40 CHAPTER 3. THE HALCON PARAMETER CLASSES

displayed in 6 different colors in the window. The example ends with another way of displaying
the shape of regions. The smallest rectangle parallel to thecoordinate axes surrounding each
region is displayed.

3.2.3.2 Other Handle Classes

Starting with version 6.1, HALCON/C++ provides the following handle classes:

• HBarCode1d

reading 1-dimensional bar codes, e.g., using the operatorFind1dBarCode.

• HBarCode2d

reading matrix bar code, e.g., using the operatorFind2dBarCode.

• HBgEsti

estimating the background of a scene, e.g., using the operator RunBgEsti.

• HClassBox

classifying data, e.g., using the operatorTestSampsetBox.

• HFile

accessing disk files, e.g., using the operatorOpenFile.

• HFramegrabber

accessing frame grabbers, e.g., using the operatorGrabImage.

• HFunction1d

working with 1-dimensional functions, e.g., using the operatorCreateFunct1dPairs.

• HGnuplot

using gnuplot, e.g., using the operatorGnuplotPlotFunct1d.

• HMeasure

measuring distances along lines or arcs, e.g., using the operatorMeasurePairs.

• HOCR

optical character recognition, e.g., using the operatorDoOcrMulti.

• HOCV

optical character verification, e.g., using the operatorDoOcvSimple.

• HSerial

accessing a serial interface, e.g., using the operatorReadSerial.

• HShapeModel

shape-based matching, e.g., using the operatorFindShapeModel.

• HSocket

accessing socket connections, e.g., using the operatorSendImage.

• HTemplate

gray value template matching, e.g., using the operatorBestMatchMg.

HALCON / C++, 2005-02-01

3.3. AUXILIARY CLASSES 41

• HVariationModel

image comparison via a variation model, e.g., using the operator
CompareVariationModel.

Besides the default constructor, the classes typically provide additional constructors based on
suitable operators as described insection 2.1.2.1; e.g., the classHBarCode1d provides a con-
structor based on the operatorgen 1d bar code descr.

All handle classes listed above provide the methodsSetHandle() andGetHandle(), which
allow to access the underlying handle; furthermore, the classes provide an operator that casts
an instance of the class into the corresponding handle. These methods are typically used when
combining procedural and object-oriented code; for examples please refer tosection 2.4.

3.3 Auxiliary Classes

In section 3.1.1, you already got a glimpse of additional classes provided byHALCON/C++:
Instances ofHRegion can be constructed from classes likeHDPoint2D or HRectangle1. Cur-
rently, these classes are not documented in any of the manuals. We recommend to have a look
at the header files in the directoryinclude/cpp.

Please note that the header files ininclude/cpp include other classes, which do not appear in
this manual. These classes are used by MVTec internally for testing purposes; they should not
be used an application.

HALCON 6.1.4

42 CHAPTER 3. THE HALCON PARAMETER CLASSES

HALCON / C++, 2005-02-01

Chapter 4

Creating Applications With
HALCON/C++

The HALCON distribution contains examples for building an application with HALCON/C++.
Here is an overview of the relevant directories files (relative to%HALCONROOT%, Windows nota-
tion of paths):

include\cpp\HalconCpp.h:

include file; contains all user-relevant definitions of the HALCON system and the decla-
rations necessary for the C++ interface.

bin\i586-nt4\halcon.lib,halcon.dll:

The HALCON library (Windows NT/2000/XP).

bin\i586-nt4\halconcpp.lib,halconcpp.dll:

The HALCON/C++ library (Windows NT/2000/XP).

bin\i586-nt4\parhalcon.lib,parhalcon.dll,parhalconcpp.lib,parhalconcpp.dll:

The corresponding libraries of Parallel HALCON (Windows NT/2000/XP).

lib\%ARCHITECTURE%\libhalcon.so:

The HALCON library (UNIX).

lib\%ARCHITECTURE%\libhalconcpp.so:

The HALCON/C++ library (UNIX).

lib\%ARCHITECTURE%\libparhalcon.so,libparhalconcpp.so:

The corresponding libraries of Parallel HALCON (UNIX).

include\cpp\HProto.h:

External function declarations.

examples\cpp\makefile, makefile.nt:

Example makefiles which can be used to compile the example programs (UNIX and Win-
dows NT/2000/XP, respectively).

examples\cpp\make.%ARCHITECTURE%, macros.mak, rules.mak:

Auxiliary makefiles included by the makefiles listed above.

43

44 CHAPTER 4. CREATING APPLICATIONS WITH HALCON/C++

examples\cpp\source\

Directory containing the source files of the example programs.

examples\cpp\bin\%ARCHITECTURE%\

Destination of the example programs when compiled and linked using the makefiles.

examples\cpp\i586-nt4\i586-nt4.dsw:

Visual Studio workspace containing projects for all examples; the projects themselves are
placed in subdirectories (Windows NT/2000/XP only).

images\:

Images used by the example programs.

help\english.*:

Files necessary for online information.

doc\pdf\:

Various manuals (in subdirectories).

There are several example programs in the HALCON/C++ distribution. To experiment with
these examples we recommend to create a private copy in your working directory.

example1.cpp reads an image and demonstrates several graphics operators.

example2.cpp demonstrates the direct pixel access.

example3.cpp is an example for the usage of pixel iterators.

example4.cpp demonstrates the edge detection with a sobel filter.

example5.cpp solves a more complicated problem.

example6.cpp is a very simple test program.

example7.cpp demonstrates the generic pixel access.

example8.cpp is an example for the usage of the tuple mode.

example9.cpp introduces the XLD structure.

example10.cpp demonstrates the usage of several contour structures.

example11.cpp is another simple example for the usage uf tuples.

exampleerrorhandling.cpp demonstrates the C++ exception handling (seesection 2.2.1).

bottle2.cpp recognizes on numbers on a beer bottle (OCR).

ean13.cpp reads an EAN13 bar code.

ecc200.cpp reads a Data Matrix (ECC200) code.

engraved2.cpp recognizes engraved characters (OCR).

fuzzy measurepin.cpp measures distances between pins using the fuzzy measure tool.

multi chars.cpp performs optical character verification (OCV).

HALCON / C++, 2005-02-01

45

pen.cpp uses shape-based matching and the variation model for print
quality inspection.

xing.cpp monitors traffic using background estimation (by Kalman fil-
tering).

Additional examples for using HALCON/C++ can be found in thesubdirectories
examples\mfc andexamples\motif.

In the following, we briefly describe the relevant environment variables; see the manual
Getting Started with HALCONfor more information, especially about how to set these vari-
ables. Note, that under Windows NT/2000/XP, all necessary variables are automatically set
during the installation.

While a HALCON program is running, it accesses several files internally. To tell HALCON
where to look for these files, the environment variableHALCONROOT has to be set.HALCONROOT
points to the HALCON home directory.HALCONROOT is also used in the sample makefile.

The variableARCHITECTURE describes the platform HALCON is used on. The following ta-
ble gives an overview of the currently supported platforms and the corresponding values of
ARCHITECTURE.

ARCHITECTURE Operating System (Platform) Compiler

Windows NT 4.0, Windows 2000, Windows XP
i586-nt4

on Intel Pentium or compatible
Visual Studio

i586-linux2.2 gcc 2.95

i586-linux2.2-gcc32
Linux 2.2/2.4 on Intel Pentium (or compatible)

gcc 3.2/3.3

sparc-sun-solaris7 Solaris 7 on Sparc Workstations CC

mips-sgi-irix6.5 IRIX 6.5 on SGI Workstations (Mips processors)CC

alpha-compaq-osf5.1 Tru64 UNIX 5.11 on Alpha processors cxx

If user-defined packages are used, the environment variableHALCONEXTENSIONS has to be set.
HALCON will look for possible extensions and their corresponding help files in the directories
given inHALCONEXTENSIONS.

Two things are important in connection with the example programs: The default directory for
the HALCON operatorread image to look for images is%HALCONROOT%\images. If the im-
ages reside in different directories, the appropriate pathmust be set inread image or the de-
fault image directory must be changed, usingset_system("image_dir","..."). This is
also possible with the environment variableHALCONIMAGES. It has to be set before starting the
program.

The second remark concerns the output terminal under UNIX. In the example programs, no
host name is passed toopen window. Therefore, the window is opened on the machine that
is specified in the environment variableDISPLAY. If output on a different terminal is desired,
this can be done either directly in::open_window(...,"hostname",...) or by specifying
a host name inDISPLAY.

1formerly called DIGITAL UNIX

HALCON 6.1.4

46 CHAPTER 4. CREATING APPLICATIONS WITH HALCON/C++

In order to link and run applications under UNIX, you have to include the HALCON library
path$HALCONROOT/lib/$ARCHITECTURE in the system variableLD LIBRARY PATH.

4.1 Creating Applications Under Windows NT/2000/XP

Your own C++ programs that use HALCON operators must includethe file HalconCpp.h,
which contains all user-relevant definitions of the HALCON system and the declarations nec-
essary for the C++ interface. Do this by adding the command

#include "HalconCpp.h"

near the top of your C++ file. In order to create an applicationyou must link the library
halconcpp.lib/.dll to your program.

The example projects show the necessary Visual C++ settings. For the examples the project
should be of the WIN 32 ConsoleApplication type. Please notethat the Visual C++ compiler
implicitly calls “Update all dependencies” if a new file is added to a project. Since HALCON
runs under UNIX as well as under Windows NT/2000/XP, the include fileHalconCpp.h in-
cludes several UNIX-specific headers as well if included under UNIX. Since they don’t exist
under NT, and the Visual C++ compiler is dumb enough to ignorethe operating-system-specific
cases in the include files, you will get a number of warning messages about missing header files.
These can safely be ignored.

Please assure that the stacksize is sufficient. Some sophisticated image processing problems
require up to 6 MB stacksize, so make sure to set the settings of your compiler accordingly (See
your compiler manual for additional information on this topic).

If you want to use Parallel HALCON , you have to link the librariesparhalcon.lib/.dll and
parhalconcpp.lib/.dll instead ofhalcon.lib/.dll andhalconcpp.lib/.dll in your
project.

Please note thatwithin an application you can use only one HALCON language interface,!
be it directly or indirectly, e.g., by including a DLL that uses a second interface. Thus, you
cannot use both the HALCON/C++ and the HALCON/COM interfacein one and the same
application.

4.2 Creating Applications Under UNIX

Your own C++ programs that use HALCON operators must includethe file HalconCpp.h,
which contains all user-relevant definitions of the HALCON system and the declarations nec-
essary for the C++ interface. Do this by adding the command

#include "HalconCpp.h"

near the top of your C++ file. Using this syntax, the compiler looks forHalconCpp.h in the
current directory only. Alternatively you can tell the compiler where to find the file, giving it
the-I<pathname> command line flag to denote the include file directory.

HALCON / C++, 2005-02-01

4.2. UNIX 47

To create an application, you have to link two libraries to your program: The li-
brary libhalconcpp.so contains the various components of the HALCON/C++ interface.
libhalcon.so is the HALCON library.

Please take a look at the example makefiles for suitable settings. If you callgmake without
further arguments, the example applicationean13 will be created. To create the other example
applications (e.g.,example2), call

gmake example2

You can use the example makefiles not only to compile and link the example programs but also
your own programs (if placed in the subdirectorysource). For example, to compile and link a
source file calledmyprogram.cpp call

gmake myprogram

You can link the program to the Parallel HALCON libraries by adding PAR=1 to the make
command, for example

gmake myprogram PAR=1

Please note thatwithin an application you can use only one HALCON language interface, !
be it directly or indirectly, e.g., by including a library that uses a second interface. Thus, you
cannot use both the HALCON/C++ and the HALCON/C interface inone and the same applica-
tion.

HALCON 6.1.4

48 CHAPTER 4. CREATING APPLICATIONS WITH HALCON/C++

HALCON / C++, 2005-02-01

Chapter 5

Typical Image Processing Problems

This chapter shows the power the HALCON system offers to find solutions for image processing
problems. Some typical problems are introduced together with sample solutions.

5.1 Thresholding an Image

Some of the most common sequences of HALCON operators may look like the following one:

HByteImage Image("file_xyz");

HRegion Threshold = Image.Threshold(0,120);

HRegionArray ConnectedRegions = Threshold.Connection();

HRegionArray ResultingRegions =

ConnectedRegions.SelectShape("area","and",10,100000);

This short program performs the following:

• All pixels are selected with gray values between the range 0 and 120.

• A connected component analysis is performed.

• Only regions with a size of at least 10 pixel are selected. This step can be considered as a
step to remove some of the noise from the image.

5.2 Edge Detection

For the detection of edges the following sequence of HALCON/C++ operators can be applied:

HByteImage Image("file_xyz");

HByteImage Sobel = Image.SobelAmp("sum_abs",3);

HRegion Max = Sobel.Threshold(30,255);

HRegion Edges = Max.Skeleton();

A brief explanation:

• Before applying the sobel operator it might be useful first toapply a low-pass filter to the
image in order to suppress noise.

49

50 CHAPTER 5. TYPICAL IMAGE PROCESSING PROBLEMS

• Besides the sobel operator you can also use filters likeEdgesImage, PrewittAmp,
RobinsonAmp, KirschAmp, Roberts, BandpassImage, or Laplace.

• The threshold (in our case 30) must be selected appropiatelydepending on data.

• The resulting regions are thinned by aSkeleton operator. This leads to regions with a
pixel width of 1.

5.3 Dynamic Threshold

Another way to detect edges is e.g. the following sequence:

HByteImage Image("file_xyz");

HByteImage Mean = Image.MeanImage(11,11);

HRegion Threshold = Image.DynThreshold(Mean,5,"light");

Again some remarks:

• The size of the filter mask (in our case11 × 11) is correlated with the size of the objects
which have to be found in the image. In fact, the sizes are proportional.

• The dynamic threshold selects the pixels with a positive gray value difference of more
than 5 (brighter) than the local environment (mask11 × 11).

5.4 Texture Transformation

Texture transformation is useful in order to obtain specificfrequency bands in an image. Thus, a
texture filter detects specific structures in an image. In thefollowing case this structure depends
on the chosen filter; 16 are available for the operatorTextureLaws.

HByteImage Image("file_xyz");

HByteImage TT = Image.TextureLaws(Image,"ee",2,5);

HByteImage Mean = TT.MeanImage(71,71);

HRegion Reg = Mean.Threshold(30,255);

• The mean filterMeanImage is applied with a large mask size in order to smooth the “fre-
quency” image.

• You can also apply several texture transformations and combine the results by using the
operatorsAddImage andMultImage.

5.5 Eliminating Small Objects

The following morphological operator eliminates small objects and smoothes the contours of
regions.

HALCON / C++, 2005-02-01

5.6. SELECTING ORIENTED OBJECTS 51

...

::segmentation(Image,&Seg);

HCircle Circle(100,100,3.5);

HRegionArray Res = Seg.Opening(Circle);

• The term::segmentation() is an arbitrary segmentation operator that results in an array
of regions (Seg).

• The size of the mask (in this case the radius is 3.5) determines the size of the resulting
objects.

• You can choose an arbitrary mask shape.

5.6 Selecting Oriented Objects

Another application of morphological operators is the selection of objects having a certain ori-
entation:

...

::segmentation(Image,&Seg);

HRectangle2 Rect(100,100,0.5,21,2);

HRegionArray Res = Seg.Opening(Rect);

• Again,::segmentation() leads to an array of regions (Seg).

• The width and height of the rectangle determine the minimum size of the resulting regions.

• The orientation of the rectangle determines the orientation of the regions.

• Lines with the same orientation asRect are kept.

5.7 Smoothing Contours

The last example in this user’s manual deals again with morphological operators. Often the
margins of contours have to be smoothed for further processing, e.g. fitting lines to a contour.
Or small holes inside a region have to be filled:

...

::segmentation(Image,&Seg);

HCircle Circle(100,100,3.5);

HRegionArray Res = Seg.Closing(Circle);

• Again,::segmentation() leads to an array of regions (Seg).

• For smoothing the contour a circle mask is recommended.

• The size of the mask determines how much the contour is smoothed.

HALCON 6.1.4

52 CHAPTER 5. TYPICAL IMAGE PROCESSING PROBLEMS

HALCON / C++, 2005-02-01

Index

, 7

add image (AddImage), 27, 50
area center (AreaCenter), 13, 21, 22

bandpass image (BandpassImage), 50
best match mg (BestMatchMg), 40

channel,26
char threshold (CharThreshold), 11–

13
classes

auxiliary,41
handle classes,10, 11, 40
HBarCode1d, 8–10, 40, 41
HBarCode2d, 40
HBgEsti, 40
HByteImage, 31, 33
HClassBox, 40
HCtrlVal, 34, 36
HFile, 40
HFramegrabber, 10, 11, 17, 40
HFunction1d, 40
HGnuplot, 40
HImage, 1, 5, 8–10, 12, 13, 17–19, 26–

29, 31, 33
HImageArray, 12, 14, 30
HInt2Image, 31
HMeasure, 40
HObject, 19, 33
Hobject, 11–13, 17–20, 33, 34
HOCR, 40
HOCV, 40
HPixVal, 29
HRegion, 1, 10, 12, 17–19, 22–24, 26,

41
HRegionArray, 12, 13, 22, 24, 25
HSerial, 40
HShapeModel, 10, 11, 40
HSocket, 40
HTemplate, 40
HTuple, 7, 11–13, 17, 34, 36–38

HVariationModel, 41
HWindow, 1, 10, 11, 18, 37–39
HXLD, 10, 19, 33
HXLDArray, 33
HXLDCont, 10, 33
HXLDPoly, 33
iconic classes,17, 19

clear all shape models, 11, 18
clear obj, 17
clear shape model, 11, 18
close framegrabber, 11, 17, 18
close window (CloseWindow), 10, 11
COM, 46
compactness (Compactness), 22
compare variation model

(CompareVariationModel),
41

complement (Complement), 21, 24
concat obj, 12, 34
connection (Connection), 13
constructors,9, 18
contlength (Contlength), 22
control parameters,6, 34
count obj, 12, 34
create funct 1d pairs

(CreateFunct1dPairs), 40
create shape model

(CreateShapeModel), 10

destructors,11
difference (Difference), 21, 24
dilation circle (DilationCircle),

13, 20, 24
do ocr multi (DoOcrMulti), 40
do ocv simple (DoOcvSimple), 40
domain (area of definition),13, 26
draw circle (DrawCircle), 39
draw ellipse (DrawEllipse), 39
draw rectangle1 (DrawRectangle1),

39
draw rectangle2 (DrawRectangle2),

39

53

54 Index

dyn threshold (DynThreshold), 27

eccentricity (Eccentricity), 22
edges image (EdgesImage), 50
elliptic axis (EllipticAxis), 21
erosion circle (ErosionCircle), 20,

24

fill up (FillUp), 22
find 1d bar code (Find1dBarCode), 7–

9, 40
find 2d bar code (Find2dBarCode), 40
find shape model (FindShapeModel),

40

gen 1d bar code descr

(Gen1dBarCodeDescr), 9, 10, 17,
41

gen circle (GenCircle), 10
gen empty obj, 12, 34
gen image1 (GenImage1), 9, 26
gen image1 extern

(GenImage1Extern), 9
gen image const (GenImageConst), 9,

26
gen rectangle2 (GenRectangle2), 10
get domain (GetDomain), 13
get error text, 16
get grayval (GetGrayval), 27
get image pointer1

(GetImagePointer1), 26, 27
get mbutton (GetMbutton), 38
get mposition (GetMposition), 38
GetHandle(), 18, 41
gnuplot plot funct 1d

(GnuplotPlotFunct1d), 40
grab image (GrabImage), 10, 40

HALCON
language interfaces

HALCON/COM, 46
handle classes,10, 11, 40

cast operator,9, 18, 41
GetHandle(), 18, 41
SetHandle(), 18, 41

handles,6, 9, 34
window,6

HBarCode1d, 8–10, 40, 41
HBarCode2d, 40
HBgEsti, 40

HByteImage, 31, 33
HClassBox, 40
HCtrlVal, 34, 36

D(), 35
I(), 35
L(), 35
S(), 35

HFile, 40
HFramegrabber, 10, 11, 17, 40
HFunction1d, 40
HGnuplot, 40
HImage, 1, 5, 8–10, 12, 13, 17–19, 26–29,

31, 33
Display(), 27
GetPixVal(), 27
Height(), 27
operator!=, 27
operator*, 27
operator+, 27
operator-, 27
operator/, 27
operator<=, 27
operator==, 27
operator=, 27
operator>=, 27
operator&, 27
PixType(), 26
SetPixVal(), 27
Width(), 26

HImageArray, 12, 14, 30
Append(), 31
Num(), 31

HInt2Image, 31
HMeasure, 40
HObject, 19, 33
Hobject, 11–13, 17–20, 33, 34
HOCR, 40
HOCV, 40
HPixVal, 29

HByte(), 30
HRegion, 1, 10, 12, 17–19, 22–24, 26, 41

Anisometry(), 22
Area(), 21
Bulkiness(), 22
Display(), 20
Ia(), 22
Ib(), 22
In(), 22
IsEmpty(), 22

HALCON / C++, 2005-02-01

Index 55

M02(), 22
M11(), 22
M20(), 22
operator!, 21
operator*, 20
operator++, 20
operator+=, 20
operator+, 20
operator--, 21
operator-=, 21
operator-, 21
operator/=, 21
operator/, 21
operator<<=, 20
operator<<, 20
operator<=, 21
operator<, 21
operator==, 21
operator>=, 21
operator>>=, 20
operator>>, 20
operator>, 21
operator&=, 21
operator&, 21
operator|=, 21
operator|, 21
Phi(), 21
Ra(), 21
Rb(), 21
StructureFactor(), 22
X(), 21
Y(), 21

HRegionArray, 12, 13, 22, 24, 25
Append(), 24
Display(), 24
Num(), 24
operator+, 24
operator-, 24
operator/, 24
operator<<, 24
operator>>, 24
operator&, 24
operator|, 24

HSerial, 40
HShapeModel, 10, 11, 40
HSocket, 40
HTemplate, 40
HTuple, 7, 11–13, 17, 34, 36–38

operator*, 37

operator+, 36, 37
operator-, 37
operator/, 37
Sum(), 36

HVariationModel, 41
HWindow, 1, 10, 11, 18, 37–39

Click(), 38
HXLD, 10, 19, 33
HXLDArray, 33
HXLDCont, 10, 33
HXLDPoly, 33

iconic classes,17, 19
iconic parameters,6
image,26

channel (image matrix),26
domain (area of definition),13, 26
pixel

type,26
region of interest (ROI),26

info framegrabber, 8
intersection (Intersection), 21, 24
invert image (InvertImage), 27

kirsch amp (KirschAmp), 50

language interfaces
HALCON/COM, 46

laplace (Laplace), 50

mean image (MeanImage), 5, 6, 8, 50
measure pairs (MeasurePairs), 40
methods

constructors,9, 18
destructors,11
GetHandle(), 18, 41
operators,8
SetHandle(), 18, 41

minkowski add1 (MinkowskiAdd1), 20,
24

minkowski sub1 (MinkowskiSub1), 21,
24

moments region 2nd

(MomentsRegion2nd), 22
mult image (MultImage), 27, 50
MultImage, 27

new extern window

(NewExternWindow), 10

object-oriented,5

HALCON 6.1.4

56 Index

open file (OpenFile), 40
open framegrabber

(OpenFramegrabber), 10, 17
open window (OpenWindow), 10, 11, 45

Parallel HALCON,46, 47
parameters

, 7
control,6, 34
handles,6, 9, 34

window,6
iconic,6
simple mode,11
tuple mode,5, 8, 11

pixel
type,26

prewitt amp (PrewittAmp), 50
procedural,5
programming language

COM, 46

read image (ReadImage), 9, 10, 16, 26,
45

read serial (ReadSerial), 40
reduce domain (ReduceDomain), 27
region of interest (ROI),26
regiongrowing (Regiongrowing), 39
roberts (Roberts), 50
robinson amp (RobinsonAmp), 50
run bg esti (RunBgEsti), 40

scale image (ScaleImage), 27
select obj, 12, 34
send image (SendImage), 40
set check, 16
set grayval (SetGrayval), 27
SetHandle(), 18, 41
simple mode,11
skeleton (Skeleton), 50
smallest rectangle1

(SmallestRectangle1), 22
sub image (SubImage), 27

test equal region

(TestEqualRegion), 21
test region point

(TestRegionPoint), 22
test sampset box (TestSampsetBox),

40
texture laws (TextureLaws), 50

threshold (Threshold), 27
transpose region

(TransposeRegion), 21
tuple mode,5, 8, 11
tuple add, 36, 37
tuple concat, 37
tuple div, 37
tuple gen const, 36
tuple mult, 37
tuple sub, 37
tuple sum, 36

union1 (Union1), 24
union2 (Union2), 21, 24

vector to rigid, 17

window handle,6

XLD, 33

HALCON / C++, 2005-02-01

	1 Introducing HALCON/C++
	1.1 Additional Sources of Information
	1.2 A First Example

	2 Basics of the HALCON/C++ Interface
	2.1 Calling HALCON Operators
	2.1.1 A Closer Look at Parameters
	2.1.2 Calling Operators via Classes
	2.1.3 The Tuple Mode

	2.2 Error Handling
	2.2.1 Object-Oriented Approach
	2.2.2 Procedural Approach

	2.3 Memory Management
	2.4 How to Combine Procedural and Object-Oriented Code

	3 The HALCON Parameter Classes
	3.1 Iconic Objects
	3.1.1 Regions
	3.1.2 Images
	3.1.3 XLD Objects
	3.1.4 Low-Level Iconic Objects

	3.2 Control Parameters
	3.2.1 The Basic Class for Control Parameters
	3.2.2 Tuples
	3.2.3 Classes Encapsulating Handles

	3.3 Auxiliary Classes

	4 Creating Applications With HALCON/C++
	4.1 Windows NT/2000/XP
	4.2 UNIX

	5 Typical Image Processing Problems
	5.1 Thresholding an Image
	5.2 Edge Detection
	5.3 Dynamic Threshold
	5.4 Texture Transformation
	5.5 Eliminating Small Objects
	5.6 Selecting Oriented Objects
	5.7 Smoothing Contours

	Index

