HALCON Version 6.1.4

M ’EC

MVTec Software GmbH

HALCON Application Guide

Application Guide for HALCON, Version 6.1.4.

All rights reserved. No part of this publication may be refroed, stored in a retrieval system,
or transmitted in any form or by any means, electronic, meida$ photocopying, recording,
or otherwise, without prior written permission of the psbier.

Edition 1 June 2002 (HALCON 6.1)
Edition la May 2003 (HALCON 6.1.2)

EC
Copyright(© 2002-2005 by MVTec Software GmbH, Munchen, Germanmew

Microsoft, Windows, Windows NT, Windows 2000, Windows XHsWal Studio, and Visual
Basic are either trademarks or registered trademarks ofdsiadt Corporation.
Linux is a trademark of Linus Torvalds.

All other nationally and internationally recognized tratirks and tradenames are hereby rec-
ognized.

More information about HALCON can be found at:

http://www.mvtec.com/halcon/

Contents

1 Application Note on Shape-Based Matching
How to Use Shape-Based Matching to Find and Localize Objects

2 Application Note on Image Acquisition
The Art of Image Acquisition

a7

Application Note

How to Use Shape-Based Matching to
Find and Localize Objects

Provided Functionality

> Finding objects starting based on a single model image

> Localizing objects with subpixel accuracy

Typical Applications

> Object recognition and localization
> Intermediate machine vision steps, e.g., alignment of ROIs
> Completeness check

> Parts inspection

Involved Operators

create_shape model, create_scaled_shape_model
inspect_shape model, get_shape model_params
set_shape_model_origin, get_shape_model_origin
find_shape_model, find_shape_models
find_scaled_shape_model, find_scaled_shape_models
write_shape_model, read_shape_model
clear_shape_model, clear_all_shape_models

2 Application Note on Shape-Based Matching
Overview

HALCON's operators foshape-based matchirepable you to find and localize objects based
on a single model image, i.e., froomaodel This method is robust to noise, clutter, occlusion,
and arbitrary non-linear illumination changes. Objectslacalized with subpixel accuracy in
2D, i.e., found even if they are rotated or scaled.

The process of shape-based matching gsstion 1for a quick overview) is divided into two
distinct phases: In a first phase, you specify and create dtemThis model can be stored in
a file to be reused in different applications. Detailed infation about this phase can be found
in section 2 In the second phase, the model is used to find and localizéjactoSection 3
describes how to optimize the outcome of this phase by céisigithe search space.

Shape-based matching is a powerful tool for various machisien tasks, ranging from inter-
mediate image processing, e.g., to place ROIs automati@atb align them to a moving part,
to complex tasks, e.g., recognize and localize a part inatnabion application. Examples can
be found insection 4

Unless specified otherwise, the example programs can bedfonnthe subdirectory
shape_matching of the directory/,HALCONROOT%\examples\application guide.

HALCON Application Guide, 2005-02-01

Contents

2.1 A Closer Look at the Region of Interest. 6
2.2 Which Information is Stored in the Model?. 12
2.3 Synthetic Modellmages 18
3 Optimizing the Search Process. 20
3.1 Restricting the SearchSpace 20
3.2 Searching for Multiple Instances of the Object. 23
3.3 Searching for Multiple Models Simultaneously. 24
3.4 A Closer Look atthe Accuracy. 26
3.5 How to Optimize the Matching Speed. 28
4 Using the Results of Matching 30
4.1 Introducing Affine Transformations 30
4.2 Creating and Applying Affine Transformations With HALGIO. . . . 30
4.3 Using the Estimated Position and Orientation 32
4.4 Usingthe Estimated Scale 42
5 Miscellaneous e 44
5.1 Adapting to a Changed Camera Orientation 44
5.2 ReusingModels. 45

HALCON 6.1.4

4 Application Note on Shape-Based Matching
1 A First Example

In this section we give a quick overview of the matching pesceTo follow the example ac-
tively, start the HDevelop prograidevelop\first_example shape matching.dev, which
locates the print on an IC; the steps described below st thie initialization of the applica-
tion (pres once to reach this point).

Step 1: Select the object in the model image

Rowl := 188
Columnl := 182
Row2 := 298

Column2 := 412
gen_rectanglel (ROI, Rowl, Columnl, Row2, Column2)
reduce_domain (ModelImage, ROI, ImageROI)

After grabbing the so-callechodel imagei.e., a representative image of the object to find,
the first task is to create a region containing the objecthéexample program, a rectangu-
lar region is created using the operagenh_rectanglel; alternatively, you can draw the region
interactively using, e.gdraw_rectanglel or use a region that results from a previous segmen-
tation process. Then, an image containing just the seleetgdn is created using the operator
reduce_domain. The resultis shown ifigure 1

Step 2. Create the model

inspect_shape_model (ImageROI, ShapeModelImages, ShapeModelRegions, 8, 30)
create_shape_model (ImageROI, NumLevels, O, rad(360), O, ’none’,
’use_polarity’, 30, 10, ModellID)

With the operatokreate_shape_model, the so-callednodelis created, i.e., the internal data
structure describing the searched object. Before this,egemmend to apply the operator
inspect_shape model, which helps you to find suitable parameters for the modedtme.
inspect_shape model shows the effect of two parameters: thember of pyramid levelsn
which the model is created, and the minimgontrastthat object points must have to be in-
cluded in the model. As a result, the operataspect_shape model returns the model points

i¥.)
\ -
l\. \

:
.Lcasu‘tmmeﬂ
JARAN 2@!

@

Figure 1. @ specifying the object; @ the internal model (4 pyramid levels).

HALCON Application Guide, 2005-02-01

1 A First Example 5

Figure 2: Finding the object in other images.

on the selected pyramid levels as showrfigure 1, thus, you can check whether the model
contains the relevant information to describe the objeattafest.

When actually creating the model with the operatbeate_shape model, you can specify
additional parameters besid@siLevels andContrast: First of all, you can restrict the range
of angles the object can assume (parametepieStart and AngleExtent) and the angle
steps at which the model is creatadgleStep). With the help of the parameteptimization
you can reduce the number of model points; this is usefulerctise of very large models. The
parameteMetric lets you specify whether thaolarity of the model points must be observed.
Finally, you can specify the minimum contrast object pomtsst have in theearch image$o

be compared with the modelinContrast). The creation of the model is described in detalil
in section 2

As a result, the operatarreate_shape model returns ahandlefor the newly created model
(ModelID), which can then be used to specify the model, e.g., in callshe operator
find _shape model. Note that if you use HALCON’s COM or C++ interface and cak thper-
ator via the classésShapeModelX or HShapeModel, no handle is returned because the instance
of the class itself acts as your handle.

If not only the orientation but also the scale of the seardfigect is allowed to vary, you must
use the operatareate_scaled_shape model to create the model; then, you can describe the
allowed range of scaling with three parameters similar éoréimge of angles.

Step 3: Find the object again

for i := 1 to 20 by 1
grab_image (SearchImage, FGHandle)
find_shape_model (SearchImage, ModelID, O, rad(360), 0.8, 1, 0.5,
’interpolation’, 0, 0.9, RowCheck, ColumnCheck,
AngleCheck, Score)
endfor

To find the object again in a&earch image all you need to do is call the operator
find shape model; figure 2 shows the result for one of the example images. Besides the

HALCON 6.1.4

6 Application Note on Shape-Based Matching

already mentionetlodelID, find shape model provides further parameters to optimize the
search process: The parametgnigleStart, AngleExtent, andNumLevels, which you al-
ready specified when creating the model, allow you to use masteictive values in the search
process; by using the valuefor NumLevels, the value specified when creating the model is
used. With the paramet#inScore you can specify how many of the model points must be
found; a value oD .5 means that half of the model must be found. Furthermore, gawspecify
how many instances of the object are expected in the imagel§tches) and how much two
instances of the object may overlap in the imagexQverlap). To compute the position of the
found object with subpixel accuracy the parameig&sPixel should be set to a value different
from none’. Finally, the parametetreediness describes the used search heuristics, rang-
ing from “safe but slow” (valu®) to “fast but unsafe” (value). How to optimize the search
process is described in detailsection 3

The operatorfind_shape model returns the position and orientation of the found object in-
stances in the parametetsw, Column, andAngle, and their corespondingcore, i.e., how
much of the model was found.

If you use the operatorfind scaled shape model (after creating the model using
create_scaled shape model), the scale of the found object is returr@chle.

2 Creating a Suitable Model

A prerequisite for a successful matching process is, ofsmua suitable model for the object
you want to find. A model is suitable if it describes thignificantparts of the object, i.e.,
those parts that characterize it and allow to discrimirtatkearly from other objects or from the
background. On the other hand, the model should not conlatite i.e., points not belonging
to the object (see, e.digure 4.

2.1 A Closer Look at the Region of Interest

When creating the model, the first step is to seleeggon of interes{ROI), i.e., the part of the
image which serves as the model. In HALCONggiondefines an area in an image or, more
generally, a set of points. A region can have an arbitrarpshiés points do not even need to
be connected. Thus, the region of the model can have anagbginape as well.

The sections below describe how to create simple and morgleamegions. The following
code fragment shows the typical next steps after creatirRCin

reduce_domain (ModelImage, ROI, ImageROI)
create_shape_model (ImageROI, O, O, rad(360), O, ’none’, ’use_polarity’,
30, 10, ModelID)

Note that the region of interest used when creating a shapkelnefluences the matching
results: Its center of gravity is used as th&rence poinbf the model (sesection 4for more
information).

HALCON Application Guide, 2005-02-01

2.1.1 How to Create a Region

. §f§§§§§§ﬁmm
Q
L

W

N

7

i

N

Ui

—

jﬁ
7Z

Figure 3: Creating an ROI from two regions.

2.1.1 How to Create a Region

HALCON offers multiple operators to create regions, raggifrom standard shapes
like rectangles den rectangle2) or ellipses gen ellipse) to free-form shapes (e.g.,
gen_region polygon_filled). These operators can be found in the HDevelop menu
Operators > Regions > Creation.

However, to use these operators you need the “parametetbecthape you want to create,
e.g., the position, size and, orientation of a rectanglehergosition and radius of a circle.
Therefore, they are typically combined with the operatorthe HDevelop menQperators >
Graphics > Drawing, which let you draw a shape on the displayed image and thamréie

shape parameters:

draw_rectanglel (WindowHandle, ROIRowl, ROIColumnl, ROIRow2, ROIColumn2)
gen_rectanglel (ROI, ROIRowl, ROIColumnl, ROIRow2, ROIColumn2)

2.1.2 How to Combine and Mask Regions

You can create more complex regions by adding or subtrastangdard regions using the op-
eratorsunion2 anddifference. For example, to create an ROI containing the square and the
cross infigure 3 the following code fragment was used:

draw_rectanglel (WindowHandle, ROI1Rowl, ROI1Columnl, ROI1Row2,
ROI1Column2)

gen_rectanglel (ROI1, ROI1Rowl, ROI1Columnl, ROI1Row2, ROI1Column2)

draw_rectanglel (WindowHandle, ROI2Rowl, ROI2Columnl, ROI2Row2,
ROI2Column2)

gen_rectanglel (ROI2, ROI2Rowl, ROI2Columnl, ROI2Row2, ROI2Column2)

union2 (ROI1, ROI2, ROI)

Similarly, you can subtract regions using the operatdiference. This method is useful to
“mask” those parts of a region containing clutter, i.e.,Hagpntrast points that are not part of
the object. Irfigure 4 e.g., the task is to find the three capacitors. When usinggdescircular
ROI, the created model contains many clutter points, whrehcaused by reflections on the

HALCON 6.1.4

8 Application Note on Shape-Based Matching

model for ring-shaped ROI

Figure 4: Masking the part of a region containing clutter.

metallic surface. Thus, the other two capacitors are natdo'he solution to this problem is
to use a ring-shaped ROI, which can be created by the follplimes of code:

draw_circle (WindowHandle, ROI1Row, ROI1Column, ROI1Radius)
gen_circle (ROI1, ROI1Row, ROI1Column, ROI1Radius)
gen_circle (ROI2, ROI1Row, ROI1Column, ROI1Radius-8)
difference (ROI1, ROI2, ROI)

Note that the ROI should not be too “thin”, otherwise it vdn@s at higher pyramid levels! As a
rule of thumb, an ROI should m#VvmEevels—1 pixels wide; in the example, the width of 8 pixels
therefore allows to use 4 pyramid levels.

For this task even better results can be obtaineddigg a synthetic model image This is
described irsection 2.3

HALCON Application Guide, 2005-02-01

2.1.3 Using Image Processing to Create and Modify Regions 9

Figure 5: Using image processing to create an ROI: a) extract bright regions; b) select the card;
¢) the logo forms the ROI; d) result of the matching.

2.1.3 Using Image Processing to Create and Modify Regions

In the previous sections, regions were created expliciiglgpecifying their shape parameters.
Especially for complex ROIs this method can be inconvenard time-consuming. In the
following, we therefore show you how to extract and modifgioms using image processing
operators.

Example 1: Determining the ROI Using Blob Analysis

To follow the example actively, start the HDevelop program
hdevelop\create roi via vision.dev, which locates the MVTec logo on a pendu-
lum (seefigure 5; we start after the initialization of the application (p once). The
main idea is to “zoom in” on the desired region in multiplepsteFirst, find the bright region
corresponding to the card, then extract the dark charagoteits

Step 1: Extract the bright regions

threshold (ModelImage, BrightRegions, 200, 255)
connection (BrightRegions, ConnectedRegions)
fill_up (ConnectedRegions, FilledRegions)

First, all bright regions are extracted using a simple tmo&ting operationthreshold); the
operatorconnection forms connected components. The extracted regions ardfitleehup

HALCON 6.1.4

10 Application Note on Shape-Based Matching

via £i11 up; thus, the region corresponding to the card also encompaissalark characters
(seefigure 53.

Step 2: Select the region of the card
select_shape (FilledRegions, Card, ’area’, ’and’, 1800, 1900)

The region corresponding to the card can be selected froiisthad regions with the operator
select_shape. In HDevelop, you can determine suitable features and sals@ng the dialog
Visualization > Region Info; just click into a region, and the dialog immediately digla
its feature valuegrigure 5bshows the result of the operator.

Step 3: Use the card as an ROI for the next steps
reduce_domain (ModelImage, Card, ImageCard)

Now, we can restrict the next image processing steps to therref the card using the operator
reduce_domain. This iterative focusing has an important advantage: Imés&ricted region of
the card, the logo characters are much easier to extractritihe full image.

Step 4: Extract the logo

threshold (ImageCard, DarkRegions, 0, 230)

connection (DarkRegions, ConnectedRegions)

select_shape (ConnectedRegions, Characters, ’area’, ’and’, 150, 450)
unionl (Characters, CharacterRegion)

The logo characters are extracted similarly to the cartfis®a last step, the separate character
regions are combined using the operaiotoni.

Step 5: Enlarge the region using morphology

dilation_circle (CharacterRegion, ROI, 1.5)

reduce_domain (ModelImage, ROI, ImageROI)

create_shape_model (ImageROI, O, O, rad(360), O, ’none’, ’use_polarity’,
30, 10, ModelID)

Finally, the region corresponding to the logo is enlargedhdly using the operator
dilation_circle. Figure 5cshows the resulting ROI, which is then used to create theeshap
model.

Example 2: Further Processing the Result of inspect _shape _model

You can also combine the interactive ROI specification wittage processing. A useful
method in the presence of clutter in the model image is toteradirst model region inter-
actively and then process this region to obtain an improvéd. Rigure 6shows an exam-
ple; the task is to locate the arrows. To follow the examplevely, start the HDevelop pro-
gramhdevelop\process_shape model.dev; we start after the initialization of the application

(pres once).
Step 1. Select the arrow

gen_rectanglel (ROI, 361, 131, 406, 171)

First, an initial ROl is created around the arrow, withoyirtg to exclude clutter (sefiggure 63.

HALCON Application Guide, 2005-02-01

2.1.3 Using Image Processing to Create and Modify Regions 11

a)
model for model for model for
Contrast = 30 Contrast = 90 Contrast = 134
b) _ ~
- ~ - F
- 1
=]
- L
processed region final ROI final model

- *a
/-.

d)

Figure 6: Processing the result of inspect_shape model: a) interactive ROI; b) models for dif-
ferent values of Contrast; c) processed model region and corresponding ROI and
model; d) result of the search.

Step 2. Create a first model region

reduce_domain (ModelImage, ROI, ImageROI)
inspect_shape_model (ImageROI, ShapeModellImage, ShapeModelRegion, 1, 30)

Figure 6bshows the shape model regions that would be created forafitfealues of the pa-
rameterContrast. AS you can see, you cannot remove the clutter without losinagacteristic
points of the arrow itself.

Step 3: Process the model region

f£i1l_up (ShapeModelRegion, FilledModelRegion)
opening_circle (FilledModelRegion, ROI, 3.5)

You can solve this problem by exploiting the fact that therap® inspect_shape model
returns the shape model region; thus, you can process atik@ther region. The main idea to

HALCON 6.1.4

12 Application Note on Shape-Based Matching

get rid of the clutter is to use morphological operatpeéning circle, which eliminates small
regions. Before this, the operatot11l_up must be called to fill the inner part of the arrow,
because only the boundary points are part of the (originajehregion.Figure 6¢cshows the
resulting region.

Step 4. Create the final model

reduce_domain (ModelImage, ROI, ImageROI)
create_shape_model (ImageROI, 3, 0, rad(360), O, ’none’, ’use_polarity’,
30, 10, ModelID)

The processed region is then used to create the mfiglete 6¢cshows the corresponding ROI
and the final model region. Now, all arrows are located sisfaby.

2.1.4 How the ROI Influences the Search

Note that the ROI used when creating the model also influetheeeesults of the subsequent
matching: The center point of the ROI acts as the so-ca@ltedt of referencef the model for
the estimated position, rotation, and scale. You can gunerydference point using the opera-
tor get_shape model origin and modify it usingset_shape model origin; please refer to
sections 3.4nd4.3for additional information.

The point of reference also influences the search itself: Bjeat is only found if the point
of reference lies within the image, or more exactly, withite lomain of the image (see
alsosection 3.1.1 Please note that this test is always performed for ther@igoint of
reference, i.e., the center point of the ROI, even if you rhedithe reference point using
set_shape_model_origin.

2.2 Which Information is Stored in the Model?

As the nameshape-based pattern matchisgggests, objects are represented and recognized by
their shape There exist multiple ways to determine or describe the slwd@n object. Here,

the shape is extracted by selecting all those points wbostastexceeds a certain threshold,;
typically, the points correspond to the contours of the cibjsee, e.gfigure 1). Section 2.2.1
takes a closer look at the corresponding parameters.

To speed up the matching process, a so-caftedje pyramids created, consisting of the origi-
nal, full-sized image and a set of downsampled images. Tlkem®then created and searched
on the different pyramid levels (ssection 2.2.2or details).

If the object is allowed to appear rotated or scaled, theespwnding information is used al-
ready when creating the model. This also speeds up the mgtphocess, at the cost of higher
memory requirements for the created mod@action 2.2.&ndsection 2.2.4lescribe the corre-
sponding parameters.

In the following, all parameters belong to the operatosate shape model if not stated oth-
erwise.

HALCON Application Guide, 2005-02-01

2.2.1 Which Pixels are Part of the Model? 13

a)

b)

Figure 7: Selecting significant pixels via Contrast: a) complete object but with clutter; b) no
clutter but incomplete object; c) hysteresis threshold; d) minimum contour size.

2.2.1 Which Pixels are Part of the Model?

For the model those pixels are selected whasatrast i.e., gray value difference to
neighboring pixels, exceeds a threshold specified by thanpaterContrast when calling
create_shape model. In order to obtain a suitable model the contrast should lose in
such a way that theignificantpixels of the object are included, i.e., those pixels thatrabter-
ize it and allow to discriminate it clearly from other objectr from the background. Obviously,
the model should not contain clutter, i.e., pixels that dbb@bong to the object.

In some cases it is impossible to find a single valueCtartrast that removes the clutter but
not also parts of the objedtigure 7shows an example; the task is to create a model for the outer
rim of a drill-hole: If the complete rim is selected, the mbdlso contains clutterfigure 73; if

the clutter is removed, parts of the rim are missiinguie 7b.

To solve such problems, the parametetitrast provides two additional methods: hysteresis
thresholding and selection of contour parts based on theer sBoth methods are used by
specifying atuple of values forContrast instead of a single value.

Hysteresis thresholdin@ee also the operataysteresis_threshold) uses two thresholds, a
lower and an upper threshold. For the model, first pixels laae a contrast higher than the
upper threshold are selected; then, pixels that have aastritigher than the lower threshold
and that are connected to a high-contrast pixel, eithectlrer via another pixel with contrast
above the lower threshold, are added. This method enabletoyselect contour parts whose
contrast varies from pixel to pixel. Returning to the exaenpl the drill-hole: As you can see
in figure 7¢ with a hysteresis threshold you can create a model for thgptie rim without
clutter. The following line of code shows how to specify titthresholds in a tuple:

inspect_shape_model (ImageROI, ModelImages, ModelRegions, 1, [26,52])

HALCON 6.1.4

14 Application Note on Shape-Based Matching

The second method to remove clutter is to specify a minimam sie., number of pixels, for the
contour component$sigure 7dshows the result for the example task. The minimum size must
be specified in the third element of the tuple; if you don’t Wanuse a hysteresis threshold, set
the first two elements to the same value:

inspect_shape_model (ImageROI, ModelImages, ModelRegions, 1, [26,26,12])

Alternative methods to remove clutter are to modify the R&described isection 2.1or create
a synthetic model (sesection 2.3.

2.2.2 How Subsampling is Used to Speed Up the Search

To speed up the matching process, a so-catteae pyramids created, both for the model
image and for the search images. The pyramid consists ofrip@al, full-sized image and a

set of downsampled images. For example, if the the origmalge (first pyramid level) is of

the size 600x400, the second level image is of the size 3@)xAeé third level 150x100, and

so on. The object is then searched first on the highest pyriawvedl i.e., in the smallest image.
The results of this fast search are then used to limit theekaaithe next pyramid image, whose
results are used on the next lower level until the lowestllsveeached. Using this iterative

method, the search is both fast and accur&igure 8depicts 4 levels of an example image
pyramid together with the corresponding model regions.

You can specify how many pyramid levels are used via the pet@mfumnLevels. We recom-
mend to choose the highest pyramid level at which the modehaas at least 10-15 pixels and
in which the shape of the model still resembles the shapeeobHject. You can inspect the
model image pyramid using the operatarspect_shape model, €.g., as shown in the HDe-
velop progranhdevelop\first_example_shape matching.dev:

inspect_shape_model (ImageROI, ShapeModelImages, ShapeModelRegions, 8, 30)
area_center (ShapeModelRegions, AreaModelRegions, RowModelRegions,
ColumnModelRegions)

HeightPyramid := |ShapeModelRegions |
for i := 1 to HeightPyramid by 1

if (AreaModelRegions[i-1] >= 15)

NumLevels := i

endif
endfor
create_shape_model (ImageROI, NumLevels, O, rad(360), O, ’none’,

’use_polarity’, 30, 10, ModellID)

After the call to the operator, the model regions on the setepyramid levels are displayed in
HDevelop’s Graphics Window; you can have a closer look amtlising the online zooming
(menu entryisualization > Online Zooming). The code lines following the operator call
loop through the pyramid and determine the highest level biclnthe model contains at least
15 points. This value is then used in the call to the operateste_shape model.

A much easier method is tet HALCON select a suitable value itselby specifying the valué
for NumLevels. You can then query the used value via the opergiorshape model params.

The operatorinspect_shape model returns the pyramid images in form of an image tu-
ple (array); the individual images can be accessed like tbdetregions with the operator
select_obj. Please note thatbject tuples start with the index 1, whereas control parame

HALCON Application Guide, 2005-02-01

2.2.2 How Subsampling is Used to Speed Up the Search 15

EE!H!!IHIIIIH

;ilhiim“idi Z_)

i,

iy b
R

Saplve’

'.LC@GG@NML%%
JARAN 20CB3

Saplve SaRD R AR —

LC3EE4NML=10 Lg@m@@d’mwgg:n e b
JARAN 2CBY JoRFen 203 Ly ol

Figure 8: The image and the model region at four pyramid levels (original size and zoomed to
equal size).

ter tuples start with the index O!

You can enforce a further reduction of model points via theapeeterOptimization. This

HALCON 6.1.4

16 Application Note on Shape-Based Matching

may be useful to speed up the matching in the case of pantigldage models. Please note
that regardless of your selection all points passing thérasicriterion are displayed, i.e., you
cannot check which points are part of the model.

2.2.3 Allowing a Range of Orientation

If the object’s rotation may vary in the search images you specify the allowed range in
the parametekngleExtent and the starting angle of this range in the paramiigileStart
(unit: rad). Note that the range of rotation is defined re&ato the model image, i.e., a starting
angle ofo corresponds to the orientation the object has in the modey@nTherefore, to allow
rotations up to +/-5 e.g., you should set the starting angle-tad (5) and the angle extent to
rad(10).

We recommend to limit the allowed range of rotation as mucpassible in order to speed up
the search process and to minimize the required memory. tRateyou can further limit the
allowed range when calling the operafdmd _shape model (seesection 3.1.2 If you want to
reuse a model for different tasks requiring a different mofangles and if memory is not an
issue, you can therefore use a large range when creatingdtielmnd a smaller range for the
search.

If the object is (almost) symmetric you should limit the alled range. Otherwise, the search
process will find multiple, almost equally good matches angame object at different angles;
which match (at which angle) is returned as the best canftirer§ump” from image to image.
The suitable range of rotation depends on the symmetry: Emss-shaped or square object the
allowed extent must be less thar’9fbr a rectangular object less than 188nd for a circular
object 0.

To speed up the matching process, the model is precomputetiffierent angles within the
allowed range, at steps specified with the paramgtgileStep. If you select the valu®,
HALCON automatically chooses an optimal step sizg to obtain the highest possible accu-
racy by determining the smallest rotation that is still disgble in the image. The underlying
algorithm is explained ifigure 9 The rotated version of the cross-shaped object is clessty d
cernible from the original if the point that lies farthegtrin the center of the object is moved by
at least 2 pixels. Therefore, the corresponding angleis calculated as follows:

d? 2
P=P+0PF-2-1-1-cos¢p = qﬁopt:arccos(l—ZlQ)zarccos(l—l—z)

with [being the maximum distance between the center and the dipecidary and! = 2
pixels.

I~
\d
o) \

Figure 9: Determining the minimum angle step size from the extent of the model.

HALCON Application Guide, 2005-02-01

2.2.4 Allowing a Range of Scale 17

The automatically determined angle step sizg is suitable for most applications; therefore,
we recommend to select the value.QYou can query the used value after the creation via the
operatorget_shape model_params. By selecting a higher value you can speed up the search
process, however, at the cost of a decreased accuracy dftthated orientation. Note that for
very high values the matching may fail altogether!

The value chosen faimgleStep should not deviate too much from the optimal valgéggt <
» < 3¢.p,). Note that choosing a very small step size does not resalhimcreased angle
accuracy!

2.2.4 Allowing a Range of Scale

Similarly to the range of orientation, you can specify anwakd range of scale with the param-
etersScaleMin, ScaleMax, andScaleStep of the operatorreate_scaled shape model.

Again, we recommend to limit the allowed range of scale asmascpossible in order to speed
up the search process and to minimize the required memotg. tNat you can further limit the
allowed range when calling the operafdmd _scaled_shape model (Seesection 3.1.p

Note that if you are searching for the object on a large rarigeaes you shouldreate the &2
model based on a large scalbecause HALCON cannot “guess” model points when precom-
puting model instances at scales larger than the original @n the other handiumLevels
should be chosen such that the highest level contains ermmaadhl points also for the smallest
scale.

If you select the valu® for the parameteBcaleStep, HALCON automatically chooses a
suitable step size to obtain the highest possible accurgayetermining the smallest scale
change that is still discernible in the image. Similarly he tangle step size (sdéigure 9, a
scaled object is clearly discernible from the original & fhoint that lies farthest from the center
of the object is moved by at least 2 pixels. Therefore, theesponding scale chandes,,; is

calculated as follows: J 5
AS = 7 = Asopt = 7

with [being the maximum distance between the center and the dipectdary and! = 2
pixels.

The automatically determined scale step size is suitablenfust applications; thereforaye <&
recommend to select the value .0 You can query the used value after the creation via the
operatorget_shape model params. By selecting a higher value you can speed up the search
process, however, at the cost of a decreased accuracy dfttheted scale. Note that for very
high values the matching may fail altogether!

The value chosen fatcaleStep should not deviate too much from the optimal val@Aéopt <
As < 3As,,). Note that choosing a very small step size does not resalt imcreased scale
accuracy!

2.2.5 Which Pixels are Compared with the Model?

For efficiency reasons the model contains information thiéénces the search process: With
the parameteMinContrast you can specify which contrast a point in a search image ntust a

HALCON 6.1.4

18 Application Note on Shape-Based Matching

least have in order to be compared with the model. The maionfubés parameter is to exclude
noise, i.e., gray value fluctuations, from the matching pssc You can determine the noise by
examining the gray values with the HDevelop dialtigualization > Pixel Info;then, set
the minimum contrast to a value larger than the noise.

The parameteletric lets you specify whether theolarity, i.e., the direction of the contrast
must be observed. If you choose the valuee_polarity’ the polarity is observed, i.e., the
points in the search image must show the same direction afdh&ast as the corresponding
points in the model. If, for example, the model is a brighteatbjon a dark background, the
object is found in the search images only if it is also brigiien the background.

You can choose to ignore the polarity globally by selectingne t value
’ignore_global polarity’. In this mode, an object is recognized also if the direction
of its contrast reverses, e.g., if your object can appedn bsta dark shape on a light back-
ground and vice versa. This flexibility, however, is obtaira the cost of a slightly lower
recognition speed.

If you select the value ignore_local polarity’, the object is found even if the contrast
changes locally. This mode can be useful, e.g., if the olgesists of a part with a medium
gray value, within which either darker of brighter sub-altgelie. Please note however, that
the recognition speed may decrease dramatically in thissmespecially if you allowed a large
range of rotation (segection 2.2.3

2.3 Synthetic Model Images

Depending on the application it may be difficult to create itafle model because there is no
“good” model image containing a perfect, easy to extradaimse of the object. An example of
such a case was already showrséattion 2.1.2The task of locating the capacitors seems to be
simple at first, as they are prominent bright circles on a dadkground. But because of the
clutter inside and outside the circle even the model regyiftiom the ring-shaped ROI is faulty:
Besides containing clutter points also parts of the cirobenaissing.

In such cases, it may be better to usgyathetic model imageHow to create such an image
to locate the capacitors is explained below. To follow tharegle actively, start the HDevelop
programhdevelop\synthetic_circle.dev; we start after the initialization of the application

(pres once).

Step 1: Create an XLD contour

RadiusCircle := 43

SizeSynthImage := 2*RadiusCircle + 10

gen_ellipse_contour_x1ld (Circle, SizeSynthImage / 2, SizeSynthImage / 2, O,
RadiusCircle, RadiusCircle, 0, 6.28318,
’positive’, 1.5)

First, we create a circular region using the operagen_ellipse_contour_x1ld (see
figure 103. You can determine a suitable radius by inspecting the @awaith the HDevelop
dialog Visualization > Online Zooming. Note that the synthetic image should be larger
than the region because pixels around the region are useudaeubating the image pyramid.

Step 2: Create an image and insert the XLD contour

gen_image_const (EmptyImage, ’byte’, SizeSynthImage, SizeSynthImage)
paint_x1d (Circle, EmptyImage, SyntheticModelImage, 128)

HALCON Application Guide, 2005-02-01

2.3 Synthetic Model Images 19

Figure 10: Locating the capacitors using a synthetic model: a) paint region into synthetic image;
b) corresponding model; ¢) result of the search.

Then, we create an empty image using the opergéarimage _const and insert the XLD
contour with the operatgraint_x1d. In figure 10athe resulting image is depicted.

Step 3: Create the model

create_scaled_shape_model (SyntheticModelImage, O, O, O, 0.01, 0.8, 1.2, 0,
’none’, ’use_polarity’, 30, 10, ModellID)

Now, the model is created from the synthetic imaggure 10dshows the corresponding model
region,figure 10ethe search results.

Note how the image itself, i.e., its domain, acts as the RGiimexample.

HALCON 6.1.4

20 Application Note on Shape-Based Matching
3 Optimizing the Search Process

The actual matching is performed by the operatorsind shape model,
find_scaled_shape_model, find shape_models, Or find_scaled_shape_models. In
the following, we show how to select suitable parametersttiese operators to adapt and
optimize it for your matching task.

3.1 Restricting the Search Space

An important concept in the context of finding objects is tbathe so-calledsearch space
Quite literally, this term specifies where to search for thgeot. However, this space encom-
passes not only the 2 dimensions of the image, but also o#inameters like the possible range
of scales and orientations or the question of how much of tijeco must be visible. The more
you can restrict the search space, the faster the searchewill

3.1.1 Searching in a Region of Interest

The obvious way to restrict the search space is to apply tkeatqrfind shape model to a
region of interest only instead of the whole image as showfigime 11 This can be realized
in a few lines of code:

Step 1: Create a region of interest

Rowl := 141
Columnl := 163
Row2 := 360

Column2 := 477
gen_rectanglel (SearchROI, Rowl, Columnl, Row2, Column2)

Figure 11: Searching in a region of interest.

HALCON Application Guide, 2005-02-01

3.1.2 Restricting the Range of Orientation and Scale 21

First, you create a region, e.g., with the operagjai rectanglel (seesection 2.1.%or more
ways to create regions).

Step 2: Restrict the search to the region of interest

for i :=1 to 20 by 1
grab_image (SearchImage, FGHandle)
reduce_domain (SearchlImage, SearchROI, SearchImageR0I)
find_shape_model (SearchImageROI, ModelID, O, rad(360), 0.8, 1, 0.5,
’interpolation’, 0, 0.9, RowCheck, ColumnCheck,
AngleCheck, Score)
endfor

The region of interest is then applied to each search imageg tise operatoreduce_domain.
In this example, the searching speed is almost doubled tisimgiethod.

Note that by restricting the search to a region of interestactually restrict the position of the
point of referencef the model, i.e., the center of gravity of the model ROI (seetion 2.1.1
This means that the size of the search ROI corresponds txtiet ®f the allowed movement;
for example, if your object can mowe 10 pixels vertically and- 15 pixels horizontally you can
restrict the search to an ROI of the size<ZD. In order to assure a correct boundary treatment
on higher pyramid levels, we recommend to enlarge the RQMyp-ev¢is—1 pixels; to continue
the example, if you specifiestimLevels = 4, you can restrict the search to an ROI of the size
36x46.

Please note that even if you modify the point of referencegsstt_shape_model _origin, the
original one, i.e., the center point of the model ROI, is udedng the search. Thus, you must
always specify the search ROI relative to the original rfiee point.

3.1.2 Restricting the Range of Orientation and Scale

When creating the model with the operatorcreate shape model (or
create_scaled shape model), you already specified the allowed range of orientation
and scalesection 2.2.3and section 2.2.4 When calling the operatofind shape model

(or find_scaled shape model) you can futher limit these ranges with the parameters
AngleStart, AngleExtent, ScaleMin, andScaleMax. This is useful if you can restrict
these ranges by other information, which can, e.g., be &daby suitable image processing
operations.

Another reason for using a larger range when creating theehmody be that you want to reuse
the model for other matching tasks.

3.1.3 Visibility

With the parameteMinScore you can specify how much of the object — more precisely: of
the model — must be visible. A typical use of this mechanisno iallow a certain degree of
occlusion as demonstratedfigure 12 The security ring is found iftinScore is set to0.7.

Let’s take a closer look at the term “visibility”: When comp®y a part of a search image with
the model, the matching process calculates the so-csdle@ which is a measure of how many
model points could be matched to points in the search imagging from 0 to 1). A model
point may be “invisible” and thus not matched because of iplelteasons:

HALCON 6.1.4

22 Application Note on Shape-Based Matching

a)

Figure 12: Searching for partly occluded objects: a) model of the security ring; b) search result
for MinScore = 0.8; ¢) search result for MinScore = 0.7.

e Parts of the object’s contour are occluded, e.g., dgjure 12

IIl Please note than object must not be clipped at the image border this case is not
treated as an occlusion! More precisely, the smallest mgt@asurrounding the model
must not be clipped.

e Parts of the contour have a contrast lower than specifiedeip#itameteMinContrast
when creating the model (ssection 2.2.h

e The polarity of the contrast changes globally or locallye(section 2.2.h

e If the object is deformed, parts of the contour may be viskhleappear at an incorrect
position and therefore do not fit the model anymore. Note tiateffect also occurs if
camera observes the scene under an oblique asgdtipn 5.1shows how to handle this
case.

Besides these obvious reasons, which have their root iretirels image, there are some not so
obvious reasons caused by the matching process itself:

e As described irsection 2.2.3HALCON precomputes the model for intermediate angles
within the allowed range of orientation. During the searalgandidate match is then
compared to all precomputed model instances. If you seleetiee for the parameter
AngleStep that is significantly larger than the automatically seldetenimum value, the
effect depicted ifigure 13can occur: If the object lies between two precomputed angles
points lying far from the center are not matched to a modeitpand therefore the score
decreases.

Of course, the same line of reasoning applies to the paranset€leStep (See
section 2.2.4

e Another stumbling block lies in the use of an image pyramidciiwas introduced in
section 2.2.2When comparing a candidate match with the model, the spdatiinimum
score must be reached on each pyramid level. However, aareliff levels the score may
vary, with only the score on the lowest level being returnethe paramete$core; this
sometimes leads to the apparently paradox situationMix8core must be set signifi-
cantly lower than the resultirgcore.

&= Recommendation: The higheMinScore, the faster the search!

HALCON Application Guide, 2005-02-01

3.1.4 Thoroughness vs. Speed 23

i

AngleStep = 20 AngleStep = 30

Figure 13: The effect of a large AngleStep on the matching.

3.1.4 Thoroughness vs. Speed

With the parametetreediness you can influence the search algorithm itself and thereluetra
thoroughness against speed. If you select the \@ltlee search is thorough, i.e., if the object is
present (and within the allowed search space and reachengitiimum score), it will be found.
In this mode, however, even very unlikely match candidatesaéso examined thoroughly,
thereby slowing down the matching process considerably.

The main idea behind the “greedy” search algorithm is tolo#athe comparison of a candi-
date with the model when it seems unlikely that the minimuoreavill be reached. In other
words, the goal is not to waste time on hopeless candidates gfeediness, however, can have
unwelcome consequences: In some cases a perfectly vid@etas not found because the
comparison “starts out on a wrong foot” and is thereforesifeesl as a hopeless candidate and
broken off.

You can adjust th@reediness of the search, i.e., how early the comparison is broken gff, b
selecting values betwe@n(no break off: thorough but slow) and(earliest break off: fast but
unsafe). Note that the paramet@tisediness andMinScore interact, i.e., you may have to
specify a lower minimum score in order to use a greedier Bed&enerally, you can reach a
higher speed with a high greediness and a sufficiently lodver@imum score.

3.2 Searching for Multiple Instances of the Object

All you have to do to search for more than one instance of thecols to set the parameter
NumMatches accordingly. The operatdind_shape model (Or find scaled_shape model)
then returns the matching results as tuples in the parasteies Column, Angle, Scale, and
Score. If you select the value, all matches are returned.

Note that a search for multiple objects is only slightly stshan a search for a single object.

A second parameteMax0Overlap, lets you specify how much two matches may overlap (as a
fraction). Infigure 14h e.g., the two security rings overlap by a factor of appratity 0.2.

In order to speed up the matching as far as possible, howtbeeoyverlap is calculated not for
the models themselves but for their smallest surroundic@ngle. This must be kept in mind
when specifying the maximum overlap; in most cases, thezeddarger value is needed (e.g.,
compardigure 14bandfigure 144.

HALCON 6.1.4

24 Application Note on Shape-Based Matching

a) c)

A y

Figure 14: A closer look at overlapping matches: a) model of the security ring; b) model overlap;
¢) smallest rectangle surrounding the model; d) rectangle overlap; e) pathological
case.

Figure 14eshows a “pathological” case: Even though the rings thenesale not overlap, their
surrounding rectangles do to a large degree. Unfortundteseffect cannot be prevented.

3.3 Searching for Multiple Models Simultaneously

If you are searching for instances of multiple models in algirimage, you can of course
call the operatof ind_shape model (Or find_scaled_shape_model) multiple times. A much
faster alternative is to use the operatdiad _shape models Or find _scaled shape models
instead. These operators expect similar parameters, hatfotlowing differences:

e With the parametatodelIDs you can specify &upleof model IDs instead of a single one.
As when searching for multiple instances (seetion 3.2, the matching result parameters
Row etc. return tuples of values.

e The output parametefodel shows to which model each found instance belongs. Note
that the parameter does not return the model IDs themseliélsdindex of the model ID
in the tupleModelIDs (starting with 0).

e The search is always performed in a single image. Howevercga restrict the search to
a certain region for each model individually by passing aagmtuple (see below for an
example).

e You can either use the same search parameters for each nyxsjedifying single values
for AngleStart etc., or pass a tuple containing individual values for eackdeh

e You can also search for multiple instances of multiple medélyou search for a certain
number of objects independent of their type (model ID), gpehis (single) value in the

HALCON Application Guide, 2005-02-01

3.3 Searching for Multiple Models Simultaneously 25

oL S=Saes
© O 000

Figure 15: Searching for multiple models : a) models of ring and nut; b) search ROlIs for the two
models.

parameteiNumMatches. By passing a tuple of values, you can specify for each model
individually how many instances are to be found. In this éyplou can mix concrete
values with the value; the tuple[3,0], e.g., specifies to return the best 3 instances of the
first model and all instances of the second model.

Similarly, if you specify a single value fdfaxOverlap, the operators check whether a
found instance is overlapped by any of the other instana=pendent of their type. By

specifying a tuple of values, each instance is only checkgihat all other instances of

the same type.

The example HDevelop prograrhdevelop\multiple models.dev uses the operator
find scaled_shape models to search simultaneously for the rings and nuts depicted in
figure 15

Step 1: Create the models

create_scaled_shape_model (ImageROIRing, O, -rad(22.5), rad(45), 0, 0.8,
1.2, 0, ’none’, ’use_polarity’, 60, 10,
ModelIDRing)

create_scaled_shape_model (ImageROINut, O, -rad(30), rad(60), 0, 0.6, 1.4,
0, ’none’, ’use_polarity’, 60, 10, ModelIDNut)

ModelIDs := [ModelIDRing, ModelIDNut]

First, two models are created, one for the rings and one fontlts. The two model IDs are
then concatenated into a tuple using the operadet gn.

Step 2: Specify individual search ROIs

gen_rectanglel (SearchROIRing, 110, 10, 130, Width - 10)
gen_rectanglel (SearchROINut, 315, 10, 335, Width - 10)
SearchR0Is := [SearchROIRing,SearchROINut]

add_channels (SearchROIs, SearchImage, SearchImageReduced)

HALCON 6.1.4

26 Application Note on Shape-Based Matching

In the example, the rings and nuts appear in non-overlagpang of the search image; there-
fore, it is possible to restrict the search space for eachemiodividually. As explained in
section 3.1.1a search ROI corresponds to the extent of the allowed maverieis, narrow
horizontal ROIs can be used in the example fgpae 150).

The two ROIs are concatenated into a region array (tuplegusie operatoconcat_obj and
then “added” to the search image using the operadidrchannels. The result of this operator
is an array of two images, both having the same image malmxgdbmain of the first image is
restricted to the first ROI, the domain of the second imagkéasecond ROI.

Step 3: Find all instances of the two models

find_scaled_shape_models (SearchImageReduced, ModelIDs, [-rad(22.5),
-rad(30)], [rad(45), rad(60)], [0.8, 0.6], [1.2,
1.4], 0.8, 0, 0, ’interpolation’, 0, 0.9,
RowCheck, ColumnCheck, AngleCheck, ScaleCheck,
Score, ModelIndex)

Now, the operatorfind scaled _shape models is applied to the created image array. Be-
cause the two models allow different ranges of rotation aradirsy, tuples are specified for

the corresponding parameters. In contrast, the other paessnare are valid for both models.
Section 4.3.3hows how to access the matching results.

3.4 A Closer Look at the Accuracy

During the matching process, candidate matches are cothpatie instances of the model
at different positions, angles, and scales; for each igstathe resulting matching score is
calculated. If you set the paramefaibPixel t0 *none’, the result parameteRow, Column,
Angle, andScale contain the corresponding values of the best match. In #ss,dhe accuracy
of the position is therefore 1 pixel, while the accuracy a&f tirientation and scale is equal to
the values selected for the parametiatgleStep andScaleStep, respectively, when creating
the model (sesection 2.2.&ndsection 2.2.%

If you set the paramete&fubPixel t0 ’interpolation’, HALCON examines the matching
scores at the neighboring positions, angles, and scaleactbe best match and determines the
maximum by interpolation. Using this method, the posit®thierefore estimated with subpixel
accuracy £ 2—10 pixel in typical applications). The accuracy of the estiethorientation and
scale depends on the size of the object, like the optimakgaior the parametesigleStep
andScaleStep (seesection 2.2.3andsection 2.2.% The larger the size, the more accurately
the orientation and scale can be determined. For exampies rhaximum distance between the
center and the boundary 190 pixel, the orientation is typically determined with an ay

1o

Ofﬁtzl—o.

Recommendation: Because the interpolation is very fast, you can SebPixel to
’interpolation’ in most applications.

When you choose the values’least squares’, ’least_squares high’, or
’least_squares_very high’, a least-squares adjustment is used instead of an interpo-
lation, resulting in a higher accuracy. However, this mdthequires additional computation
time.

Please note that thaccuracy of the estimated position may decrease if you modgifthe

HALCON Application Guide, 2005-02-01

3.4 A Closer Look at the Accuracy 27

model rotation rotation inaccuracy

original

new p. of ref.

p. of ref.

Figure 16: Effect of inaccuracy of the estimated orientation on a moved point of reference.

point of referenceusingset_shape_model_origin! This effect is visualized iriigure 16 As
you can see in the right-most column, an inaccuracy in thenaged orientation “moves” the
modified point of reference, while the original point of nefiece is not affected. The resulting
positional error depends on multiple factors, e.g., theatfbf the reference point and the ori-
entation of the found object. The main point to keep in minth& the error increases linearly
with the distanceof the modified point of reference from the original one (camgpthe two
rows infigure 16.

An inaccuracy in the estimated scale also results in an a@rrtire estimated position, which
again increases linearly with the distance between thefieddind the original reference point.

For maximum accuracy in case the reference point is moveddhition should be determined
using the least-squares adjustment. Note that the accaf#oy estimated orientation and scale
is not influenced by modifying the reference point.

HALCON 6.1.4

28 Application Note on Shape-Based Matching

3.5 How to Optimize the Matching Speed

In the following, we show how to optimize the matching prac@s two steps. Please note
that in order to optimize the matching it is very importanhtive aset of representativetest
images from your application in which the object appears in all allowed variations regayd
its position, orientation, occlusion, and illumination.

Step 1: Assure that all objects are found

Before tuning the parameters for speed, we recommend toditidgs such that the matching
succeeds in all test images, i.e., that all object instaace$ound. If this is not the case when
using the default values, check whether one of the followitgations applies:

Is the object clipped at the image border?

Unfortunately, this failure cannot be prevented, i.e., yaust assure that the object is not
clipped (seesection 3.1.8

Is the search algorithm “too greedy”?

As described irsection 3.1.4in some cases a perfectly visible object is not found if the
Greediness is too high. Select the valueto force a thorough search.

Is the object partly occluded?

If the object should be recognized in this state nevertselesduce the parameter
MinScore.

Does the matching fail on the highest pyramid level?

As described irsection 3.1.3in some cases the minimum score is not reached on the
highest pyramid level even though the score on the lowest isvmuch higher. Test
this by reducingiumLevels in the call tofind shape model. Alternatively, reduce the
MinScore.

Does the object have a low contrast?

If the object should be recognized in this state nevertselesduce the parameter
MinContrast (Operatorcreate_shape modell).

Is the polarity of the contrast inverted globally or locally?

If the object should be recognized in this state nevertkelese the appropriate value for
the parameteretric when creating the model (ssection 2.2.h If only a small part of
the object is affected, it may be better to reduceMheScore instead.

Does the object overlap another instance of the object?

If the object should be recognized in this state nevertselesrease the parameter
Max0Overlap (Seesection 3.2

Are multiple matches found on the same object?

If the object is almost symmetric, restrict the allowed ramg rotation as described in
section 2.2.2r decrease the parameteixOverlap (Seesection 3.2

Step 2: Tune the parameters regarding speed

The speed of the matching process depends both on the matlehathe search parameters.
To make matters more difficult, the search parameters demetite chosen model parameters.
We recommend the following procedure:

HALCON Application Guide, 2005-02-01

3.5 How to Optimize the Matching Speed 29

Increase th&linScore as far as possible, i.e., as long as the matching succeeds.

Now, increase th@reediness until the matching fails. Try reducing théinScore; if
this does not help restore the previous values.

If possible, use a larger value fdtmLevels when creating the model.

Restrict the allowed range of rotation and scale as far asilpesas described in
section 2.2.3andsection 2.2.4 Alternatively, adjust the corresponding parameters when
calling find _shape model or find scaled_shape model.

Restrict the search to a region of interest as describsdation 3.1.1

The following methods are more “risky”, i.e., the matchingynfail if you choose unsuitable
parameter values.

Increase th&linContrast as long as the matching succeeds.

If you a searching for a particularly large object, it sommegs helps to select a higher point
reduction with the paramet@ptimization (Seesection 2.2.2

Increase théngleStep (and theScaleStep) as long as the matching succeeds.

HALCON 6.1.4

30 Application Note on Shape-Based Matching
4 Using the Results of Matching

As results, the operatofind shape model, find scaled shape model etc. return

the position of the match in the parametess andColumn,

its orientation in the parametengle,

the scaling factor in the parametrale, and

the matching score in the parametebre.

The matching score, which is a measure of the similarity betwthe model and the matched
object, can be used “as itis”, since it is an absolute value.

In contrast, the results regarding the position, orieatatand scale are worth a closer look
as they are determined relative to the created model. Béfiisewe introduce HALCON'’s
powerful operators for the so-calledfine transformationsvhich, when used together with the
shape-based matching, enable you to easily realize apphesdike image rectification or the
alignment of ROIs with a few lines of code.

4.1 Introducing Affine Transformations

“Affine transformation” is a technical term in mathematiesdribing a certain group of trans-
formations. Figure 17shows the types that occur in the context of the shape-baa&zhing:
An object can beranslated(moved) along the two axemtated andscaled In figure 17d all
three transformations were applied in a sequence.

Note that for the rotation and the scaling there exists aiappgint, calledfixed pointor point

of reference The transformation is performed around this pointfitjure 17h e.qg., the IC is
rotated around its center, frgure 17earound its upper right corner. The point is called fixed
point because it remains unchanged by the transformation.

The transformation can be thought of as a mathematicalictstn that defines how to calculate
the coordinates of object points after the transformatimrtunately, you need not worry about
the mathematical part; HALCON provides a set of operatoas gt you specify and apply
tranformations in a simple way.

4.2 Creating and Applying Affine Transformations With HALCO N

HALCON allows to transform not only regions, but also imagesd XLD con-
tours by providing the operatoraffine trans region, affine trans image, and
affine_trans_contour_x1d. The transformation ifigure 17dcorresponds to the line

affine_trans_region (IC, TransformedIC, ScalingRotationTranslation,
>false’)

The parameteBcalingRotationTranslation iS a so-callechomogeneous transformation
matrix that describes the desired transformation. You can créa&enatrix by adding sim-
ple transformations step by step. First, an identity masroreated:

hom_mat2d_identity (EmptyTransformation)

HALCON Application Guide, 2005-02-01

4.2 Creating and Applying Affine Transformations With HALCON 31

column/y

Yy row / x

a) b)
[T TTTT

b

d)

f)
1]

Figure 17: Typical affine transformations: a) translation along two axes; b) rotation around the
IC center; c¢) scaling around the IC center; d) combining a, b, and c; e) rotation
around the upper right corner; f) scaling around the right IC center.

Then, the scaling around the center of the IC is added:

hom_mat2d_scale (EmptyTransformation, 0.5, 0.5, RowCenterIC,
ColumnCenterIC, Scaling)

Similarly, the rotation and the translation are added:

hom_mat2d_rotate (Scaling, rad(90), RowCenterIC, ColumnCenterIC,
ScalingRotation)
hom_mat2d_translate (ScalingRotation, 100, 200, ScalingRotationTranslation)

Please note that in these operators the coordinate axeso@led withx andy instead ofRow
andColumn! Figure 17eclarifies the relation.

Tranformation matrices can also be constructed by a sortavietse engineering”. In other
words, if the result of the transformation is known for sonoéngs of the object, you can de-
termine the corresponding transformation matrix. If, etge position of the IC center and
its orientation after the transformation is known, you cattge corresponding matrix via the
operatorvector_angle_to_rigid.

HALCON 6.1.4

32

a) | Column , Column
. I .
model image | search image |
|
| : Angle
|
L]
| Angle =0
N N = o— - _
Row |
| N -
HEHEEE Row
T
I 1
|
| Column | Column
b)
. | . |
model image search image
Angle =0

Row

Application Note on Shape-Based Matching

Row

Figure 18: The position and orientation of a match: a) The center of the ROI acts as the default
point of reference; b) In the model image, the orientation is always O.

vector_angle_to_rigid (RowCenterIC, ColumnCenterIC, O,
TransformedRowCenterIC, TransformedColumnCenterIC,
rad(90), RotationTranslation)

and then use this matrix to compute the transformed region:

affine_trans_region (IC, TransformedIC, RotationTranslation, ’false’)

4.3 Using the Estimated Position and Orientation

There are two things to keep in mind about the position anehtaiion returned in the param-
etersRow, Column, andAngle: First, by defaultthe center of the ROI acts as the point of
reference for both transformations, i.e., the rotation is performeduad this point, and the
returned position denotes the position of the ROI centehénsearch image. This is depicted
in figure 18awith the example of an ROl whose center does not coincide tvéltenter of the
IC.

Secondly, in the model image the object is taken as not htae, its angle i9, even if it
seems to be rotated, e.g., adigure 18b

After creating a model, you can change its point of referemg¢gh the operator
set_shape model_origin. Note that this operator expects not the absolute positidhe
new reference point as parameters, butlistanceto the default reference point! An example
can be foundsection 4.3.4please note that by modifying the point of reference, thaiexy
of the estimated position may decrease @sstion 3.4.

HALCON Application Guide, 2005-02-01

4.3.1 Displaying the Matches 33

4.3.1 Displaying the Matches

Especially during the development of a matching applicatics useful to display the matching
results overlaid on the search image. This can be realizadew steps (see, e.g., the HDevelop
programhdevelop\first_example_shape matching.dev):

Step 1: Determine the point of reference

gen_rectanglel (ROI, Rowl, Columnl, Row2, Column2)
area_center (ROI, Area, CenterROIRow, CenterROIColumn)

You can determine the center of the ROI, i.e., the point oknezice, with the operator
area_center.

Step 2: Create an XLD contour containing the model

inspect_shape_model (ImageROI, ShapeModelImages, ShapeModelRegions, 8, 30)
ShapeModelRegion := ShapeModelRegions[1]
gen_contours_skeleton_x1d (ShapeModelRegion, ShapeModel, 1, ’filter’)

Below, we want to display the model at the extracted posaiath orientation. The correspond-
ing region can be accessed via the operatsfpect_shape model. However, if you call the
operator withNumLevels > 1 as in the example, an array (tuple) of regions is returnéith, w
the desired region at the first position; you can select thg@nefrom the array via the operator
select_obj. We recommend to transform this region into an XLD contoungshe operator
gen_contours_skeleton x1d because XLD contours can be transformed more precisely and
quickly.

Step 3: Determine the affine transformation

find_shape_model (SearchImage, ModelID, O, rad(360), 0.8, 1, 0.5,
’interpolation’, 0, 0.9, RowCheck, ColumnCheck,
AngleCheck, Score)
if (|Score| = 1)
vector_angle_to_rigid (CenterROIRow, CenterROIColumn, O, RowCheck,
ColumnCheck, AngleCheck, MovementOfObject)

After the call of the operatafind_shape model, the results are checked; if the matching failed,
empty tuples are returned in the paramegersre etc. For a successful match, the correspond-
ing affine transformation can be constructed with the operaictor_angle to_rigid from

the movement of the center of the ROI (s=etion 4.2

Step 4: Transform the XLD

affine_trans_contour_xld (ShapeModel, ModelAtNewPosition,
MovementOfObject)
dev_display (ModelAtNewPosition)

Now, you can apply the tranformation to the XLD version of thedel using the operator
affine _trans_contour_x1d and display itfigure 2shows the result.

HALCON 6.1.4

34 Application Note on Shape-Based Matching

3
)

Figure 19: Displaying multiple matches; the used model is depicted in figure 12a.

4.3.2 Dealing with Multiple Matches

If multiple instances of the object are searched and foureparameterBow, Column, Angle,
andScore containtuples The HDevelop programhdevelop\multiple_objects.dev shows
how to access these results in a loop:

Step 1: Determine the affine transformation

find_shape_model (SearchImage, ModelID, 0, rad(360), 0.75, 0, 0.55,
’interpolation’, 0, 0.8, RowCheck, ColumnCheck,
AngleCheck, Score)
for j := 0 to [Score| - 1 by 1
vector_angle_to_rigid (CenterROIRow, CenterROIColumn, O,
RowCheck[j], ColumnCheck[j], AngleCheckl[j],
MovementOfObject)

The transformation corresponding to the movement of thelmiatdetermined as in the previous
section; the only difference is that the position of the paihreference is extracted from the
tuple via the loop variable.

Step 2: Use the transformation

affine_trans_point_2d (MovementOfObject, CenterROIRow - 120 + 0.5,
CenterROIColumn + 0.5, RowArrowHead,
ColumnArrowHead)
disp_arrow (WindowHandle, RowCheck[j], ColumnCheck[j],
RowArrowHead - 0.5, ColumnArrowHead - 0.5, 2)

In this example, the transformation is also used to disptegreow that visualizes the orientation
(seefigure 19.

Note that the operatatffine trans point_2d and the HALCON regions (and XLDs) use
different definitions of the position of a pixel For a region, a pixel is positioned at its middle,
for affine trans point_2d at its upper left corner. Therefore, 5 must be added to the pixel
coordinates before transforming them and subtracted dgdare creating the regions.

HALCON Application Guide, 2005-02-01

4.3.3 Dealing with Multiple Models 35

4.3.3 Dealing with Multiple Models

When searching for multiple models simultaneously as dasdrin section 3.3 it is use-

ful to store the information about the models, i.e., the nexiee point and the model re-
gion or XLD contour, in tuples. The following example coderas from the already partly
described HDevelop programdevelop\multiple models.dev, which uses the operator
find scaled shape models to search simultaneously for the rings and nuts depicted in
figure 15

Step 1: Inspect the models

inspect_shape_model (ImageROIRing, PyramidImage, ModelRegionRing, 1, 30)
gen_contours_skeleton_x1ld (ModelRegionRing, ShapeModelRing, 1, ’filter’)
area_center (ModelROIRing, Area, CenterROIRowRing, CenterROIColumnRing)
inspect_shape_model (ImageROINut, PyramidImage, ModelRegionNut, 1, 30)
gen_contours_skeleton_x1d (ModelRegionNut, ShapeModelNut, 1, ’filter’)
area_center (ModelROINut, Area, CenterROIRowNut, CenterROIColumnNut)

As in the previous sections, the XLD contours correspontbrie two models are created with
the operatordnspect_shape model andgen_contours_skeleton x1d, the reference points
are determined usingrea_center.

Step 2: Save the information about the models in tuples

NumContoursRing := |ShapeModelRing]

NumContoursNut := |ShapeModelNut |

ShapeModels := [ShapeModelRing,ShapeModelNut]
StartContoursInTuple := [1, NumContoursRing+1]
NumContoursInTuple := [NumContoursRing, NumContoursNut]
CenterROIRows := [CenterROIRowRing, CenterROIRowNut]
CenterROIColumns := [CenterROIColumnRing, CenterROIColumnNut]

To facilitate the access to the shape models later, the XUidocws and the reference points
are saved in tuples in analogy to the model IDs @astion 3.3 However, when concatenating
XLD contours with the operatotoncat_obj, one must keep in mind that XLD objects are
already tuples as they may consist of multiple contours! ciesas the contours belonging to a
certain model, you therefore need the number of contoursnod@el and the starting index in
the concatenated tuple. The former is determined usingpkeatorcount_obj; the contours
of the ring start with the index 1, the contours of the nut wiith index 1 plus the number of
contours of the ring.

HALCON 6.1.4

36 Application Note on Shape-Based Matching

Step 3: Access the found instances

find_scaled_shape_models (SearchImageReduced, ModelIDs, [-rad(22.5),
-rad(30)], [rad(45), rad(60)], [0.8, 0.6], [1.2,
1.4], 0.8, 0, 0, ’interpolation’, 0, 0.9,
RowCheck, ColumnCheck, AngleCheck, ScaleCheck,
Score, ModelIndex)
for i := 0 to [Score| - 1 by 1
Model := ModellIndex[i]
vector_angle_to_rigid (CenterROIRows[Model], CenterROIColumns[Model],
0, RowCheck[i], ColumnCheck[i], AngleCheckl[i],
MovementOfObject)
hom_mat2d_scale (MovementOfObject, ScaleCheck[i], ScaleCheck[i],
RowCheck[i], ColumnCheck[i], MoveAndScalingOfObject)
copy_obj (ShapeModels, ShapeModel, StartContoursInTuple [Model],
NumContoursInTuple [Modell)
affine_trans_contour_x1ld (ShapeModel, ModelAtNewPosition,
MoveAndScalingOfObject)
dev_display (ModelAtNewPosition)
endfor

As already described isection 4.3.2in case of multiple matches the output paramekers
etc. contain tuples of values, which are typically accessealoop, using the loop variable
as the index into the tuples. When searching for multiple @®d second index is involved:
The output parameteéfodel indicates to which model a match belongs by storing the irdex
the corresponding model ID in the tuple of IDs specified ingheameteModelIDs. This may
sound confusing, but can be realized in an elegant way indtie:d-or each found instance, the
model ID index is used to select the corresponding inforomeftiom the tuples created above.

As already noted, the XLD representing the model can coon§istultiple contours; therefore,
you cannot access them directly using the operaétect_obj. Instead, the contours belong-
ing to the model are selected via the operatgiy_obj, specifying the start index of the model
in the concatenated tuple and the number of contours as pteesn Note thatopy_obj does
not copy the contours, but only the corresponding HALCONeots, which can be thought of
as references to the contours.

4.3.4 Aligning Other ROIs

The results of the matching can be usedlign ROIs for other image processing steps. i.e., to
position them relative to the image part acting as the motlels method is very useful, e.g.,
if the object to be inspected is allowed to move or if multiplstances of the object are to be
inspected at once as in the example application descrided/be

In the example applicationdevelop\align measurements.dev the task is to inspect razor
blades by measuring the width and the distance of theirlftedtigure 20ashows the model
ROI, figure 20bthe corresponding model region.

The inspection task is realized with the following steps:

HALCON Application Guide, 2005-02-01

4.3.4 Aligning Other ROIs 37

a)

d)

Figure 20: Aligning ROIs for inspecting parts of a razor: a) ROIs for the model; b) the model; c)
measuring ROIs; d) inspection results with zoomed faults.

Step 1: Position the measurement ROIs for the model blade

RectlRow := 244

Rect1Col := 73

DistColRectlRect2 := 17

Rect2Row := RectlRow

Rect2Col := Rectl1Col + DistColRectlRect?2

RectPhi := rad(90)
RectLengthl := 122
RectLength2 := 2

First, two rectangular measurement ROIs are placed oveedie of the razor blade acting as
the model as shown ifigure 20¢

HALCON 6.1.4

38 Application Note on Shape-Based Matching

Step 2: Move the reference point to the center of the first mease ROI

DistRectl1CenterRow := RectlRow - CenterROIRow
DistRect1CenterCol := RectlCol - CenterROIColumn
set_shape_model_origin (ModelID, DistRectlCenterRow, DistRectiCenterCol)

Now, the reference point of the model is moved to the centéheffirst measure ROI using
the operatoset_shape model origin. As already mentioned, the operator expects not the
absolute position of the new reference point, but its distdn the default reference point. Note
that this step is only included to show how to use_shape model_origin; as described in
section 3.4the accuracy of the estimated position may decrease wheg asnodified point

of reference.

Step 3: Find all razor blades

find_shape_model (SearchImage, ModelID, 0, O, 0.8, 0, 0.5, ’interpolation’,
0, 0.7, RowCheck, ColumnCheck, AngleCheck, Score)

Then, all instances of the model object are searched foreimtiage.

Step 4: Determine the affine transformation

for i := 0 to |Score|-1 by 1
vector_angle_to_rigid (RectlRow, Recti1Col, O, RowCheck[i],
ColumnCheck[i], AngleCheck[i],
MovementOfObject)

For each razor blade, the transformation representingpggipn and orientation is calculated.
Because the reference point was moved to the center of thenBiasure ROI, these coordinates
are now used in the call teector_to_rigid.

Step 5: Create measurement objects at the corresponding ptisns

RectPhiCheck := RectPhi + AngleCheck[i]
gen_measure_rectangle2 (RowCheck[i], ColumnCheck[i],
RectPhiCheck, RectLengthl, RectlLength2,
Width, Height, ’bilinear’,
MeasureHandlel)
affine_trans_point_2d (MovementOfObject, Rect2Row+0.5,
Rect2C0l1+0.5, Rect2RowTmp, Rect2ColTmp)
Rect2RowCheck := Rect2RowTmp-0.5
Rect2ColCheck := Rect2ColTmp-0.5
gen_measure_rectangle2 (Rect2RowCheck, Rect2ColCheck,
RectPhiCheck, RectLengthl, RectLength2,
Width, Height, ’bilinear’,
MeasureHandle2)

Because the center of the first measure ROI serves as themrregepoint of the model, the
returned position of the match can be used directly in thetoalen measure_rectangle?2.
Unfortunately, there is only one point of reference. Therefthe new position of the second
measure ROI must be calculated explicitly using the operatéine trans point_2d. AS
remarked irsection 4.3.2the code adding and subtracting 0.5 to and from the pointioates
is necessary because the operattfine trans point_2d and the HALCON regions (and
XLDs) use different definitions of the position of a pixel

HALCON Application Guide, 2005-02-01

4.3.5 Rectifying the Search Results 39

In the example application, the individual razor bladesoalg translated but not rotated relative
to the model position. Instead of applying the full affinenstormation to the measure ROIs
and then creating new measure objects, one can therefotieausperatotranslate measure

to translate the measure objects themselves. The exanggeapr contains the corresponding
code; you can switch between the two methods by modifyingravie at the top of the pro-
gram.

Step 6: Measure the width and the distance of the “teeth”

measure_pairs (SearchImage, MeasureHandlel, 2, 25, ’negative’,
’all’, RowEdgell, ColEdgell, Ampll, RowEdge21,
ColEdge21, Amp21, Widthl, Distancel)

measure_pairs (SearchImage, MeasureHandle2, 2, 25, ’negative’,
’all’, RowEdgel2, ColEdgel2, Ampl2, RowEdge22,
ColEdge22, Amp22, Width2, Distance2)

Now, the actual measurements are performed using the opaeaisure pairs.

Step 7: Inspect the measurements

NumberTeethl := |Width1]
if (NumberTeethl < 37)
for j := 0 to NumberTeethl - 2 by 1
if (Distancel[j] > 4.0)
RowFault := round(0.5%(RowEdgel1l[j+1] + RowEdge21[j]))
ColFault := round(0.5*(ColEdgell[j+1] + ColEdge21[jl))
disp_rectangle?2 (WindowHandle, RowFault, ColFault, O,
4, 4)

Finally, the measurements are inspected. If a “tooth” isdbort or missing completely, no
edges are extracted at this point resulting in an incornecther of extracted edge pairs. In this
case, the faulty position can be determined by checking istartte of the teethFigure 20d
shows the inspection results for the example.

Please note that the example program is not able to dispéafatht if it occurs at the first or
the last tooth.

4.3.5 Rectifying the Search Results

In the previous section, the matching results were usedteree the so-callefbrward trans-
formation i.e., how objects are transformed from the model into tle@deimage. Using this
transformation, ROIs specified in the model image can betipasd correctly in the search
image.

You can also determine thaverse transformatiomvhich transforms objects from the search
image back into the model image. With this transformatiany ganrectify the search image
(or parts of it), i.e., transform it such that the matchedeobis positioned as it was in the model
image. This method is useful if the following image procegsstep is not invariant against
rotation, e.g., OCR or the variation model. Note that imagmification can also be useful
beforeapplying shape-based matching, e.g., if the camera ols#reescene under an oblique
angle; seesection 5.Xfor more information.

HALCON 6.1.4

40 Application Note on Shape-Based Matching

b)
Acni/lIc
Contents
* ActivWiew
* ActivZoom, ActivLineProfile
* ActivGeoCalib, ActivAlignment
* ActivMeasure
* ActivBarcode :
c) d)
——— . |
NISE
61404
All rights reserved.
e) 6140

Figure 21: Rectifying the search results: a) ROIs for the model and for the number extraction;
b) the model; c) number ROI at matched position; d) rectified search image (only
relevant part shown); e) extracted numbers.

The inverse transformation can be determined and appliea ifiew steps, which are
described below; in the corresponding example applicabbrthe HDevelop program
hdevelop\rectify_results.dev the task is to extract the serial number on CD covers (see
figure 2J).

Step 1. Calculate the inverse transformation

hom_mat2d_invert (MovementOfObject, InverseMovementOfObject)

You can invert a transformation easily using the operatarmat2d_invert.

HALCON Application Guide, 2005-02-01

4.3.5 Rectifying the Search Results 41

Step 2: Rectify the search image

affine_trans_image (SearchImage, RectifiedSearchImage,
InverseMovement0fObject, ’constant’, ’false’)

Now, you can apply the inverse transformation to the seanchgée using the operator
affine_trans_image. Figure 21dshows the resulting rectified image of a different CD; unde-
fined pixels are marked in grey.

Step 3: Extract the numbers

reduce_domain (RectifiedSearchImage, NumberROI,
RectifiedNumberROIImage)

threshold (RectifiedNumberROIImage, Numbers, 0, 128)

connection (Numbers, IndividualNumbers)

Now, the serial number is positioned correctly within thegoral ROl and can be extracted
without problemsFigure 21eshows the result, which could then, e.g., be used as the faput
OCR.

Unfortunately, the operatarffine_trans_image transforms the full image even if you restrict
its domain with the operatareduce_domain. In a time-critical application it may therefore
be necessary to crop the search image before transforminghi corresponding steps are
visualized infigure 22

Step 1: Crop the search image

smallest_rectanglel (NumberROIAtNewPosition, Rowl, Columnl, Row2,
Column?2)
crop_rectanglel (SearchImage, CroppedNumberROIImage, Rowl, Columni,
Row2, Column?2)

First, the smallest axis-parallel rectangle surroundimg transformed number ROI is com-
puted using the operatemallest_rectanglel, and the search image is cropped to this part.
Figure 22bshows the resulting image overlaid on a grey rectangle tibtéie the comparison
with the subsequent images.

Step 2: Create an extended affine transformation

hom_mat2d_translate (MovementOfObject, - Rowl, - Columnli,
MoveAndCrop)
hom_mat2d_invert (MoveAndCrop, InverseMoveAndCrop)

In fact, the cropping can be interpreted as an additionalatfiansformation: a translation by
the negated coordinates of the upper left corner of the angpectangle (seégure 223. We
therefore “add” this transformation to the transformati@scribing the movement of the object
using the operataiom mat2d_translate, and then invert this extended transformation with
the operatohom mat2d_invert.

Step 3: Transform the cropped image

affine_trans_image (CroppedNumberROIImage, RectifiedROIImage,
InverseMoveAndCrop, ’constant’, ’true’)
reduce_domain (RectifiedROIImage, NumberROI,
RectifiedNumberROIImage)

HALCON 6.1.4

42 Application Note on Shape-Based Matching

i Columnl
T
a) |
l
translate(-Row1,-Column1) :
I
I
I
l
I
l
I
I
I
l
&l
|
— T S T e — U e s T T T, — : ;
Row1l
b) 6;405“54 c) d)
| S — .
:] 61404 61404

Figure 22: Rectifying only part of the search image: a) smallest image part containing the ROI,;
b) cropped search image; c) result of the rectification; d) rectified image reduced to
the original number ROI.

Using the inverted extended transformation, the croppedjercan easily be rectified with the
operatoraffine_trans_image (figure 22¢ and then be reduced to the original number ROI
(figure 2249 in order to extract the numbers.

4.4 Using the Estimated Scale

Similarly to the rotation (comparsection 4.3, the scaling is performed around the center of
the ROI —if you didn't useset_shape_model_origin, thatis. This is depicted ifigure 23aat
the example of an ROl whose center does not coincide withehtec of the IC.

The estimated scale, which is returned in the paransetere, can be used similarly to the posi-
tion and orientation. However, there is no convenienceaipetike vector_angle to rigid
that creates an affine transformation including the scalexefore, the scaling must be added
separately. How to achieve this is explained below; in theesponding example HDevelop
programhdevelop\multiple_scales.dev, the task is to find nuts of varying sizes and to
determine suitable points for grasping them (Sgere 29.

HALCON Application Guide, 2005-02-01

4.4 Using the Estimated Scale 43

| Column , Column

. I .
model image | search image |

| Scale=1 —Scale = 0.5

Figure 23: The center of the ROI acts as the point of reference for the scaling.

0 O -0

d)

Figure 24: Determining grasping points on nuts of varying sizes: a) ring-shaped ROI; b) model,
¢) grasping points defined on the model nut; d) results of the matching.

Step 1. Specify grasping points

RowUpperPoint := 284
ColUpperPoint := 278
RowLowerPoint := 362
ColLowerPoint := 278

In the example program, the grasping points are specifiedttirin the model image; they are
marked with arrows ifigure 24c

Step 2: Determine the complete transformation

find_scaled_shape_model (SearchImage, ModelID, -rad(30), rad(60), 0.6, 1.4,
0.9, 0, 0, ’interpolation’, 0, 0.8, RowCheck,
ColumnCheck, AngleCheck, ScaleCheck, Score)
for i := 0 to [Score| - 1 by 1
vector_angle_to_rigid (CenterROIRow, CenterROIColumn, O, RowCheck[i],
ColumnCheck[i], AngleCheck[i], MovementOfObject)
hom_mat2d_scale (MovementOfObject, ScaleCheck[i], ScaleCheck[i],
RowCheck[i], ColumnCheck[i], MoveAndScalingOfObject)
affine_trans_contour_x1d (ShapeModel, ModelAtNewPosition,
MoveAndScalingOfObject)

HALCON 6.1.4

44 Application Note on Shape-Based Matching

After the matching, first the translational and rotatioreattf the transformation is determined
with the operatorvector_angle to_rigid as in the previous sections. Then, the scaling is
added using the operathsm mat2d_scale. Note that the position of the match, i.e., the trans-
formed center of the ROI, is used as the point of reference bgcomes necessary because the
scaling is performed “after” the translation and rotatidhe resulting, complete transformation
can be used as before to display the model at the positioreaohttiches.

Step 3: Calculate the transformed grasping points

affine_trans_point_2d (MoveAndScalingOfObject, RowUpperPoint+0.5,
ColUpperPoint+0.5, TmpRowUpperPoint,
TmpColUpperPoint)

affine_trans_point_2d (MoveAndScalingOfObject, RowLowerPoint+0.5,
ColLowerPoint+0.5, TmpRowLowerPoint,
TmpColLowerPoint)

RowUpperPointCheck := TmpRowUpperPoint-0.5
ColUpperPointCheck := TmpColUpperPoint-0.5
RowLowerPointCheck := TmpRowLowerPoint-0.5
ColLowerPointCheck := TmpColLowerPoint-0.5

Of course, the affine transformation can also be appliedtergioints in the model image with
the operatonffine trans_point_2d. In the example, this is used to calculate the position of
the grasping points for all nuts; they are marked with arrowigure 24d

As noted insection 4.3.2the code adding and subtracting 0.5 to and from the pointdoates
is necessary because the operattfine trans point_2d and the HALCON regions (and
XLDs) use different definitions of the position of a pixel

5 Miscellaneous

5.1 Adapting to a Changed Camera Orientation

As shown in the sections above, HALCON's shape-based nmgciiows to localize objects
even if their position and orientation in the image or thealse changes. However, the shape-
based matching fails if the camera observes the scene undssligue angle, i.e., if it is not
pointed perpendicularily at the plane in which the objects@) because an object then appears
distorted due to perspective projection; even worse, tsi@dion changes with the position and
orientation of the object.

In such a case we recommend to rectify imalgefreapplying the matching. This is a three-
step process: First, you musalibrate the camera, i.e., determine its position and orienta-
tion and other parameters, using the operat@iera_calibration. Secondly, the calibration
data is used to create a mapping function via the opegainrimage_to_world_plane map,
which is then applied to images with the operatep_image. For more information please
refer to the HDevelop example progragm world plane.dev, which can be found in the
hdevelop\Applications\FA of the directory/,HALCONROOTY \examples.

HALCON Application Guide, 2005-02-01

5.2 Reusing Models 45

5.2 Reusing Models

If you want to reuse created models in other HALCON applaradi all you need to do is to

store the relevant information in files and then read it aghine following example code stems
from the HDevelop prograrhdevelop\reuse_model.dev. First, a model is created and the
corresponding XLD contour and the reference point are detesd:

create_scaled_shape_model (ImageROI, O, -rad(30), rad(60), 0, 0.6, 1.4, O,

’none’, ’use_polarity’, 60, 10, ModellID)
inspect_shape_model (ImageROI, ShapeModellImage, ShapeModelRegion, 1, 30)
gen_contours_skeleton_x1d (ShapeModelRegion, ShapeModel, 1, ’filter’)
area_center (ModelROI, Area, CenterROIRow, CenterROIColumn)

Then, this information is stored in files using the operat@tite_shape model (for the model),
write_contour_x1d arc_info (for the XLD contour), andirite_tuple (for the reference
point, whose coordinates have been concatenated intoeftrgt):

write_shape_model (ModelID, ModelFile)
write_contour_xld_arc_info (ShapeModel, XLDFile)
ReferencePoint := [CenterROIRow, CenterROIColumn]
write_tuple (ReferencePoint, RefPointFile)

In the example program, all shape models are cleared toseqiréhe start of another applica-
tion.

The model, the XLD contour, and the reference point are naad reom the files using
the operatorgead_shape_model, read_contour_xld_arc_info, and read_tuple, respec-
tively. Furthermore, the parameters used to create the Inameeaccessed with the operator
get_shape_model_params:

read_shape_model (ModelFile, ReusedModelID)

read_contour_x1d_arc_info (ReusedShapeModel, XLDFile)

read_tuple (RefPointFile, ReusedReferencePoint)

ReusedCenterROIRow := ReusedReferencePoint [0]

ReusedCenterR0OICol := ReusedReferencePoint[1]

get_shape_model_params (ReusedModelID, NumLevels, AngleStart, AngleExtent,
AngleStep, ScaleMin, ScaleMax, ScaleStep, Metric,
MinContrast)

Now, the model can be used as if it was created in the apmic#self:

find_scaled_shape_model (SearchImage, ReusedModelID, AngleStart,
AngleExtent, ScaleMin, ScaleMax, 0.9, 0, O,
’interpolation’, 0, 0.8, RowCheck, ColumnCheck,
AngleCheck, ScaleCheck, Score)
for i := 0 to [Score| - 1 by 1
vector_angle_to_rigid (ReusedCenterROIRow, ReusedCenterR0OICol, O,
RowCheck[i], ColumnCheck[i], AngleCheck[i],
MovementOfObject)
hom_mat2d_scale (MovementOfObject, ScaleCheck[i], ScaleCheck[i],
RowCheck[i], ColumnCheck[i], MoveAndScalingOfObject)
affine_trans_contour_x1ld (ReusedShapeModel, ModelAtNewPosition,
MoveAndScalingOfObject)
dev_display (ModelAtNewPosition)
endfor

HALCON 6.1.4

46

HALCON Application Guide, 2005-02-01

Application Note on Shape-Based Matching

Application Note

The Art of Image Acquisition

Provided Functionality

> Connecting to simple and complex configurations of framélgeas and cameras
> Acquiring images in various timing modes

> Configuring frame grabbers and cameras online

Involved Operators

open_framegrabber

info_framegrabber

grab_image, grab_image_async, grab_image_start
set_framegrabber_param, get_framegrabber_param
close_framegrabber, close_all_framegrabbers

gen_imagel, gen_image3, gen_imagel_extern

47

48 Application Note on Image Acquisition
Overview

Obviously, the acquisition of images is a task to be solvedllimachine vision applications.
Unfortunately, this task mainly consists of interactinghspecial, non-standardized hardware
in form of the frame grabber board. To let you concentrateheraictual machine vision prob-
lem, HALCON already provides interfaces performing thigemction for a large number of
frame grabbers (sesection).

Within your HALCON application, the task of image acquisitiis thus reduced to a few lines
of code, i.e., a few operator calls, as can be sesedtion 2 What's more, this simplicity is not
achieved at the cost of limiting the available functionaliysing HALCON, you can acquire
images from various configurations of frame grabbers ancecasn(sesection 3 in different
timing modes (sesection .

Unless specified otherwise, the example programs can bedfonnthe subdirectory
image _acquisition Of the directory/,HALCONROOT%\examples\application_guide. Note
that most programs are preconfigured to work with a certaibh &AN frame grabber interface;
in this case, the name of the program contains the name oftiérédce. To use the program with
another frame grabber, please adapt the parts which opaotimection to the frame grabber.
More example programs for the different HALCON frame grabbtrfaces can be found in the
subdirectoryhdevelop\Image\Framegrabber of the directory,HALCONROOT%\examples.

Please refer to thdALCON/C User’s Manuaand theHALCON/C++ User’s Manualor infor-
mation about how to compile and link the C and C++ example iaiog; among other things,
they describe how to use the example UNIX makefiles which ediotind in the subdirectories
c and cpp of the directory/HALCONROOTY\examples. Under Windows, you can use Visual
Studio workspaces containing the examples, which can belfouthe subdirectory586-nt4
parallel to the source files.

HALCON Application Guide, 2005-02-01

49

Contents
The Philosophy Behind the HALCON Frame Grabber Interfaces 50
AFirstExample L 51
Connecting to Your Frame Grabber 52
3.1 Opening a Connection to a Specified Configuration. 52
3.2 Connecting to Multiple Boards and Cameras. 54
3.3 Requesting Information About the Frame Grabber Interfa 57
4 Configuring the Acquisition 58
4.1 General Parameters. 58
4.2 Special Parameters. L 59
4.3 Fixed vs. Dynamic Parameters 60
5 The Various Modes of GrabbingIimages. 61
5.1 Real-Time Image Acquisition. 61
5.2 Using an External Trigger. 69
5.3 Acquiring Images From Multiple Cameras 71
6 Miscellaneous e 73
6.1 Acquiring Images From Unsupported Frame Grabbers. 73
6.2 ErrorHandling. 74
6.3 LineScanCameras. 78
A HALCONImMages e e e 81
A.1 The Philosophy of HALCONImages 81
A.2 Image Tuples (Arrays). o v o i i 82
A.3 HALCON Operators for Handling Images. 82
B Parameters Describingthelmage 84
B.1 Image Size. e 84
B.2 Framesvs. Fields. 85
B.3 ImageData. e 87

HALCON 6.1.4

50 Application Note on Image Acquisition

1 The Philosophy Behind the HALCON Frame Grabber
Interfaces

From the point of view of an user developing software for a Iniae vision application, the
acquisition of images is only a prelude to the actual machisien task. Of course it is impor-
tant that images are acquired at the correct moment or nadiethat the camera and the frame
grabber are configured suitably, but these tasks seem te®bwertary, or at least independent
of the used frame grabber.

The reality, however, looks different. Frame grabbersdiffidely regarding the provided func-
tionality, and even if their functionality is similar, th&®&s (software development kiprovided
by the frame grabber manufacturers do not follow any stahd&herefore, if one decides to
switch to a different frame grabber, this probably meansgvaite the image acquisition part of
the application.

HALCON's answer to this problem are itiame grabber interface@HFGI) which are provided
for currently more than 50 frame grabbers in forndghamically loadable librarie§windows
NT/2000/XP: DLLs; UNIX: shared libraries). HALCON frameajyber interfaces bridge the
gap between the individual frame grabbers and the HALCOMNutih which is independent of
the used frame grabber, computer platform, and programianggage (sefgure 25. In other
words, they

e provide a standardized interface to the HALCON user in fofrhloHALCON operators,
and

e encapsulate details specific to the frame grabber, i.eintBection with the frame grab-
ber SDK provided by the manufacturer.

Therefore, if you decide to switch to a different frame grablall you need to do is to install
the corresponding driver and SDK provided by the manufactand to use different parameter
values when calling the HALCON operators; the operatorsgaves stay the same.

camera 00— - ---- o
computer L

HALCON image processing library
halcon.dIl & halconc.dll / halconcpp.dll / halconx.dll

frame
grabber

software

HALCON xyz frame grabber interface
HFGxyz.dll

I
————— frame grabber driver & SDK

I

Figure 25: From the camera to a HALCON application.

In fact, the elementary tasks of image acquisition are @by two HALCON operators:

e open_framegrabber connects to the frame grabber and sets general parametgershe
type of the used camera or the port the camera is connecttgbto,

e grab_image (Or grab_image async, seesection 5.%or the difference) grabs images.

HALCON Application Guide, 2005-02-01

2 A First Example 51

Figure 26: a) Acquired image; b) processed image (automatic segmentation).

If a frame grabber provides additional functionality, e.gn-board modification of the im-
age signal, special grabbing modes, or digital output Jineg available via the operator
set_framegrabber_param (Seesection 4.

Note, that for some frame grabbers not the full functiogalkt available within HALCON;
please refer to the corresponding online documentatiorclwbhan be found in the direc-
tory %HALCONROOT?\doc\html\manuals or via the HALCON folder in the Windows start
menu (if you installed the documentation). The latest imfation can be found under
http://www.mvtec.com/halcon/framegrabber.

If the frame grabber you want to use is not (yet) supported BLEON, you can nevertheless
use it together with HALCON. Please referdection 6.Xfor more details.

2 A First Example

In this section we start with a simple image acquisition taskich uses the frame
grabber in its default configuration and the standard grapbnode. The grabbed im-
ages are then segmented. To follow the example activelyt 8ta HDevelop program
hdevelop\first_example_acquisition_ids.dev; the steps described below start after the
initialization of the application (pre once to reach this point). Note that the program is
preconfigured for the HALCON frame grabber interfa®s; to use it with a different frame
grabber, please adapt the parts which open the connection.

Step 1: Connect to the frame grabber

open_framegrabber (FGName, 1, 1, 0, 0, 0, O, ’default’, -1, ’gray’, -1,
’false’, ’ntsc’, ’default’, -1, -1, FGHandle)

When opening the connection to your frame grabber using pleeadoropen_framegrabber,

the main parameter is thame of the corresponding HALCON frame grabber interface. As a
result, you obtain a so-callddhndle(FGHand1e) which acts as your access to the frame grabber,
e.g., in calls to the operatgtab_image.

HALCON 6.1.4

52 Application Note on Image Acquisition

In the example, default values are used for most other pdeasn€ default’ or -1);
section 4.%akes a closer look at this topic. How to connect to more cemfsthme grabber and
camera configurations is describedsgrction 3

Step 2: Grab an image
grab_image (Image, FGHandle)

After successfully connecting to your frame grabber yougraub images by calling the operator
grab_image with the corresponding handiGHandle. More advanced modes of grabbing
images are described gection 5

Step 3: Grab and process images in a loop

while (Button # 1)

grab_image (Image, FGHandle)

auto_threshold (Image, Regions, 4)

connection (Regions, ConnectedRegions)

get_mposition (WindowHandleButton, Row, Column, Button)
endwhile

In the example, the grabbed images are then automaticajijmesated using the operator
auto_threshold (seefigure 26. This is done in a loop which can be exited by clicking into a
window with the left mouse button.

3 Connecting to Your Frame Grabber

In this section, we show how to connect to different confitjares of frame grabber(s) and
camera(s), ranging from the simple case of one camera ctath&rone frame grabber board
to more complex ones, e.g., multiple synchronized camemasexcted to one or more boards.

3.1 Opening a Connection to a Specified Configuration

With the operatofpen_framegrabber you open a connection to a frame grabber, or to be
more exact, via a frame grabber to a camera. This connedidescribed by four parameters
(seefigure 27): First, you select a frame grabber (family) with the partengame. If multiple
boards are allowed, you can select one with the parandeteice; depending on the frame
grabber interface, this parameter can contain a stringithesg the board or simply a number
(in form of a string!).

Typically, the camera can be connected to the frame grallsbiferent ports, whose number
can be selected via the paramekett (in rare casedineIn). The parameteCameraType
describes the connected camera: For analog cameras, tamgtar usually specifies the used
signal norm, e.g.;ntsc’; more complex frame grabber interfaces use this paranesaiéct

a camera configuration file.

As a resultopen_framegrabber returns éhandlefor the opened connection in the parameter
FGHandle. Note that if you use HALCON’s COM or € interface and call the operator via
the classeHFramegrabberX or HFramegrabber, no handle is returned because the instance of
the class itself acts as your handle.

HALCON Application Guide, 2005-02-01

3.1 Opening a Connection to a Specified Configuration 53

== SDK & HFGI A

camera type abc

/ camera type xyz

v which frame grabber? which board? which port? which camera?
FGHandle Name Device Port CameraType

Figure 27: Describing a connection with the parameters of open framegrabber .

i HDevelop - first_example_acquisition_ids.dev
File Edit Ezecute Visualization Operators Suggestions 'Window Help

o= = = T | B sl el e R N

Wity | 640
Height: 480

Mame: |IDS

Pixsl |roh IB_
Port: I 0
Device: I default
Trigger: IF

Cnline

check box to start online grabbing

A

Status: I

i Yariable Watch :
leanic Variahles:

-
Image

double-click handle to open dialog

Region Connecte~

Cortrol Yariablss?

Py X
«] 5

Figure 28: Online grabbing in HDevelop .

In HDevelop, you can quickly check an opened connection hybteclickingFGHandle in

the Variable Window as shown figure 28 A dialog appears which describes the status of the
connection. If you check the corresponding box, imagesaelged online and displayed in the
Graphics Window. This mode is very useful to setup your visgstem (illumination, focus,
field of view).

HALCON 6.1.4

54 Application Note on Image Acquisition

3.2 Connecting to Multiple Boards and Cameras

Most HALCON frame grabbers interfaces allow to use multifpeeme grabber boards and
cameras. However, there is more than one way to connect aanaed boards and to ac-
cess these configurations from within HALCON. Below, we diggcthe different configura-
tions; please check the online documentation of the HALC@RIrface for your frame grabber
(see);HALCONROOT?;\doc\html\manuals, the HALCON folder in the Windows start menu, or
http://www.mvtec.com/halcon/framegrabber) which configurations it supports.

a) b)
handle 0_ __| frame grabber m
board 0
handle O_ __| frame grabber M
board 0
handle 1_ __| frame grabber m
board 1
c) d)
port 0
handle 0___ frame grabber —-<
e m handle 0 frame grabber m
port switch board 0 port 1
handie 2 | frame grabber m —-
board 1
e) f) port 0 - ‘
_ frame grabber
m : board 0 port 1
handlie 0| frame grabber handle 0 . i —-
Himage[2] board 0 m Himage[3] !
:_ frame grabber m
board 1

Figure 29: a) single board with single camera; b) multiple boards with one camera each; ¢) mul-
tiple boards with one or more cameras; d) single board with multiple cameras and
port switching; e) single board with multiple cameras and simultaneous grabbing;
f) simultaneous grabbing with multiple boards and cameras.

3.2.1 Single Camera

Figure 29ashows the simplest configuration: a single camera connéctadingle board, ac-
cessible via a single handle. Some frame grabbers, edpetigital ones, only support this

HALCON Application Guide, 2005-02-01

3.2.2 Multiple Boards 55

configuration; as described in the following section, yon savertheless use multiple cameras
with such frame grabbers by connecting each one to an indaviabard.

3.2.2 Multiple Boards

Figure 29bshows a configuration with multiple cameras, each conndctedseparate board.
In this case you call the operatopen_framegrabber once for each connection as in the HDe-
velop example programdevelop\multiple_boards px.dev. Note that the program is pre-
configured for the HALCONPx interface; to use it with a different frame grabber, pleadsgpa
the parts which open the connection.

open_framegrabber (FGName, 1, 1, 0, 0, 0, O, ’default’, -1, ’default’, -1,
’default’, ’default’, Board0, -1, -1, FGHandleO)

open_framegrabber (FGName, 1, 1, 0, 0, 0, O, ’default’, -1, ’default’, -1,
’default’, ’default’, Boardl, -1, -1, FGHandlel)

In this example, the two calls differ only in the value for fleametebevice (°0’ and’ 1’); of
course, you can use different values for other parametesgthsand even connect to different
frame grabber interfaces.

To grab images from the two cameras, you simply call the dpegaab_image once with the
two handles returned by the two callsdpen_framegrabber:

grab_image (ImageO, FGHandleO)
grab_image (Imagel, FGHandlel)

3.2.3 Multiple Handles Per Board

Many frame grabbers provide multiple input ports and thiswato connect more than one
camera to the board. Depending on the HALCON frame grabberfate, this configuration is
accessed in different ways which are described in this améollowing sections.

The standard HALCON method to connect to the cameras is @epio figure 29c Each
connection gets its own handle, i.expen framegrabber is called once for each cam-
era with different values for the parametesrt, like in the HDevelop example program
hdevelop\multiple_ports_px.dev (preconfigured for the HALCONPx interface, please
adapt the parts which open the connection for your own frarablggr):

open_framegrabber (FGName, 1, 1, 0, 0, 0, O, ’default’, -1, ’default’, -1,
’default’, ’default’, ’default’, PortO, -1, FGHandleO)

open_framegrabber (FGName, 1, 1, 0, 0, 0, O, ’default’, -1, ’default’, -1,
’default’, ’default’, ’default’, Portl, -1, FGHandlel)

grab_image (ImageO, FGHandleO)

grab_image (Imagel, FGHandlel)

As figure 29cshows, you can also use multiple boards with multiple cotetecameras.

3.2.4 Port Switching

Some frame grabber interfaces access the cameras not tiplek&ndles, but by switching the
input port dynamically (se@gure 29¢. Thereforeopen framegrabber is called only once,

HALCON 6.1.4

56 Application Note on Image Acquisition

like in the HDevelop example prograhdevelop\port_switching inspecta.dev (precon-
figured for the HALCONInspecta interface, please adapt the parts which open the connection
for your own frame grabber):

Portl := 4
open_framegrabber (FGName, 1, 1, 0, 0, 0, O, ’default’, -1, ’default’, -1,

Between grabbing images you switch ports using the opegatorf ramegrabber_param (See
section 4.Zor more information about this operator):

while (1)

set_framegrabber_param (FGHandle, ’port’, PortO0)
disp_image (ImageO, WindowHandleO)
set_framegrabber_param (FGHandle, ’port’, Portil)

Note that port switching only works for compatible (simjlacameras because
open_framegrabber iS only called once, i.e., the same set of parameters vakiesed
for all cameras. In contrast, when using multiple handledessribed above, you can specify
different parameter values for the individual camerasi{\widme board-specific limitations).

3.2.5 Simultaneous Grabbing

In the configurations described above, images were grabibed the individual cameras by
multiple calls to the operatatrab_image. In contrast, some frame grabber interfaces allow
to grab images from multiple cameras with a single calgtab_image, which then returns

a multi-channel image (sdegure 29e appendix A.1lcontains more information about multi-
channel images). This mode is callgdhultaneous grabbin{pr parallel grabbing; like port
switching, it only works for compatible (similar) camer&ar example, you can use this mode
to grab synchronized images from a stereo camera system.

In this mode,open_framegrabber is called only once, as can be seen in the HDevelop ex-
ample programhdevelop\simultaneous_grabbing inspecta.dev (preconfigured for the
HALCON Inspecta interface, please adapt the parts which open the conndotigour own
frame grabber):

TM-6701/6705 1-plane, HD out’
open_framegrabber (FGName, 1, 1, 0, 0, 0, O, ’default’, -1, ’default’, -1,

You can check the number of returned images (channels) tisgngperatorount_channels

* step 2: open correctly sized windows
get_image_pointerl (SimulImages, Pointer, Type, Width, Height)

and extract the individual images, e.g., us#kgompose2, decompose3 etc., depending on the
number of images:

grab_image (SimulImages, FGHandle)
if (num_channels = 2)

Alternatively, you can convert the multi-channel imageoinan image array using
image_to_channels and then select the individual images gilect_obj.

Note that some frame grabber interfaces allow simultangoalsbing also for multiple boards
(seefigure 29). Please refer teection 5.3.2or additional information.

HALCON Application Guide, 2005-02-01

3.3 Requesting Information About the Frame Grabber Interface 57

i Variable Watch =] E3
lconic Yarishles:
Control Yariables:
Generallnfo: ‘HALCON interface for IDS FALCON/EAGLE frame grabber boards.”' =]
Generalvalue:]
Rewisioninfo: ‘Current interface revision.'
Revisionalue: 2.3
Boardsinfao: Info about installed IDS boards.”
BoardsValue: ‘device:1, port:0, board_type: EAGLE'
Partsinfo: FALCOM: port 0,1 (Composite), port 2 (S-Video) - FALCOMplus/duc/guattre: port 0,123 (Composite) - EAGLE(:
Puortsalue: [0.1,2, 3]
CamTypelnfo: "Specify the video signal of the used camera.’
CamTypevalue: [ntsc’, ‘pal’|, 'secam’, 'auto’, 's-ntsc’, 's-pal’, 's-secam’, 's-auto’] =
Defaultsinfo: ‘Default walues (as used for open_framegrabber).’
Defaults’value; [1,1,0,0,0,0,interlaced’, 8, rgb', 1, false’, ‘auto’, 'default’, 0, 1] _|;|
4| | »

Figure 30: An example result of the operator info_framegrabber .

3.3 Requesting Information About the Frame Grabber Interfa ce

As mentioned already, the individual HALCON frame grabbeeifaces are described in de-
tail on HTML pages which can be found in the direct@ALCONROOT%\doc\html\manuals

or in the HALCON folder in the Windows start menu (if you inta the documentation).
Another way to access information about a frame grabberfate is to use the operator
info_framegrabber.

In the HDevelop example prograhilevelop\info_framegrabber_ids.dev (preconfigured
for the HALCON 1IDS interface, please adapt the interface name for your owndrgrab-
ber) this operator is called multiple times to query the mgrsiumber of the interface, the
available boards, port numbers, camera types, and theltgtdues for all parameters of
open_framegrabber; the result, i.e., the values displayed in the HDevelopalzdg Windows,
is depicted irfigure 30

info_framegrabber (FGName, ’general’, GeneralInfo, GeneralValue)
info_framegrabber (FGName, ’revision’, RevisionInfo, RevisionValue)
info_framegrabber (FGName, ’info_boards’, BoardsInfo, BoardsValue)
info_framegrabber (FGName, ’ports’, PortsInfo, PortsValue)
info_framegrabber (FGName, ’camera_types’, CamTypeInfo, CamTypeValue)
info_framegrabber (FGName, ’defaults’, DefaultsInfo, DefaultsValue)

The operatotinfo_framegrabber can be called before actually connecting to a frame grabber
with open_framegrabber. The only condition is that the HALCON frame grabber intega
and the frame grabber SDK and driver have been installed.

HALCON 6.1.4

58 Application Note on Image Acquisition
4 Configuring the Acquisition

As explained insection 1 the intention of HALCON's frame grabber interfaces is topde
the user with a common interface for many different framebgess. This interface was kept
as simple as possible; as shown, you can connect to your fyaader and grab a first image
using only two operators.

However, HALCON's second goal is to make the full functiatyadbf a frame grabber available
to the user. As frame grabbers differ widely regarding thevigled functionality, this is a
difficult task to realize within a simple, common interfad@ALCON solves this problem by
dividing the task of configuring a frame grabber connectitn two parts: Those parameters
which are common to most frame grabber interfaces (thexefalledgeneral parametejsare
set when calling the operatopen_framegrabber. In contrast, the functionality which is not
generally available can be configured by setting so-caliettial parametergsing the operator
set_framegrabber_param.

4.1 General Parameters

When opening a connection vigen_framegrabber, you can specify the following general
parameters:

HorizontalResolution, spatial resolution of the transferred image in relation

VerticalResolution to the original size (seappendix B.)

ImageWidth, ImageHeight, size and upper left corner of the transferred image in

StartRow, StartColumn relation to the original size (seppendix B.}

Field grabbing mode for analog cameras, e.g., interlaced-
scan, progressive-scan, field grabbing (see
appendix B.2

BitsPerChannel, ColorSpace data contained in a pixel (number of bits, number of
channels, color encoding, sappendix B.3

Gain amplification factor for the video amplifier on the
frame grabber board (if available)

ExternalTrigger hooking the acquisition of images to an external trig-
ger signal (see alssection 5.2

CameraType, Device, Port, Configuration of frame grabber(s) and camera(s)

Lineln from which images are to be acquired (see
section 3.1

In section 3.1 we already encountered the parameters describing thes fgrabber / camera
configuration. Most of the other parameterspén framegrabber specify the image format;
they are described in more detailappendix B The parameteixternal Trigger activates a
special grabbing mode which is described in detagection 5.2 Finally, the parametetain
can be used to manipulate the acquired images on the frarbbegrboard by configuring the
video amplifier.

Note that when callingpen_framegrabber you must specify values for all parameters, even if
your frame grabber interface does not support some of therses values specified in a camera

HALCON Application Guide, 2005-02-01

4.2 Special Parameters 59

configuration file instead. To alleviate this task, the HALKC@ame grabber interfaces provide
suitable default values which are used if you spee¢dgfault’ or -1 for string or numeric
parameters, respectively. The actually used default sata@ be queried using the operator
info_framegrabber as shown irsection 3.3

After connecting to a frame grabber, you can query the ctwalue of general parameters
using the operatoset_framegrabber_param; some interface even allow to modify general
parameters dynamically. Please refeséation 4.3or more information about these topics.

4.2 Special Parameters

Even the functionality which is not generally available &k frame grabber can be accessed
and configured with a general mechanism: by setting correfipg special parameters via the
operatorset_framegrabber_param. Typical parameters are, for example:

’grab_timeout’ timeout after which the operatogsab_image and
grab_image_async Stop waiting for an image and
return an error (see alsections 5.2.4nd6.2)

’volatile’ enable volating grabbing (see alsection 5.1.3

’continuous_grabbing’ switch on a special acquisition mode which is nec-
essary for some frame grabbers to achieve real-
time performance (see alsection 5.1.b

>trigger_signal’ signal type used for external triggering, e.g., rising
or falling edge

’image_width’, ’image_height’, “doubles” of the some of the general parame-

’start_row’, ’start_column’, ters described isection 4.1 allowing to modify

’gain’, ’external _trigger’, them dynamically, i.e., after opening the connec-

’port’ tion (see als®ection 4.3

Depending on the frame grabber, various other parametgrdeavailable, which allow, e.g.,
to add an offset to the digitized video signal or modify thegbiness or contrast, to specify
the exposure time or to trigger a flash. Some frame grabbsosoffler special parameters for
the use of line scan cameras (see aksction 6.3, or parameters controlling digital output and
input lines.

Which special parameters are provided by a frame grabberface is described in the al-
ready mentioned online documentation. You can also quesyitifiormation by calling the
operatorinfo_framegrabber as shown belowfigure 31depicts the result of double-clicking
ParametersValue in the Variable Window after executing the line:

info_framegrabber (FGName, ’parameters’, ParametersInfo, ParametersValue)

To set a parameter, you call the operaiet_framegrabber_param, specifying the name of
the parameter to set in the paraméteram and the desired value in the paramétgetue. For
example, irsection 3.2.4he following line was used to switch to part

while (1)

You can also set multiple parameters at once by specifyipgsuforParam andvValue as in
the following line:

HALCON 6.1.4

60 Application Note on Image Acquisition

1 Parameters¥ alue

“wolatile -
‘revigion’

‘hoard

age!

‘brightness'

‘contr st

'gamma’

‘horfiter

IR G R R =]

wertfiter'

9 ‘'show_internal_errors'

10 'hue'

11 'aynclevel

12 ‘trigger_signal'

13 ‘'grab_timeout' -

Figure 31: Querying available special parameters via info framegrabber .

set_framegrabber_param (FGHandle, [’image_width’,’image_height’], [256,
2561)

For all parameters which can be set wiidt_framegrabber_param, you can query the cur-
rent value using the operatget_framegrabber_param. Some interfaces also allow to query
additional information like minimum and maximum values the parameters. For example,
the HALCON Fire-i interface allows to query the minimum and maximum valuestier
brightness:

get_framegrabber_param (FGHandle, ’brightness_min_value’, MinBrightness)
get_framegrabber_param (FGHandle, ’brightness_max_value’, MaxBrightness)

Thus, you can check a new brightness value against thoselbnes before setting it:

get_framegrabber_param (FGHandle, ’brightness’, CurrentBrightness)

NewBrightness := CurrentBrightness + 10

if (NewBrightness > MaxBrightness)
NewBrightness := MaxBrightness

endif

set_framegrabber_param (FGHandle, ’brightness’, NewBrightness)

4.3 Fixed vs. Dynamic Parameters

The distinction between fixed and dynamic parameters is medaéng to the lifetime of a frame
grabber connectionFixed parameterse.g., theCameraType, are set once when opening the
connection withbpen_framegrabber. In contrast, those parameters which can be modified via
set_framegrabber_param during the use of the connection are caldissthamic parameters

As already noted isection 4.2some frame grabber interfaces allow to modify generalmpara
eters likeImageWidth or ExternalTrigger dynamically viaset_framegrabber_param, by
providing a corresponding special parameter with the saangerbut written with small letters
and underscores, e.gimage_width’ Or ’external_trigger’.

Independent of whether a general parameter can be modifieghdgally, you can query its
current value by calling the operatget_framegrabber_param with its “translated” name,
i.e., capitals replaced by small letters and underscordesgibed above.

HALCON Application Guide, 2005-02-01

5 The Various Modes of Grabbing Images 61
5 The Various Modes of Grabbing Images

Section 2showed that grabbing images is very easy in HALCON- you jalitgrab_image!
But of course there’s more to image grabbing than just to getnage, e.g., how to assure an
exact timing. This section therefore describes more coxgiabbing modes.

5.1 Real-Time Image Acquisition

As a technical term, the attributeal-timemeans that a process guarantees that it meets gi
deadlines. Please keep in mind timaine of the standard operating systems, i.e., neitherﬁ
Windows NT/2000/XP nor Linux, are real-time operating sysems This means that the op-
erating system itself does not guarantee that your apjdicatill get the necessary processing
time before its deadline expires. From the point of view ofachine vision application running
under a non-real-time operating system, the most you cas assure that real-time behavior is
not already prevented by the application itself.

In a machine vision application, real-time behavior maydwmgiired at multiple points:

Image delay: The camera must “grab” the image, i.e., expose the chipgatdirect moment,
i.e., while the part to be inspected is completely visible.

Frame rate: The most common real-time requirement for a machine visgplieation is to
“reach frame rate”, i.e., acquire and process all imagesdheera produces.

Processing delay:The image processing itself must complete in time to allo@egction to its
results, e.g., to remove a faulty part from the conveyor. bak this point relates only
indirectly to the image acquisition it is ignored in the tlling.

5.1.1 Non-Real-Time Grabbing Using grab_image

Figure 32shows the timing diagram for the standard grabbing modeifiy®u use the operator
grab_image from within your application. This operator call is “trangtd” by the HALCON
frame grabber interface and the SDK into the correspondgrpéto the frame grabber board
(marked with’'Grab’).

The frame grabber now waits for the next image. In the exampl&ee-running analog
progressive-scan camera is used, which produces imagéswamsly at a fixed frame rate;
the start of a new image is indicated by a so-calledical sync signalThe frame grabber then
digitizes the incoming analog image signal and transfotrimde an image matrix. If a digital
camera is used, the camera itself performs the digitizimjteansfers a digital signal which is
then transformed into an image matrix by the frame grabbleade refer t@ppendix B.Zor
more information about interlaced grabbing.

The image is then transferred from the frame grabber intopcder memory via the PCI bus
using DMA (direct memory access). This transfer can eitheinmeementalas depicted in
figure 32 if the frame grabber has only a FIFO buffer, or in a singlesbas depicted in
figure 33 if the frame grabber has a frame buffer on board. The adgant&the incremen-
tal transfer is that the transfer is concluded earlier. Imiast, the burst mode is more efficient;
furthermore, if the incremental transfer via the PCl buscdproceed for some reason, a FIFO

HALCON 6.1.4

62 Application Note on Image Acquisition

Iy
L

[original " e R original " My original "7 3

expose expose Xpose 'xpose

\

camera

(aneilog) @ L] @ L]

Ve

wait for wait for
frame vsync vsync t
grabber ZE \ F A

: i i

\ \
\ \
\ \

(DMA)
Grab Grab
l wait for create wait for create
image image t

\ 3

Himage Himage
HFGI & SDK :
software grabfi;nage grab_image \
process process t
application P >
DN jt<,,,,,,,,,,,,,",‘?',?Y,'TT’,??’?,,,,,,,,,,,,,,,fram,eraﬁ,ei ,,,,,,,,,,,,,,,, 4
delay processing
image

Figure 32: Standard timing using grab_image (configuration: free-running progressive-scan
camera, frame grabber with incremental image transfer).

overflow results, i.e., image data is lost. Note that in bottdas the transfer performance
depends on whether the PCI bus is used by other devices ds well

When the image is completely stored in the computer membeyHALCON frame grabber
interface transforms it into a HALCON image and returns tbetol to the application which
processes the image and then cghtab_image again. However, even if the processing time
is short in relation to the frame rate, the camera has alrbadyn to transfer the next image
which is therefore “lost”; the application can therefordygorocess every second image.

You can check this behavior wusing the HDevelop example jragr
hdevelop\real_time _grabbing ids.dev (preconfigured for the HALCONIDS inter-
face, please adapt the parts which open the connection fargwn frame grabber), which
determines achievable frame rates for grabbing and primce@sere: calculating a difference
image) first separately and then together as follows:

grab_image (BackgroundImage, FGHandle)
count_seconds (Secondsl)
for i := 1 to 20 by 1
grab_image (Image, FGHandle)
sub_image (BackgroundImage, Image, Differencelmage, 1, 128)
endfor
count_seconds (Seconds2)
TimeGrabImage := (Seconds2-Secondsl)/20
FrameRateGrabImage := 1 / TimeGrabImage

HALCON Application Guide, 2005-02-01

5.1.2 Grabbing Without Delay Using Asynchronously Resettable Cameras 63

original
Jar frame rate T »}
camera expose expose é
anster PN M) PN A .
(analog) ‘ ‘ "
Expose Expose
| 1
wait for wait for
frame vsync digitize vsync digitize t
grabber >
transfer t
(DMA) "
Grab Grab
wait for create wait for create

image Himage image Himage t
HFGI & SDK >

software grab_image grab_image Y
process process t
application >

frame rate
delay Jors processing T 3

image A
:0 EE

Figure 33: Using a asynchronously resettable camera together with grab_image (configuration:
progressive-scan camera, frame grabber with burst transfer, volatile grabbing).

To see the non-deterministic image delay, execute the tpepeab_image in the step mode by
pressind F6 |, the execution time displayed in HDevelop’s status bar wifige between once
and twice the original frame period. Please note that on Usii3tem, the time measurements
are performed with a lower resolution than on Windows system

5.1.2 Grabbing Without Delay Using Asynchronously Resetta ble Cameras

If you use a free-running camera, the camera itself detersnihe exact moment an image is
acquired (exposed). This leads to a delay between the moypnentall grab_image and the
actual image acquisition (ségure 3J. The delay is not deterministic, but at least it is limited
by the frame rate; for example, if you use an NTSC camera witlarae rate of 30 Hz, the
maximum delay can be 33 milliseconds.

Of course, such a delay is not acceptable in an applicatetrighio inspect parts at a high rate.
The solution is to use cameras that allow a so-cakachronous reseThis means that upon a
signal from the frame grabber, the camera resets the imageuwct (almost) immediately starts
to expose it. Typically, such a camera does not grab imagasmcmusly but only on demand.

An example timing diagram is shown figure 33 In contrast tofigure 32 the image delay
is (almost) zero. Furthermore, because the application speeifies when images are to be
grabbed, all images can be processed successfully; havwikeeachieved frame rate still in-
cludes the processing time and therefore may be too low foesoaachine vision applications.

HALCON 6.1.4

64 Application Note on Image Acquisition

5.1.3 \Volatile Grabbing

As shown infigure 32 after the image has been transferred into the computer myerhe
HALCON frame grabber interface needs some time to createraspnding HALCON image
which is then returned in the output parametesge of grab_image. Most of this time (about
3 milliseconds on a 500 MHz Athlon K6 processor for a gray gdlil SC image) is needed to
copy the image data from the buffer which is the destinatidch@ DMA into a newly allocated
area.

You can switch off the copying by using the so-calledatile grabbing which can be enabled
via the operatoget_framegrabber_param (parametervolatile’):

set_framegrabber_param (FGHandle, ’volatile’, ’enable’)

Then, the time needed by the frame grabber interface toectbatHALCON image is signifi-
cantly reduced as visualizedfigure 33 Note that usually volatile grabbing is only supported
for gray value images!

The drawback of volatile grabbing is that grabbed image®aeewritten by subsequent grabs.
To be more exact, the overwriting depends on the number ofentauffers allocated by the
frame grabber interface or SDK. Typically, at least two btdfexist; therefore, you can safely
process an image even if the next image is already being gdadb infigure 35 Some frame
grabber interfaces allow to use more than two buffers, aed &v select their number dynami-
cally viaset_framegrabber_param (parameternum buffers’).

You can check this behavior using the HDevelop example pragr
hdevelop\volatile_grabbing ids.dev (preconfigured for the HALCONIDS inter-
face, please adapt the parts which open the connection far gon frame grabber). After
grabbing a first image and displaying it via

grab_image (FirstImage, FGHandle)
dev_open_window (0, O, Width/2, Height/2, ’black’, FirstWindow)
dev_display (FirstImage)

change the scene and grab a second image which is displagadndividual window:

grab_image (SecondImage, FGHandle)
dev_open_window (0, Width/2 + 8, Width/2, Height/2, ’black’, SecondWindow)
dev_display (SecondImage)

Now, images are grabbed in a loop and displayed in a third evind he two other images are
also displayed each time. If you change the scene beforegrabhyou can see how the first
two images are overwritten in turn, depending on the numbbufbers.

dev_open_window (Height/2 + 66, Width/4 + 4, Width/2, Height/2, ’black’,
ThirdWindow)

for i := 1 to 10 by 1
grab_image (CurrentImage, FGHandle)
dev_set_window (ThirdWindow)
dev_display (CurrentImage)
dev_set_window (FirstWindow)
dev_display (FirstImage)
dev_set_window (SecondWindow)
dev_display (SecondImage)

endfor

HALCON Application Guide, 2005-02-01

5.1.4 Real-Time Grabbing Using grab_image_async 65

Iy
H

I original original original
Jor frame rate T PP frame rate T S g
camera expose expose Xpose Xpose é
canstr PAMA M WY
(analog) L "
_1__ wait for @ _1__ wait for @
' vsync ' vsync
wait for , H
frame vsync digitize digitize
g U ¢
transfer L b et e e L
DMA
() Grab Grab Grab Grab
wait for create wait for create wait for create
image Himage Image Himage Image Himage t
HFGI & SDK : N N >
software grabfir'nagefasync grab_image_async grab_image_async Y
process process process t
application >
SRR | [FTEY STTCRRLIRY »
g frame rate
delay T ey rocessing » !
image delay -7 o P 95 —
image H H —
"negatlve" EE Ef Ef

Figure 34: Grabbing and processing in parallel using grab_image async .

5.1.4 Real-Time Grabbing Using grab_image_async

The main problem with the standard timing usigtpb_image is that the two processes of
image grabbing and image processing run sequentiallypne.after the other. This means that
the time needed for processing the image is included in thdtreg frame rate, with the effect
that the frame rate provided by the camera cannot be reagheeffinition.

This problem can be solved by using the opergjtib_image async. Here, the two pro-
cesses are decoupled and can run asynchronouslyn.anage can be processed while the
next image is already being grabbedFigure 34shows a corresponding timing diagram: The
first call tograb_image_async is processed similar tgrab_image (comparefigure 3. The
difference becomes apparent after the transfer of the inmhgeomputer memory: Almost im-
mediately after receiving the image, the frame grabberfaxte automatically commands the
frame grabber to acquire a new image. Thus, the next imagaldgd while the application
processes the previous image. After the processing, thiecappn callsgrab_image_async
again, which waits until the already running image acquisits finished. Thus, the full frame
rate is now reached. Note that some frame grabbers fail thrékee full frame rate even with
grab_image_async; section 5.1.5hows how to solve this problem.

In the HDevelop example prograndevelop\real_time_grabbing_ids.dev, which was al-
ready described isection 5.1.1the reached frame rate for asynchronous processing is dete
mined as follows:

HALCON 6.1.4

66 Application Note on Image Acquisition

grab_image (BackgroundImage, FGHandle)
count_seconds (Secondsl)
for i := 1 to 20 by 1
grab_image_async (Image, FGHandle, -1)
sub_image (BackgroundImage, Image, Differencelmage, 1, 128)
endfor
count_seconds (Seconds2)
TimeGrabImageAsync := (Seconds2-Secondsl)/20
FrameRateGrabImageAsync := 1 / TimeGrabImageAsync

As can be seen ifigure 34 the first call tograb_image_async has a slightly different effect
than the following ones, as it also triggers the first grab mwamd to the frame grabber. As an
alternative, you can use the operaipab_image_start which just triggers the grab command,
then, the first call tgrab_image async behaves as the other ones. This is visualized, e.g., in
figure 35 as you can see, the advantage of this method is that thecappti can perform some
processing before callingrab_image_async.

In the example, the processing was assumed to be fasterhtbaequisition. If this is not the
case, the image will already be ready when the next cglttb_image_async arrives. In this
case, you can specify how “old” the image is allowed to be gishe parameteMaxDelay.
Please refer tgection 5.1.7or details.

Please note that when usiggab_image_async it iS not obvious anymore which image is
returned by the operator call, because the call is decoupdad the command to the frame
grabber! In contrast tgrab_image, which always triggers the acquisition of a new image,
grab_image_async typically returns an image which has been exposed beforefgeator was
called, i.e., the image delay is negative (figare 34! Keep this effect in mind when changing
parameters dynamically; contrary to intuition, the chawgkenot affect the image returned by
the next call ofgrab_image_async but by the following ones! Another problem appears when
switching dynamically between cameras (seetion 5.3.1L

5.1.5 Continuous Grabbing

For some frame grabbepzab_image async fails to reach the frame rate because the grab
command to the frame grabber comes too late, i.e., afterdhee@ has already started to
transfer the next image (ségure 353.

As a solution to this problem, some frame grabber interfaceside the so-calledontinuous
grabbing modeavhich can be enables only via the operatet_framegrabber_param (param-
eter’ continuous_grabbing’):

set_framegrabber_param (FGHandle, ’continuous_grabbing’, ’enable’)

In this mode, the frame grabber reads images from a freenwgrocamera continuously and
transfers them into computer memory as depictdajure 35b Thus, the frame rate is reached.
If your frame grabber supports continuous grabbing you eanthis effect in the example pro-
gramhdevelop\real_time_grabbing_ids.dev, which was already described in the previous
sections; the program measures the achievable frame ragedb_image_async without and
with continuous grabbing.

We recommend to use continuous grabbing only if you wantdogss every image; otherwise,
images are transmitted over the PCI bus unnecessarilyelihayerhaps blocking other PCI
transfers.

HALCON Application Guide, 2005-02-01

5.1.5 Continuous Grabbing 67
a) :E zi zzf E
I original I original original
Jon frame rate T PP frame rate T s e ame e »
camera expose expose Xpose lxpose t
transfer
(analog)
wait for wait for
frame vsync vsync
grabber
transfer
(DMA)
Grab Grab Grab
wait for create wait for create
image Himage image Himage t
HFGI & SDK . A >
software grab_image_async grab_image_async A
etc process process |t
application >
| frame rate
grab_image_start jt‘ """""""""""""" processing T ’jt
b)
transfer
(analog)
frame digitize
grabber
transfer
(DMA)
Grab Grab Grab
- M
! wait for create wait for create wait for create
! image Himage image Himage image Himage t
HFGI & SDK - . >
; A A
software ! N grab_image_async grab_image_async rab_image_async Y
, 1| etc process process lprocess t
application * >
. grab'_image_start frame rate
' Jom processing v $

|
set ‘continuous_grabbing’

Figure 35: @) grab_image_async fails to continuous

grabbing.

reach frame rate; b) problem solved using

Note that some frame grabber interfaces provide additiomationality in the continuous grab-
bing mode, e.qg., the HALCONRitFlow interface. Please refer to the corresponding documen-
tation for more information.

HALCON 6.1.4

68 Application Note on Image Acquisition

\

camera

Ve

(analog) ‘
-] - wait for @
EXPPSG i vsync
wait for H
frame vsyne t
grabber
transfer t
(DMA)
Grab Grab Grab
wait for create wait for create
image Himage image Himage t
HFGI & SDK A >
software grab_image_async grab_image_async \
process process t
application >
frame rate
delay Jon processing .

image m
) 0 EE

Figure 36: Using a asynchronously resettable camera together with grab_image_async (config-
uration as in figure 33.

5.1.6 Using grab_image_async Together With Asynchronously Resettable Cam-
eras

As described irsection 5.1.2you can acquire images without delay by using an asynclisino
resettable camer&igure 36shows the resulting timing when using such a camera togefitter

grab_image_async. When comparing the diagram to the ondigure 33 you can see that a
higher frame rate can now be reached, because the procéssiig not included anymore.

5.1.7 Specifying a Maximum Delay

In contrast tograb_image, the operatorgrab_image async has an additional parameter
MaxDelay, which lets you specify how “old” an already grabbed imageyrha in order to

be acceptedFigure 37visualizes the effect of this parameter. There are two ctsdsstin-
guish: If the call tograb_image arrives before the next image has been grabbed (first call in
the example), the parameter has no effect. However, if agerhas been grabbed already (sec-
ond and third call in the example), the elapsed time sincéategrab command to the frame
grabber is compared ttaxDelay. If it is smaller (second call in the example), the image is
accepted; otherwise (third call), a new image is grabbed.

Please note that the delay is not measured starting from ¢imeemt the image is exposed, as
you might perhaps expect! Currently, only a few frame gral8igKs provide this information;

HALCON Application Guide, 2005-02-01

5.2 Using an External Trigger 69

i E . .

camera expose expose expose expose é
transfer /W\/W/\ t
(analog) "
frame t
grabber [RANY @ @
transfer LLLL P]| i
(DMA) | |
Grab Grab Grab
""" > MaxDelay? NO ----»|4--------- > MaxDelay? YES
wait for create l create
image HI HI {
HFGI & SDK N mage mage >
software - "; :
process H process ! process 1 process | t
application . T T >
T
grab_image_async jt jt jt

Figure 37: Specifying a maximum delay for grab_image_async (using continuous grabbing).

therefore, the last grab command from the interface to teefrtdme grabber is used as the
starting point instead.

5.2 Using an External Trigger

In the previous section, the software performing the mazhision task decided when to ac-
quire an imagedgoftware trigge). In industrial applications, however, the moment for irmag
acquisition is typically specified externally by the praedself, e.g., in form of a hardware
trigger signal indicating the presence of an object to bpented. Most frame grabber boards
are therefore equipped with at least one input line for sughass, which are calledxternal
triggers

From HALCON's point of view, external triggers are dealt ity the frame grabber board,
the only thing to do is to inform the frame grabber to use tiggar. You can do this simply
by setting the paramet@xternalTrigger Of open_framegrabber t0 ’true’. Some frame
grabber interfaces also allow to enable or disable the grigtynamically using the operator
set_framegrabber_param (parameter external trigger’).

Figure 38ashows the timing diagram when using an external triggerttegevithgrab_image

and a free-running camera. After the callgsab_image, the frame grabber board waits for
the trigger signal. When it appears, the procedure destribéhe previous section follows:
The frame grabber waits for the next image, digitizes it, tadsfers it into computer memory;

HALCON 6.1.4

70 Application Note on Image Acquisition

a)
camera expose expose expose expose t
(analog) L] @ L] L]
wait for wait for wait for
frame trigger vsync trigger t
grabber JA JA JAYAY A
transfer L
(DMA)
Grab Grab

wait for create wait for
image Himage image t
HFGI & SDK 1>

software grab_image grab_image
process! t
application »

Trigger Trigger Trigger
trigger L l [
| EEERERE »
delay
image
b)

P — expose expose expose ! t

ot PWANMAM T AWAMAM | AWAMAM .
(analog)
Expose | . _|.wait for @ Expose | __|- wait for @ Expose | __|- wait for @ Expose
| vsync | vsync | vsync
vtvait for ! ' '
frame rigger M t
N \ '
grabber
transfer t
(DMA)
Grab Grab Grab
wait for create wait for create wait for
image Himage image Himage image t
HFGI & SDK N N N >
software grab_image_async tl “ \ 4
! etc | process | . process | | t
application T 1 : : >
! Trigger Trigger , Trigger , Trigger
trigger : I I . I . I >
o i grab_image_async i grab_image_async
grab_image_start delay delay delay
image image image
=0 =0 =0

Figure 38: Using an external trigger together with: a) free-running camera and grab_image; b)
asynchronously resettable camera and grab_image async .

then, the HALCON frame grabber interface transforms it aatbALCON image and returns the
control to the application which processes the image amu ¢hsgrab_image again, which
causes the frame grabber board to wait for the next triggeasi

The (bad) example ifigure 38awas chosen on purpose to show an unsuitable configuration

HALCON Application Guide, 2005-02-01

5.2.1 Special Parameters for External Triggers 71

for using an external trigger: First of all, because of theefrunning camera there is a non-
deterministic delay between the arrival of the trigger algand the exposure of the image,
which may mean that the object to be inspected is not conipleible anymore. Secondly,
becausgrab_image is used, trigger signals which arrive while the applicai®processing an
image are lost.

Both problems can easily be solved by using an asynchropoestttable camera together with
the operatograb_image_async as depicted iffigure 38b

The C++ example prograrpp\error_handling timeout_picport.cpp (preconfigured for
the HALCONPicPort interface) shows how simple it is to use an external triggére con-
nection is opened witAxternalTrigger set to’true’:

HFramegrabber framegrabber;

framegrabber.OpenFramegrabber (fgname, 1, 1, 0, 0, 0, 0, "default", -1,
"gray", -1, "true", camtype, device,
_1, _1);

Then, images are grabbed:

HImage image;

do
{

image = framegrabber.GrabImageAsync(-1);
} while (button == 0);

The example contains a customized error handler which chetlether there is an external
trigger; this part is described in detail section 6.2.3

5.2.1 Special Parameters for External Triggers

Most frame grabber interfaces allow to further configureuke of external triggering via the
operatorset_framegrabber_param. AsS mentioned insection 4.2 some interfaces allow to
enable and disable the external trigger dynamically viapdw@meter external trigger’.
Another useful parameter igrab_timeout’, which sets a timeout for the acquisition process
(some interfaces provide an additional parameterigger_timeout’ just for triggered grab-
bing). Without such a timeout, the application would hanfpifsome reason no trigger signal
arrives. In contrast, if a timeout is specified, the opesspab_image andgrab_image_async
only wait the specified time and then return an error codeiseran exception, depending on
the programming language us&kection 6.hows how to handle such errors.

Other parameters allow to further specify the form of theger signal (trigger_signal’),
e.g., whether the falling or the rising edge is used as tgger select between multiple trigger
input lines, or even filter trigger signals. Some frame geabbterfaces also allow to influence
the exposure via the trigger signal.

5.3 Acquiring Images From Multiple Cameras

The timing diagrams shown in the previous sections depitteadase of a single camera. Be-
low we discuss some issues which arise when acquiring imiages multiple cameras (see

HALCON 6.1.4

72 Application Note on Image Acquisition

section 3.Zor possible configurations).

5.3.1 Dynamic Port Switching and Asynchronous Grabbing

If you switch dynamically between multiple cameras coneédb a single board as described
in section 3.2.4you must be careful when usingrab_image_async: By default, the frame
grabber interface commands the frame grabber board to lgeafeixt image automatically after
it received the current image — but before the next cafjrafb_image_async! If you switched

to another camera before this call, the frame grabber migiddy be busy grabbing an image
from the first camera.

Some frame grabber interfaces solve this problem by progidithe parameter
’start_async_after_grab async’ for the operator set_framegrabber param which
allows to disable the automatic grab command to the framigbgrraboard.

5.3.2 Simultaneous Grabbing

Some frame grabber interfaces provide special functinaligrab imagesimultaneousljrom
multiple (synchronized) cameras. Typically, the camerascannected to a single frame grab-
ber board; théicPort interface also allows to grab simultaneously from camecasected

to multiple boards. As described section 3.2.5the images are grabbed by a single call to
grab_image Or grab_image_async, Which return them in form of a multi-channel image. De-
pending on the frame grabber interface, it may be necessaswitch on the simultaneous
grabbing via the operateet_framegrabber_param.

Please keep in mind that even if a HALCON frame grabber iaterfsupports simultaneous
grabbing, this might not be true for every frame grabber thdlae interface supports! In order
to grab multiple images simultaneously, a frame grabberdomaist be equipped with multiple
“grabbing units”; for example, an analog frame grabber Baaust be equipped with multiple
A/D converters. Please check this in the documentation of frame grabber board.

Evenif a HALCON frame grabber interface does not providesihecial simultaneous grabbing
mode, you can realize a similar behavior “manually”, e.g.cbnnecting each (asynchronously
resettable) camera to a single frame grabber board and #ieg a common external trigger
signal to synchronize the grabbing.

HALCON Application Guide, 2005-02-01

6 Miscellaneous 73

6 Miscellaneous

6.1 Acquiring Images From Unsupported Frame Grabbers

If you want to use a frame grabber which is currently not sujfgabby HALCON, i.e., for

which no HALCON interface exists there exist two principahys: First, you can create
your own HALCON frame grabber interface; how to do this isaldsed in detail in the

Frame Grabber Integration Programmer’s Manual

As an alternative, you can pass externally created imagesthe raw image matrix, to HAL-
CON using the operatorgen_imagel, gen_image3, Or gen_imagel_extern, which create a
corresponding HALCON image. The main difference betweenojperatorgen_imagel and
gen_imagel extern IS that the former copies the image matrix when creating tAe ZON
image, whereas the latter doesn’t, which is useful if youtwarrealizevolatile grabbingas
described irsection 5.1.3

The C example programc\use_extern_image.c Shows how to use the operator
gen_imagel_extern to pass standard gray value images to HALCON. In this cagejntih
age matrix consists of 8 bit pixels (bytes), which can beesgnted by the data typesigned
char. At the beginning, the program calls a procedure which alie€ memory for the images
to be “grabbed”; in a real application this corresponds &ithage buffer(s) used by the frame
grabber SDK.

unsigned char *image_matrix_ptr;
long width, height;

InitializeBuffer (&image_matrix_ptr, &width, &height);

The example program “simulates” the grabbing of images ajphocedure which reads images
from an image sequence and copies them into the image buiffen, the content of the image
buffer is transformed into a HALCON image (typgte) via gen_imagel_extern. The pa-
rameterClearProc is set to0 to signal that the program itself takes care of freeing thenorg.
The created HALCON image is then displayed. The loop can ldedby clicking into the
HALCON window with any mouse button.

Hobject image;
long window_id;

open_window (0O, O, width, height, O, "visible", "", &window_id);
while (!ButtonPressed(window_id))
{
MyGrabImage ((const unsigned char **) &image _matrix_ptr);
gen_imagel_extern(&image, "byte", width, height,
(long) image_matrix_ptr, (long) 0);
disp_obj(image, window_id);

}

If your frame grabber supplies images with more than 8 bielsixyou must adapt both
the data type for the image matrix and the type of the creat®HGON image (parameter
Type Of gen_imagel_extern). In case of color images HALCON expects the image data in
form of three separate image matrices. You can create a HAL@Gage either by calling
the operatorgen_image3 with the three pointers to the matrices, or by calling therafue

HALCON 6.1.4

74 Application Note on Image Acquisition

Error E=

° enor in operator grab_image: Frame grabber: timeout

Figure 39: Popup dialog in HDevelop signaling a timeout.

gen_imagel_extern three times and then using the operatbénnels_to_image to combine
the three images into a multi-channel image. Please ref@ppendix Afor more information
about HALCON images in general.

6.2 Error Handling

Just as the HALCON frame grabber interfaces encapsulateaimenunication with a frame
grabber board, they also encapsulate occurring errorgniita HALCON error handling mech-
anism. How to catch and react to these errors is describeavpfelr HDevelop programs and
also for programs using HALCON'’s programming languagerfatees.

Some HALCON frame (grabber interfaces provide special patara for
set_framegrabber _param which are related to error handling. The most commonly
used one is the parametegrab_timeout’ which specifies when the frame grabber should
quit waiting for an image. The examples described in theofalhg sections show how to
handle the corresponding HALCON error.

Note that all example programs enable the signaling of lovell@rrors via the operator
set_system, e.g., in HDevelop syntax via

set_system (’do_low_error’, ’true’)

In this mode, low level errors occurring the frame grabbeK0r in the HALCON interface)
in are signaled by a message box.

6.2.1 Error Handling in HDevelop

The HDevelop examplédevelop\error_handling timeout_picport.dev shows how to
handle HALCON errors in a HDevelop program. To “provoke” &rog open_framegrabber
is called withExternalTrigger = ’true’. If there is no trigger, a call tgrab_image results
in a timeout; HDevelop reacts to this error with the popupatjsshown infigure 39and stops
the program.

open_framegrabber (FGName, 1, 1, 0, 0, 0, O, ’default’, -1, ’default’, -1,
>true’, CameraType, Device, -1, -1, FGHandle)

set_framegrabber_param (FGHandle, ’grab_timeout’, 2000)

grab_image (Image, FGHandle)

HALCON lets you modify the reaction to an error with the oferaet_check (in HDevelop:
dev_set_check). If you set it to’~give_error’, the program does not stop in case of an
error but only stores its cause in form of an error code. Tes&this error code in HDevelop,

HALCON Application Guide, 2005-02-01

6.2.2 Error Handling Using HALCON/C 75

you must define a corresponding variable using the opetatorerror_var. Note that this
variable is updated after each operator call; to check thdtref a single operator we therefore
recommend to switch back into the standard error handlingenalirectly after the operator call
as in the following lines:

dev_error_var (ErrorNum, 1)
dev_set_check (’“give_error’)
grab_image (Image, FGHandle)
dev_error_var (ErrorNum, O0)
dev_set_check (’give_error’)

To check whether a timeout occurred, you compare the ermaabla with the code signal-
ing a timeout $322); a list of error codes relating to image acquisition can denfl in the
Frame Grabber Integration Programmer’s Manull the example, the timeout is handled by
disabling the external trigger mode via the operaiet_framegrabber_param (parameter
’external_trigger’). Then, the call tgrab_image is tested again.

if (ErrorNum = 5322)
set_framegrabber_param (FGHandle, ’external_trigger’, ’false’)
dev_error_var (ErrorNum, 1)
dev_set_check (’“give_error’)
grab_image (Image, FGHandle)
dev_error_var (ErrorNum, 0)
dev_set_check (’give_error’)
endif

Now, the error variable should contain the vafusignaling that the operator call succeeded;
for this value HDevelop provides the constantSG_TRUE. If you get another error code, the
program accesses the corresponding error text using thiatopget_error_text.

if (ErrorNum # H_MSG_TRUE)
get_error_text (ErrorNum, ErrorText)
endif

If your frame grabber interface does not provide the paranmetxternal trigger’, you
can realize a similar behavior by closing the connection Hreh opening it again with
ExternalTrigger setto’false’.

6.2.2 Error Handling Using HALCON/C

The mechanism for error handling in a program based on HALGOK similar to the one in
HDevelop; in fact, it is even simpler, because each opegattmmatically returns its error code.
However, if a HALCON error occurs in a C program, the defaulbehandling mode causes
the program to abort.

The C example program\error_handling timeout_picport.c performs the same task as
the HDevelop program in the previous section; if the caftab_image succeeds, the program
grabs and displays images in a loop, which can be exited bkiof into the window. The
following lines show how to test whether a timeout occurred:

HALCON 6.1.4

76 Application Note on Image Acquisition

set_check ("“give_error");

error_num = grab_image (&image, fghandle);
set_check ("give_error");

switch (error_num)

{
case H_ERR_FGTIMEOQOUT:

As you see, in a C program you can use prefined constants foertbbe codes (see the
Frame Grabber Integration Programmer’s Marfag list of image acquisition error codes and
their corresponding constants).

6.2.3 Error Handling Using HALCON/C++

If your application is based on HALCON/C++, there are two neels for error handling: If you
use operators in their C-like form, i.e., preceeded by a ocdlon (e.g., : grab_image), you
can apply the same procedure as described for HALCON/C iprnaous section.

In addition, HALCON/C++ provides an exception handling mm&aism based on the class
HException, which is described in thelALCON/C++ User’'s Manual Whenever a HAL-
CON error occurs, an instance of this class is created. The iea is that you can spec-
ify a procedure which is then called automatically with tmeated instance dfException

as a parameter. How to use this mechanism is explained in #he éample program
cpp\error_handling timeout_picport.cpp, Which performs the same task as the examples
in the previous sections.

In the example programpp\error_handling timeout_picport.cpp (preconfigured for the
HALCON PicPort interface), the procedure which is to be called upon erreerg simple: It
just raises a standard C++ exception with the instané¢Eofeption as a parameter.

void MyHalconExceptionHandler (const HException& except)
{
throw except;

3

In the program, you “install” this procedure via a class métbf HException:

int main(int argc, char xargvl[])
{
HException: :InstallHHandler (4MyHalconExceptionHandler) ;

Now, you react to a timeout with the following lines:

try
{
image = framegrabber.GrabImage() ;
}
catch (HException except)
{
if (except.err == H_ERR_FGTIMEQUT)
{

framegrabber.SetFramegrabberParam("external_trigger", "false");

HALCON Application Guide, 2005-02-01

6.2.4 Error Handling Using HALCON/COM 77

As already noted, if your frame grabber interface does naivide the parameter
’external_trigger’, you can realize a similar behavior by closing the connecdind then
opening it again witlExternalTrigger Setto’false’:

if (except.err == H_ERR_FGTIMEQUT)
{
framegrabber.OpenFramegrabber (fgname, 1, 1, 0, 0, 0, 0, "default",
-1, "gray", -1, "false", camtype,
"default", -1, -1);

Note that when callinQpenFramegrabber via the classiFramegrabber as above, the operator
checks whether it is called with an already opened conneetiol automatically closes it before
opening it with the new parameters.

6.2.4 Error Handling Using HALCON/COM

The HALCON/COM interface uses the standard COM error hagdiechnique where every
method call passes both a numerical and a textual repréisentd the error to the calling
framework. How to use this mechanism is explained in the dli®asic example program
vb\error_ handling timeout_picport\error_handling timeout_picport.vbp, which
performs the same task as the examples in the previouss®ctio

For each method, you can specify an error handler by inggtfti@ following line at the begin-
ning of the method:

On Error GoTo ErrorHandler

At the end of the method, you insert the code for the error leandf a runtime error occurs,
Visual Basic automatically jumps to this code, with the elr@ing described in the variatiier.
However, the returned error number does not correspondtiyite the HALCON error as in
the other programming languages, because low error nurabereserved for COM. To solve
this problem HALCON/COM uses an offset which must be sulbécdo get the HALCON
error code. This offset is accessible as a property of thesikystemX:

ErrorHandler:
Dim sys As New HSystemX
ErrorNum = Err.Number - sys.ErrorBaseHalcon

The following code fragment checks whether the error is duetimeout. If yes, the program
disables the external trigger mode and tries again to gramage. If the grab is successful
the program continues at the point the error occurred; wfilset the Visual Basic default error
handler is invoked. Note that in contrast to the other pnognang languages HALCON/COM

does not provide constants for the error codes.

If (ErrorNum = 5322) Then
Call FG.SetFramegrabberParam("external_trigger", "false")
Set Image = FG.GrabImage
Resume Next

If the error is not caused by a timeout, the error handleegisanew, whereupon the Visual
Basic default error handler is invoked.

HALCON 6.1.4

78 Application Note on Image Acquisition

Else
Err.Raise (Err.Number)
End If

If your frame grabber interface does not provide the parameixternal_trigger’, you

can realize a similar behavior by closing the connection #reh opening it again with
ExternalTrigger Set to’false’. Note that the clasBFramegrabberX does not provide
a method to close the connection; instead you must desteoyattiable with the following line:

Set FG = Nothing

6.3 Line Scan Cameras

From the point of view of HALCON there is no difference betwegea and line scan cameras:
Both acquire images of a certain width an height; whetherhiight is 1, i.e., a single line,
or larger does not matter. In fact, in many line scan appboatthe frame grabber combines
multiple acquired lines to form a so-call@égewnhich further lessens the difference between
the two camera types.

The main problem is therefore whether your frame grabbepatip line scan cameras. If yes,
you can acquire images from it via HALCON exactly as from agaascan camera. With the
parametefimageHeight Of the operatobpen_framegrabber you can sometimes specify the
height of the page; typically, this information is set in ttemera configuration file. Some
HALCON frame grabber interfaces allow to further configuine &cquisition mode via the
operatorset_framegrabber_param.

The images acquired from a line scan camera can then be peacg@sst like images from
area scan cameras. However, line scan images often poseddioreal problem: The ob-
jects to inspect may be spread over multiple images (pages)solve this problem, HAL-
CON provides special operatorsile_images allows to merge images into a larger image,
merge_regions_line_scan andmerge_cont_line_scan_x1d allow to merge the (intermedi-
ate) processing results of subsequent images.

How to use these operators is explained in the HDevelop -ebanmmogram
hdevelop\line scan.dev. The program is based on an image file sequence which is
read using the HALCON virtual frame grabber interf&dée; the task is to extract paper clips
and calculate their orientation. Furthermore, the grayeslin a rectangle surrounding each
clip are determined.

An important parameter for the merging is over how many insageobject can be spread. In
the example, a clip can be spread over 4 images:

MaxImagesRegions := 4

The continuous processing is realized by a simple loop: Ahdteration, a new image is
grabbed, and the regions forming candidates for the clipexsiracted using thresholding.

while (1)
grab_image (Image, FGHandle)
threshold (Image, CurrRegions, 0, 80)

The current regions are then merged with ones extracteceiprévious image using the oper-
atormerge regions_line scan. As a result, two sets of regions are returned: The parameter

HALCON Application Guide, 2005-02-01

6.3 Line Scan Cameras 79

Clips processed so far: 0

Clips processed so far: 0

Figure 40: Merging regions extracted from subsequent line scan images: state after a) 2, b)
3, ¢) 4 images (large coordinate system: tiled image; small coordinate systems:
current image or most recent image).

CurrMergedRegions contains the current regions, possibly extended by fittengspof the pre-
viously extracted regions, whereas the paraniterMergedRegions contains the rest of the
previous regions.

merge_regions_line_scan (CurrRegions, PrevRegions, CurrMergedRegions,
PrevMergedRegions, ImageHeight, ’top’,
MaxImagesRegions)

connection (PrevMergedRegions, ClipCandidates)

select_shape (ClipCandidates, FinishedClips, ’area’, ’and’, 4500, 7000)

The regions irPrevMergedRegions are “finished”; from them, the program selects the clips
via their area further processes them later, e.g., detesihreir position and orientation. The
regions inCurrMergedRegions are renamed and now form the previous regions for the next
iteration.

copy_obj (CurrMergedRegions, PrevRegions, 1, -1)
endwhile

Note that the operatatopy_obj does not copy the regions themselves but only the correspond
ing HALCON objects, which can be thought of as referencebécrctual region data.

Before we show how to merge the images let’s take a lodigate 4Q which visualizes the
whole process: After the first two imagésrrMergedRegions contains three clip parts; for
the first one a previously extracted region was merged. Nuatethe regions are described in

HALCON 6.1.4

80 Application Note on Image Acquisition

the coordinate frame of the current image; this means tleattérged part of clip no. 1 has
negative coordinates.

In the next iterationf{gure 408, further clip parts are merged, but no clip is finished yedteN
that the coordinate frame is again fixed to the current imagea consequence the currently
merged regions seem to move into negative coordinates.

After the fourth image figure 409, clips no. 1 and 2 are completed; they are returned in
the parametePrevMergedRegions. Note that they are still described in the coordinate
frame of the previous image (depicted with dashed arrow)isaalize them together with
CurrMergedRegions they must be moved to the coordinate system of the currergemaing
the operatomove region:

move_region (FinishedClips, ClipsInCurrentImageCoordinates,
-ImageHeight, 0)

Let’s get back to the task of merging images: To access thewgilaes around a clip, one must
merge those images over which theevMergedRegions can be spread. At the beginning,
therefore an empty image is created which can hold 4 images:

gen_image_const (TiledImage, ’byte’, ImageWidth,
ImageHeight * MaxImagesRegions)

At the end of each iteration, the “oldest” image, i.e., thegm at the top, is cut off from
the tiled image usingrop_part, and the current image is merged at the bottom using
tile_images_offset:

crop_part (TiledImage, TiledImageMinusOldest, ImageHeight, O,
ImageWidth, (MaxImagesRegions - 1) * ImageHeight)
ImagesToTile := [TiledImageMinusOldest,Image]
tile_images_offset (ImagesToTile, TiledImage, [O,
(MaxImagesRegions-1)*ImageHeight], [0, 0], [-1,
-1], [-1, -11, [-1, -1], [-1, -1], ImageWidth,
MaxImagesRegions * ImageHeight)

As noted above, the regions returnedPirevMergedRegions are described in the coordinate
frame of the most recent image (depicted with dashed arrdwgume 40¢; to extract the cor-
responding gray values from the tiled image, they must festioved to its coordinate system
(depicted with longer arrows) using the operaiove_region. Then, the surrounding rectan-
gles are created usirghape_trans, and finally the corresponding gray values are extracted
usingadd_channels:

move_region (FinishedClips, ClipsInTiledImageCoordinates,
(MaxImagesRegions-1) * ImageHeight, 0)

shape_trans (ClipsInTiledImageCoordinates, AroundClips, ’rectanglel’)

add_channels (AroundClips, TiledImage, GrayValuesAroundClips)

HALCON Application Guide, 2005-02-01

A HALCON Images 81

Appendix

A HALCON Images

In the following, we take a closer look at the way HALCON reg@ets and handles images.
Of course, we won'’t bother you with details about the loneleepresentation and the memory
management; HALCON takes care of it in a way to guaranteengperformance.

A.1 The Philosophy of HALCON Images

There are three important concepts behind HALCON'’s imageabd

1. Multiple channels

Typically, one thinks of an image as a matrix of pixels. In HXQN, this matrix is
called achanne] and images may consist of one or more such channels. Forpéxam
gray value images consist of a single channel, color imaggs®e channels.

The advantage of this representation is that many HALCONaipes automatically
process all channels at once; for example, if you want toraabgray level or color
images from another, you can apmyb_image without worrying about the image
type. Whether an operator processes all channels at onckeaeen in the pa-
rameter description in the reference manual: If an imagamater is described as
(multichannel-)image Or (multichannel-)image(-array) (e.g., the parameter
ImageMinuend Of sub_image), all channels are processed,; if it is described®sze
or image (-array) (e.g., the parametdmage of threshold), only the first channel is
processed.

For more information about channels please refappendix A.3.2

2. Various pixel types

Besides the standard 8 bit (typgte) used to represent gray value image, HALCON
allows images to contain various other data, e.g. 16 biger®(typeint2 or uint2) or
32 bit floating point numbers (typesal) to represent derivatives.

Most of the time you need not worry about pixel types, becad&eCON operators
that output images automatically use a suitable pixel typa. example, the operator
derivate_gauss creates aeal image to store the result of the derivation. As another
example, if you connect to a frame grabber selecting a vali& for the parameter
BitsPerChannel, a subsequengrab_image returns aruint2 image.

3. Arbitrarily-shaped region of interest

Besides the pixel information, each HALCON image also ftaseso-calledlomainin
form of a HALCON region. The domain can be interpreted as ®f interest, i.e.,
HALCON operators (with some exceptions) restrict theirgessing to this region.

The image domain inherits the full flexibility of a HALCON req, i.e., it can be of
arbitrary shape and size, can have holes, or even consistcoihnected points. For
more information about domains please refeappendix A.3.3

HALCON 6.1.4

82 Application Note on Image Acquisition

The power of HALCON's approach lies in the fact that it offéud flexibility but does not
require you to worry about options you don’'t need at the mdmEar example, if all you do
is grab and process standard 8 bit gray value images, yolgoanei channels and pixel types.
At the moment you decide to use color images instead, all y&ad o do is to add some lines
to decompose the image into its channels. And if your camieaane grabber provides images
with more than 8 bit pixel information, HALCON is ready forishas well.

A.2 Image Tuples (Arrays)

Another powerful mechanism of HALCON is the so-calleghle processinglf you want to
process multiple images in the same way, e.g., to smooth,tgem can call the operator
(e.g.,mean_image) once passing it all images as a tuple (array), instead ¢ihgat multi-
ple times. Furthermore, some operators always return irgges, e.g.gen_gauss_pyramid
Or inspect_shape_model.

Whether an operator supports tuple processing can be se#re iparameter description
in the reference manual: If an input image parameter is destrasimage(-array) or
(multichannel-)image(-array) (e.g., the paramet@mage Of mean_image), it Supports tu-
ple processing; if it is described d@sage or (multichannel-)image (e.g., the parameter
Image of find_1d_bar_code), only one image is processed.

For information about creating or accessing image tupleasd refer tappendix A.3.6

A.3 HALCON Operators for Handling Images

Below you find a brief overview of operators that allow to ¢esd ALCON images or to modify
“technical aspects” like the image size or the number of nkémn

A.3.1 Creation

HALCON images are created automatically when you use opeydike grab_image or

read_image. YOU can also create images from scratch using the opergted in the HDe-
velop menwWperators > Image > Creation, €.¢.,gen_image_const Of gen_imagel_extern

(see alssection 6.).

A.3.2 Channels

Operators for manipulating channels can be found in the le@vmenulperators >
Image > Channel. You can query the number of channels of an image with theasper
tor count_channels. Channels can be accessed usiltgess_channel (which extracts a
specified channel without copying)page_to_channels (which converts a multi-channel im-
age into an image tuple), atecompose2 etc. (which converts a multi-channel image into
2 or more single-channel images). Vice versa, you can cieatellti-channel image using
channels_to_image Or compose? etc., and add channels to an image usipgend channel.

HALCON Application Guide, 2005-02-01

A.3.3 Domain 83

A.3.3 Domain

Operators for manipulating the domain of an image can beddanthe HDevelop menu
Operators > Image > Domain. Upon creation of an image, its domain is set to the full im-
age size. You can set it to a specified region usinghge domain. In contrast, the operator
reduce_domain takes the original domain into account; the new domain isktuthe inter-
section of the original domain with the specified region.aB&ealso take a look at the operator
add_channels, which can be seen as complementarydduce_domain.

A.3.4 Access

Operators for accessing infomation about a HALCON imagehlmifound in the HDevelop
menuOperators > Image > Access. For exampleget_image pointer1 returns the size of
an image and a pointer to the image matrix of its first channel.

A.3.5 Manipulation

You can change the size of an image using the operafisigge format Or crop_part,

or other operators from the HDevelop mef@perators > Image > Format. The menu
Operators > Image > Type-Conversion lists operators which change the pixel type, e.qg.,
convert_image _type. Operators to modify the pixel values, can be found in the umen
Operators > Image > Manipulation, €.g.,paint_gray, which copies pixels from one im-
age into another.

A.3.6 Image Tuples

Operators for creating and accessing image tuples can bl fou the HDevelop menu
Operators > Object > Manipulation. Image tuples can be created using the operators
gen_empty_obj and concat_obj, while the operatoselect_obj allows to access an indi-
vidual image that is part of a tuple.

HALCON 6.1.4

84 Application Note on Image Acquisition
B Parameters Describing the Image

When opening a connection witlpen_framegrabber, you can specify the desired image for-
mat, e.g., ist size or the number of bits per pixel, using @upeters, which are described in the
following.

B.1 Image Size

The following 6 parameters influence the size of the grabbmeagdjesHorizontalResolution
andVerticalResolution specify thespatial resolutiorof the image in relation to the original
size. For example, if you chooserticalResolution = 2, you get an image with half the
height of the original as depicted figure 41b Another name for this process is (vertical and
horizontal)subsampling

With the parametersmageWidth, ImageHeight, StartRow, andStartColumn you can grab
only a part of the (possibly subsampled) image; this is addledimage croppingIn figure 41,
image part to be grabbed is marked with a rectangle in thenaligor subsampled) image; to
the right, the resulting image is depicted. Note that thaltiegy HALCON image always starts
with the coordinateg0,0), i.e., the information contained in the parametgtartRow and
StartColumn cannot be recovered from the resulting image.

Depending on the involved components, both subsamplingraage cropping may be exe-
cuted at different points during the transfer of an imagenfibhe camera into HALCON: in

the camera, in the frame grabber, or in the software. Pleatgethat in most cases you get no
direct effect on the performance in form of a higher frame;raxceptions are CMOS cam-
eras which adapt their frame rate to the requested imageSudesampling or cropping on the
software side has no effect on the frame rate; besides, yoadaeve a similar result using
reduce_domain. If the frame grabber executes the subsampling or cropognay get a pos-

itive effect if the PCI bus is the bottleneck of your applioatand prevents you from getting the

a)

c)

[{=1:] MACHINE VISION APPLICATI
[-= S~ =

- =

Pattern Matching, Blob Analysis
OCR, OCV, Bar Code Reading, Mearun
Easv Programming in ActiveX (COM),

b) d)

Figure 41: The effect of image resolution (subsampling) and image cropping (ImageWidth
= 200, ImageHeight = 100, StartRow = 50, StartColumn = 100):
a) HorizontalResolution (HR) = VerticalResolution (VR) = 1; b) HR = 1,
VR=2;c)HR=2,VR=1;d)HR=VR =2.

HALCON Application Guide, 2005-02-01

B.2 Frames vs. Fields 85

full frame rate. Some frame grabber interfaces alttyimamic image croppingia the operator
set_framegrabber_param.

Note that HALCON itself does not differentiate between aamed line scan cameras as both
produce images — the former in form of frames, the latter rfof so-calledpagescreated
from successive lines (number specified in the paranietgteHeight). Section 6.3ontains
additional information regarding the use of line scan ca®er

B.2 Frames vs. Fields

The parameteField is relevant only for analog cameras that produce signalevigig the
video standards originally developed for TV, e.g., NTSCALRn these standards, the camera
transmits images (also callé@&meg in form of two so-calledields one containing all odd lines
of a frame, the other all even lines of the next frame. On tamé& grabber board, these two
fields are thennterlaced the resulting frame is transferred via the PCI bus into thpguter
memory using DMA dlirect memory acce¥s

Figure 42visualizes this process and demonstrates its major dralu lbiaa moving object is
observed (in the example a dark square with the letter g, fiosition of the object changes
from field to field, the resulting frame shows a distortionted vertical object boundaries (also
calledpicket-fence effekt Such a distortion seriously impairs the accuracy of mesasants;
industrial vision systems therefore often use so-cgledjressive scagameras which trans-
fer full frames (sedigure 43. Some cameras also “mix” interlacing with progressivensas
depicted irfigure 44

You can also acquire the individual fields by specifyiigrticalResolution = 2. Via the
parametefField you can then select which fields are to be acquired (seefigigie 45: If
you select first’ or *second’, all you get odd or all even fields, respectively; if you selec
‘next’, you get every field. The latter mode has the advantage offaehiteld rate, at the

B R BN

camera

odd field even field odd field even field odd field

transfer camera
to frame grabber
(analog signal)

frame grabber

interlacing
transfer frame

grabber to

software (DMA)

Figure 42: Interlaced grabbing (Field = ’interlaced’).

interlacing

Vv ~

software

HALCON 6.1.4

86 Application Note on Image Acquisition

camera

-
|

full frame full frame full frame

transfer camera
to frame grabber
(analog signal)

frame grabber

transfer frame
grabber to
software (DMA)

Vv~

software

=

Figure 43: Progressive scan grabbing (Field = ’progressive’).

— —

odd field even field odd field even field odd field

camera

M

transfer camera t

to frame grabber

H

(analog signal)
frame grabber t t t : t

b interlacing b interlacing

Figure 44: Special form of interlaced grabbing supported by some cameras.

N

A

transfer frame
grabber to
software (DMA)

VY ~

A

software

T
I

cost, however, of the so-callegbrtical jitter: Objects may seem to move up and down (like
the square ifigure 49, while structures that are one pixel wide appear and desapfiike the
upper part of the 'T’).

By specifying Field = ’first’, ’second’, or ’next’ for a full resolution image
(VerticalResolution = 1), you can select with which field the interlacing starts.

Figure 46shows a timing diagram for usingrab_image together with an interlaced-scan cam-
era. Here, you can in some cases increase the processing fagerby specifyingnext’ for
the parameteField. The frame grabber then starts to digitize an image when éxefreld

HALCON Application Guide, 2005-02-01

B.3 Image Data 87

R E = B

a)

camera

T T T | |
odd field even field odd field even field odd field

transfer camera
to frame grabber
(analog signal)

frame grabber

transfer frame
grabber to
software (DMA)

vV~

s

software

b)

frame grabber

L

g~ 0 gl

i

transfer frame
grabber to
software (DMA)

software

c)

frame grabber

i

transfer frame
grabber to
software (DMA)

vV~

Z
Py

s

=

software

Figure 45: Three ways of field grabbing: a) *first’; b) ’second’; C) ’next’ .

arrives; in the example therefore only one field is lost.

B.3 Image Data

The parameters described in the previous sections coatedition the size of the im-
ages. Thdmage datai.e., the data contained in a pixel, is described with theupeaters
BitsPerChannel andColorSpace. To understand these parameters, a quick look at the HAL-
CON'’s way to represent images is necessary: A HALCON imagesists of one or more ma-
trices of pixels, which are callezhannels Gray value images are represented as single-channel
images, while color images consist of three channels, fgthe red, green, and blue part of
an RGB image. Each image matrix (channel) consistExals which may be of differendata
types e.g., standard 8 bit (typegyte) or 16 bit integers (typent2 or uint?2) or 32 bit floating

HALCON 6.1.4

88 Application Note on Image Acquisition

| 1""'ar.'gm'a';'”""ffamé'ra:él"’i { { { {

camera ! expose ! expose !expose !expose !expose !expose ‘xpose

\ 3

T odd field even field odd field even field odd field even field odd field
T 173" 074 -
wait for wait for
frame vsync digitize digitize vsync digitize digitize t
RV G '
transfer L |||||||||||| i
(DMA)
Grab Grab
l wait for create wait for create
image Himage | 'Mage Himage {
HFGI & SDK >
software grab_image grab_image
process process t
application >
e framerate v}
processing

Figure 46: Grabbing interlaced images starting with the *next’ field.

point numbers (typeeal). For detailed information about HALCON images pleaserréfe
appendix A

The two parameters correspond to the two main aspects of DN'€images: With the pa-
rameterColorSpace you can select whether the resulting HALCON image is to berayls-
channel) gray value image (valugray’) or a (multi-channel) color image (e.g., valtegb’).
The parameteBitsPerChannel specifies how many bits ateansmittedper pixel per channel
from the frame grabber to the computer; the pixel type of tih¢. EBION image is then chosen
to accommodate the transmitted number of pixels.

For example, if a frame grabber is able to transmit 10 bit gralpe images, one selects
ColorSpace = ’gray’ andBitsPerChannel = 10 and gets a single-channel HALCON im-
age of the type'uint2’, i.e., 16 bit per channel. Another example concerns RGB @sag
Some frame grabbers allow the valigand5 for BitsPerChannel. In the first case, & 8 =
24 bit are transmitted per pixel, while in the second casg 8 5 = 15 (padded to 16) bit are
transmitted; in both cases, a three-chanmgtte’ image results.

HALCON Application Guide, 2005-02-01

	1 Application Note on Shape-Based Matching
	1 A First Example
	2 Creating a Suitable Model
	2.1 A Closer Look at the Region of Interest
	2.1.1 How to Create a Region
	2.1.2 How to Combine and Mask Regions
	2.1.3 Using Image Processing to Create and Modify Regions
	Example 1: Determining the ROI Using Blob Analysis
	Example 2: Further Processing the Result of inspect_shape_model

	2.1.4 How the ROI Influences the Search

	2.2 Which Information is Stored in the Model?
	2.2.1 Which Pixels are Part of the Model?
	2.2.2 How Subsampling is Used to Speed Up the Search
	2.2.3 Allowing a Range of Orientation
	2.2.4 Allowing a Range of Scale
	2.2.5 Which Pixels are Compared with the Model?

	2.3 Synthetic Model Images

	3 Optimizing the Search Process
	3.1 Restricting the Search Space
	3.1.1 Searching in a Region of Interest
	3.1.2 Restricting the Range of Orientation and Scale
	3.1.3 Visibility
	3.1.4 Thoroughness vs. Speed

	3.2 Searching for Multiple Instances of the Object
	3.3 Searching for Multiple Models Simultaneously
	3.4 A Closer Look at the Accuracy
	3.5 How to Optimize the Matching Speed

	4 Using the Results of Matching
	4.1 Introducing Affine Transformations
	4.2 Creating and Applying Affine Transformations With HALCON
	4.3 Using the Estimated Position and Orientation
	4.3.1 Displaying the Matches
	4.3.2 Dealing with Multiple Matches
	4.3.3 Dealing with Multiple Models
	4.3.4 Aligning Other ROIs
	4.3.5 Rectifying the Search Results

	4.4 Using the Estimated Scale

	5 Miscellaneous
	5.1 Adapting to a Changed Camera Orientation
	5.2 Reusing Models

	2 Application Note on Image Acquisition
	1 The Philosophy Behind the HALCON Frame Grabber Interfaces
	2 A First Example
	3 Connecting to Your Frame Grabber
	3.1 Opening a Connection to a Specified Configuration
	3.2 Connecting to Multiple Boards and Cameras
	3.2.1 Single Camera
	3.2.2 Multiple Boards
	3.2.3 Multiple Handles Per Board
	3.2.4 Port Switching
	3.2.5 Simultaneous Grabbing

	3.3 Requesting Information About the Frame Grabber Interface

	4 Configuring the Acquisition
	4.1 General Parameters
	4.2 Special Parameters
	4.3 Fixed vs. Dynamic Parameters

	5 The Various Modes of Grabbing Images
	5.1 Real-Time Image Acquisition
	5.1.1 Non-Real-Time Grabbing Using grab_image
	5.1.2 Grabbing Without Delay Using Asynchronously Resettable Cameras
	5.1.3 Volatile Grabbing
	5.1.4 Real-Time Grabbing Using grab_image_async
	5.1.5 Continuous Grabbing
	5.1.6 Using grab_image_async Together With Asynchronously Resettable Cameras
	5.1.7 Specifying a Maximum Delay

	5.2 Using an External Trigger
	5.2.1 Special Parameters for External Triggers

	5.3 Acquiring Images From Multiple Cameras
	5.3.1 Dynamic Port Switching and Asynchronous Grabbing
	5.3.2 Simultaneous Grabbing

	6 Miscellaneous
	6.1 Acquiring Images From Unsupported Frame Grabbers
	6.2 Error Handling
	6.2.1 Error Handling in HDevelop
	6.2.2 Error Handling Using HALCON/C
	6.2.3 Error Handling Using HALCON/C++
	6.2.4 Error Handling Using HALCON/COM

	6.3 Line Scan Cameras

	A HALCON Images
	A.1 The Philosophy of HALCON Images
	A.2 Image Tuples (Arrays)
	A.3 HALCON Operators for Handling Images
	A.3.1 Creation
	A.3.2 Channels
	A.3.3 Domain
	A.3.4 Access
	A.3.5 Manipulation
	A.3.6 Image Tuples

	B Parameters Describing the Image
	B.1 Image Size
	B.2 Frames vs. Fields
	B.3 Image Data

