HALCON Version 6.1.4

M ’EC

MVTec Software GmbH

HALCON /C

User’'s Manual

How to use the image analysis tool HALCON, Version 6.1.4,0nyown C programs

All rights reserved. No part of this publication may be refroed, stored in a retrieval system,
or transmitted in any form or by any means, electronic, meida$ photocopying, recording,
or otherwise, without prior written permission of the psbier.

Edition 1
Edition 2
Edition 3
Edition 4
Edition 5
Edition 5a
Edition 6

Copyright(© 1997-2005 by MVTec Software GmbH, Munchen, Germanmew

July 1997

November 1997

March 1998 (HALCON 5.1)
April 1999 (HALCON 5.2)
October 2000 (HALCON 6.0)
July 2001 (HALCON 6.0.1)

December 2002 (HALCON 6.1.1)

EC

Microsoft, Windows, Windows NT, Windows 2000, Windows XRdaVisual C++ are either
trademarks or registered trademarks of Microsoft Corpamat

All other nationally and internationally recognized tratirks and tradenames are hereby rec-

ognized.

More information about HALCON can be found at:

http://www.mvtec.com/halcon/

About This Manual

This manual describes the interface of HALCON to the prognamg language C. It provides
all necessary information to understand and use the prdowdé structures and mechanisms
in your own programs. A set of example programs shows how pdyapALCON/C to solve
typical image processing tasks.

The reader of this user manual should be familar with basicepts of image analysis and the
programming language C.

The manual is divided into the following chapters:

e Introducing HALCON/C
A first example shows how easy image processing becomesiHsihGON/C.

e TheHALCON Parameter Classes
This chapter describes how to use the parameter classesld®@N in your C program.

e Return Values of HALCON Operators
This chapter explains how to deal with the return values oL B®N operators.

e HALCON for Philips TriMedia DSPs
This chapter gives an overview over the HALCON version foitips TriMedia DSPs.

e Generation of HALCON/C Applications
This chapter explains how to compile and link C programs &L CON/C.

e Typical Image Processing Problems
This chapter contains example programs for typical imagegssing tasks.

Release Notes

Please note the latest updates of this manual:

e Edition 6, HALCON 6.1.1 (December 2002)
The manual now reflects the support of gcc-3.2.

e Edition 5a, HALCON 6.0.1 (July 2001)
The manual now also describes how to use HALCON on Philipgiddia DSPs. Since
HALCON 6.0.1 does not support HP-UX anymore, the correspandeferences have
been deleted from the manual.

e Edition 5, HALCON 6.0 (September 2000)
The manual has been restructured and revised slightlycediyehe chapter “Generation
of HALCON/C Applications”.

Contents

Introducing HALCON/C
1.1 Additional Sources of Information
1.2 AFirstExample e

The HALCON Parameter Classes

2.1 Imageobjects e

2.2 Controlparameters e
2.2.1 TheSimpleMode.
222 TheTupleMode.

Return Values of HALCON Operators

HALCON for Philips TriMedia DSPs
4.1 Limitations e
4.2 Memory Management. e e e e

Generation of HAL CON/C Applications

5.1 Windows NT/2000/XP.
5.2 UNIX . .
53 PhilipsTriMedia

Typical Image Processing Problems

6.1 Thresholding.
6.2 DetectingEdges. e
6.3 DynamicThreshold
6.4 Simple Texture Transformations.
6.5 Eliminating SmallObjects.
6.6 Selecting Specific Orientations.
6.7 Smoothing RegionBoundaries.

0 0 o U

Chapter 1

Introducing HALCON/C

HALCON/C is the interface of the image analysis system HAINCO the programming lan-
guage C. Together with the HALCON library, it allows to use image processing power of
HALCON inside C programs.

After pointing out additional sources of information abBIALCON, we start with a first exam-
ple application. The following chapters describe the detafiintegrating HALCON operators
into C programsChapter 2ntroduces the four different parameter classes of HALC@Hro
ators. We will explain the use of HALCON tuplesection 2.2.2for supplying operators with
tuples of control parameters in great detail: Using tuplles,twoselect _shape(...) calls

in our example program could be combined into only one dahapter 3s dedicated to the
return values of HALCON operatorsChapter 5gives an overview over all the include-files
and C-libraries necessary for compiling C programs and stimw to create a stand-alone ap-
plication. Finally,chapter 6contains example solutions for some common problems inémag
processing (like edge detection).

1.1 Additional Sources of Information

For further information you may consult the following mafua

e Getting Started with HALCON
An introduction to HALCON in general, including how to infi@nd configure HALCON.

e HDevelop User’'s Manual
An introduction to the graphical development environmdrthe HALCON system.

e HALCON/C++ User’'s Manual
How to use the HALCON library in your C++ programs.

e HALCON/COM User’'s Manual
How to use the HALCON library in your COM programs.

e Extension Package Programmer’s Manual
How to extend the HALCON system with your own operators.

e Frame Grabber Integration Programmer’s Manual
A guide on how to integrate a new frame grabber in the HALCOBtey. Note that

2 CHAPTER 1. INTRODUCING HALCON/C

in some cases you might define new operators (using the EateRsckage Interface)
instead of using the standard HALCON Frame Grabber Integramterface in order to
exploit specific hardware features of a frame grabber board.

e HALCON/C, HALCON/HDevelop, HALCON/C++, HALCON/COM
The reference manuals for all HALCON operators (versiomfoHDevelop, C++, and
COM).

e Application Guide
Multiple, independent documents called Application Npwestten from the point of view
of developing machine vision applications with HALCON. Badote covers a specific
topic, e.g., how to use shape-based matching to find andZeaajects.

All these manuals are available as PDF documents. The nefenmanuals are available as
HTML documents as well. For the latest version of the manpkgase check

http://www.mvtec.com/halcon/

1.2 A First Example

Before going into the details of HALCON/C, let’s have a lodkaasmall example. Given the
image of a mandrill irfigure 1.1(left), the goal is to segment its eyes. This is done by the C
program shown iffigure 1.2 The segmentation result is showrfigure 1.1(right):

Figure 1.1: To the left, the image of a mandrill is shown (input image). To the right, the result
of the segmentation process in the example program can be seen (eyes).

The program is quite self-explanatory. We will describelihsic principles nevertheless: First,
all image pixels with gray values greater than 128 are ssfedhen all connected components
of the region formed by these pixels are calculated. Theesponding HALCON operator
calculates a region tuple, and thus splits the image inréifferegions (objects). From these,
the mandrill’s eyes are selected by their area and shape.

This example shows how easy it is to integrate HALCON opesatoany C program. Their
use is very intuitive: Users don't have to think about theibdsta structures and algorithms

HALCON / C, 2005-02-01

1.2. AFIRST EXAMPLE 3

#include "HalconC.h"

main()

{
Hobject mandrill,thresh,conn,area,eyes; /* required objects */
long WindowHandle;

open_window(0,0,512,512,0,"visible","" ,&WindowHandle); /* open window */
read_image (&mandrill, "monkey") ; /* read input image ("monkey") */
disp_image (mandrill,WindowHandle) ; /* display input image x/
get_mbutton(WindowHandle, _,_,_); /* wait for mouse click */
/* Select image region with pixels in [128,255] x/
threshold(mandrill,&thresh,128.0,255.0);

connection(thresh,&conn) ; /* compute connected components */
/* select regions with an area of at least 500 pixels x/

select_shape(conn,&area, "area","and",500.0,90000.0) ;

/* select the eyes in these regions by using the anisometry feature x/
select_shape(area,&eyes,"anisometry","and",1.0,1.7);

disp_region(eyes,WindowHandle) ; /* display result x/
get_mbutton(WindowHandle, ,_,_); /* wait for mouse click */
close_window(WindowHandle) ; /* close window */
/* delete image objects from the Halcon database */

clear_obj(mandrill); clear_obj(thresh); clear_obj(conn);
clear_obj(area); clear_obj(eyes);

Figure 1.2: Introductory example program.

involved. And since all HALCON operators are hardware iretegent, users don't even have
to care about things like different I/O devices. HALCON hizsown memory management and
provides a sophisticated runtime environment.

HALCON 6.1.4

4 CHAPTER 1. INTRODUCING HALCON/C

HALCON / C, 2005-02-01

Chapter 2

The HALCON Parameter Classes

HALCON distinguishes four different classes of operataiapaeters:
e Inputimage objects
e Output image objects
e Input control parameters
e Output control parameters

Input parameters are pasdadvalue, output parameters are pasdmdeference (using the &-
operator). An exception to this rule are output control pasters of typechar*. Here, the
caller has to provide the memory and only a pointer to that orgns passed to the operator.

As a rule of thumb, all HALCON operators can also be calleshgisuples of parameters in-
stead of single values. Take thennection(...) operator from our example program in the
previous chapter: It calculates a tuple of output imageaibjéhe connected components). Of
course there are several HALCON operators that cannot edoalth tuples for some or all
parameters. Whether this is the case for specific operaatescribed in detail in the HAL-
CON reference manual. Unfortunately, C doesn't provider@ege list constructor (e.g., like
the one in PROLOG). Therefore, the use of tuples of controdupaters is a little elaborate.
Using tuples of image objects on the other hand is in no wdgrint from using single values.

HALCON/C provides the data structurBtuple for tuples of control parameters (see
section 2.2.Zor details) and the data structuiebject for image objects (single objects as
well as object tuples — sesection 2.}

2.1 Image objects

Image processing isn’t possible without actual images. Bygiimage objects, HALCON
provides a abstract data model that covers a lot more thgrlesimage arrays.

Basically, there are two different types of image objects:
e Images

e Regions

6 CHAPTER 2. THE HALCON PARAMETER CLASSES

A region consists of a set of coordinate values in the imagael Regions do not need to be
connected and may include “holes.” They may even be largertie image format. Internally,
regions are stored in the so-called runlength encoding.

Images consist of at least one image array and a region, toallea domain. The domain
denotes the pixels that are “defined” (i.e., HALCON opemtworking on gray values will
only access pixels in this region). But HALCON supports nrcitannel images, too: Images
may consist of an (almost) arbitrary number of channels. rAage coordinate therefore isn't
necessarily represented by a single gray value, but by awetup ton gray values (if the
coordinate lies within the image region). This may be vimgal as a “stack” of image arrays
instead of a single array. RGB- or voxel-images may be reptesl this way.

HALCON provides operators for region transformations (aghthem a large number of mor-
phological operators) as well as operators for gray vakesfiormations. Segmentation opera-
tors are the transition from images (gray values) to regions

HALCON/C provides the data typgéobject for image objects (both images and regions). In
fact, Hobject is a surrogate of the HALCON database containing all imageatd Input
image objects are passed to the HALCON operaigrglue as usual, output image objects are
passedy reference, using the &-operator. Variables of typlebject may be a single image
object as well as tuples of image objects. Single objecttreated as tuples with length one.

Of course, users can access specific objects in an objed, ttgd. To do so, it is nec-
essary to extract the specific object key (converted to enegrst, using the operators
obj_to_integer(...) or copy-obj(...). The number of objects in a tuple can be queried
with count_obj(...). To convert the keys (returned froabj_to_integer) back to im-
age objects again, the operatarteger_to_obj(...) has to be used. It may be noted that
integer_to_obj(...) duplicates the image objects (Don’t worry, this doesn’t maaces-
sarily that the corresponding gray value arrays are duglicéoo. As long as there is only
read-access, a duplication of the references is sufficidgrefore, all extracted objects have
to be deleted explicitly from the HALCON database, ustigar_obj(...). Figure 2.1con-
tains an excerpt from a C program to clarify that approach.

Some HALCON operators likeeighbor(...) ordifference(...) allow the use of the
following specific image objects as input parameters:

NO_OBJECTS: An empty tuple of image objects.
EMPTY_REGION: Animage object with empty region (area = 0).

FULL_REGION: Animage object with maximal region.

These objects may be returned by HALCON operators, too.

2.2 Control parameters
HALCON/C supports the following data types as types for oanparameters of HALCON
operators:

e integers,

HALCON/ C, 2005-02-01

2.2. CONTROL PARAMETERS 7

Hobject objects; /* tuple of image objects x/

Hobject obj; /* single image object */
long surrogate; /* object key, converted to integer x/
Htuple Tsurrogates; /* tuple of object keys */
Htuple Index,Num; /* temporary tuple for parameter passing x/
long i; /* loop variable x/
long num; /* number of objects x/

count_obj (&num) ;

/* variant 1: object key -> control parameter x/
create_tuple(&Index,1); set_i(Index,1,0);

create_tuple(&Num, 1) ; set_i(Num,num,0);
T_obj_to_integer(objects,Index,Num,&Tsurrogates) ;

for (i=0; i<num; i++)

{

surrogate = get_i(Tsurrogates,i);

/* process single object x/
}
/* variant 2: copying objects individually x/
for (i=1; i<=num; i++)
{

copy_obj(objects,&obj,i,1);

/* process single object */
}

Figure 2.1: Accessing the i-th image object in a tuple of image objects.

e floating point numbers,
e character arrays (strings)

As already mentioned in the introduction to this chaptemgigontrol parameter tuples in C
isn’t as elegant as using image object tuples. To circumtrentnissing generic lists in C, it
was necessary to introduce two different working modes . CON/C: The simple mode
and thetuple mode. If a tuple is necessary for at least one control parameteruple mode
has to be used for operator calls. In tuple madkecontrol parameters of an operator must be
passed as typgtuple (Mixing of the two modesis not possible). The tuple mode also has to
be used if the number or type of values that a operators edéziisn’t known beforehand.

Mentioning the control parameter types — How is the defaydetof control parameters deter-
mined for a given operator? Basically there are three ways:

1. The operator description in the HALCON reference manual,
2. the HALCON system operatget_param info(...) and

3. the description of the HALCON interface in the fieroto . h.

HALCON 6.1.4

8 CHAPTER 2. THE HALCON PARAMETER CLASSES

Sometimes the manuals mention more than one possible fygdyintegers and floating point
numbers are allowed for a parameter, values have to be pasgstameters of typiuble.
For all other combinations of types, the tuple mode has tcsled .u

HALCON operators, that are called in tuple mode are diststyed from simple mode calls by
a preceedin@_. That means,

select_shape(...)

is a call of the HALCON operatogelect_shape (as described in the HALCON reference
manual) in simple mode, whereas

T_select_shape(...)

is a call of the same operator in tuple mode.

2.2.1 The Simple Mode

In the so-calledimple mode, all operators described in the HALCON reference manuabean
used in a very intuitive way in your own C programs. All cohparameters are variables (or
constants) of the data types

e long for integers (HALCON typeNT_PAR),
e double for floating point numbersDOUBLE_PAR) or
e charx for character arrays (stringSTRING_PAR).

long anddouble input control parameters are pasdsdvalue as usual, the corresponding
output control parameters are pasbgdeference, using the &-operator. String parameters are
pointers tachar in both casesPlease note, that the memory for output control parameters (esp.
strings) has to be provided by the caller! Output parameter values that are of no further interest
can be denoted by the anonymous variables

e “_"or"_i”for long-parameters,
e “_d”for double-parameters and
e “_s”for charx-parameters

As an example for the use of anonymous variables see the smraductory program in
figure 1.2 We codedget _mbutton(WindowHandle,_,_,_), because the actual button pressed
is of no further interest.

Examples for HALCON operator calls in simple mode can be tbunthe C programs in
figures 1.2and2.1

2.2.2 The Tuple Mode

We mentioned already that control parameter tuples for HBN®perators need special treat-
ment. In this chapter we will give the details on how to camsttrand use those tuples. The

HALCON / C, 2005-02-01

2.2. CONTROL PARAMETERS 9

HALCON reference manual describes a large number of opsrttat don’t operate on single
control values but on tuples of values. Using those opesaibis easy to write very compact
and efficient programs, because often it is possible to coentviultiple similar operator calls
into a single call.

Unfortunately, C provides no generic tuple- or list conston. In contrast, HALCON allows
tuples with mixed types as control parameter values (entegers mixed with floating point
numbers).

Therefore, in addition to the very intuitive simple moderthes another mode in HALCON/C:
The tuple mode. Using this mode is a little more elaborateat Ileast one of the control
parameters of a HALCON operator is passed as a tuple, the taptle has to be used for all
control parameters (Mixing of both modes isn’t possiblejitkermore, the tuple mode also has
to be used if theumber or type of the calculated values aren’t known beforehand.

Syntactically, tuple mode is distinguished from simple mdy aT_ preceeding the operator
name. For example, callinffisp_circle in tuple mode is done by

T disp_circle(...).

To ease the usage of the tuple mode, HALCON/C provides thieaaibslata typéituple for
control parameter tuples. Objects of typmiple may be constructed using values of the types

e long for integers (HALCON typeNT_PAR),
e double for floating point numbersDOQUBLE_PAR) or
e charx for character arrays (stringSTRING_PAR)

in arbitrary combination. Control parameter tuples musttsated, deleted, and manipulated
using the appropriate HALCON/C operatardy (overview infigures 2.2and2.3).

The rules for parameter passing are valid in tuple mode, ligout control parameters (type
Htuple) are passetly value as usual, output control parameters are pasgadference, us-
ing the &-operator. Output parameters that are of no furth@rest can be denoted by the
anonymous variable t” instead of a “dummy” tuple.

Let's summarize the five most important steps when callingA.EON operator in tuple
mode:

1. step First, memory must be allocated for all tuples of input cohparameters, using
create_tuple. Memory for output control parameter tuples is allocatedH#\L-
CON/C (a call ofcreate_tuple isn't necessary).

2.step Now, the input control parameter tuples are constructedguke appropriateet_x
operators.set_s, which inserts a string into a tuple allocates the needed angm
by itself and then copies the string.

3.step Then, the HALCON operator is actually called. The operatima is (as already
explained) preceeded byrato denote tuple mode.

HALCON 6.1.4

10

CHAPTER 2. THE HALCON PARAMETER CLASSES

4. step Further processing of the output parameter tuples take plesing the operators

length tuple, get_type andget_*. When processing strings (usinggt_s),
please note that the allocated memory is freed automatigptin deleting the tuple
with destroy_tuple. If the string has to be processed even after the deletidmeof t
tuple, the whole string must be copied first. The maximahgtiength (incl. ter-
mination character\0”) in HALCON is MAX_STRING (1024 in HALCON version
6.1.4).

5.step Finally the memory allocated by all the tuples (input andpoitt has to be freed

void

void

long

void

void

void

again. This is done witdestroy_tuple. If you still need the values of the tuple
variables, remember to copy them first. Now, the whole sexd@sstart again —
using different or the same tuple variables.

create_tuple(tuple,length) or macro CT(tuple,length)
Htuple *tuple;

long length;

/* creates a tuple that can hold ’length’ entries */
destroy_tuple (tuple) or macro DT(tuple)

Htuple tuple;

/* deletes a tuple (if the tuple contains string entries, x/
/* the memory allocated by the strings is freed, too) */
length_tuple(tuple) or macro LT(tuple)

Htuple tuple;

/* returns the length of a tuple (number of entries) */
set_i(tuple,val,index) or macro SI(tuple,val,index)
Htuple tuple;

long val;

long index;

/* inserts an integer with value ’val’ into a tuple at x/

/* position ’index’ (’index’ in [0,length_tuple(tuple) - 1]) */

set_d(tuple,val,index) or macro SD(tuple,val,index)
Htuple tuple;

double val;

long index;

/* inserts a double with value ’val’ into a tuple at */
/* position ’index’ (’index’ in [0,length_tuple(tuple) - 1]1) */

set_s(tuple,val,index) or macro SS(tuple,val,index)
Htuple tuple;

char *val;

long index;

/* inserts a copy of string ’val’ into a tuple at */

/* position ’index’ (’index’ in [0,length_tuple(tuple) - 1]). */
/* The memory necessary for the string is allocated by set_s. */

Figure 2.2: HALCON/C Htuple operators (part one).

HALCON / C, 2005-02-01

2.2. CONTROL PARAMETERS 11

int get_type(tuple,index) or macro GT(tuple,index)
Htuple tuple;
long index;
/* returns the type of the value at position ’index’ in the x/

/* tuple. Possible values: INT_PAR, DOUBLE_PAR or STRING_PAR x/

long get_i(tuple,index) or macro GI(tuple,index)
Htuple tuple;
long index;
/* returns the integer at position ’index’ in the tuple x/
/* (a type error results in a run time error) x/
double get_d(tuple,index) or macro GD(tuple,index)
Htuple tuple;
long index;
/* returns the floating point number at position ’index’ in the */
/* tuple. (a type error results in a run time error) x/
char *get_s(tuple,index) or macro GS(tuple,index)
Htuple tuple;
long index;
/* returns the pointer(!) to the string at position ’index’ in */
/* the tuple. (a type error results in a run time error) */

/* Attention: all indices must be in [0,length_tuple(tuple) - 1] */

Figure 2.3: HALCON/C Htuple operators (part two).

Before we end this chapter with a short example program, Wexplain an alternativgeneric
calling mechanism for HALCON operators in tuple mode. This mechanism is ineshibr
the use in interpreters or graphical user interfaces:

T_call_halcon(ProcName)

calls the HALCON operataoProcName in tuple mode. To do so, the operator parameters have
to be set first, using

set_in opar, set_out opar, set_in tpar undset_out_tpar

Accessing these parameters is still possible with the arglituple operators-igure 2.4sum-
marizes the operators of the generic HALCONY/C calling ifisies.

But now to the mentioned example program (&gare 2.50r the fileexample3.c: The aim
is to get informations about the current HALCON system staithe HALCON operator
get_system(’?’,Values) (here in HDevelop syntax) returns all system flags with thair
rent values. Since in our case neither number nor type of titeub parameters is known

HALCON 6.1.4

12 CHAPTER 2. THE HALCON PARAMETER CLASSES

void set_in_opar(obj,par) or macro I0(obj,par)
Hobject obj;
int par;
/* defines ’obj’ as input image object parameter no. ’par’ x/

/* (inside the input image object parameter parameter class) */

void set_out_opar (obj,par) or macro 00(obj,par)
Hobject *obj;
int par;
/* defines ’obj’ as output image object parameter no. ’par’ x/

/* (inside the output image object parameter parameter class) */

void set_in_tpar(tuple,par) or macro IT(tuple,par)

Htuple tuple;

int par;

/* defines ’tuple’ as input control parameter no. ’par’ x/

/* (inside the input control parameter parameter class) x/
void set_out_tpar (tuple,par) or macro OT(tuple,par)

Htuple *tuple;

int par;

/* defines ’tuple’ as output control parameter no. ’par’ x/

/* (inside the output control parameter parameter class) */
Herror T_call_halcon(ProcName) or macro TC(ProcName)

char *ProcName;

/* calls the Halcon operator ’ProcName’ using tuple mode; */

/* input and output parameters of ’ProcName’ must be declared */

/* using set_in_xpar and set_out_xpar first x/

Figure 2.4: Generic calling mechanism for the HALCONY/C tuple mode.

beforehand, we have to use tuple mode for the actual operailan HALCONY/C. The rest of
the program should be self explanatory.

HALCON / C, 2005-02-01

2.2. CONTROL PARAMETERS

#include "HalconC.h"

main ()

{
Htuple In,SysFlags,Info; /*
long i,num;

printf("system informations:\n");
create_tuple(&In,1); /*
set_s(In,"?",0); /*

T_get_system(In,&SysFlags); /*

destroy_tuple(In); /*

num = length_tuple(SysFlags); /*

for (i=0; i<num; i++)

{ /* determine the value of the i
create_tuple(&In,1); /*

set_s(In,get_s(SysFlags,i),0); /*
printf("%s ",get_s(SysFlags,i)); /x

tuple variables

prepare first query
only value of ’In’: "7"
first query

free parameter

number of system flags

-th system flag:

prepare query

insert i-th system flag
print name

T_get_system(In,&Info); /* get corresponding info
destroy_tuple(In); /* free parameter
switch(get_type(Info,0))
{ /* print the value according to the flag’s type:
case INT_PAR: printf (" (int): %ld\n",get_i(info,0));
break;
case DOUBLE_PAR: printf (" (double): %f\n",get_d(info,0));
break;
case STRING_PAR: printf("(string): %s\n",get_s(info,0));
break;
}
destroy_tuple(Info); /* free parameter
} /% for(i=... x/

13

4

*/
*/
*/
4
*/

*/
4
*/
4
*/
*/

*/

Figure 2.5: Tuple mode example program: Printing the current HALCON system state.

HALCON 6.1.4

14 CHAPTER 2. THE HALCON PARAMETER CLASSES

HALCON / C, 2005-02-01

Chapter 3

Return Values of HALCON Operators

HALCON operator return values (typerror) can be divided into two categories:
e MessagesH MSG_x) and
e Errors {_ERR_%).
According to its procedural concept, HALCON distinguisfas kinds of messages:
e H MSG_TRUE: The operator finished without error and returns the booleduevrue.
e H_MSG_FALSE: The operator finished without error and returns the booleduevfalse.
e H_MSG_VOID: The operator finished without error, but doesn’t return a@al

e H_MSG_FAIL: the operator finished without error (!) and returns “operafiailed”. This
could mean that the operator doesn't consider itself relef@ the operation or that a
specific event didn’t happen.

Nearly all HALCON operators returit MSG_TRUE, if no error occurs.

Errors in HALCON operators usually result in an exceptiar,,ia program abort with the
appropriate error message in HALCON/C (default exceptiandtiing). However, users can
disable this mechanism (with a few exceptions, like errotstiuple operators), using

set_check("“give_error");
to provide their own error handling routines. In that cake,dperatoerror_text(...) is very

useful: This operator returns the plain text message forgarsn error number. Finally, the
operator

set_check("give_error");

enables the HALCON error handling again. Several examiewisig the handling of error
messages can be seen in theditample5. c.

15

16 CHAPTER 3. RETURN VALUES OF HALCON OPERATORS

HALCON / C, 2005-02-01

Chapter 4

HALCON for Philips TriMedia DSPs

The Philips TriMedia is a real-time Digital Signal Procas@dSP) used primarily for multi-
media applications. Development and execution of TriMestitiware are supported by the
TriMedia SDE (runtime and development software) that hdsetinstalled on a host computer
running under Windows NT/2000/XP. The TriMedia Compilati8ystem (TCS) translates C
and C++ programs generating code for a machine in the TridMaabhitecture family. The gen-
erated executables can be loaded and run on the TriMediaeiladst using e.g. the TriMedia
loadertmrun.

HALCON for TriMedia contains all relevant parts of the HALGKmage processing library
plus the HALCON/C interface. The decision was made in fawuthe C interface because it
produces slightly more efficient code regarding runtime eode size than the corresponding
HALCON/C++ interface. Taking into account the special iegments of the TriMedia, the
image processing library is built with an emphasis on oping runtime, code size and memory
allocation behavior. This implies that parts not necesgarymage processing as well as some
online support features like textual error reports aredattof the library. The remainder of the
chapter is dedicated to explaining the differences betw&CON for TriMedia and standard
HALCON.

Currently HALCON for TriMedia runs on the TriMedia visiorhrds Allegro, Fuga and Presto.
To support the existing TriMedia hardware, the Philips im@gocessing software Rhapsody
version 2.0 has to be installed on the system.

17

18

CHAPTER 4. HALCON FOR PHILIPS TRIMEDIA DSPS

4.1 Limitations

Following functionalities of the standard HALCON image pessing library are not contained
in HALCON for TriMedia:

X-Windows and Windows NT/2000/XP display methods
Frame grabber support

Serial 1/0

Socket I/0

HALCON Spy

Gnuplot

Online information about arbitrary HALCON operators
Textual HALCON error messages

The only supported image file formats are ima, tiff and bmp.

Corresponding to above enumeration the following list aorg all operators not available in
HALCON for TriMedia:

setfixed.lut, getfixed.lut, setlut_.gamma, getut. gamma, sefix, getfix, setlut, getlut,
setlut_style, getlut_style, drawlut, querylut, displut, write_lut

draw_polygon, drawregion, drawcircle, drawcircle_mod, drawellipse,
drawellipsemod, drawline, drawline.mod, drawpoint, drawpointmod,
drawrectanglel, drawectanglelmod, drawrectangle2, drawectangle2mod,
dragregionl, dragegion2, dragegion3

getfont, setfont, queryfont, gettshape, setshape, queryshape, gestring extents,
gettposition, settposition, newline, readchar, readstring, write string

dispobj, disparc, disparrow, dispcircle, dispdistribution, dispellipse, dispcolor,
disp.channel, dispmage, displine, disppolygon, disprectanglel, dispectangle2,
dispregion, dispcaltab

getmbutton, getmposition, getmshape, setnshape, querynshape

clearrectangle, cleawindow, closewindow, copyrectangle, dumpvindow,
getwindow.extents, gewindow_pointer3, getwindow._type, moverectangle,
opentextwindow, openvindow, guerywindow._type, setwindow_attr,
setwindow_extents, sewindow_type, slideimage, newexternwindow, setwindow.dc,
getoswindow_handle, gewindow_attr, seticon, geticon, querycolor, queryall_colors,
qguerycolored, querygray, queryinsert, querdine.width, querypaint, queryshape,
getcomprise, gedraw, gethsi, getinsert, getline_approx, getline_style, getline_width,
getpaint, getpart, getpartstyle, getpixel, getrgb, getshape, setolor, setcolored,
setcomprise, setraw, setgray, sethsi, setinsert, sefline_approx, sefine_style,
setline_width, setpaint, setpart, setpart style, setpixel, setrgb, setshape, dispxId

write_shapemodel, readshapemodel, writevariationmodel, readvariationmodel

HALCON / C, 2005-02-01

4.2. MEMORY MANAGEMENT 19

e setframegrabbefut, getframegrabbetut, openframegrabber, closgamegrabber,

closeall framegrabbers, inféramegrabber, grabmage, grabbmagestart,
grahimageasync, gralregion, grabregionasync, seframegrabbeparam,
getframegrabbeparam

e openserial, closeserial, closeall_serials, seserialparam, geserialparam, readserial,
write_serial, clearserial

e opensocketaccept, opersocketconnect, sockeaccepiconnect, closeocket,
setsockettimeout, getsockettimeout, getnextsocketdatatype, senduple, re-
ceivetuple, sendxld, receivexld, sendregion, receiveegion, sendmage, re-
ceiveimage

o getspy, setspy, queryspy

e gnuplotopenpipe, gnuplotopenfile, gnuplotclose, gnuplaplotimage, gnu-
plot_plot_ctrl, gnuplotplot_funct. 1d

e dispinfo, getchapterinfo, getkeywords, searcloperator, geparaminfo,
getoperatorinfo, getoperatorname, queryparaminfo, queryoperatorinfo

4.2 Memory Management

Due to hardware memory limitations on the TriMedia, HALCOd ffriMedia should differ
from standard HALCON in certain aspects of memory allocabiehavior. The HALCON sys-
tem parameter 'alloctmpingle block’ can be used to manipulate the internal HALCON stack
management. If set 'true’, all allocated stack memory isaséd immediately when no longer
in use and only as much new stack memory as needed is allogastightly weaker approach
in order to limit the size of internally allocated memory s use the system parameter 'al-
loctmp.max blocksize’ to manually determine the maximum size of terappmemory blocks
which in the default case would be estimated internally by B®N. If 'alloctmp_single block’

is 'true’ "alloctmp_maxblocksize’ has no effect. Furthermore the general HALCONno®y
management is modified to only allocate storage blocks dSiteerequested by a given operator
and to free all storage not longer needed without furtherial usage.

Generally, the above modifications are aimed to reduce tleuatrof dynamically allocated
memory without having considerable negative effects ortima behavior. In addition the
HALCON system parameters 'externaloc_funct’ and ’'externalfree funct’ can be used to
pass pointers to external functions for allocating andldeating memory for HALCON im-

ages. This can e.g. be useful if result images should alwaysrliten to the same position
within memory.

HALCON 6.1.4

20 CHAPTER 4. HALCON FOR PHILIPS TRIMEDIA DSPS

HALCON / C, 2005-02-01

Chapter 5

Generation of HALCON/C Applications

The HALCON distribution contains examples for building gophlcation with HALCON/C.
Here is an overview of HALCON/C (Windows notation of paths):

include\c\HalconC.h:
include file; contains all user-relevant definitions of th&LLLON system and the decla-
rations necessary for the C interface.

bin\i586-nt4\halcon.lib,halcon.dll:
The HALCON library (Windows NT/2000/XP).

bin\i586-nt4\halconc.lib,halconc.dll:
The HALCON/C library (Windows NT/2000/XP).

bin\i586-nt4\parhalcon.lib,parhalcon.dll,parhalconc.lib,parhalconc.dll:
The corresponding libraries of Parallel HALCON (Windows/RJ00/XP).

1ib\%ARCHITECTUREY\1libhalcon.so:
The HALCON library (UNIX).

1ib\%ARCHITECTUREY%\1libhalconc.so:
The HALCON/C library (UNIX).

1ib\%ARCHITECTURE)\1libparhalcon.so,libparhalconc.so:
The corresponding libraries of Parallel HALCON (UNIX).

1lib\tmlx-philips-nt4\libhalcon.a:
The HALCON library for Philips TriMedia DSPs.

include\c\HProto.h:
External function declarations.

examples\c\examplel-11.c:
Example programs.

examples\c\i586-nt4\examplel-11\:
Example projects to compile and link the example programs@divs NT/2000/XP).

21

22 CHAPTER 5. GENERATION OF HALCON/C APPLICATIONS

examples\trimedia*.dev:
HDevelop example programs that can be exported to C and rimiliedia DSPs.

examples\c\makefile, make.ARCHITECTURE),:
Example makefiles to compile the example programs (UNIX).

images\:
Images used by the example programs.

help\english.*:
Files necessary for online information.

doc*:
Various manuals (in subdirectories).

There are several example programs in the HALCON/C didinhu To experiment with these
examples we recommend to create a private copy in your wgkirectory.

examplel.c reads animage and demonstrates several graphics operators
example2.c introduces several image processing operators.
example3.c is an example for the usage of the tuple mode.

exampled.c shows more (basic) image processing operators like thd stieefor edge
detection, region growing, thresholding, histograms, skeleton operator,
and the usage of different color lookup tables.

example5.c describes the HALCON messages and error handling.

example6.c demonstrates the generic calling interface for the tuple demo
(T_call_halcon(...)).

example7.c describes the handling of RGB images.
example8.c demonstrates the creation of an image from user memory.

example9.c describes some additional handling of RGB images.

A special case is the example progragample multithreadedl.c. It demonstrates the use
of Parallel HALCON in a multithreaded application. Pleasgen that this example must be
linked to the libraries of Parallel HALCON as described ia thllowing sections. Of course, it
does not make sense to run on a single-processor computer.

In the following, we briefly describe the relevant enviromheariables; see the manual
Getting Started with HALCONor more information, especially about how to set these-vari
ables. Note, that under Windows NT/2000/XP, all necessariables are automatically set
during the installation.

While a HALCON program is running, it accesses several fiearnally. To tell HALCON
where to look for these files, the environment varigbieCONROOT has to be seHALCONROOT
points to the HALCON home directorfJALCONROOT is also used in the sample makefile.

The variableARCHITECTURE describes the platform HALCON is used on. The following ta-
ble gives an overview of the currently supported platformd the corresponding values of
ARCHITECTURE.

HALCON/ C, 2005-02-01

5.1. WINDOWS NT/2000/XP 23

ARCHITECTURE Operating System (Platform) Compiler
Windows NT 4.0, Windows 2000, Windows XPB _

1586-nt4 . . Visual Studio
on Intel Pentium or compatible

i586-1inux2.2))) gcc 2.95

, , Linux 2.2/2.4 on Intel Pentium (or compatible)

i686-1inux2.2-gcc32 gcc 3.2/3.3

sparc-sun-solaris7 | Solaris 7 on Sparc Workstations cc

mips-sgi-irix6.5 IRIX 6.5 on SGI Workstations (Mips processorsiC

alpha-compag-osf5.1 | Tru64 UNIX 5.1 on Alpha processors cXX

Leohild . Philips TriMedia DSPs,)
tmix- -nt . mcc
S S on host: Windows NT 4.0, 2000, XP

If user-defined packages are used, the environment vaHAbBNEXTENSIONS has to be set.
HALCON will look for possible extensions and their corresdng help files in the directories
given inHALCONEXTENSIONS.

Two things are important in connection with the example prots: The default directory for
the HALCON operatotread_image(...) to look for images iS,HALCONROOT%\images. If
the images reside in different directories, the appropipath must be set iread_image(. . .)

or the default image directory must be changed, usiwt_system("image_dir","...").
This is also possible with the environment variald&CONIMAGES. It has to be set before start-
ing the program.

The second remark concerns the output terminal under UNi¥d example programs, no host
name is passed tipen_window(...). Therefore, the window is opened on the machine that is
specified in the environment variall@SPLAY. If output on a different terminal is desired, this
can be done either directly iropen_window(. .., "hostname",...) or by specifying a host
name inDISPLAY.

In order to link and run applications under UNIX, you haveiolude the HALCON library
path$HALCONROOT/1ib/$ARCHITECTURE in the system variableD_LIBRARY PATH.

5.1 Creating Applications Under Windows NT/2000/XP

Your own C programs that use HALCON operators must inclu@efite HalconC.h, which
contains all user-relevant definitions of the HALCON systamd the declarations necessary for
the C interface. Do this by adding the command

#include "HalconC.h"

near the top of your C file. In order to create an application youst link the library
halconc.1ib/.d11 to your program.

The example projects show the necessary Visual C++ settiigsthe examples the project
should be of the WIN 32 ConsoleApplication type. Please tiwathe Visual C++ compiler

formerly called DIGITAL UNIX

HALCON 6.1.4

24 CHAPTER 5. GENERATION OF HALCON/C APPLICATIONS

implicitly calls “Update all dependencies” if a new file isdsdl to a project. Since HALCON
runs under UNIX as well as under Windows NT/2000/XP, theudelfileHalconC.h includes
several UNIX-specific headers as well if included under UN®ce they don'’t exist under
Windows, and the Visual C++ compiler is dumb enough to igtloesoperating-system-specific
cases in the include files, you will get a number of warningsagss about missing header files.
These can safely be ignored.

Please assure that the stacksize is sufficient. Some soptestimage processing problems
require up to 6 MB stacksize, so make sure to set the settingaiocompiler accordingly (See
your compiler manual for additional information on this itop

If you want to use Parallel HALCON, you have to link the libeparhalcon.1ib/.d11
and parhalconc.lib/.d11 instead ofhalcon.lib/.d11l andhalconc.lib/.d11 in your
project.

5.2 Creating Applications Under UNIX

Your own C programs that use HALCON operators must inclu@efite HalconC.h, which
contains all user-relevant definitions of the HALCON systamd the declarations necessary for
the C interface. Do this by adding the command

#include "HalconC.h"

near the top of your C file. Using this syntax, the compilek®@or HalconC.h in the current
directory only. Alternatively you can tell the compiler wketo find the file, giving it the
-I<pathname> command line flag to denote the include file directory.

To create an application, you have to link two libraries tauly@rogram: The library
libhalconc.so contains the various components of the HALCON/C interfad®halcon. so
is the HALCON library.

Please take a look at the example makefiles for suitabl@gsttif you callmake without further
arguments, the example applicatiexamplel will be created. To create the other example
applications (e.gexample2), call

make TEST_PROG=example2

You can use the example makefiles not only to compile and hialekample programs but also
your own programs (called e.gest . c) by calling

make TEST_PROG=test

You can link the program to the Parallel HALCON libraries @ajling
make parallel TEST_PROG=test

HALCON / C, 2005-02-01

5.3. PHILIPS TRIMEDIA 25

5.3 Creating Applications Under Windows NT/2000/XP
for Philips TriMedia DSPs

For a general description of HALCON for TriMedia referd¢bapter 4 The directory %HAL-
CONROOT% examplestrimedia contains HDevelop programs that can be exportestitly
to C programs by calling HDevelop either via command ling.(dxdevelop -convert test.dev
test.c) or from HDevelop running under Windows NT/2000/XRe programs do not contain
any Windows display procedures or interaction and thus easoimpiled and run on the TriMe-
dia without further modification. Make sure that the TriM@@DE (runtime and development
software) is installed properly on your system and the emvirent variable TRIMEDIAROOT
is set to the SDE install directory.

Your own C programs that use HALCON operators must inclu@efite HalconC.h, which
contains all user-relevant definitions of the HALCON systamd the declarations necessary for
the C interface. Do this by adding the command

#include "HalconC.h"

near the top of your C file. To create an application, you haVwi@k the librarieslibhalconc.a
andlibhalcon.a to your program.libhalconc.a contains the HALCON/C interface and
libhalcon.a contains the HALCON image processing library. Additiogajfou currently
have to link the Philips image processing library Rhapsaehgion 2.0 allowing hardware sup-
port for the TriMedia.

Please take a look at the makefile for suitable settings. 8ateran application (e.g.est), call

nmake TEST_PROG=test

from a command shell. You can load and run the applicatioa treé TriMedia by calling

tmrun test

The majority of the HDevelop programs in %HALCONROOTY&&kamplestrimedia write out-
put data to file as either image or region format. This is danedmpensate for the lack of
display routines in HALCON for TriMedia that otherwise wdube used to visualize and thus
verify the output results.

HALCON 6.1.4

26 CHAPTER 5. GENERATION OF HALCON/C APPLICATIONS

HALCON / C, 2005-02-01

Chapter 6

Typical Image Processing Problems

This final chapter shows the possibilities of HALCON and HARRI/C on the basis of several
simple image processing problems.

6.1 Thresholding

One of the most common HALCON operators is the following:

read_image (&Image,"File_xyz") ;
threshold(Image,&Thres,0.0,120.0);
connection(Thres,&Conn) ;
select_shape(Conn,&Result,"area","and",10.0,100000.0) ;

Step-by-step explanation of the code:
e First, all image pixels with gray values between 0 and 12@rickel 1) are selected.
e The remaining image regions are split into connected coresn

e By suppressing regions that are too small, noise is elirathat

6.2 Detecting Edges

The following HALCON/C sequence is suitable for edge debect

read_image (&Image,"File_xyz") ;
sobel_amp (Image,&Sobel, "sum_abs",3);
threshold(Sobel,&Max,30.0,255.0);
skeleton (Max,&Edges) ;

Some remarks about the code:

e Before filtering edges with the sobel operator, a low pasr fittay be useful to suppress
noise.

27

28 CHAPTER 6. TYPICAL IMAGE PROCESSING PROBLEMS
e Apart from the sobel operator, filters likelges_image, roberts, bandpass_image Or
laplace are suitable for edge detection, too.

e The threshold (30.0, in this case) has to be selected depgodi the actual images (or
depending on the quality of the edges found in the image).

e Before any further processing, the edges are reduced toithk of a single pixel, using
skeleton(...).

6.3 Dynamic Threshold

Among other things, the following code is suitable for edgéedtion, too:

read_image (&Image,"File_xyz");
mean_image (Image,&Lp,11,11);
dyn_threshold(Image,Lp,&Thres,5.0,"light");

e The size of the filter mask (11 x 11, in this case) depends tiren the size of the
expected objects (both sizes are directly proportionaathether).

¢ In this example, the dynamic threshold operator selectgiedls that are at least 5 gray
values brighter than their surrounding (11 x 11) pixels.

6.4 Simple Texture Transformations

Texture transformations are used to enhance specific imagetiges. The behavior of the
transformation depends on the filters used (HALCON providedifferent texture filters).

read_image (&Image,"File_xyz") ;
Filter = "ee";
texture_laws(Image,&TT,Filter,2,5);
mean_image (TT,&Lp,31,31);
threshold(Lp,&Seg,30.0,255.0);

e mean_image(...) has to be called with a large mask to achieve a sufficient géinar
tion.

e It is also possible to calculate several different textuamsformations and to combine
them later, usingdd_image (. ..), mult_image(...) or a similar operator.

6.5 Eliminating Small Objects

The following morphological operation eliminates smallaige objects and smoothes the
boundaries of the remaining objects:

HALCON / C, 2005-02-01

6.6. SELECTING SPECIFIC ORIENTATIONS 29

segmentation(Image,&Seg) ;
gen_circle(&Mask,100.0,100.0,3.5);
opening(Seg,Mask,&Res) ;

e The size of the circular mask (3.5, in this case) determinesinallest size of the remain-
ing objects.

e Itis possible to use any kind of mask for object eliminatinot(only circular masks).

e segmentation(...) is used to denote a segmentation operator that calculatgdeadf
image objects3eg).

6.6 Selecting Specific Orientations

Yet another application example of morphological operstis the selection of image objects
with specific orientations:

segmentation(Image,&Seg) ;
gen_rectangle2(&Mask,100.0,100.0,0.5,21.0,2.0);
opening(Seg,Mask,&Res) ;

e The rectangle’s shape and size (length and width) deterthmmemallest size of the re-
maining objects.

e The rectangle’s orientation determines the orientatiothefremaining regions (In this
case, the main axis and the horizontal axis form an anglesafa@l).

e Lines with an orientation different from the mask’s (i.dnetrectangle’s) orientation are
suppressed.

e segmentation(...) is used to denote a segmentation operator that calculatgdeadf
image objectsJeg).

6.7 Smoothing Region Boundaries

The third (and final) application example of morphologicaérations covers another common
image processing problem — the smoothing of region bouadamd closing of small holes in
the regions:

segmentation(Image,&Seg) ;
gen_circle(&Mask,100.0,100.0,3.5);
closing(Seg,Mask,&Res) ;

e For the smoothing of region boundaries, circular masks @tegbest.

HALCON 6.1.4

30 CHAPTER 6. TYPICAL IMAGE PROCESSING PROBLEMS

e The mask size determines the degree of the smoothing.

e segmentation(...) is used to denote a segmentation operator that calculatgdeadf
image objects3eg).

HALCON / C, 2005-02-01

	1 Introducing HALCON/C
	1.1 Additional Sources of Information
	1.2 A First Example

	2 The HALCON Parameter Classes
	2.1 Image objects
	2.2 Control parameters
	2.2.1 The Simple Mode
	2.2.2 The Tuple Mode

	3 Return Values of HALCON Operators
	4 HALCON for Philips TriMedia DSPs
	4.1 Limitations
	4.2 Memory Management

	5 Generation of HALCON/C Applications
	5.1 Windows NT/2000/XP
	5.2 UNIX
	5.3 Philips TriMedia

	6 Typical Image Processing Problems
	6.1 Thresholding
	6.2 Detecting Edges
	6.3 Dynamic Threshold
	6.4 Simple Texture Transformations
	6.5 Eliminating Small Objects
	6.6 Selecting Specific Orientations
	6.7 Smoothing Region Boundaries

