
HALCON Version 6.1.4

MVTec Software GmbH

HALCON Application Guide

Application Guide for HALCON, Version 6.1.4.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without prior written permission of the publisher.

Edition 1 June 2002 (HALCON 6.1)

Edition 1a May 2003 (HALCON 6.1.2)

Copyright c© 2002-2005 by MVTec Software GmbH, München, GermanyMVTec Software GmbH

Microsoft, Windows, Windows NT, Windows 2000, Windows XP, Visual Studio, and Visual
Basic are either trademarks or registered trademarks of Microsoft Corporation.
Linux is a trademark of Linus Torvalds.

All other nationally and internationally recognized trademarks and tradenames are hereby rec-
ognized.

More information about HALCON can be found at:

http://www.mvtec.com/halcon/

Contents

1 Application Note on Shape-Based Matching 1
How to Use Shape-Based Matching to Find and Localize Objects

2 Application Note on Image Acquisition 47
The Art of Image Acquisition

Application Note

How to Use Shape-Based Matching to
Find and Localize Objects

Provided Functionality

⊲ Finding objects starting based on a single model image

⊲ Localizing objects with subpixel accuracy

Typical Applications

⊲ Object recognition and localization

⊲ Intermediate machine vision steps, e.g., alignment of ROIs

⊲ Completeness check

⊲ Parts inspection

Involved Operators

create shape model, create scaled shape model

inspect shape model, get shape model params

set shape model origin, get shape model origin

find shape model, find shape models

find scaled shape model, find scaled shape models

write shape model, read shape model

clear shape model, clear all shape models

1

2 Application Note on Shape-Based Matching

Overview

HALCON’s operators forshape-based matchingenable you to find and localize objects based
on a single model image, i.e., from amodel. This method is robust to noise, clutter, occlusion,
and arbitrary non-linear illumination changes. Objects are localized with subpixel accuracy in
2D, i.e., found even if they are rotated or scaled.

The process of shape-based matching (seesection 1for a quick overview) is divided into two
distinct phases: In a first phase, you specify and create the model. This model can be stored in
a file to be reused in different applications. Detailed information about this phase can be found
in section 2. In the second phase, the model is used to find and localize an object. Section 3
describes how to optimize the outcome of this phase by restricting the search space.

Shape-based matching is a powerful tool for various machinevision tasks, ranging from inter-
mediate image processing, e.g., to place ROIs automatically or to align them to a moving part,
to complex tasks, e.g., recognize and localize a part in a robot vision application. Examples can
be found insection 4.

Unless specified otherwise, the example programs can be found in the subdirectory
shape matching of the directory%HALCONROOT%\examples\application guide.

HALCON Application Guide, 2005-02-01

3

Contents

1 A First Example . 4

2 Creating a Suitable Model . 6

2.1 A Closer Look at the Region of Interest. 6

2.2 Which Information is Stored in the Model?. 12

2.3 Synthetic Model Images. 18

3 Optimizing the Search Process. 20

3.1 Restricting the Search Space. 20

3.2 Searching for Multiple Instances of the Object. 23

3.3 Searching for Multiple Models Simultaneously. 24

3.4 A Closer Look at the Accuracy. 26

3.5 How to Optimize the Matching Speed. 28

4 Using the Results of Matching . 30

4.1 Introducing Affine Transformations. 30

4.2 Creating and Applying Affine Transformations With HALCON 30

4.3 Using the Estimated Position and Orientation. 32

4.4 Using the Estimated Scale. 42

5 Miscellaneous . 44

5.1 Adapting to a Changed Camera Orientation. 44

5.2 Reusing Models . 45

HALCON 6.1.4

4 Application Note on Shape-Based Matching

1 A First Example

In this section we give a quick overview of the matching process. To follow the example ac-
tively, start the HDevelop programhdevelop\first example shape matching.dev, which
locates the print on an IC; the steps described below start after the initialization of the applica-
tion (press F5 once to reach this point).

Step 1: Select the object in the model image

Row1 := 188

Column1 := 182

Row2 := 298

Column2 := 412

gen_rectangle1 (ROI, Row1, Column1, Row2, Column2)

reduce_domain (ModelImage, ROI, ImageROI)

After grabbing the so-calledmodel image, i.e., a representative image of the object to find,
the first task is to create a region containing the object. In the example program, a rectangu-
lar region is created using the operatorgen rectangle1; alternatively, you can draw the region
interactively using, e.g.,draw rectangle1 or use a region that results from a previous segmen-
tation process. Then, an image containing just the selectedregion is created using the operator
reduce domain. The result is shown infigure 1.

Step 2: Create the model

inspect_shape_model (ImageROI, ShapeModelImages, ShapeModelRegions, 8, 30)

create_shape_model (ImageROI, NumLevels, 0, rad(360), 0, ’none’,

’use_polarity’, 30, 10, ModelID)

With the operatorcreate shape model, the so-calledmodelis created, i.e., the internal data
structure describing the searched object. Before this, we recommend to apply the operator
inspect shape model, which helps you to find suitable parameters for the model creation.
inspect shape model shows the effect of two parameters: thenumber of pyramid levelson
which the model is created, and the minimumcontrastthat object points must have to be in-
cluded in the model. As a result, the operatorinspect shape model returns the model points

1© 2©

Figure 1: 1© specifying the object; 2© the internal model (4 pyramid levels).

HALCON Application Guide, 2005-02-01

1 A First Example 5

Figure 2: Finding the object in other images.

on the selected pyramid levels as shown infigure 1; thus, you can check whether the model
contains the relevant information to describe the object ofinterest.

When actually creating the model with the operatorcreate shape model, you can specify
additional parameters besidesNumLevels andContrast: First of all, you can restrict the range
of angles the object can assume (parametersAngleStart andAngleExtent) and the angle
steps at which the model is created (AngleStep). With the help of the parameterOptimization
you can reduce the number of model points; this is useful in the case of very large models. The
parameterMetric lets you specify whether thepolarity of the model points must be observed.
Finally, you can specify the minimum contrast object pointsmust have in thesearch imagesto
be compared with the model (MinContrast). The creation of the model is described in detail
in section 2.

As a result, the operatorcreate shape model returns ahandlefor the newly created model
(ModelID), which can then be used to specify the model, e.g., in calls to the operator
find shape model. Note that if you use HALCON’s COM or C++ interface and call the oper-
ator via the classesHShapeModelX or HShapeModel, no handle is returned because the instance
of the class itself acts as your handle.

If not only the orientation but also the scale of the searchedobject is allowed to vary, you must
use the operatorcreate scaled shape model to create the model; then, you can describe the
allowed range of scaling with three parameters similar to the range of angles.

Step 3: Find the object again

for i := 1 to 20 by 1

grab_image (SearchImage, FGHandle)

find_shape_model (SearchImage, ModelID, 0, rad(360), 0.8, 1, 0.5,

’interpolation’, 0, 0.9, RowCheck, ColumnCheck,

AngleCheck, Score)

endfor

To find the object again in asearch image, all you need to do is call the operator
find shape model; figure 2 shows the result for one of the example images. Besides the

HALCON 6.1.4

6 Application Note on Shape-Based Matching

already mentionedModelID, find shape model provides further parameters to optimize the
search process: The parametersAngleStart, AngleExtent, andNumLevels, which you al-
ready specified when creating the model, allow you to use morerestrictive values in the search
process; by using the value0 for NumLevels, the value specified when creating the model is
used. With the parameterMinScore you can specify how many of the model points must be
found; a value of0.5 means that half of the model must be found. Furthermore, you can specify
how many instances of the object are expected in the image (NumMatches) and how much two
instances of the object may overlap in the image (MaxOverlap). To compute the position of the
found object with subpixel accuracy the parameterSubPixel should be set to a value different
from ’none’. Finally, the parameterGreediness describes the used search heuristics, rang-
ing from “safe but slow” (value0) to “fast but unsafe” (value1). How to optimize the search
process is described in detail insection 3.

The operatorfind shape model returns the position and orientation of the found object in-
stances in the parametersRow, Column, andAngle, and their corespondingScore, i.e., how
much of the model was found.

If you use the operatorfind scaled shape model (after creating the model using
create scaled shape model), the scale of the found object is returnedScale.

2 Creating a Suitable Model

A prerequisite for a successful matching process is, of course, a suitable model for the object
you want to find. A model is suitable if it describes thesignificantparts of the object, i.e.,
those parts that characterize it and allow to discriminate it clearly from other objects or from the
background. On the other hand, the model should not contain clutter, i.e., points not belonging
to the object (see, e.g.,figure 4).

2.1 A Closer Look at the Region of Interest

When creating the model, the first step is to select aregion of interest(ROI), i.e., the part of the
image which serves as the model. In HALCON, aregiondefines an area in an image or, more
generally, a set of points. A region can have an arbitrary shape; its points do not even need to
be connected. Thus, the region of the model can have an arbitrary shape as well.

The sections below describe how to create simple and more complex regions. The following
code fragment shows the typical next steps after creating anROI:

reduce_domain (ModelImage, ROI, ImageROI)

create_shape_model (ImageROI, 0, 0, rad(360), 0, ’none’, ’use_polarity’,

30, 10, ModelID)

Note that the region of interest used when creating a shape model influences the matching
results: Its center of gravity is used as thereference pointof the model (seesection 4for more
information).

HALCON Application Guide, 2005-02-01

2.1.1 How to Create a Region 7

Figure 3: Creating an ROI from two regions.

2.1.1 How to Create a Region

HALCON offers multiple operators to create regions, ranging from standard shapes
like rectangles (gen rectangle2) or ellipses (gen ellipse) to free-form shapes (e.g.,
gen region polygon filled). These operators can be found in the HDevelop menu
Operators ⊲ Regions ⊲ Creation.

However, to use these operators you need the “parameters” ofthe shape you want to create,
e.g., the position, size and, orientation of a rectangle or the position and radius of a circle.
Therefore, they are typically combined with the operators in the HDevelop menuOperators ⊲

Graphics ⊲ Drawing, which let you draw a shape on the displayed image and then return the
shape parameters:

draw_rectangle1 (WindowHandle, ROIRow1, ROIColumn1, ROIRow2, ROIColumn2)

gen_rectangle1 (ROI, ROIRow1, ROIColumn1, ROIRow2, ROIColumn2)

2.1.2 How to Combine and Mask Regions

You can create more complex regions by adding or subtractingstandard regions using the op-
eratorsunion2 anddifference. For example, to create an ROI containing the square and the
cross infigure 3, the following code fragment was used:

draw_rectangle1 (WindowHandle, ROI1Row1, ROI1Column1, ROI1Row2,

ROI1Column2)

gen_rectangle1 (ROI1, ROI1Row1, ROI1Column1, ROI1Row2, ROI1Column2)

draw_rectangle1 (WindowHandle, ROI2Row1, ROI2Column1, ROI2Row2,

ROI2Column2)

gen_rectangle1 (ROI2, ROI2Row1, ROI2Column1, ROI2Row2, ROI2Column2)

union2 (ROI1, ROI2, ROI)

Similarly, you can subtract regions using the operatordifference. This method is useful to
“mask” those parts of a region containing clutter, i.e., high-contrast points that are not part of
the object. Infigure 4, e.g., the task is to find the three capacitors. When using a single circular
ROI, the created model contains many clutter points, which are caused by reflections on the

HALCON 6.1.4

8 Application Note on Shape-Based Matching

model for ring-shaped ROI

model for full-circle ROI

Figure 4: Masking the part of a region containing clutter.

metallic surface. Thus, the other two capacitors are not found. The solution to this problem is
to use a ring-shaped ROI, which can be created by the following lines of code:

draw_circle (WindowHandle, ROI1Row, ROI1Column, ROI1Radius)

gen_circle (ROI1, ROI1Row, ROI1Column, ROI1Radius)

gen_circle (ROI2, ROI1Row, ROI1Column, ROI1Radius-8)

difference (ROI1, ROI2, ROI)

Note that the ROI should not be too “thin”, otherwise it vanishes at higher pyramid levels! As a
rule of thumb, an ROI should be2NumLevels−1 pixels wide; in the example, the width of 8 pixels
therefore allows to use 4 pyramid levels.

For this task even better results can be obtained byusing a synthetic model image. This is
described insection 2.3.

HALCON Application Guide, 2005-02-01

2.1.3 Using Image Processing to Create and Modify Regions 9

b)

d)

a)

c)

Figure 5: Using image processing to create an ROI: a) extract bright regions; b) select the card;
c) the logo forms the ROI; d) result of the matching.

2.1.3 Using Image Processing to Create and Modify Regions

In the previous sections, regions were created explicitelyby specifying their shape parameters.
Especially for complex ROIs this method can be inconvenientand time-consuming. In the
following, we therefore show you how to extract and modify regions using image processing
operators.

Example 1: Determining the ROI Using Blob Analysis

To follow the example actively, start the HDevelop program
hdevelop\create roi via vision.dev, which locates the MVTec logo on a pendu-
lum (seefigure 5); we start after the initialization of the application (press F5 once). The
main idea is to “zoom in” on the desired region in multiple steps: First, find the bright region
corresponding to the card, then extract the dark characterson it.

Step 1: Extract the bright regions

threshold (ModelImage, BrightRegions, 200, 255)

connection (BrightRegions, ConnectedRegions)

fill_up (ConnectedRegions, FilledRegions)

First, all bright regions are extracted using a simple thresholding operation (threshold); the
operatorconnection forms connected components. The extracted regions are thenfilled up

HALCON 6.1.4

10 Application Note on Shape-Based Matching

via fill up; thus, the region corresponding to the card also encompasses the dark characters
(seefigure 5a).

Step 2: Select the region of the card

select_shape (FilledRegions, Card, ’area’, ’and’, 1800, 1900)

The region corresponding to the card can be selected from thelist of regions with the operator
select shape. In HDevelop, you can determine suitable features and values using the dialog
Visualization ⊲ Region Info; just click into a region, and the dialog immediately displays
its feature values.Figure 5bshows the result of the operator.

Step 3: Use the card as an ROI for the next steps

reduce_domain (ModelImage, Card, ImageCard)

Now, we can restrict the next image processing steps to the region of the card using the operator
reduce domain. This iterative focusing has an important advantage: In therestricted region of
the card, the logo characters are much easier to extract thanin the full image.

Step 4: Extract the logo

threshold (ImageCard, DarkRegions, 0, 230)

connection (DarkRegions, ConnectedRegions)

select_shape (ConnectedRegions, Characters, ’area’, ’and’, 150, 450)

union1 (Characters, CharacterRegion)

The logo characters are extracted similarly to the card itself; as a last step, the separate character
regions are combined using the operatorunion1.

Step 5: Enlarge the region using morphology

dilation_circle (CharacterRegion, ROI, 1.5)

reduce_domain (ModelImage, ROI, ImageROI)

create_shape_model (ImageROI, 0, 0, rad(360), 0, ’none’, ’use_polarity’,

30, 10, ModelID)

Finally, the region corresponding to the logo is enlarged slightly using the operator
dilation circle. Figure 5cshows the resulting ROI, which is then used to create the shape
model.

Example 2: Further Processing the Result of inspect shape model

You can also combine the interactive ROI specification with image processing. A useful
method in the presence of clutter in the model image is to create a first model region inter-
actively and then process this region to obtain an improved ROI. Figure 6shows an exam-
ple; the task is to locate the arrows. To follow the example actively, start the HDevelop pro-
gramhdevelop\process shape model.dev; we start after the initialization of the application
(press F5 once).

Step 1: Select the arrow

gen_rectangle1 (ROI, 361, 131, 406, 171)

First, an initial ROI is created around the arrow, without trying to exclude clutter (seefigure 6a).

HALCON Application Guide, 2005-02-01

2.1.3 Using Image Processing to Create and Modify Regions 11

model for
Contrast = 30

model for
Contrast = 90

model for
Contrast = 134

final ROI final modelprocessed region

a)

b)

c)

d)

Figure 6: Processing the result of inspect shape model: a) interactive ROI; b) models for dif-
ferent values of Contrast; c) processed model region and corresponding ROI and
model; d) result of the search.

Step 2: Create a first model region

reduce_domain (ModelImage, ROI, ImageROI)

inspect_shape_model (ImageROI, ShapeModelImage, ShapeModelRegion, 1, 30)

Figure 6bshows the shape model regions that would be created for different values of the pa-
rameterContrast. As you can see, you cannot remove the clutter without losingcharacteristic
points of the arrow itself.

Step 3: Process the model region

fill_up (ShapeModelRegion, FilledModelRegion)

opening_circle (FilledModelRegion, ROI, 3.5)

You can solve this problem by exploiting the fact that the operator inspect shape model

returns the shape model region; thus, you can process it likeany other region. The main idea to

HALCON 6.1.4

12 Application Note on Shape-Based Matching

get rid of the clutter is to use morphological operatoropening circle, which eliminates small
regions. Before this, the operatorfill up must be called to fill the inner part of the arrow,
because only the boundary points are part of the (original) model region.Figure 6cshows the
resulting region.

Step 4: Create the final model

reduce_domain (ModelImage, ROI, ImageROI)

create_shape_model (ImageROI, 3, 0, rad(360), 0, ’none’, ’use_polarity’,

30, 10, ModelID)

The processed region is then used to create the model;figure 6cshows the corresponding ROI
and the final model region. Now, all arrows are located successfully.

2.1.4 How the ROI Influences the Search

Note that the ROI used when creating the model also influencesthe results of the subsequent
matching: The center point of the ROI acts as the so-calledpoint of referenceof the model for
the estimated position, rotation, and scale. You can query the reference point using the opera-
tor get shape model origin and modify it usingset shape model origin; please refer to
sections 3.4and4.3for additional information.

The point of reference also influences the search itself: An object is only found if the point
of reference lies within the image, or more exactly, within the domain of the image (see
also section 3.1.1). Please note that this test is always performed for the original point of
reference, i.e., the center point of the ROI, even if you modified the reference point using
set shape model origin.

2.2 Which Information is Stored in the Model?

As the nameshape-based pattern matchingsuggests, objects are represented and recognized by
their shape. There exist multiple ways to determine or describe the shape of an object. Here,
the shape is extracted by selecting all those points whosecontrastexceeds a certain threshold;
typically, the points correspond to the contours of the object (see, e.g.,figure 1). Section 2.2.1
takes a closer look at the corresponding parameters.

To speed up the matching process, a so-calledimage pyramidis created, consisting of the origi-
nal, full-sized image and a set of downsampled images. The model is then created and searched
on the different pyramid levels (seesection 2.2.2for details).

If the object is allowed to appear rotated or scaled, the corresponding information is used al-
ready when creating the model. This also speeds up the matching process, at the cost of higher
memory requirements for the created model.Section 2.2.3andsection 2.2.4describe the corre-
sponding parameters.

In the following, all parameters belong to the operatorcreate shape model if not stated oth-
erwise.

HALCON Application Guide, 2005-02-01

2.2.1 Which Pixels are Part of the Model? 13

c)

a)

d)

b)

Figure 7: Selecting significant pixels via Contrast: a) complete object but with clutter; b) no
clutter but incomplete object; c) hysteresis threshold; d) minimum contour size.

2.2.1 Which Pixels are Part of the Model?

For the model those pixels are selected whosecontrast, i.e., gray value difference to
neighboring pixels, exceeds a threshold specified by the parameterContrast when calling
create shape model. In order to obtain a suitable model the contrast should be chosen in
such a way that thesignificantpixels of the object are included, i.e., those pixels that character-
ize it and allow to discriminate it clearly from other objects or from the background. Obviously,
the model should not contain clutter, i.e., pixels that do not belong to the object.

In some cases it is impossible to find a single value forContrast that removes the clutter but
not also parts of the object.Figure 7shows an example; the task is to create a model for the outer
rim of a drill-hole: If the complete rim is selected, the model also contains clutter (figure 7a); if
the clutter is removed, parts of the rim are missing (figure 7b).

To solve such problems, the parameterContrast provides two additional methods: hysteresis
thresholding and selection of contour parts based on their size. Both methods are used by
specifying atupleof values forContrast instead of a single value.

Hysteresis thresholding(see also the operatorhysteresis threshold) uses two thresholds, a
lower and an upper threshold. For the model, first pixels thathave a contrast higher than the
upper threshold are selected; then, pixels that have a contrast higher than the lower threshold
and that are connected to a high-contrast pixel, either directly or via another pixel with contrast
above the lower threshold, are added. This method enables you to select contour parts whose
contrast varies from pixel to pixel. Returning to the example of the drill-hole: As you can see
in figure 7c, with a hysteresis threshold you can create a model for the complete rim without
clutter. The following line of code shows how to specify the two thresholds in a tuple:

inspect_shape_model (ImageROI, ModelImages, ModelRegions, 1, [26,52])

HALCON 6.1.4

14 Application Note on Shape-Based Matching

The second method to remove clutter is to specify a minimum size, i.e., number of pixels, for the
contour components.Figure 7dshows the result for the example task. The minimum size must
be specified in the third element of the tuple; if you don’t want to use a hysteresis threshold, set
the first two elements to the same value:

inspect_shape_model (ImageROI, ModelImages, ModelRegions, 1, [26,26,12])

Alternative methods to remove clutter are to modify the ROI as described insection 2.1or create
a synthetic model (seesection 2.3).

2.2.2 How Subsampling is Used to Speed Up the Search

To speed up the matching process, a so-calledimage pyramidis created, both for the model
image and for the search images. The pyramid consists of the original, full-sized image and a
set of downsampled images. For example, if the the original image (first pyramid level) is of
the size 600x400, the second level image is of the size 300x200, the third level 150x100, and
so on. The object is then searched first on the highest pyramidlevel, i.e., in the smallest image.
The results of this fast search are then used to limit the search in the next pyramid image, whose
results are used on the next lower level until the lowest level is reached. Using this iterative
method, the search is both fast and accurate.Figure 8depicts 4 levels of an example image
pyramid together with the corresponding model regions.

You can specify how many pyramid levels are used via the parameterNumLevels. We recom-
mend to choose the highest pyramid level at which the model contains at least 10-15 pixels and
in which the shape of the model still resembles the shape of the object. You can inspect the
model image pyramid using the operatorinspect shape model, e.g., as shown in the HDe-
velop programhdevelop\first example shape matching.dev:

inspect_shape_model (ImageROI, ShapeModelImages, ShapeModelRegions, 8, 30)

area_center (ShapeModelRegions, AreaModelRegions, RowModelRegions,

ColumnModelRegions)

HeightPyramid := |ShapeModelRegions|

for i := 1 to HeightPyramid by 1

if (AreaModelRegions[i-1] >= 15)

NumLevels := i

endif

endfor

create_shape_model (ImageROI, NumLevels, 0, rad(360), 0, ’none’,

’use_polarity’, 30, 10, ModelID)

After the call to the operator, the model regions on the selected pyramid levels are displayed in
HDevelop’s Graphics Window; you can have a closer look at them using the online zooming
(menu entryVisualization ⊲ Online Zooming). The code lines following the operator call
loop through the pyramid and determine the highest level on which the model contains at least
15 points. This value is then used in the call to the operatorcreate shape model.

A much easier method is tolet HALCON select a suitable value itselfby specifying the value0
for NumLevels. You can then query the used value via the operatorget shape model params.

The operatorinspect shape model returns the pyramid images in form of an image tu-
ple (array); the individual images can be accessed like the model regions with the operator
select obj. Please note thatobject tuples start with the index 1, whereas control parame-!

HALCON Application Guide, 2005-02-01

2.2.2 How Subsampling is Used to Speed Up the Search 15

Figure 8: The image and the model region at four pyramid levels (original size and zoomed to
equal size).

ter tuples start with the index 0!

You can enforce a further reduction of model points via the parameterOptimization. This

HALCON 6.1.4

16 Application Note on Shape-Based Matching

may be useful to speed up the matching in the case of particularly large models. Please note
that regardless of your selection all points passing the contrast criterion are displayed, i.e., you
cannot check which points are part of the model.

2.2.3 Allowing a Range of Orientation

If the object’s rotation may vary in the search images you canspecify the allowed range in
the parameterAngleExtent and the starting angle of this range in the parameterAngleStart

(unit: rad). Note that the range of rotation is defined relative to the model image, i.e., a starting
angle of0 corresponds to the orientation the object has in the model image. Therefore, to allow
rotations up to +/-5◦, e.g., you should set the starting angle to-rad(5) and the angle extent to
rad(10).

We recommend to limit the allowed range of rotation as much aspossible in order to speed up
the search process and to minimize the required memory. Notethat you can further limit the
allowed range when calling the operatorfind shape model (seesection 3.1.2). If you want to
reuse a model for different tasks requiring a different range of angles and if memory is not an
issue, you can therefore use a large range when creating the model and a smaller range for the
search.

If the object is (almost) symmetric you should limit the allowed range. Otherwise, the search
process will find multiple, almost equally good matches on the same object at different angles;
which match (at which angle) is returned as the best can therefore “jump” from image to image.
The suitable range of rotation depends on the symmetry: For across-shaped or square object the
allowed extent must be less than 90◦, for a rectangular object less than 180◦, and for a circular
object 0◦.

To speed up the matching process, the model is precomputed for different angles within the
allowed range, at steps specified with the parameterAngleStep. If you select the value0,
HALCON automatically chooses an optimal step sizeφopt to obtain the highest possible accu-
racy by determining the smallest rotation that is still discernible in the image. The underlying
algorithm is explained infigure 9: The rotated version of the cross-shaped object is clearly dis-
cernible from the original if the point that lies farthest from the center of the object is moved by
at least 2 pixels. Therefore, the corresponding angleφopt is calculated as follows:

d2
= l2 + l2 − 2 · l · l · cos φ ⇒ φopt = arccos

(

1 −
d2

2 · l2

)

= arccos

(

1 −
2

l2

)

with l being the maximum distance between the center and the objectboundary andd = 2

pixels.

φ
d

l

l

Figure 9: Determining the minimum angle step size from the extent of the model.

HALCON Application Guide, 2005-02-01

2.2.4 Allowing a Range of Scale 17

The automatically determined angle step sizeφopt is suitable for most applications; therefore,
we recommend to select the value 0. You can query the used value after the creation via the
operatorget shape model params. By selecting a higher value you can speed up the search
process, however, at the cost of a decreased accuracy of the estimated orientation. Note that for
very high values the matching may fail altogether!

The value chosen forAngleStep should not deviate too much from the optimal value (1

3
φopt ≤

φ ≤ 3φopt). Note that choosing a very small step size does not result inan increased angle
accuracy!

2.2.4 Allowing a Range of Scale

Similarly to the range of orientation, you can specify an allowed range of scale with the param-
etersScaleMin, ScaleMax, andScaleStep of the operatorcreate scaled shape model.

Again, we recommend to limit the allowed range of scale as much as possible in order to speed
up the search process and to minimize the required memory. Note that you can further limit the
allowed range when calling the operatorfind scaled shape model (seesection 3.1.2).

Note that if you are searching for the object on a large range of scales you shouldcreate the
model based on a large scalebecause HALCON cannot “guess” model points when precom-
puting model instances at scales larger than the original one. On the other hand,NumLevels
should be chosen such that the highest level contains enoughmodel points also for the smallest
scale.

If you select the value0 for the parameterScaleStep, HALCON automatically chooses a
suitable step size to obtain the highest possible accuracy by determining the smallest scale
change that is still discernible in the image. Similarly to the angle step size (seefigure 9), a
scaled object is clearly discernible from the original if the point that lies farthest from the center
of the object is moved by at least 2 pixels. Therefore, the corresponding scale change∆sopt is
calculated as follows:

∆s =
d

l
⇒ ∆sopt =

2

l

with l being the maximum distance between the center and the objectboundary andd = 2

pixels.

The automatically determined scale step size is suitable for most applications; therefore,we
recommend to select the value 0. You can query the used value after the creation via the
operatorget shape model params. By selecting a higher value you can speed up the search
process, however, at the cost of a decreased accuracy of the estimated scale. Note that for very
high values the matching may fail altogether!

The value chosen forScaleStep should not deviate too much from the optimal value (1

3
∆sopt ≤

∆s ≤ 3∆sopt). Note that choosing a very small step size does not result inan increased scale
accuracy!

2.2.5 Which Pixels are Compared with the Model?

For efficiency reasons the model contains information that influences the search process: With
the parameterMinContrast you can specify which contrast a point in a search image must at

HALCON 6.1.4

18 Application Note on Shape-Based Matching

least have in order to be compared with the model. The main useof this parameter is to exclude
noise, i.e., gray value fluctuations, from the matching process. You can determine the noise by
examining the gray values with the HDevelop dialogVisualization ⊲ Pixel Info; then, set
the minimum contrast to a value larger than the noise.

The parameterMetric lets you specify whether thepolarity, i.e., the direction of the contrast
must be observed. If you choose the value’use polarity’ the polarity is observed, i.e., the
points in the search image must show the same direction of thecontrast as the corresponding
points in the model. If, for example, the model is a bright object on a dark background, the
object is found in the search images only if it is also brighter than the background.

You can choose to ignore the polarity globally by selecting the value
’ignore global polarity’. In this mode, an object is recognized also if the direction
of its contrast reverses, e.g., if your object can appear both as a dark shape on a light back-
ground and vice versa. This flexibility, however, is obtained at the cost of a slightly lower
recognition speed.

If you select the value’ignore local polarity’, the object is found even if the contrast
changes locally. This mode can be useful, e.g., if the objectconsists of a part with a medium
gray value, within which either darker of brighter sub-objects lie. Please note however, that
the recognition speed may decrease dramatically in this mode, especially if you allowed a large
range of rotation (seesection 2.2.3).

2.3 Synthetic Model Images

Depending on the application it may be difficult to create a suitable model because there is no
“good” model image containing a perfect, easy to extract instance of the object. An example of
such a case was already shown insection 2.1.2: The task of locating the capacitors seems to be
simple at first, as they are prominent bright circles on a darkbackground. But because of the
clutter inside and outside the circle even the model resulting from the ring-shaped ROI is faulty:
Besides containing clutter points also parts of the circle are missing.

In such cases, it may be better to use asynthetic model image. How to create such an image
to locate the capacitors is explained below. To follow the example actively, start the HDevelop
programhdevelop\synthetic circle.dev; we start after the initialization of the application
(press F5 once).

Step 1: Create an XLD contour

RadiusCircle := 43

SizeSynthImage := 2*RadiusCircle + 10

gen_ellipse_contour_xld (Circle, SizeSynthImage / 2, SizeSynthImage / 2, 0,

RadiusCircle, RadiusCircle, 0, 6.28318,

’positive’, 1.5)

First, we create a circular region using the operatorgen ellipse contour xld (see
figure 10a). You can determine a suitable radius by inspecting the image with the HDevelop
dialog Visualization ⊲ Online Zooming. Note that the synthetic image should be larger
than the region because pixels around the region are used when creating the image pyramid.

Step 2: Create an image and insert the XLD contour

gen_image_const (EmptyImage, ’byte’, SizeSynthImage, SizeSynthImage)

paint_xld (Circle, EmptyImage, SyntheticModelImage, 128)

HALCON Application Guide, 2005-02-01

2.3 Synthetic Model Images 19

a) b)

c)

Figure 10: Locating the capacitors using a synthetic model: a) paint region into synthetic image;
b) corresponding model; c) result of the search.

Then, we create an empty image using the operatorgen image const and insert the XLD
contour with the operatorpaint xld. In figure 10athe resulting image is depicted.

Step 3: Create the model

create_scaled_shape_model (SyntheticModelImage, 0, 0, 0, 0.01, 0.8, 1.2, 0,

’none’, ’use_polarity’, 30, 10, ModelID)

Now, the model is created from the synthetic image.Figure 10dshows the corresponding model
region,figure 10ethe search results.

Note how the image itself, i.e., its domain, acts as the ROI inthis example.

HALCON 6.1.4

20 Application Note on Shape-Based Matching

3 Optimizing the Search Process

The actual matching is performed by the operatorsfind shape model,
find scaled shape model, find shape models, or find scaled shape models. In
the following, we show how to select suitable parameters forthese operators to adapt and
optimize it for your matching task.

3.1 Restricting the Search Space

An important concept in the context of finding objects is thatof the so-calledsearch space.
Quite literally, this term specifies where to search for the object. However, this space encom-
passes not only the 2 dimensions of the image, but also other parameters like the possible range
of scales and orientations or the question of how much of the object must be visible. The more
you can restrict the search space, the faster the search willbe.

3.1.1 Searching in a Region of Interest

The obvious way to restrict the search space is to apply the operatorfind shape model to a
region of interest only instead of the whole image as shown infigure 11. This can be realized
in a few lines of code:

Step 1: Create a region of interest

Row1 := 141

Column1 := 163

Row2 := 360

Column2 := 477

gen_rectangle1 (SearchROI, Row1, Column1, Row2, Column2)

Figure 11: Searching in a region of interest.

HALCON Application Guide, 2005-02-01

3.1.2 Restricting the Range of Orientation and Scale 21

First, you create a region, e.g., with the operatorgen rectangle1 (seesection 2.1.1for more
ways to create regions).

Step 2: Restrict the search to the region of interest

for i := 1 to 20 by 1

grab_image (SearchImage, FGHandle)

reduce_domain (SearchImage, SearchROI, SearchImageROI)

find_shape_model (SearchImageROI, ModelID, 0, rad(360), 0.8, 1, 0.5,

’interpolation’, 0, 0.9, RowCheck, ColumnCheck,

AngleCheck, Score)

endfor

The region of interest is then applied to each search image using the operatorreduce domain.
In this example, the searching speed is almost doubled usingthis method.

Note that by restricting the search to a region of interest you actually restrict the position of the
point of referenceof the model, i.e., the center of gravity of the model ROI (seesection 2.1.4).
This means that the size of the search ROI corresponds to the extent of the allowed movement;
for example, if your object can move± 10 pixels vertically and± 15 pixels horizontally you can
restrict the search to an ROI of the size 20×30. In order to assure a correct boundary treatment
on higher pyramid levels, we recommend to enlarge the ROI by2NumLevels−1 pixels; to continue
the example, if you specifiedNumLevels = 4, you can restrict the search to an ROI of the size
36×46.

Please note that even if you modify the point of reference usingset shape model origin, the
original one, i.e., the center point of the model ROI, is usedduring the search. Thus, you must
always specify the search ROI relative to the original reference point.

3.1.2 Restricting the Range of Orientation and Scale

When creating the model with the operatorcreate shape model (or
create scaled shape model), you already specified the allowed range of orientation
and scalesection 2.2.3and section 2.2.4. When calling the operatorfind shape model

(or find scaled shape model) you can futher limit these ranges with the parameters
AngleStart, AngleExtent, ScaleMin, and ScaleMax. This is useful if you can restrict
these ranges by other information, which can, e.g., be obtained by suitable image processing
operations.

Another reason for using a larger range when creating the model may be that you want to reuse
the model for other matching tasks.

3.1.3 Visibility

With the parameterMinScore you can specify how much of the object — more precisely: of
the model — must be visible. A typical use of this mechanism isto allow a certain degree of
occlusion as demonstrated infigure 12: The security ring is found ifMinScore is set to0.7.

Let’s take a closer look at the term “visibility”: When comparing a part of a search image with
the model, the matching process calculates the so-calledscore, which is a measure of how many
model points could be matched to points in the search image (ranging from 0 to 1). A model
point may be “invisible” and thus not matched because of multiple reasons:

HALCON 6.1.4

22 Application Note on Shape-Based Matching

b) c)a)

Figure 12: Searching for partly occluded objects: a) model of the security ring; b) search result
for MinScore = 0.8; c) search result for MinScore = 0.7.

• Parts of the object’s contour are occluded, e.g., as infigure 12.

Please note thatan object must not be clipped at the image border; this case is not!
treated as an occlusion! More precisely, the smallest rectangle surrounding the model
must not be clipped.

• Parts of the contour have a contrast lower than specified in the parameterMinContrast
when creating the model (seesection 2.2.5).

• The polarity of the contrast changes globally or locally (seesection 2.2.5).

• If the object is deformed, parts of the contour may be visiblebut appear at an incorrect
position and therefore do not fit the model anymore. Note thatthis effect also occurs if
camera observes the scene under an oblique angle;section 5.1shows how to handle this
case.

Besides these obvious reasons, which have their root in the search image, there are some not so
obvious reasons caused by the matching process itself:

• As described insection 2.2.3, HALCON precomputes the model for intermediate angles
within the allowed range of orientation. During the search,a candidate match is then
compared to all precomputed model instances. If you select avalue for the parameter
AngleStep that is significantly larger than the automatically selected minimum value, the
effect depicted infigure 13can occur: If the object lies between two precomputed angles,
points lying far from the center are not matched to a model point, and therefore the score
decreases.

Of course, the same line of reasoning applies to the parameter ScaleStep (see
section 2.2.4).

• Another stumbling block lies in the use of an image pyramid which was introduced in
section 2.2.2: When comparing a candidate match with the model, the specified minimum
score must be reached on each pyramid level. However, on different levels the score may
vary, with only the score on the lowest level being returned in the parameterScore; this
sometimes leads to the apparently paradox situation thatMinScore must be set signifi-
cantly lower than the resultingScore.

Recommendation:The higherMinScore, the faster the search!

HALCON Application Guide, 2005-02-01

3.1.4 Thoroughness vs. Speed 23

AngleStep = 20 AngleStep = 30

Figure 13: The effect of a large AngleStep on the matching.

3.1.4 Thoroughness vs. Speed

With the parameterGreediness you can influence the search algorithm itself and thereby trade
thoroughness against speed. If you select the value0, the search is thorough, i.e., if the object is
present (and within the allowed search space and reaching the minimum score), it will be found.
In this mode, however, even very unlikely match candidates are also examined thoroughly,
thereby slowing down the matching process considerably.

The main idea behind the “greedy” search algorithm is to break off the comparison of a candi-
date with the model when it seems unlikely that the minimum score will be reached. In other
words, the goal is not to waste time on hopeless candidates. This greediness, however, can have
unwelcome consequences: In some cases a perfectly visible object is not found because the
comparison “starts out on a wrong foot” and is therefore classified as a hopeless candidate and
broken off.

You can adjust theGreediness of the search, i.e., how early the comparison is broken off, by
selecting values between0 (no break off: thorough but slow) and1 (earliest break off: fast but
unsafe). Note that the parametersGreediness andMinScore interact, i.e., you may have to
specify a lower minimum score in order to use a greedier search. Generally, you can reach a
higher speed with a high greediness and a sufficiently lowered minimum score.

3.2 Searching for Multiple Instances of the Object

All you have to do to search for more than one instance of the object is to set the parameter
NumMatches accordingly. The operatorfind shape model (or find scaled shape model)
then returns the matching results as tuples in the parameters Row, Column, Angle, Scale, and
Score. If you select the value0, all matches are returned.

Note that a search for multiple objects is only slightly slower than a search for a single object.

A second parameter,MaxOverlap, lets you specify how much two matches may overlap (as a
fraction). Infigure 14b, e.g., the two security rings overlap by a factor of approximately 0.2.
In order to speed up the matching as far as possible, however,the overlap is calculated not for
the models themselves but for their smallest surrounding rectangle. This must be kept in mind
when specifying the maximum overlap; in most cases, therefore a larger value is needed (e.g.,
comparefigure 14bandfigure 14d).

HALCON 6.1.4

24 Application Note on Shape-Based Matching

a) c)

e)d)b)

Figure 14: A closer look at overlapping matches: a) model of the security ring; b) model overlap;
c) smallest rectangle surrounding the model; d) rectangle overlap; e) pathological
case.

Figure 14eshows a “pathological” case: Even though the rings themselves do not overlap, their
surrounding rectangles do to a large degree. Unfortunately, this effect cannot be prevented.

3.3 Searching for Multiple Models Simultaneously

If you are searching for instances of multiple models in a single image, you can of course
call the operatorfind shape model (or find scaled shape model) multiple times. A much
faster alternative is to use the operatorsfind shape models or find scaled shape models

instead. These operators expect similar parameters, with the following differences:

• With the parameterModelIDs you can specify atupleof model IDs instead of a single one.
As when searching for multiple instances (seesection 3.2), the matching result parameters
Row etc. return tuples of values.

• The output parameterModel shows to which model each found instance belongs. Note
that the parameter does not return the model IDs themselves but the index of the model ID
in the tupleModelIDs (starting with 0).

• The search is always performed in a single image. However, you can restrict the search to
a certain region for each model individually by passing an image tuple (see below for an
example).

• You can either use the same search parameters for each model by specifying single values
for AngleStart etc., or pass a tuple containing individual values for each model.

• You can also search for multiple instances of multiple models. If you search for a certain
number of objects independent of their type (model ID), specify this (single) value in the

HALCON Application Guide, 2005-02-01

3.3 Searching for Multiple Models Simultaneously 25

b)a)

Figure 15: Searching for multiple models : a) models of ring and nut; b) search ROIs for the two
models.

parameterNumMatches. By passing a tuple of values, you can specify for each model
individually how many instances are to be found. In this tuple, you can mix concrete
values with the value0; the tuple[3,0], e.g., specifies to return the best 3 instances of the
first model and all instances of the second model.

Similarly, if you specify a single value forMaxOverlap, the operators check whether a
found instance is overlapped by any of the other instances independent of their type. By
specifying a tuple of values, each instance is only checked against all other instances of
the same type.

The example HDevelop programhdevelop\multiple models.dev uses the operator
find scaled shape models to search simultaneously for the rings and nuts depicted in
figure 15.

Step 1: Create the models

create_scaled_shape_model (ImageROIRing, 0, -rad(22.5), rad(45), 0, 0.8,

1.2, 0, ’none’, ’use_polarity’, 60, 10,

ModelIDRing)

create_scaled_shape_model (ImageROINut, 0, -rad(30), rad(60), 0, 0.6, 1.4,

0, ’none’, ’use_polarity’, 60, 10, ModelIDNut)

ModelIDs := [ModelIDRing, ModelIDNut]

First, two models are created, one for the rings and one for the nuts. The two model IDs are
then concatenated into a tuple using the operatorassign.

Step 2: Specify individual search ROIs

gen_rectangle1 (SearchROIRing, 110, 10, 130, Width - 10)

gen_rectangle1 (SearchROINut, 315, 10, 335, Width - 10)

SearchROIs := [SearchROIRing,SearchROINut]

add_channels (SearchROIs, SearchImage, SearchImageReduced)

HALCON 6.1.4

26 Application Note on Shape-Based Matching

In the example, the rings and nuts appear in non-overlappingparts of the search image; there-
fore, it is possible to restrict the search space for each model individually. As explained in
section 3.1.1, a search ROI corresponds to the extent of the allowed movement; thus, narrow
horizontal ROIs can be used in the example (seefigure 15b).

The two ROIs are concatenated into a region array (tuple) using the operatorconcat obj and
then “added” to the search image using the operatoradd channels. The result of this operator
is an array of two images, both having the same image matrix; the domain of the first image is
restricted to the first ROI, the domain of the second image to the second ROI.

Step 3: Find all instances of the two models

find_scaled_shape_models (SearchImageReduced, ModelIDs, [-rad(22.5),

-rad(30)], [rad(45), rad(60)], [0.8, 0.6], [1.2,

1.4], 0.8, 0, 0, ’interpolation’, 0, 0.9,

RowCheck, ColumnCheck, AngleCheck, ScaleCheck,

Score, ModelIndex)

Now, the operatorfind scaled shape models is applied to the created image array. Be-
cause the two models allow different ranges of rotation and scaling, tuples are specified for
the corresponding parameters. In contrast, the other parameters are are valid for both models.
Section 4.3.3shows how to access the matching results.

3.4 A Closer Look at the Accuracy

During the matching process, candidate matches are compared with instances of the model
at different positions, angles, and scales; for each instance, the resulting matching score is
calculated. If you set the parameterSubPixel to ’none’, the result parametersRow, Column,
Angle, andScale contain the corresponding values of the best match. In this case, the accuracy
of the position is therefore 1 pixel, while the accuracy of the orientation and scale is equal to
the values selected for the parametersAngleStep andScaleStep, respectively, when creating
the model (seesection 2.2.3andsection 2.2.4).

If you set the parameterSubPixel to ’interpolation’, HALCON examines the matching
scores at the neighboring positions, angles, and scales around the best match and determines the
maximum by interpolation. Using this method, the position is therefore estimated with subpixel
accuracy (≈ 1

20
pixel in typical applications). The accuracy of the estimated orientation and

scale depends on the size of the object, like the optimal values for the parametersAngleStep
andScaleStep (seesection 2.2.3andsection 2.2.4): The larger the size, the more accurately
the orientation and scale can be determined. For example, ifthe maximum distance between the
center and the boundary is100 pixel, the orientation is typically determined with an accuracy
of ≈ 1

10

◦.

Recommendation: Because the interpolation is very fast, you can setSubPixel to
’interpolation’ in most applications.

When you choose the values’least squares’, ’least squares high’, or
’least squares very high’, a least-squares adjustment is used instead of an interpo-
lation, resulting in a higher accuracy. However, this method requires additional computation
time.

Please note that theaccuracy of the estimated position may decrease if you modify the!

HALCON Application Guide, 2005-02-01

3.4 A Closer Look at the Accuracy 27

p. of ref.
new p. of ref.

original

model rotation rotation inaccuracy

Figure 16: Effect of inaccuracy of the estimated orientation on a moved point of reference.

point of referenceusingset shape model origin! This effect is visualized infigure 16: As
you can see in the right-most column, an inaccuracy in the estimated orientation “moves” the
modified point of reference, while the original point of reference is not affected. The resulting
positional error depends on multiple factors, e.g., the offset of the reference point and the ori-
entation of the found object. The main point to keep in mind isthat the error increases linearly
with the distanceof the modified point of reference from the original one (compare the two
rows infigure 16).

An inaccuracy in the estimated scale also results in an errorin the estimated position, which
again increases linearly with the distance between the modified and the original reference point.

For maximum accuracy in case the reference point is moved, the position should be determined
using the least-squares adjustment. Note that the accuracyof the estimated orientation and scale
is not influenced by modifying the reference point.

HALCON 6.1.4

28 Application Note on Shape-Based Matching

3.5 How to Optimize the Matching Speed

In the following, we show how to optimize the matching process in two steps. Please note
that in order to optimize the matching it is very important tohave aset of representativetest!
images from your application in which the object appears in all allowed variations regarding
its position, orientation, occlusion, and illumination.

Step 1: Assure that all objects are found

Before tuning the parameters for speed, we recommend to find settings such that the matching
succeeds in all test images, i.e., that all object instancesare found. If this is not the case when
using the default values, check whether one of the followingsituations applies:

? Is the object clipped at the image border?

Unfortunately, this failure cannot be prevented, i.e., youmust assure that the object is not
clipped (seesection 3.1.3).

? Is the search algorithm “too greedy”?

As described insection 3.1.4, in some cases a perfectly visible object is not found if the
Greediness is too high. Select the value0 to force a thorough search.

? Is the object partly occluded?

If the object should be recognized in this state nevertheless, reduce the parameter
MinScore.

? Does the matching fail on the highest pyramid level?

As described insection 3.1.3, in some cases the minimum score is not reached on the
highest pyramid level even though the score on the lowest level is much higher. Test
this by reducingNumLevels in the call tofind shape model. Alternatively, reduce the
MinScore.

? Does the object have a low contrast?

If the object should be recognized in this state nevertheless, reduce the parameter
MinContrast (operatorcreate shape model!).

? Is the polarity of the contrast inverted globally or locally?

If the object should be recognized in this state nevertheless, use the appropriate value for
the parameterMetric when creating the model (seesection 2.2.5). If only a small part of
the object is affected, it may be better to reduce theMinScore instead.

? Does the object overlap another instance of the object?

If the object should be recognized in this state nevertheless, increase the parameter
MaxOverlap (seesection 3.2).

? Are multiple matches found on the same object?

If the object is almost symmetric, restrict the allowed range of rotation as described in
section 2.2.3or decrease the parameterMaxOverlap (seesection 3.2).

Step 2: Tune the parameters regarding speed

The speed of the matching process depends both on the model and on the search parameters.
To make matters more difficult, the search parameters dependon the chosen model parameters.
We recommend the following procedure:

HALCON Application Guide, 2005-02-01

3.5 How to Optimize the Matching Speed 29

• Increase theMinScore as far as possible, i.e., as long as the matching succeeds.

• Now, increase theGreediness until the matching fails. Try reducing theMinScore; if
this does not help restore the previous values.

• If possible, use a larger value forNumLevels when creating the model.

• Restrict the allowed range of rotation and scale as far as possible as described in
section 2.2.3andsection 2.2.4. Alternatively, adjust the corresponding parameters when
callingfind shape model or find scaled shape model.

• Restrict the search to a region of interest as described insection 3.1.1.

The following methods are more “risky”, i.e., the matching may fail if you choose unsuitable
parameter values.

• Increase theMinContrast as long as the matching succeeds.

• If you a searching for a particularly large object, it sometimes helps to select a higher point
reduction with the parameterOptimization (seesection 2.2.2).

• Increase theAngleStep (and theScaleStep) as long as the matching succeeds.

HALCON 6.1.4

30 Application Note on Shape-Based Matching

4 Using the Results of Matching

As results, the operatorsfind shape model, find scaled shape model etc. return

• the position of the match in the parametersRow andColumn,

• its orientation in the parameterAngle,

• the scaling factor in the parameterScale, and

• the matching score in the parameterScore.

The matching score, which is a measure of the similarity between the model and the matched
object, can be used “as it is”, since it is an absolute value.

In contrast, the results regarding the position, orientation, and scale are worth a closer look
as they are determined relative to the created model. Beforethis, we introduce HALCON’s
powerful operators for the so-calledaffine transformations, which, when used together with the
shape-based matching, enable you to easily realize applications like image rectification or the
alignment of ROIs with a few lines of code.

4.1 Introducing Affine Transformations

“Affine transformation” is a technical term in mathematics describing a certain group of trans-
formations.Figure 17shows the types that occur in the context of the shape-based matching:
An object can betranslated(moved) along the two axes,rotated, andscaled. In figure 17d, all
three transformations were applied in a sequence.

Note that for the rotation and the scaling there exists a special point, calledfixed pointor point
of reference. The transformation is performed around this point. Infigure 17b, e.g., the IC is
rotated around its center, infigure 17earound its upper right corner. The point is called fixed
point because it remains unchanged by the transformation.

The transformation can be thought of as a mathematical instruction that defines how to calculate
the coordinates of object points after the transformation.Fortunately, you need not worry about
the mathematical part; HALCON provides a set of operators that let you specify and apply
tranformations in a simple way.

4.2 Creating and Applying Affine Transformations With HALCO N

HALCON allows to transform not only regions, but also imagesand XLD con-
tours by providing the operatorsaffine trans region, affine trans image, and
affine trans contour xld. The transformation infigure 17dcorresponds to the line

affine_trans_region (IC, TransformedIC, ScalingRotationTranslation,

’false’)

The parameterScalingRotationTranslation is a so-calledhomogeneous transformation
matrix that describes the desired transformation. You can create this matrix by adding sim-
ple transformations step by step. First, an identity matrixis created:

hom_mat2d_identity (EmptyTransformation)

HALCON Application Guide, 2005-02-01

4.2 Creating and Applying Affine Transformations With HALCON 31

e)

column / y

row / x

c) d)

f)

a) b)

Figure 17: Typical affine transformations: a) translation along two axes; b) rotation around the
IC center; c) scaling around the IC center; d) combining a, b, and c; e) rotation
around the upper right corner; f) scaling around the right IC center.

Then, the scaling around the center of the IC is added:

hom_mat2d_scale (EmptyTransformation, 0.5, 0.5, RowCenterIC,

ColumnCenterIC, Scaling)

Similarly, the rotation and the translation are added:

hom_mat2d_rotate (Scaling, rad(90), RowCenterIC, ColumnCenterIC,

ScalingRotation)

hom_mat2d_translate (ScalingRotation, 100, 200, ScalingRotationTranslation)

Please note that in these operators the coordinate axes are labeled withx andy instead ofRow
andColumn! Figure 17aclarifies the relation.

Tranformation matrices can also be constructed by a sort of “reverse engineering”. In other
words, if the result of the transformation is known for some points of the object, you can de-
termine the corresponding transformation matrix. If, e.g., the position of the IC center and
its orientation after the transformation is known, you can get the corresponding matrix via the
operatorvector angle to rigid.

HALCON 6.1.4

32 Application Note on Shape-Based Matching

Angle

Angle = 0

Column Column

Row

Row

Row

Column Column

Row

Angle

Angle = 0

model image

model image search image

search image
a)

b)

Figure 18: The position and orientation of a match: a) The center of the ROI acts as the default
point of reference; b) In the model image, the orientation is always 0.

vector_angle_to_rigid (RowCenterIC, ColumnCenterIC, 0,

TransformedRowCenterIC, TransformedColumnCenterIC,

rad(90), RotationTranslation)

and then use this matrix to compute the transformed region:

affine_trans_region (IC, TransformedIC, RotationTranslation, ’false’)

4.3 Using the Estimated Position and Orientation

There are two things to keep in mind about the position and orientation returned in the param-
etersRow, Column, andAngle: First, by defaultthe center of the ROI acts as the point of!
reference for both transformations, i.e., the rotation is performed around this point, and the
returned position denotes the position of the ROI center in the search image. This is depicted
in figure 18awith the example of an ROI whose center does not coincide withthe center of the
IC.

Secondly, in the model image the object is taken as not rotated, i.e., its angle is0, even if it
seems to be rotated, e.g., as infigure 18b.

After creating a model, you can change its point of referencewith the operator
set shape model origin. Note that this operator expects not the absolute position of the
new reference point as parameters, but itsdistanceto the default reference point! An example
can be foundsection 4.3.4; please note that by modifying the point of reference, the accuracy
of the estimated position may decrease (seesection 3.4).

HALCON Application Guide, 2005-02-01

4.3.1 Displaying the Matches 33

4.3.1 Displaying the Matches

Especially during the development of a matching application it is useful to display the matching
results overlaid on the search image. This can be realized ina few steps (see, e.g., the HDevelop
programhdevelop\first example shape matching.dev):

Step 1: Determine the point of reference

gen_rectangle1 (ROI, Row1, Column1, Row2, Column2)

area_center (ROI, Area, CenterROIRow, CenterROIColumn)

You can determine the center of the ROI, i.e., the point of reference, with the operator
area center.

Step 2: Create an XLD contour containing the model

inspect_shape_model (ImageROI, ShapeModelImages, ShapeModelRegions, 8, 30)

ShapeModelRegion := ShapeModelRegions[1]

gen_contours_skeleton_xld (ShapeModelRegion, ShapeModel, 1, ’filter’)

Below, we want to display the model at the extracted positionand orientation. The correspond-
ing region can be accessed via the operatorinspect shape model. However, if you call the
operator withNumLevels > 1 as in the example, an array (tuple) of regions is returned, with
the desired region at the first position; you can select the region from the array via the operator
select obj. We recommend to transform this region into an XLD contour using the operator
gen contours skeleton xld because XLD contours can be transformed more precisely and
quickly.

Step 3: Determine the affine transformation

find_shape_model (SearchImage, ModelID, 0, rad(360), 0.8, 1, 0.5,

’interpolation’, 0, 0.9, RowCheck, ColumnCheck,

AngleCheck, Score)

if (|Score| = 1)

vector_angle_to_rigid (CenterROIRow, CenterROIColumn, 0, RowCheck,

ColumnCheck, AngleCheck, MovementOfObject)

After the call of the operatorfind shape model, the results are checked; if the matching failed,
empty tuples are returned in the parametersScore etc. For a successful match, the correspond-
ing affine transformation can be constructed with the operator vector angle to rigid from
the movement of the center of the ROI (seesection 4.2).

Step 4: Transform the XLD

affine_trans_contour_xld (ShapeModel, ModelAtNewPosition,

MovementOfObject)

dev_display (ModelAtNewPosition)

Now, you can apply the tranformation to the XLD version of themodel using the operator
affine trans contour xld and display it;figure 2shows the result.

HALCON 6.1.4

34 Application Note on Shape-Based Matching

Figure 19: Displaying multiple matches; the used model is depicted in figure 12a.

4.3.2 Dealing with Multiple Matches

If multiple instances of the object are searched and found, the parametersRow, Column, Angle,
andScore containtuples. The HDevelop programhdevelop\multiple objects.dev shows
how to access these results in a loop:

Step 1: Determine the affine transformation

find_shape_model (SearchImage, ModelID, 0, rad(360), 0.75, 0, 0.55,

’interpolation’, 0, 0.8, RowCheck, ColumnCheck,

AngleCheck, Score)

for j := 0 to |Score| - 1 by 1

vector_angle_to_rigid (CenterROIRow, CenterROIColumn, 0,

RowCheck[j], ColumnCheck[j], AngleCheck[j],

MovementOfObject)

The transformation corresponding to the movement of the match is determined as in the previous
section; the only difference is that the position of the point of reference is extracted from the
tuple via the loop variable.

Step 2: Use the transformation

affine_trans_point_2d (MovementOfObject, CenterROIRow - 120 + 0.5,

CenterROIColumn + 0.5, RowArrowHead,

ColumnArrowHead)

disp_arrow (WindowHandle, RowCheck[j], ColumnCheck[j],

RowArrowHead - 0.5, ColumnArrowHead - 0.5, 2)

In this example, the transformation is also used to display an arrow that visualizes the orientation
(seefigure 19).

Note that the operatoraffine trans point 2d and the HALCON regions (and XLDs) use!
different definitions of the position of a pixel: For a region, a pixel is positioned at its middle,
for affine trans point 2d at its upper left corner. Therefore,0.5 must be added to the pixel
coordinates before transforming them and subtracted againbefore creating the regions.

HALCON Application Guide, 2005-02-01

4.3.3 Dealing with Multiple Models 35

4.3.3 Dealing with Multiple Models

When searching for multiple models simultaneously as described in section 3.3, it is use-
ful to store the information about the models, i.e., the reference point and the model re-
gion or XLD contour, in tuples. The following example code stems from the already partly
described HDevelop programhdevelop\multiple models.dev, which uses the operator
find scaled shape models to search simultaneously for the rings and nuts depicted in
figure 15.

Step 1: Inspect the models

inspect_shape_model (ImageROIRing, PyramidImage, ModelRegionRing, 1, 30)

gen_contours_skeleton_xld (ModelRegionRing, ShapeModelRing, 1, ’filter’)

area_center (ModelROIRing, Area, CenterROIRowRing, CenterROIColumnRing)

inspect_shape_model (ImageROINut, PyramidImage, ModelRegionNut, 1, 30)

gen_contours_skeleton_xld (ModelRegionNut, ShapeModelNut, 1, ’filter’)

area_center (ModelROINut, Area, CenterROIRowNut, CenterROIColumnNut)

As in the previous sections, the XLD contours correspondingto the two models are created with
the operatorsinspect shape model andgen contours skeleton xld, the reference points
are determined usingarea center.

Step 2: Save the information about the models in tuples

NumContoursRing := |ShapeModelRing|

NumContoursNut := |ShapeModelNut|

ShapeModels := [ShapeModelRing,ShapeModelNut]

StartContoursInTuple := [1, NumContoursRing+1]

NumContoursInTuple := [NumContoursRing, NumContoursNut]

CenterROIRows := [CenterROIRowRing, CenterROIRowNut]

CenterROIColumns := [CenterROIColumnRing, CenterROIColumnNut]

To facilitate the access to the shape models later, the XLD contours and the reference points
are saved in tuples in analogy to the model IDs (seesection 3.3). However, when concatenating
XLD contours with the operatorconcat obj, one must keep in mind that XLD objects are
already tuples as they may consist of multiple contours! To access the contours belonging to a
certain model, you therefore need the number of contours of amodel and the starting index in
the concatenated tuple. The former is determined using the operatorcount obj; the contours
of the ring start with the index 1, the contours of the nut withthe index 1 plus the number of
contours of the ring.

HALCON 6.1.4

36 Application Note on Shape-Based Matching

Step 3: Access the found instances

find_scaled_shape_models (SearchImageReduced, ModelIDs, [-rad(22.5),

-rad(30)], [rad(45), rad(60)], [0.8, 0.6], [1.2,

1.4], 0.8, 0, 0, ’interpolation’, 0, 0.9,

RowCheck, ColumnCheck, AngleCheck, ScaleCheck,

Score, ModelIndex)

for i := 0 to |Score| - 1 by 1

Model := ModelIndex[i]

vector_angle_to_rigid (CenterROIRows[Model], CenterROIColumns[Model],

0, RowCheck[i], ColumnCheck[i], AngleCheck[i],

MovementOfObject)

hom_mat2d_scale (MovementOfObject, ScaleCheck[i], ScaleCheck[i],

RowCheck[i], ColumnCheck[i], MoveAndScalingOfObject)

copy_obj (ShapeModels, ShapeModel, StartContoursInTuple[Model],

NumContoursInTuple[Model])

affine_trans_contour_xld (ShapeModel, ModelAtNewPosition,

MoveAndScalingOfObject)

dev_display (ModelAtNewPosition)

endfor

As already described insection 4.3.2, in case of multiple matches the output parametersRow

etc. contain tuples of values, which are typically accessedin a loop, using the loop variable
as the index into the tuples. When searching for multiple models, a second index is involved:
The output parameterModel indicates to which model a match belongs by storing the indexof
the corresponding model ID in the tuple of IDs specified in theparameterModelIDs. This may
sound confusing, but can be realized in an elegant way in the code: For each found instance, the
model ID index is used to select the corresponding information from the tuples created above.

As already noted, the XLD representing the model can consistof multiple contours; therefore,
you cannot access them directly using the operatorselect obj. Instead, the contours belong-
ing to the model are selected via the operatorcopy obj, specifying the start index of the model
in the concatenated tuple and the number of contours as parameters. Note thatcopy obj does
not copy the contours, but only the corresponding HALCON objects, which can be thought of
as references to the contours.

4.3.4 Aligning Other ROIs

The results of the matching can be used toalign ROIs for other image processing steps. i.e., to
position them relative to the image part acting as the model.This method is very useful, e.g.,
if the object to be inspected is allowed to move or if multipleinstances of the object are to be
inspected at once as in the example application described below.

In the example applicationhdevelop\align measurements.dev the task is to inspect razor
blades by measuring the width and the distance of their “teeth”. Figure 20ashows the model
ROI, figure 20bthe corresponding model region.

The inspection task is realized with the following steps:

HALCON Application Guide, 2005-02-01

4.3.4 Aligning Other ROIs 37

d)

c)a) b)

Figure 20: Aligning ROIs for inspecting parts of a razor: a) ROIs for the model; b) the model; c)
measuring ROIs; d) inspection results with zoomed faults.

Step 1: Position the measurement ROIs for the model blade

Rect1Row := 244

Rect1Col := 73

DistColRect1Rect2 := 17

Rect2Row := Rect1Row

Rect2Col := Rect1Col + DistColRect1Rect2

RectPhi := rad(90)

RectLength1 := 122

RectLength2 := 2

First, two rectangular measurement ROIs are placed over theteeth of the razor blade acting as
the model as shown infigure 20c.

HALCON 6.1.4

38 Application Note on Shape-Based Matching

Step 2: Move the reference point to the center of the first measure ROI

DistRect1CenterRow := Rect1Row - CenterROIRow

DistRect1CenterCol := Rect1Col - CenterROIColumn

set_shape_model_origin (ModelID, DistRect1CenterRow, DistRect1CenterCol)

Now, the reference point of the model is moved to the center ofthe first measure ROI using
the operatorset shape model origin. As already mentioned, the operator expects not the
absolute position of the new reference point, but its distance to the default reference point. Note
that this step is only included to show how to useset shape model origin; as described in
section 3.4, the accuracy of the estimated position may decrease when using a modified point
of reference.

Step 3: Find all razor blades

find_shape_model (SearchImage, ModelID, 0, 0, 0.8, 0, 0.5, ’interpolation’,

0, 0.7, RowCheck, ColumnCheck, AngleCheck, Score)

Then, all instances of the model object are searched for in the image.

Step 4: Determine the affine transformation

for i := 0 to |Score|-1 by 1

vector_angle_to_rigid (Rect1Row, Rect1Col, 0, RowCheck[i],

ColumnCheck[i], AngleCheck[i],

MovementOfObject)

For each razor blade, the transformation representing its position and orientation is calculated.
Because the reference point was moved to the center of the first measure ROI, these coordinates
are now used in the call tovector to rigid.

Step 5: Create measurement objects at the corresponding positions

RectPhiCheck := RectPhi + AngleCheck[i]

gen_measure_rectangle2 (RowCheck[i], ColumnCheck[i],

RectPhiCheck, RectLength1, RectLength2,

Width, Height, ’bilinear’,

MeasureHandle1)

affine_trans_point_2d (MovementOfObject, Rect2Row+0.5,

Rect2Col+0.5, Rect2RowTmp, Rect2ColTmp)

Rect2RowCheck := Rect2RowTmp-0.5

Rect2ColCheck := Rect2ColTmp-0.5

gen_measure_rectangle2 (Rect2RowCheck, Rect2ColCheck,

RectPhiCheck, RectLength1, RectLength2,

Width, Height, ’bilinear’,

MeasureHandle2)

Because the center of the first measure ROI serves as the reference point of the model, the
returned position of the match can be used directly in the call to gen measure rectangle2.
Unfortunately, there is only one point of reference. Therefore, the new position of the second
measure ROI must be calculated explicitly using the operator affine trans point 2d. As
remarked insection 4.3.2, the code adding and subtracting 0.5 to and from the point coordinates
is necessary because the operatoraffine trans point 2d and the HALCON regions (and!
XLDs) use different definitions of the position of a pixel.

HALCON Application Guide, 2005-02-01

4.3.5 Rectifying the Search Results 39

In the example application, the individual razor blades areonly translated but not rotated relative
to the model position. Instead of applying the full affine transformation to the measure ROIs
and then creating new measure objects, one can therefore usethe operatortranslate measure

to translate the measure objects themselves. The example program contains the corresponding
code; you can switch between the two methods by modifying a variable at the top of the pro-
gram.

Step 6: Measure the width and the distance of the “teeth”

measure_pairs (SearchImage, MeasureHandle1, 2, 25, ’negative’,

’all’, RowEdge11, ColEdge11, Amp11, RowEdge21,

ColEdge21, Amp21, Width1, Distance1)

measure_pairs (SearchImage, MeasureHandle2, 2, 25, ’negative’,

’all’, RowEdge12, ColEdge12, Amp12, RowEdge22,

ColEdge22, Amp22, Width2, Distance2)

Now, the actual measurements are performed using the operator measure pairs.

Step 7: Inspect the measurements

NumberTeeth1 := |Width1|

if (NumberTeeth1 < 37)

for j := 0 to NumberTeeth1 - 2 by 1

if (Distance1[j] > 4.0)

RowFault := round(0.5*(RowEdge11[j+1] + RowEdge21[j]))

ColFault := round(0.5*(ColEdge11[j+1] + ColEdge21[j]))

disp_rectangle2 (WindowHandle, RowFault, ColFault, 0,

4, 4)

Finally, the measurements are inspected. If a “tooth” is tooshort or missing completely, no
edges are extracted at this point resulting in an incorrect number of extracted edge pairs. In this
case, the faulty position can be determined by checking the distance of the teeth.Figure 20d
shows the inspection results for the example.

Please note that the example program is not able to display the fault if it occurs at the first or
the last tooth.

4.3.5 Rectifying the Search Results

In the previous section, the matching results were used to determine the so-calledforward trans-
formation, i.e., how objects are transformed from the model into the search image. Using this
transformation, ROIs specified in the model image can be positioned correctly in the search
image.

You can also determine theinverse transformationwhich transforms objects from the search
image back into the model image. With this transformation, you canrectify the search image
(or parts of it), i.e., transform it such that the matched object is positioned as it was in the model
image. This method is useful if the following image processing step is not invariant against
rotation, e.g., OCR or the variation model. Note that image rectification can also be useful
beforeapplying shape-based matching, e.g., if the camera observes the scene under an oblique
angle; seesection 5.1for more information.

HALCON 6.1.4

40 Application Note on Shape-Based Matching

a)

c) d)

b)

e)

Figure 21: Rectifying the search results: a) ROIs for the model and for the number extraction;
b) the model; c) number ROI at matched position; d) rectified search image (only
relevant part shown); e) extracted numbers.

The inverse transformation can be determined and applied ina few steps, which are
described below; in the corresponding example applicationof the HDevelop program
hdevelop\rectify results.dev the task is to extract the serial number on CD covers (see
figure 21).

Step 1: Calculate the inverse transformation

hom_mat2d_invert (MovementOfObject, InverseMovementOfObject)

You can invert a transformation easily using the operatorhom mat2d invert.

HALCON Application Guide, 2005-02-01

4.3.5 Rectifying the Search Results 41

Step 2: Rectify the search image

affine_trans_image (SearchImage, RectifiedSearchImage,

InverseMovementOfObject, ’constant’, ’false’)

Now, you can apply the inverse transformation to the search image using the operator
affine trans image. Figure 21dshows the resulting rectified image of a different CD; unde-
fined pixels are marked in grey.

Step 3: Extract the numbers

reduce_domain (RectifiedSearchImage, NumberROI,

RectifiedNumberROIImage)

threshold (RectifiedNumberROIImage, Numbers, 0, 128)

connection (Numbers, IndividualNumbers)

Now, the serial number is positioned correctly within the original ROI and can be extracted
without problems.Figure 21eshows the result, which could then, e.g., be used as the inputfor
OCR.

Unfortunately, the operatoraffine trans image transforms the full image even if you restrict
its domain with the operatorreduce domain. In a time-critical application it may therefore
be necessary to crop the search image before transforming it. The corresponding steps are
visualized infigure 22.

Step 1: Crop the search image

smallest_rectangle1 (NumberROIAtNewPosition, Row1, Column1, Row2,

Column2)

crop_rectangle1 (SearchImage, CroppedNumberROIImage, Row1, Column1,

Row2, Column2)

First, the smallest axis-parallel rectangle surrounding the transformed number ROI is com-
puted using the operatorsmallest rectangle1, and the search image is cropped to this part.
Figure 22bshows the resulting image overlaid on a grey rectangle to facilitate the comparison
with the subsequent images.

Step 2: Create an extended affine transformation

hom_mat2d_translate (MovementOfObject, - Row1, - Column1,

MoveAndCrop)

hom_mat2d_invert (MoveAndCrop, InverseMoveAndCrop)

In fact, the cropping can be interpreted as an additional affine transformation: a translation by
the negated coordinates of the upper left corner of the cropping rectangle (seefigure 22a). We
therefore “add” this transformation to the transformationdescribing the movement of the object
using the operatorhom mat2d translate, and then invert this extended transformation with
the operatorhom mat2d invert.

Step 3: Transform the cropped image

affine_trans_image (CroppedNumberROIImage, RectifiedROIImage,

InverseMoveAndCrop, ’constant’, ’true’)

reduce_domain (RectifiedROIImage, NumberROI,

RectifiedNumberROIImage)

HALCON 6.1.4

42 Application Note on Shape-Based Matching

Column1

translate(-Row1,-Column1)

Row1

c) d)b)

a)

Figure 22: Rectifying only part of the search image: a) smallest image part containing the ROI;
b) cropped search image; c) result of the rectification; d) rectified image reduced to
the original number ROI.

Using the inverted extended transformation, the cropped image can easily be rectified with the
operatoraffine trans image (figure 22c) and then be reduced to the original number ROI
(figure 22d) in order to extract the numbers.

4.4 Using the Estimated Scale

Similarly to the rotation (comparesection 4.3), the scaling is performed around the center of
the ROI – if you didn’t useset shape model origin, that is. This is depicted infigure 23aat
the example of an ROI whose center does not coincide with the center of the IC.

The estimated scale, which is returned in the parameterScale, can be used similarly to the posi-
tion and orientation. However, there is no convenience operator likevector angle to rigid

that creates an affine transformation including the scale; therefore, the scaling must be added
separately. How to achieve this is explained below; in the corresponding example HDevelop
programhdevelop\multiple scales.dev, the task is to find nuts of varying sizes and to
determine suitable points for grasping them (seefigure 24).

HALCON Application Guide, 2005-02-01

4.4 Using the Estimated Scale 43

Column

Row

model image search image

Column

Row

Scale = 0.5Scale = 1

Figure 23: The center of the ROI acts as the point of reference for the scaling.

a) b) c)

d)

Figure 24: Determining grasping points on nuts of varying sizes: a) ring-shaped ROI; b) model;
c) grasping points defined on the model nut; d) results of the matching.

Step 1: Specify grasping points

RowUpperPoint := 284

ColUpperPoint := 278

RowLowerPoint := 362

ColLowerPoint := 278

In the example program, the grasping points are specified directly in the model image; they are
marked with arrows infigure 24c.

Step 2: Determine the complete transformation

find_scaled_shape_model (SearchImage, ModelID, -rad(30), rad(60), 0.6, 1.4,

0.9, 0, 0, ’interpolation’, 0, 0.8, RowCheck,

ColumnCheck, AngleCheck, ScaleCheck, Score)

for i := 0 to |Score| - 1 by 1

vector_angle_to_rigid (CenterROIRow, CenterROIColumn, 0, RowCheck[i],

ColumnCheck[i], AngleCheck[i], MovementOfObject)

hom_mat2d_scale (MovementOfObject, ScaleCheck[i], ScaleCheck[i],

RowCheck[i], ColumnCheck[i], MoveAndScalingOfObject)

affine_trans_contour_xld (ShapeModel, ModelAtNewPosition,

MoveAndScalingOfObject)

HALCON 6.1.4

44 Application Note on Shape-Based Matching

After the matching, first the translational and rotational part of the transformation is determined
with the operatorvector angle to rigid as in the previous sections. Then, the scaling is
added using the operatorhom mat2d scale. Note that the position of the match, i.e., the trans-
formed center of the ROI, is used as the point of reference; this becomes necessary because the
scaling is performed “after” the translation and rotation.The resulting, complete transformation
can be used as before to display the model at the position of the matches.

Step 3: Calculate the transformed grasping points

affine_trans_point_2d (MoveAndScalingOfObject, RowUpperPoint+0.5,

ColUpperPoint+0.5, TmpRowUpperPoint,

TmpColUpperPoint)

affine_trans_point_2d (MoveAndScalingOfObject, RowLowerPoint+0.5,

ColLowerPoint+0.5, TmpRowLowerPoint,

TmpColLowerPoint)

RowUpperPointCheck := TmpRowUpperPoint-0.5

ColUpperPointCheck := TmpColUpperPoint-0.5

RowLowerPointCheck := TmpRowLowerPoint-0.5

ColLowerPointCheck := TmpColLowerPoint-0.5

Of course, the affine transformation can also be applied to other points in the model image with
the operatoraffine trans point 2d. In the example, this is used to calculate the position of
the grasping points for all nuts; they are marked with arrowsin figure 24d.

As noted insection 4.3.2, the code adding and subtracting 0.5 to and from the point coordinates
is necessary because the operatoraffine trans point 2d and the HALCON regions (and!
XLDs) use different definitions of the position of a pixel.

5 Miscellaneous

5.1 Adapting to a Changed Camera Orientation

As shown in the sections above, HALCON’s shape-based matching allows to localize objects
even if their position and orientation in the image or their scale changes. However, the shape-
based matching fails if the camera observes the scene under an oblique angle, i.e., if it is not
pointed perpendicularily at the plane in which the objects move, because an object then appears
distorted due to perspective projection; even worse, the distortion changes with the position and
orientation of the object.

In such a case we recommend to rectify imagesbeforeapplying the matching. This is a three-
step process: First, you mustcalibrate the camera, i.e., determine its position and orienta-
tion and other parameters, using the operatorcamera calibration. Secondly, the calibration
data is used to create a mapping function via the operatorgen image to world plane map,
which is then applied to images with the operatormap image. For more information please
refer to the HDevelop example programpm world plane.dev, which can be found in the
hdevelop\Applications\FA of the directory%HALCONROOT%\examples.

HALCON Application Guide, 2005-02-01

5.2 Reusing Models 45

5.2 Reusing Models

If you want to reuse created models in other HALCON applications, all you need to do is to
store the relevant information in files and then read it again. The following example code stems
from the HDevelop programhdevelop\reuse model.dev. First, a model is created and the
corresponding XLD contour and the reference point are determined:

create_scaled_shape_model (ImageROI, 0, -rad(30), rad(60), 0, 0.6, 1.4, 0,

’none’, ’use_polarity’, 60, 10, ModelID)

inspect_shape_model (ImageROI, ShapeModelImage, ShapeModelRegion, 1, 30)

gen_contours_skeleton_xld (ShapeModelRegion, ShapeModel, 1, ’filter’)

area_center (ModelROI, Area, CenterROIRow, CenterROIColumn)

Then, this information is stored in files using the operatorswrite shape model (for the model),
write contour xld arc info (for the XLD contour), andwrite tuple (for the reference
point, whose coordinates have been concatenated into a tuple first):

write_shape_model (ModelID, ModelFile)

write_contour_xld_arc_info (ShapeModel, XLDFile)

ReferencePoint := [CenterROIRow, CenterROIColumn]

write_tuple (ReferencePoint, RefPointFile)

In the example program, all shape models are cleared to represent the start of another applica-
tion.

The model, the XLD contour, and the reference point are now read from the files using
the operatorsread shape model, read contour xld arc info, and read tuple, respec-
tively. Furthermore, the parameters used to create the model are accessed with the operator
get shape model params:

read_shape_model (ModelFile, ReusedModelID)

read_contour_xld_arc_info (ReusedShapeModel, XLDFile)

read_tuple (RefPointFile, ReusedReferencePoint)

ReusedCenterROIRow := ReusedReferencePoint[0]

ReusedCenterROICol := ReusedReferencePoint[1]

get_shape_model_params (ReusedModelID, NumLevels, AngleStart, AngleExtent,

AngleStep, ScaleMin, ScaleMax, ScaleStep, Metric,

MinContrast)

Now, the model can be used as if it was created in the application itself:

find_scaled_shape_model (SearchImage, ReusedModelID, AngleStart,

AngleExtent, ScaleMin, ScaleMax, 0.9, 0, 0,

’interpolation’, 0, 0.8, RowCheck, ColumnCheck,

AngleCheck, ScaleCheck, Score)

for i := 0 to |Score| - 1 by 1

vector_angle_to_rigid (ReusedCenterROIRow, ReusedCenterROICol, 0,

RowCheck[i], ColumnCheck[i], AngleCheck[i],

MovementOfObject)

hom_mat2d_scale (MovementOfObject, ScaleCheck[i], ScaleCheck[i],

RowCheck[i], ColumnCheck[i], MoveAndScalingOfObject)

affine_trans_contour_xld (ReusedShapeModel, ModelAtNewPosition,

MoveAndScalingOfObject)

dev_display (ModelAtNewPosition)

endfor

HALCON 6.1.4

46 Application Note on Shape-Based Matching

HALCON Application Guide, 2005-02-01

Application Note

The Art of Image Acquisition

Provided Functionality

⊲ Connecting to simple and complex configurations of frame grabbers and cameras

⊲ Acquiring images in various timing modes

⊲ Configuring frame grabbers and cameras online

Involved Operators

open framegrabber

info framegrabber

grab image, grab image async, grab image start

set framegrabber param, get framegrabber param

close framegrabber, close all framegrabbers

gen image1, gen image3, gen image1 extern

47

48 Application Note on Image Acquisition

Overview

Obviously, the acquisition of images is a task to be solved inall machine vision applications.
Unfortunately, this task mainly consists of interacting with special, non-standardized hardware
in form of the frame grabber board. To let you concentrate on the actual machine vision prob-
lem, HALCON already provides interfaces performing this interaction for a large number of
frame grabbers (seesection 1).

Within your HALCON application, the task of image acquisition is thus reduced to a few lines
of code, i.e., a few operator calls, as can be seen insection 2. What’s more, this simplicity is not
achieved at the cost of limiting the available functionality: Using HALCON, you can acquire
images from various configurations of frame grabbers and cameras (seesection 3) in different
timing modes (seesection 5).

Unless specified otherwise, the example programs can be found in the subdirectory
image acquisition of the directory%HALCONROOT%\examples\application guide. Note
that most programs are preconfigured to work with a certain HALCON frame grabber interface;
in this case, the name of the program contains the name of the interface. To use the program with
another frame grabber, please adapt the parts which open theconnection to the frame grabber.
More example programs for the different HALCON frame grabber interfaces can be found in the
subdirectoryhdevelop\Image\Framegrabber of the directory%HALCONROOT%\examples.

Please refer to theHALCON/C User’s Manualand theHALCON/C++ User’s Manualfor infor-
mation about how to compile and link the C and C++ example programs; among other things,
they describe how to use the example UNIX makefiles which can be found in the subdirectories
c andcpp of the directory%HALCONROOT%\examples. Under Windows, you can use Visual
Studio workspaces containing the examples, which can be found in the subdirectoryi586-nt4
parallel to the source files.

HALCON Application Guide, 2005-02-01

49

Contents

1 The Philosophy Behind the HALCON Frame Grabber Interfaces 50

2 A First Example . 51

3 Connecting to Your Frame Grabber . 52

3.1 Opening a Connection to a Specified Configuration. 52

3.2 Connecting to Multiple Boards and Cameras. 54

3.3 Requesting Information About the Frame Grabber Interface 57

4 Configuring the Acquisition . 58

4.1 General Parameters. 58

4.2 Special Parameters. 59

4.3 Fixed vs. Dynamic Parameters. 60

5 The Various Modes of Grabbing Images. 61

5.1 Real-Time Image Acquisition. 61

5.2 Using an External Trigger. 69

5.3 Acquiring Images From Multiple Cameras. 71

6 Miscellaneous . 73

6.1 Acquiring Images From Unsupported Frame Grabbers. 73

6.2 Error Handling . 74

6.3 Line Scan Cameras. 78

A HALCON Images . 81

A.1 The Philosophy of HALCON Images. 81

A.2 Image Tuples (Arrays). 82

A.3 HALCON Operators for Handling Images. 82

B Parameters Describing the Image . 84

B.1 Image Size . 84

B.2 Frames vs. Fields. 85

B.3 Image Data. 87

HALCON 6.1.4

50 Application Note on Image Acquisition

1 The Philosophy Behind the HALCON Frame Grabber
Interfaces

From the point of view of an user developing software for a machine vision application, the
acquisition of images is only a prelude to the actual machinevision task. Of course it is impor-
tant that images are acquired at the correct moment or rate, and that the camera and the frame
grabber are configured suitably, but these tasks seem to be elementary, or at least independent
of the used frame grabber.

The reality, however, looks different. Frame grabbers differ widely regarding the provided func-
tionality, and even if their functionality is similar, the SDKs (software development kit) provided
by the frame grabber manufacturers do not follow any standard. Therefore, if one decides to
switch to a different frame grabber, this probably means to rewrite the image acquisition part of
the application.

HALCON’s answer to this problem are itsframe grabber interfaces(HFGI) which are provided
for currently more than 50 frame grabbers in form ofdynamically loadable libraries(Windows
NT/2000/XP: DLLs; UNIX: shared libraries). HALCON frame grabber interfaces bridge the
gap between the individual frame grabbers and the HALCON library, which is independent of
the used frame grabber, computer platform, and programminglanguage (seefigure 25). In other
words, they

• provide a standardized interface to the HALCON user in form of 11 HALCON operators,
and

• encapsulate details specific to the frame grabber, i.e., theinteraction with the frame grab-
ber SDK provided by the manufacturer.

Therefore, if you decide to switch to a different frame grabber, all you need to do is to install
the corresponding driver and SDK provided by the manufacturer and to use different parameter
values when calling the HALCON operators; the operators themselves stay the same.

computer

camera

software
frame

grabber

HFGxyz.dll

HALCON xyz frame grabber interface

frame grabber driver & SDK

HALCON application
HDevelop / C / C++ / Visual Basic

halcon.dll & halconc.dll / halconcpp.dll / halconx.dll

HALCON image processing library

Figure 25: From the camera to a HALCON application.

In fact, the elementary tasks of image acquisition are covered by two HALCON operators:

• open framegrabber connects to the frame grabber and sets general parameters, e.g., the
type of the used camera or the port the camera is connected to,then

• grab image (or grab image async, seesection 5.1for the difference) grabs images.

HALCON Application Guide, 2005-02-01

2 A First Example 51

b)a)

Figure 26: a) Acquired image; b) processed image (automatic segmentation).

If a frame grabber provides additional functionality, e.g., on-board modification of the im-
age signal, special grabbing modes, or digital output lines, it is available via the operator
set framegrabber param (seesection 4).

Note, that for some frame grabbers not the full functionality is available within HALCON;
please refer to the corresponding online documentation which can be found in the direc-
tory %HALCONROOT%\doc\html\manuals or via the HALCON folder in the Windows start
menu (if you installed the documentation). The latest information can be found under
http://www.mvtec.com/halcon/framegrabber.

If the frame grabber you want to use is not (yet) supported by HALCON, you can nevertheless
use it together with HALCON. Please refer tosection 6.1for more details.

2 A First Example

In this section we start with a simple image acquisition task, which uses the frame
grabber in its default configuration and the standard grabbing mode. The grabbed im-
ages are then segmented. To follow the example actively, start the HDevelop program
hdevelop\first example acquisition ids.dev; the steps described below start after the
initialization of the application (pressF5 once to reach this point). Note that the program is
preconfigured for the HALCON frame grabber interfaceIDS; to use it with a different frame
grabber, please adapt the parts which open the connection.

Step 1: Connect to the frame grabber

open_framegrabber (FGName, 1, 1, 0, 0, 0, 0, ’default’, -1, ’gray’, -1,

’false’, ’ntsc’, ’default’, -1, -1, FGHandle)

When opening the connection to your frame grabber using the operatoropen framegrabber,
the main parameter is theName of the corresponding HALCON frame grabber interface. As a
result, you obtain a so-calledhandle(FGHandle) which acts as your access to the frame grabber,
e.g., in calls to the operatorgrab image.

HALCON 6.1.4

52 Application Note on Image Acquisition

In the example, default values are used for most other parameters (’default’ or -1);
section 4.1takes a closer look at this topic. How to connect to more complex frame grabber and
camera configurations is described insection 3.

Step 2: Grab an image

grab_image (Image, FGHandle)

After successfully connecting to your frame grabber you cangrab images by calling the operator
grab image with the corresponding handleFGHandle. More advanced modes of grabbing
images are described insection 5.

Step 3: Grab and process images in a loop

while (Button # 1)

grab_image (Image, FGHandle)

auto_threshold (Image, Regions, 4)

connection (Regions, ConnectedRegions)

get_mposition (WindowHandleButton, Row, Column, Button)

endwhile

In the example, the grabbed images are then automatically segmented using the operator
auto threshold (seefigure 26). This is done in a loop which can be exited by clicking into a
window with the left mouse button.

3 Connecting to Your Frame Grabber

In this section, we show how to connect to different configurations of frame grabber(s) and
camera(s), ranging from the simple case of one camera connected to one frame grabber board
to more complex ones, e.g., multiple synchronized cameras connected to one or more boards.

3.1 Opening a Connection to a Specified Configuration

With the operatoropen framegrabber you open a connection to a frame grabber, or to be
more exact, via a frame grabber to a camera. This connection is described by four parameters
(seefigure 27): First, you select a frame grabber (family) with the parameter Name. If multiple
boards are allowed, you can select one with the parameterDevice; depending on the frame
grabber interface, this parameter can contain a string describing the board or simply a number
(in form of a string!).

Typically, the camera can be connected to the frame grabber at different ports, whose number
can be selected via the parameterPort (in rare casesLineIn). The parameterCameraType
describes the connected camera: For analog cameras, this parameter usually specifies the used
signal norm, e.g.,’ntsc’; more complex frame grabber interfaces use this parameter to select
a camera configuration file.

As a result,open framegrabber returns ahandlefor the opened connection in the parameter
FGHandle. Note that if you use HALCON’s COM or C++ interface and call the operator via
the classesHFramegrabberX or HFramegrabber, no handle is returned because the instance of
the class itself acts as your handle.

HALCON Application Guide, 2005-02-01

3.1 Opening a Connection to a Specified Configuration 53

camera type abc

camera type xyz

port 0

port 1

port 0

port 1

Name Device Port CameraType

which camera?which port?which board?

FGHandle

which frame grabber?

SDK & HFGI A

SDK & HFGI B

board 0

frame

grabber

board 1

frame

grabber

Figure 27: Describing a connection with the parameters of open framegrabber .

check box to start online grabbing

double-click handle to open dialog

Figure 28: Online grabbing in HDevelop .

In HDevelop, you can quickly check an opened connection by double-clickingFGHandle in
the Variable Window as shown infigure 28. A dialog appears which describes the status of the
connection. If you check the corresponding box, images are grabbed online and displayed in the
Graphics Window. This mode is very useful to setup your vision system (illumination, focus,
field of view).

HALCON 6.1.4

54 Application Note on Image Acquisition

3.2 Connecting to Multiple Boards and Cameras

Most HALCON frame grabbers interfaces allow to use multipleframe grabber boards and
cameras. However, there is more than one way to connect cameras and boards and to ac-
cess these configurations from within HALCON. Below, we describe the different configura-
tions; please check the online documentation of the HALCON interface for your frame grabber
(see%HALCONROOT%\doc\html\manuals, the HALCON folder in the Windows start menu, or
http://www.mvtec.com/halcon/framegrabber) which configurations it supports.

frame grabber

board 0

frame grabber

board 1

frame grabber

board 0

frame grabber

board 0

frame grabber

board 0

frame grabber

board 1

frame grabber

board 0

frame grabber

board 1

frame grabber

board 0

port 0handle 0

a)

handle 1 port 0

handle 0 port 0

b)

handle 0

port 0

port 1port switch

d)

port 0

port 1

port 0

HImage[3]

handle 0

f)

port 1

port 0

handle 0

HImage[2]

e)

port 0handle 2

port 1

port 0

handle 0

handle 1

c)

Figure 29: a) single board with single camera; b) multiple boards with one camera each; c) mul-
tiple boards with one or more cameras; d) single board with multiple cameras and
port switching; e) single board with multiple cameras and simultaneous grabbing;
f) simultaneous grabbing with multiple boards and cameras.

3.2.1 Single Camera

Figure 29ashows the simplest configuration: a single camera connectedto a single board, ac-
cessible via a single handle. Some frame grabbers, especially digital ones, only support this

HALCON Application Guide, 2005-02-01

3.2.2 Multiple Boards 55

configuration; as described in the following section, you can nevertheless use multiple cameras
with such frame grabbers by connecting each one to an individual board.

3.2.2 Multiple Boards

Figure 29bshows a configuration with multiple cameras, each connectedto a separate board.
In this case you call the operatoropen framegrabber once for each connection as in the HDe-
velop example programhdevelop\multiple boards px.dev. Note that the program is pre-
configured for the HALCONPx interface; to use it with a different frame grabber, please adapt
the parts which open the connection.

open_framegrabber (FGName, 1, 1, 0, 0, 0, 0, ’default’, -1, ’default’, -1,

’default’, ’default’, Board0, -1, -1, FGHandle0)

open_framegrabber (FGName, 1, 1, 0, 0, 0, 0, ’default’, -1, ’default’, -1,

’default’, ’default’, Board1, -1, -1, FGHandle1)

In this example, the two calls differ only in the value for theparameterDevice (’0’ and’1’); of
course, you can use different values for other parameters aswell, and even connect to different
frame grabber interfaces.

To grab images from the two cameras, you simply call the operator grab image once with the
two handles returned by the two calls toopen framegrabber:

grab_image (Image0, FGHandle0)

grab_image (Image1, FGHandle1)

3.2.3 Multiple Handles Per Board

Many frame grabbers provide multiple input ports and thus allow to connect more than one
camera to the board. Depending on the HALCON frame grabber interface, this configuration is
accessed in different ways which are described in this and the following sections.

The standard HALCON method to connect to the cameras is depicted in figure 29c: Each
connection gets its own handle, i.e.,open framegrabber is called once for each cam-
era with different values for the parameterPort, like in the HDevelop example program
hdevelop\multiple ports px.dev (preconfigured for the HALCONPx interface, please
adapt the parts which open the connection for your own frame grabber):

open_framegrabber (FGName, 1, 1, 0, 0, 0, 0, ’default’, -1, ’default’, -1,

’default’, ’default’, ’default’, Port0, -1, FGHandle0)

open_framegrabber (FGName, 1, 1, 0, 0, 0, 0, ’default’, -1, ’default’, -1,

’default’, ’default’, ’default’, Port1, -1, FGHandle1)

grab_image (Image0, FGHandle0)

grab_image (Image1, FGHandle1)

As figure 29cshows, you can also use multiple boards with multiple connected cameras.

3.2.4 Port Switching

Some frame grabber interfaces access the cameras not via multiple handles, but by switching the
input port dynamically (seefigure 29d). Therefore,open framegrabber is called only once,

HALCON 6.1.4

56 Application Note on Image Acquisition

like in the HDevelop example programhdevelop\port switching inspecta.dev (precon-
figured for the HALCONInspecta interface, please adapt the parts which open the connection
for your own frame grabber):

Port1 := 4

open_framegrabber (FGName, 1, 1, 0, 0, 0, 0, ’default’, -1, ’default’, -1,

Between grabbing images you switch ports using the operatorset framegrabber param (see
section 4.2for more information about this operator):

while (1)

set_framegrabber_param (FGHandle, ’port’, Port0)

disp_image (Image0, WindowHandle0)

set_framegrabber_param (FGHandle, ’port’, Port1)

Note that port switching only works for compatible (similar) cameras because
open framegrabber is only called once, i.e., the same set of parameters values is used
for all cameras. In contrast, when using multiple handles asdescribed above, you can specify
different parameter values for the individual cameras (with some board-specific limitations).

3.2.5 Simultaneous Grabbing

In the configurations described above, images were grabbed from the individual cameras by
multiple calls to the operatorgrab image. In contrast, some frame grabber interfaces allow
to grab images from multiple cameras with a single call tograb image, which then returns
a multi-channel image (seefigure 29e; appendix A.1contains more information about multi-
channel images). This mode is calledsimultaneous grabbing(or parallel grabbing); like port
switching, it only works for compatible (similar) cameras.For example, you can use this mode
to grab synchronized images from a stereo camera system.

In this mode,open framegrabber is called only once, as can be seen in the HDevelop ex-
ample programhdevelop\simultaneous grabbing inspecta.dev (preconfigured for the
HALCON Inspecta interface, please adapt the parts which open the connectionfor your own
frame grabber):

TM-6701/6705 1-plane, HD out’

open_framegrabber (FGName, 1, 1, 0, 0, 0, 0, ’default’, -1, ’default’, -1,

You can check the number of returned images (channels) usingthe operatorcount channels

* step 2: open correctly sized windows

get_image_pointer1 (SimulImages, Pointer, Type, Width, Height)

and extract the individual images, e.g., usingdecompose2, decompose3 etc., depending on the
number of images:

grab_image (SimulImages, FGHandle)

if (num_channels = 2)

Alternatively, you can convert the multi-channel image into an image array using
image to channels and then select the individual images viaselect obj.

Note that some frame grabber interfaces allow simultaneousgrabbing also for multiple boards
(seefigure 29f). Please refer tosection 5.3.2for additional information.

HALCON Application Guide, 2005-02-01

3.3 Requesting Information About the Frame Grabber Interface 57

Figure 30: An example result of the operator info framegrabber .

3.3 Requesting Information About the Frame Grabber Interfa ce

As mentioned already, the individual HALCON frame grabber interfaces are described in de-
tail on HTML pages which can be found in the directory%HALCONROOT%\doc\html\manuals

or in the HALCON folder in the Windows start menu (if you installed the documentation).
Another way to access information about a frame grabber interface is to use the operator
info framegrabber.

In the HDevelop example programhdevelop\info framegrabber ids.dev (preconfigured
for the HALCON IDS interface, please adapt the interface name for your own frame grab-
ber) this operator is called multiple times to query the version number of the interface, the
available boards, port numbers, camera types, and the default values for all parameters of
open framegrabber; the result, i.e., the values displayed in the HDevelop Variable Windows,
is depicted infigure 30.

info_framegrabber (FGName, ’general’, GeneralInfo, GeneralValue)

info_framegrabber (FGName, ’revision’, RevisionInfo, RevisionValue)

info_framegrabber (FGName, ’info_boards’, BoardsInfo, BoardsValue)

info_framegrabber (FGName, ’ports’, PortsInfo, PortsValue)

info_framegrabber (FGName, ’camera_types’, CamTypeInfo, CamTypeValue)

info_framegrabber (FGName, ’defaults’, DefaultsInfo, DefaultsValue)

The operatorinfo framegrabber can be called before actually connecting to a frame grabber
with open framegrabber. The only condition is that the HALCON frame grabber interface
and the frame grabber SDK and driver have been installed.

HALCON 6.1.4

58 Application Note on Image Acquisition

4 Configuring the Acquisition

As explained insection 1, the intention of HALCON’s frame grabber interfaces is to provide
the user with a common interface for many different frame grabbers. This interface was kept
as simple as possible; as shown, you can connect to your framegrabber and grab a first image
using only two operators.

However, HALCON’s second goal is to make the full functionality of a frame grabber available
to the user. As frame grabbers differ widely regarding the provided functionality, this is a
difficult task to realize within a simple, common interface.HALCON solves this problem by
dividing the task of configuring a frame grabber connection into two parts: Those parameters
which are common to most frame grabber interfaces (therefore calledgeneral parameters) are
set when calling the operatoropen framegrabber. In contrast, the functionality which is not
generally available can be configured by setting so-calledspecial parametersusing the operator
set framegrabber param.

4.1 General Parameters

When opening a connection viaopen framegrabber, you can specify the following general
parameters:

HorizontalResolution,
VerticalResolution

spatial resolution of the transferred image in relation
to the original size (seeappendix B.1)

ImageWidth, ImageHeight,
StartRow, StartColumn

size and upper left corner of the transferred image in
relation to the original size (seeappendix B.1)

Field grabbing mode for analog cameras, e.g., interlaced-
scan, progressive-scan, field grabbing (see
appendix B.2)

BitsPerChannel, ColorSpace data contained in a pixel (number of bits, number of
channels, color encoding, seeappendix B.3)

Gain amplification factor for the video amplifier on the
frame grabber board (if available)

ExternalTrigger hooking the acquisition of images to an external trig-
ger signal (see alsosection 5.2)

CameraType, Device, Port,
LineIn

Configuration of frame grabber(s) and camera(s)
from which images are to be acquired (see
section 3.1).

In section 3.1, we already encountered the parameters describing the frame grabber / camera
configuration. Most of the other parameters ofopen framegrabber specify the image format;
they are described in more detail inappendix B. The parameterExternalTrigger activates a
special grabbing mode which is described in detail insection 5.2. Finally, the parameterGain
can be used to manipulate the acquired images on the frame grabber board by configuring the
video amplifier.

Note that when callingopen framegrabber you must specify values for all parameters, even if
your frame grabber interface does not support some of them oruses values specified in a camera

HALCON Application Guide, 2005-02-01

4.2 Special Parameters 59

configuration file instead. To alleviate this task, the HALCON frame grabber interfaces provide
suitable default values which are used if you specify’default’ or -1 for string or numeric
parameters, respectively. The actually used default values can be queried using the operator
info framegrabber as shown insection 3.3.

After connecting to a frame grabber, you can query the current value of general parameters
using the operatorset framegrabber param; some interface even allow to modify general
parameters dynamically. Please refer tosection 4.3for more information about these topics.

4.2 Special Parameters

Even the functionality which is not generally available forall frame grabber can be accessed
and configured with a general mechanism: by setting corresponding special parameters via the
operatorset framegrabber param. Typical parameters are, for example:

’grab timeout’ timeout after which the operatorsgrab image and
grab image async stop waiting for an image and
return an error (see alsosections 5.2.1and6.2)

’volatile’ enable volating grabbing (see alsosection 5.1.3)

’continuous grabbing’ switch on a special acquisition mode which is nec-
essary for some frame grabbers to achieve real-
time performance (see alsosection 5.1.5)

’trigger signal’ signal type used for external triggering, e.g., rising
or falling edge

’image width’, ’image height’,
’start row’, ’start column’,
’gain’, ’external trigger’,
’port’

“doubles” of the some of the general parame-
ters described insection 4.1, allowing to modify
them dynamically, i.e., after opening the connec-
tion (see alsosection 4.3)

Depending on the frame grabber, various other parameters may be available, which allow, e.g.,
to add an offset to the digitized video signal or modify the brightness or contrast, to specify
the exposure time or to trigger a flash. Some frame grabbers also offer special parameters for
the use of line scan cameras (see alsosection 6.3), or parameters controlling digital output and
input lines.

Which special parameters are provided by a frame grabber interface is described in the al-
ready mentioned online documentation. You can also query this information by calling the
operatorinfo framegrabber as shown below;figure 31depicts the result of double-clicking
ParametersValue in the Variable Window after executing the line:

info_framegrabber (FGName, ’parameters’, ParametersInfo, ParametersValue)

To set a parameter, you call the operatorset framegrabber param, specifying the name of
the parameter to set in the parameterParam and the desired value in the parameterValue. For
example, insection 3.2.4the following line was used to switch to port0:

while (1)

You can also set multiple parameters at once by specifying tuples forParam andValue as in
the following line:

HALCON 6.1.4

60 Application Note on Image Acquisition

Figure 31: Querying available special parameters via info framegrabber .

set_framegrabber_param (FGHandle, [’image_width’,’image_height’], [256,

256])

For all parameters which can be set withset framegrabber param, you can query the cur-
rent value using the operatorget framegrabber param. Some interfaces also allow to query
additional information like minimum and maximum values forthe parameters. For example,
the HALCON Fire-i interface allows to query the minimum and maximum values forthe
brightness:

get_framegrabber_param (FGHandle, ’brightness_min_value’, MinBrightness)

get_framegrabber_param (FGHandle, ’brightness_max_value’, MaxBrightness)

Thus, you can check a new brightness value against those boundaries before setting it:

get_framegrabber_param (FGHandle, ’brightness’, CurrentBrightness)

NewBrightness := CurrentBrightness + 10

if (NewBrightness > MaxBrightness)

NewBrightness := MaxBrightness

endif

set_framegrabber_param (FGHandle, ’brightness’, NewBrightness)

4.3 Fixed vs. Dynamic Parameters

The distinction between fixed and dynamic parameters is maderelating to the lifetime of a frame
grabber connection.Fixed parameters, e.g., theCameraType, are set once when opening the
connection withopen framegrabber. In contrast, those parameters which can be modified via
set framegrabber param during the use of the connection are calleddynamic parameters.

As already noted insection 4.2, some frame grabber interfaces allow to modify general param-
eters likeImageWidth or ExternalTrigger dynamically viaset framegrabber param, by
providing a corresponding special parameter with the same name but written with small letters
and underscores, e.g.,’image width’ or ’external trigger’.

Independent of whether a general parameter can be modified dynamically, you can query its
current value by calling the operatorget framegrabber param with its “translated” name,
i.e., capitals replaced by small letters and underscores asdescribed above.

HALCON Application Guide, 2005-02-01

5 The Various Modes of Grabbing Images 61

5 The Various Modes of Grabbing Images

Section 2showed that grabbing images is very easy in HALCON– you just call grab image!
But of course there’s more to image grabbing than just to get an image, e.g., how to assure an
exact timing. This section therefore describes more complex grabbing modes.

5.1 Real-Time Image Acquisition

As a technical term, the attributereal-timemeans that a process guarantees that it meets given
deadlines. Please keep in mind thatnone of the standard operating systems, i.e., neither !
Windows NT/2000/XP nor Linux, are real-time operating systems. This means that the op-
erating system itself does not guarantee that your application will get the necessary processing
time before its deadline expires. From the point of view of a machine vision application running
under a non-real-time operating system, the most you can do is assure that real-time behavior is
not already prevented by the application itself.

In a machine vision application, real-time behavior may be required at multiple points:

Image delay: The camera must “grab” the image, i.e., expose the chip, at the correct moment,
i.e., while the part to be inspected is completely visible.

Frame rate: The most common real-time requirement for a machine vision application is to
“reach frame rate”, i.e., acquire and process all images thecamera produces.

Processing delay:The image processing itself must complete in time to allow a reaction to its
results, e.g., to remove a faulty part from the conveyor belt. As this point relates only
indirectly to the image acquisition it is ignored in the following.

5.1.1 Non-Real-Time Grabbing Using grab image

Figure 32shows the timing diagram for the standard grabbing mode, i.e., if you use the operator
grab image from within your application. This operator call is “translated” by the HALCON
frame grabber interface and the SDK into the corresponding signal to the frame grabber board
(marked with’Grab’).

The frame grabber now waits for the next image. In the example, a free-running analog
progressive-scan camera is used, which produces images continuously at a fixed frame rate;
the start of a new image is indicated by a so-calledvertical sync signal. The frame grabber then
digitizes the incoming analog image signal and transforms it into an image matrix. If a digital
camera is used, the camera itself performs the digitizing and transfers a digital signal which is
then transformed into an image matrix by the frame grabber. Please refer toappendix B.2for
more information about interlaced grabbing.

The image is then transferred from the frame grabber into computer memory via the PCI bus
using DMA (direct memory access). This transfer can either beincrementalas depicted in
figure 32, if the frame grabber has only a FIFO buffer, or in a single burst as depicted in
figure 33, if the frame grabber has a frame buffer on board. The advantage of the incremen-
tal transfer is that the transfer is concluded earlier. In contrast, the burst mode is more efficient;
furthermore, if the incremental transfer via the PCI bus cannot proceed for some reason, a FIFO

HALCON 6.1.4

62 Application Note on Image Acquisition

create
HImage

frame rate
original

frame rate
original

frame rate
original

delay
image

frame rate
processing

expose expose expose expose

application

HFGI & SDK

delay image

frame

grabber

camera t

t

t

t

t

t
software

create
HImage

digitize digitize
wait for
vsync

wait for
vsync

wait for
image

grab_image

wait for
image

Grab Grab
(DMA)

transfer

(analog)

transfer

process process
grab_image

Figure 32: Standard timing using grab image (configuration: free-running progressive-scan
camera, frame grabber with incremental image transfer).

overflow results, i.e., image data is lost. Note that in both modes the transfer performance
depends on whether the PCI bus is used by other devices as well!

When the image is completely stored in the computer memory, the HALCON frame grabber
interface transforms it into a HALCON image and returns the control to the application which
processes the image and then callsgrab image again. However, even if the processing time
is short in relation to the frame rate, the camera has alreadybegun to transfer the next image
which is therefore “lost”; the application can therefore only process every second image.

You can check this behavior using the HDevelop example program
hdevelop\real time grabbing ids.dev (preconfigured for the HALCONIDS inter-
face, please adapt the parts which open the connection for your own frame grabber), which
determines achievable frame rates for grabbing and processing (here: calculating a difference
image) first separately and then together as follows:

grab_image (BackgroundImage, FGHandle)

count_seconds (Seconds1)

for i := 1 to 20 by 1

grab_image (Image, FGHandle)

sub_image (BackgroundImage, Image, DifferenceImage, 1, 128)

endfor

count_seconds (Seconds2)

TimeGrabImage := (Seconds2-Seconds1)/20

FrameRateGrabImage := 1 / TimeGrabImage

HALCON Application Guide, 2005-02-01

5.1.2 Grabbing Without Delay Using Asynchronously Resettable Cameras 63

frame rate
original

delay
image

= 0

create
HImage

frame rate
processing

expose expose

application

HFGI & SDK

frame

grabber

camera t

t

t

t

t

t
software grab_image

digitize

Expose

wait for
vsync

Grab

Expose

wait for
vsync digitize

wait for
image

create
HImage

(DMA)

transfer

(analog)

transfer

process process

Grab

wait for
image

grab_image

Figure 33: Using a asynchronously resettable camera together with grab image (configuration:
progressive-scan camera, frame grabber with burst transfer, volatile grabbing).

To see the non-deterministic image delay, execute the operator grab image in the step mode by
pressing F6 ; the execution time displayed in HDevelop’s status bar willrange between once
and twice the original frame period. Please note that on UNIXsystem, the time measurements
are performed with a lower resolution than on Windows systems.

5.1.2 Grabbing Without Delay Using Asynchronously Resetta ble Cameras

If you use a free-running camera, the camera itself determines the exact moment an image is
acquired (exposed). This leads to a delay between the momentyou callgrab image and the
actual image acquisition (seefigure 32). The delay is not deterministic, but at least it is limited
by the frame rate; for example, if you use an NTSC camera with aframe rate of 30 Hz, the
maximum delay can be 33 milliseconds.

Of course, such a delay is not acceptable in an application that is to inspect parts at a high rate.
The solution is to use cameras that allow a so-calledasynchronous reset. This means that upon a
signal from the frame grabber, the camera resets the image chip and (almost) immediately starts
to expose it. Typically, such a camera does not grab images continuously but only on demand.

An example timing diagram is shown infigure 33. In contrast tofigure 32, the image delay
is (almost) zero. Furthermore, because the application nowspecifies when images are to be
grabbed, all images can be processed successfully; however, the achieved frame rate still in-
cludes the processing time and therefore may be too low for some machine vision applications.

HALCON 6.1.4

64 Application Note on Image Acquisition

5.1.3 Volatile Grabbing

As shown infigure 32, after the image has been transferred into the computer memory, the
HALCON frame grabber interface needs some time to create a corresponding HALCON image
which is then returned in the output parameterImage of grab image. Most of this time (about
3 milliseconds on a 500 MHz Athlon K6 processor for a gray value NTSC image) is needed to
copy the image data from the buffer which is the destination of the DMA into a newly allocated
area.

You can switch off the copying by using the so-calledvolatile grabbing, which can be enabled
via the operatorset framegrabber param (parameter’volatile’):

set_framegrabber_param (FGHandle, ’volatile’, ’enable’)

Then, the time needed by the frame grabber interface to create the HALCON image is signifi-
cantly reduced as visualized infigure 33. Note that usually volatile grabbing is only supported
for gray value images!

The drawback of volatile grabbing is that grabbed images areoverwritten by subsequent grabs.
To be more exact, the overwriting depends on the number of image buffers allocated by the
frame grabber interface or SDK. Typically, at least two buffers exist; therefore, you can safely
process an image even if the next image is already being grabbed as infigure 35. Some frame
grabber interfaces allow to use more than two buffers, and even to select their number dynami-
cally viaset framegrabber param (parameter’num buffers’).

You can check this behavior using the HDevelop example program
hdevelop\volatile grabbing ids.dev (preconfigured for the HALCONIDS inter-
face, please adapt the parts which open the connection for your own frame grabber). After
grabbing a first image and displaying it via

grab_image (FirstImage, FGHandle)

dev_open_window (0, 0, Width/2, Height/2, ’black’, FirstWindow)

dev_display (FirstImage)

change the scene and grab a second image which is displayed inan individual window:

grab_image (SecondImage, FGHandle)

dev_open_window (0, Width/2 + 8, Width/2, Height/2, ’black’, SecondWindow)

dev_display (SecondImage)

Now, images are grabbed in a loop and displayed in a third window. The two other images are
also displayed each time. If you change the scene before eachgrab you can see how the first
two images are overwritten in turn, depending on the number of buffers.

dev_open_window (Height/2 + 66, Width/4 + 4, Width/2, Height/2, ’black’,

ThirdWindow)

for i := 1 to 10 by 1

grab_image (CurrentImage, FGHandle)

dev_set_window (ThirdWindow)

dev_display (CurrentImage)

dev_set_window (FirstWindow)

dev_display (FirstImage)

dev_set_window (SecondWindow)

dev_display (SecondImage)

endfor

HALCON Application Guide, 2005-02-01

5.1.4 Real-Time Grabbing Using grab image async 65

frame rate
original

frame rate
original

frame rate
original

delay
image

create
HImage

"negative"
image
delay

frame rate
processing

expose expose expose expose

application

HFGI & SDK

frame

grabber

camera t

t

t

t

t

t
software

wait for
vsync

wait for
image

Grab

grab_image_async

wait for
vsync

wait for
vsync

digitize digitize digitize

(DMA)

transfer

(analog)

transfer

create
HImage

create
HImage

grab_image_async grab_image_async

wait for
image

wait for
image

process process process

Grab Grab Grab

Figure 34: Grabbing and processing in parallel using grab image async .

5.1.4 Real-Time Grabbing Using grab image async

The main problem with the standard timing usinggrab image is that the two processes of
image grabbing and image processing run sequentially, i.e., one after the other. This means that
the time needed for processing the image is included in the resulting frame rate, with the effect
that the frame rate provided by the camera cannot be reached by definition.

This problem can be solved by using the operatorgrab image async. Here, the two pro-
cesses are decoupled and can run asynchronously, i.e.,an image can be processed while the !
next image is already being grabbed. Figure 34shows a corresponding timing diagram: The
first call tograb image async is processed similar tograb image (comparefigure 32). The
difference becomes apparent after the transfer of the imageinto computer memory: Almost im-
mediately after receiving the image, the frame grabber interface automatically commands the
frame grabber to acquire a new image. Thus, the next image is grabbed while the application
processes the previous image. After the processing, the application callsgrab image async

again, which waits until the already running image acquisition is finished. Thus, the full frame
rate is now reached. Note that some frame grabbers fail to reach the full frame rate even with
grab image async; section 5.1.5shows how to solve this problem.

In the HDevelop example programhdevelop\real time grabbing ids.dev, which was al-
ready described insection 5.1.1, the reached frame rate for asynchronous processing is deter-
mined as follows:

HALCON 6.1.4

66 Application Note on Image Acquisition

grab_image (BackgroundImage, FGHandle)

count_seconds (Seconds1)

for i := 1 to 20 by 1

grab_image_async (Image, FGHandle, -1)

sub_image (BackgroundImage, Image, DifferenceImage, 1, 128)

endfor

count_seconds (Seconds2)

TimeGrabImageAsync := (Seconds2-Seconds1)/20

FrameRateGrabImageAsync := 1 / TimeGrabImageAsync

As can be seen infigure 34, the first call tograb image async has a slightly different effect
than the following ones, as it also triggers the first grab command to the frame grabber. As an
alternative, you can use the operatorgrab image start which just triggers the grab command;
then, the first call tograb image async behaves as the other ones. This is visualized, e.g., in
figure 35; as you can see, the advantage of this method is that the application can perform some
processing before callinggrab image async.

In the example, the processing was assumed to be faster than the acquisition. If this is not the
case, the image will already be ready when the next call tograb image async arrives. In this
case, you can specify how “old” the image is allowed to be using the parameterMaxDelay.
Please refer tosection 5.1.7for details.

Please note that when usinggrab image async it is not obvious anymore which image is
returned by the operator call, because the call is decoupledfrom the command to the frame
grabber! In contrast tograb image, which always triggers the acquisition of a new image,
grab image async typically returns an image which has been exposed before theoperator was
called, i.e., the image delay is negative (seefigure 34)! Keep this effect in mind when changing
parameters dynamically; contrary to intuition, the changewill not affect the image returned by
the next call ofgrab image async but by the following ones! Another problem appears when
switching dynamically between cameras (seesection 5.3.1).

5.1.5 Continuous Grabbing

For some frame grabbersgrab image async fails to reach the frame rate because the grab
command to the frame grabber comes too late, i.e., after the camera has already started to
transfer the next image (seefigure 35a).

As a solution to this problem, some frame grabber interfacesprovide the so-calledcontinuous
grabbing modewhich can be enables only via the operatorset framegrabber param (param-
eter’continuous grabbing’):

set_framegrabber_param (FGHandle, ’continuous_grabbing’, ’enable’)

In this mode, the frame grabber reads images from a free-running camera continuously and
transfers them into computer memory as depicted infigure 35b. Thus, the frame rate is reached.
If your frame grabber supports continuous grabbing you can test this effect in the example pro-
gramhdevelop\real time grabbing ids.dev, which was already described in the previous
sections; the program measures the achievable frame rate for grab image async without and
with continuous grabbing.

We recommend to use continuous grabbing only if you want to process every image; otherwise,
images are transmitted over the PCI bus unnecessarily, thereby perhaps blocking other PCI
transfers.

HALCON Application Guide, 2005-02-01

5.1.5 Continuous Grabbing 67

frame rate
original

frame rate
original

frame rate
original

frame rate
processing

create
HImage

create
HImage

frame rate
processing

expose expose expose expose

a)

b)

HFGI & SDK

application

HFGI & SDK

application

frame

grabber

camera

frame

grabber

t

t

t

t

t

t

t

t

t

t

t

software

software

wait for
vsync

wait for
image

Grab

digitize digitize
wait for
vsync

(DMA)

transfer

(analog)

transfer

wait for
image

digitize digitize

wait for
image

digitize

wait for
image

(DMA)

transfer

(analog)

transfer

wait for
image

create
HImage

grab_image_async

create
HImage

grab_image_async grab_image_async

create
HImage

process process

grab_image_async
etc

grab_image_async
etc

process process process

Grab

Grab

Grab

Grab Grab Grab

grab_image_start

set ’continuous_grabbing’

grab_image_start

Figure 35: a) grab image async fails to reach frame rate; b) problem solved using continuous
grabbing.

Note that some frame grabber interfaces provide additionalfunctionality in the continuous grab-
bing mode, e.g., the HALCONBitFlow interface. Please refer to the corresponding documen-
tation for more information.

HALCON 6.1.4

68 Application Note on Image Acquisition

delay
image

= 0

create
HImage

frame rate
original

frame rate
processing

expose expose

HFGI & SDK

application

frame

grabber

camera t

t

t

t

t

t
software

digitize
wait for
vsync

wait for
image

digitize

create
HImage

Expose

(DMA)

transfer

(analog)

transfer

process process

Grab

wait for
image

Grab

grab_image_async

wait for
vsyncExpose

Grab

grab_image_async

Figure 36: Using a asynchronously resettable camera together with grab image async (config-
uration as in figure 33.

5.1.6 Using grab image async Together With Asynchronously Resettable Cam-
eras

As described insection 5.1.2, you can acquire images without delay by using an asynchronously
resettable camera.Figure 36shows the resulting timing when using such a camera togetherwith
grab image async. When comparing the diagram to the one infigure 33, you can see that a
higher frame rate can now be reached, because the processingtime is not included anymore.

5.1.7 Specifying a Maximum Delay

In contrast tograb image, the operatorgrab image async has an additional parameter
MaxDelay, which lets you specify how “old” an already grabbed image may be in order to
be accepted.Figure 37visualizes the effect of this parameter. There are two casesto distin-
guish: If the call tograb image arrives before the next image has been grabbed (first call in
the example), the parameter has no effect. However, if an image has been grabbed already (sec-
ond and third call in the example), the elapsed time since thelast grab command to the frame
grabber is compared toMaxDelay. If it is smaller (second call in the example), the image is
accepted; otherwise (third call), a new image is grabbed.

Please note that the delay is not measured starting from the moment the image is exposed, as
you might perhaps expect! Currently, only a few frame grabber SDKs provide this information;

HALCON Application Guide, 2005-02-01

5.2 Using an External Trigger 69

create
HImage

create
HImage

exposeexpose expose expose

HFGI & SDK

application

frame

grabber

camera t

t

t

t

t

t
software

digitizedigitize digitize digitize

wait for
image

wait for
image

(DMA)

transfer

(analog)

transfer

> MaxDelay? NO > MaxDelay? YES

process process process process

grab_image_async

GrabGrabGrabGrab

Figure 37: Specifying a maximum delay for grab image async (using continuous grabbing).

therefore, the last grab command from the interface to the the frame grabber is used as the
starting point instead.

5.2 Using an External Trigger

In the previous section, the software performing the machine vision task decided when to ac-
quire an image (software trigger). In industrial applications, however, the moment for image
acquisition is typically specified externally by the process itself, e.g., in form of a hardware
trigger signal indicating the presence of an object to be inspected. Most frame grabber boards
are therefore equipped with at least one input line for such signals, which are calledexternal
triggers.

From HALCON’s point of view, external triggers are dealt with by the frame grabber board,
the only thing to do is to inform the frame grabber to use the trigger. You can do this simply
by setting the parameterExternalTrigger of open framegrabber to ’true’. Some frame
grabber interfaces also allow to enable or disable the trigger dynamically using the operator
set framegrabber param (parameter’external trigger’).

Figure 38ashows the timing diagram when using an external trigger together withgrab image

and a free-running camera. After the call tograb image, the frame grabber board waits for
the trigger signal. When it appears, the procedure described in the previous section follows:
The frame grabber waits for the next image, digitizes it, andtransfers it into computer memory;

HALCON 6.1.4

70 Application Note on Image Acquisition

delay
image

delay
image

= 0

create
HImage

create
HImage

create
HImage

expose

delay
image

= 0

delay
image

= 0

exposeexpose expose expose

HFGI & SDK

application

expose

HFGI & SDK

application

a)

b)

expose

trigger

frame

grabber

camera

frame

grabber

camera

trigger

t

t

t

t

t

t
software

t

t

t

t

t

t
software

wait for
trigger

wait for
vsync

wait for
trigger

wait for
image

(DMA)

transfer

(analog)

transfer

wait for
trigger

wait for
vsync

(DMA)

transfer

(analog)

transfer

Trigger

Trigger

digitize

process

Trigger Trigger

wait for
image

digitize

wait for
image

process

Trigger

process

Trigger

wait for
image

wait for
vsync

digitize

Grab

wait for
vsync

digitize

Trigger

wait for
image

grab_image_async

grab_image

Grab

Grab

Expose

grab_image

Grab

ExposeExpose Expose

etc

grab_image_start
grab_image_async grab_image_async

GrabGrab

Figure 38: Using an external trigger together with: a) free-running camera and grab image; b)
asynchronously resettable camera and grab image async .

then, the HALCON frame grabber interface transforms it intoa HALCON image and returns the
control to the application which processes the image and then callsgrab image again, which
causes the frame grabber board to wait for the next trigger signal.

The (bad) example infigure 38awas chosen on purpose to show an unsuitable configuration

HALCON Application Guide, 2005-02-01

5.2.1 Special Parameters for External Triggers 71

for using an external trigger: First of all, because of the free-running camera there is a non-
deterministic delay between the arrival of the trigger signal and the exposure of the image,
which may mean that the object to be inspected is not completely visible anymore. Secondly,
becausegrab image is used, trigger signals which arrive while the applicationis processing an
image are lost.

Both problems can easily be solved by using an asynchronously resettable camera together with
the operatorgrab image async as depicted infigure 38b.

The C++ example programcpp\error handling timeout picport.cpp (preconfigured for
the HALCONPicPort interface) shows how simple it is to use an external trigger:The con-
nection is opened withExternalTrigger set to’true’:

HFramegrabber framegrabber;

framegrabber.OpenFramegrabber(fgname, 1, 1, 0, 0, 0, 0, "default", -1,

"gray", -1, "true", camtype, device,

-1, -1);

Then, images are grabbed:

HImage image;

do

{

image = framegrabber.GrabImageAsync(-1);

} while (button == 0);

The example contains a customized error handler which checks whether there is an external
trigger; this part is described in detail insection 6.2.3.

5.2.1 Special Parameters for External Triggers

Most frame grabber interfaces allow to further configure theuse of external triggering via the
operatorset framegrabber param. As mentioned insection 4.2, some interfaces allow to
enable and disable the external trigger dynamically via theparameter’external trigger’.
Another useful parameter is’grab timeout’, which sets a timeout for the acquisition process
(some interfaces provide an additional parameter’trigger timeout’ just for triggered grab-
bing). Without such a timeout, the application would hang iffor some reason no trigger signal
arrives. In contrast, if a timeout is specified, the operatorsgrab image andgrab image async

only wait the specified time and then return an error code or raise an exception, depending on
the programming language used.Section 6.2shows how to handle such errors.

Other parameters allow to further specify the form of the trigger signal (’trigger signal’),
e.g., whether the falling or the rising edge is used as the trigger, select between multiple trigger
input lines, or even filter trigger signals. Some frame grabber interfaces also allow to influence
the exposure via the trigger signal.

5.3 Acquiring Images From Multiple Cameras

The timing diagrams shown in the previous sections depictedthe case of a single camera. Be-
low we discuss some issues which arise when acquiring imagesfrom multiple cameras (see

HALCON 6.1.4

72 Application Note on Image Acquisition

section 3.2for possible configurations).

5.3.1 Dynamic Port Switching and Asynchronous Grabbing

If you switch dynamically between multiple cameras connected to a single board as described
in section 3.2.4you must be careful when usinggrab image async: By default, the frame
grabber interface commands the frame grabber board to grab the next image automatically after
it received the current image — but before the next call ofgrab image async! If you switched
to another camera before this call, the frame grabber might already be busy grabbing an image
from the first camera.

Some frame grabber interfaces solve this problem by providing the parameter
’start async after grab async’ for the operator set framegrabber param which
allows to disable the automatic grab command to the frame grabber board.

5.3.2 Simultaneous Grabbing

Some frame grabber interfaces provide special functionality to grab imagessimultaneouslyfrom
multiple (synchronized) cameras. Typically, the cameras are connected to a single frame grab-
ber board; thePicPort interface also allows to grab simultaneously from cameras connected
to multiple boards. As described insection 3.2.5, the images are grabbed by a single call to
grab image or grab image async, which return them in form of a multi-channel image. De-
pending on the frame grabber interface, it may be necessary to switch on the simultaneous
grabbing via the operatorset framegrabber param.

Please keep in mind that even if a HALCON frame grabber interface supports simultaneous
grabbing, this might not be true for every frame grabber board the interface supports! In order
to grab multiple images simultaneously, a frame grabber board must be equipped with multiple
“grabbing units”; for example, an analog frame grabber board must be equipped with multiple
A/D converters. Please check this in the documentation of your frame grabber board.

Even if a HALCON frame grabber interface does not provide thespecial simultaneous grabbing
mode, you can realize a similar behavior “manually”, e.g., by connecting each (asynchronously
resettable) camera to a single frame grabber board and then using a common external trigger
signal to synchronize the grabbing.

HALCON Application Guide, 2005-02-01

6 Miscellaneous 73

6 Miscellaneous

6.1 Acquiring Images From Unsupported Frame Grabbers

If you want to use a frame grabber which is currently not supported by HALCON, i.e., for
which no HALCON interface exists there exist two principal ways: First, you can create
your own HALCON frame grabber interface; how to do this is described in detail in the
Frame Grabber Integration Programmer’s Manual.

As an alternative, you can pass externally created images, i.e., the raw image matrix, to HAL-
CON using the operatorsgen image1, gen image3, or gen image1 extern, which create a
corresponding HALCON image. The main difference between the operatorsgen image1 and
gen image1 extern is that the former copies the image matrix when creating the HALCON
image, whereas the latter doesn’t, which is useful if you want to realizevolatile grabbingas
described insection 5.1.3.

The C example programc\use extern image.c shows how to use the operator
gen image1 extern to pass standard gray value images to HALCON. In this case, the im-
age matrix consists of 8 bit pixels (bytes), which can be represented by the data typeunsigned
char. At the beginning, the program calls a procedure which allocates memory for the images
to be “grabbed”; in a real application this corresponds to the image buffer(s) used by the frame
grabber SDK.

unsigned char *image_matrix_ptr;

long width, height;

InitializeBuffer(&image_matrix_ptr, &width, &height);

The example program “simulates” the grabbing of images witha procedure which reads images
from an image sequence and copies them into the image buffer.Then, the content of the image
buffer is transformed into a HALCON image (typebyte) via gen image1 extern. The pa-
rameterClearProc is set to0 to signal that the program itself takes care of freeing the memory.
The created HALCON image is then displayed. The loop can be exited by clicking into the
HALCON window with any mouse button.

Hobject image;

long window_id;

open_window (0, 0, width, height, 0, "visible", "", &window_id);

while (!ButtonPressed(window_id))

{

MyGrabImage((const unsigned char **) &image_matrix_ptr);

gen_image1_extern(&image, "byte", width, height,

(long) image_matrix_ptr, (long) 0);

disp_obj(image, window_id);

}

If your frame grabber supplies images with more than 8 bit pixels, you must adapt both
the data type for the image matrix and the type of the created HALCON image (parameter
Type of gen image1 extern). In case of color images HALCON expects the image data in
form of three separate image matrices. You can create a HALCON image either by calling
the operatorgen image3 with the three pointers to the matrices, or by calling the operator

HALCON 6.1.4

74 Application Note on Image Acquisition

Figure 39: Popup dialog in HDevelop signaling a timeout.

gen image1 extern three times and then using the operatorchannels to image to combine
the three images into a multi-channel image. Please refer toappendix Afor more information
about HALCON images in general.

6.2 Error Handling

Just as the HALCON frame grabber interfaces encapsulate thecommunication with a frame
grabber board, they also encapsulate occurring errors within the HALCON error handling mech-
anism. How to catch and react to these errors is described below, for HDevelop programs and
also for programs using HALCON’s programming language interfaces.

Some HALCON frame grabber interfaces provide special parameters for
set framegrabber param which are related to error handling. The most commonly
used one is the parameter’grab timeout’ which specifies when the frame grabber should
quit waiting for an image. The examples described in the following sections show how to
handle the corresponding HALCON error.

Note that all example programs enable the signaling of low level errors via the operator
set system, e.g., in HDevelop syntax via

set_system (’do_low_error’, ’true’)

In this mode, low level errors occurring the frame grabber SDK (or in the HALCON interface)
in are signaled by a message box.

6.2.1 Error Handling in HDevelop

The HDevelop examplehdevelop\error handling timeout picport.dev shows how to
handle HALCON errors in a HDevelop program. To “provoke” an error, open framegrabber

is called withExternalTrigger = ’true’. If there is no trigger, a call tograb image results
in a timeout; HDevelop reacts to this error with the popup dialog shown infigure 39and stops
the program.

open_framegrabber (FGName, 1, 1, 0, 0, 0, 0, ’default’, -1, ’default’, -1,

’true’, CameraType, Device, -1, -1, FGHandle)

set_framegrabber_param (FGHandle, ’grab_timeout’, 2000)

grab_image (Image, FGHandle)

HALCON lets you modify the reaction to an error with the operator set check (in HDevelop:
dev set check). If you set it to’˜give error’, the program does not stop in case of an
error but only stores its cause in form of an error code. To access this error code in HDevelop,

HALCON Application Guide, 2005-02-01

6.2.2 Error Handling Using HALCON/C 75

you must define a corresponding variable using the operatordev error var. Note that this
variable is updated after each operator call; to check the result of a single operator we therefore
recommend to switch back into the standard error handling mode directly after the operator call
as in the following lines:

dev_error_var (ErrorNum, 1)

dev_set_check (’~give_error’)

grab_image (Image, FGHandle)

dev_error_var (ErrorNum, 0)

dev_set_check (’give_error’)

To check whether a timeout occurred, you compare the error variable with the code signal-
ing a timeout (5322); a list of error codes relating to image acquisition can be found in the
Frame Grabber Integration Programmer’s Manual. In the example, the timeout is handled by
disabling the external trigger mode via the operatorset framegrabber param (parameter
’external trigger’). Then, the call tograb image is tested again.

if (ErrorNum = 5322)

set_framegrabber_param (FGHandle, ’external_trigger’, ’false’)

dev_error_var (ErrorNum, 1)

dev_set_check (’~give_error’)

grab_image (Image, FGHandle)

dev_error_var (ErrorNum, 0)

dev_set_check (’give_error’)

endif

Now, the error variable should contain the value2 signaling that the operator call succeeded;
for this value HDevelop provides the constantH MSG TRUE. If you get another error code, the
program accesses the corresponding error text using the operatorget error text.

if (ErrorNum # H_MSG_TRUE)

get_error_text (ErrorNum, ErrorText)

endif

If your frame grabber interface does not provide the parameter ’external trigger’, you
can realize a similar behavior by closing the connection andthen opening it again with
ExternalTrigger set to’false’.

6.2.2 Error Handling Using HALCON/C

The mechanism for error handling in a program based on HALCON/C is similar to the one in
HDevelop; in fact, it is even simpler, because each operatorautomatically returns its error code.
However, if a HALCON error occurs in a C program, the default error handling mode causes
the program to abort.

The C example programc\error handling timeout picport.c performs the same task as
the HDevelop program in the previous section; if the call tograb image succeeds, the program
grabs and displays images in a loop, which can be exited by clicking into the window. The
following lines show how to test whether a timeout occurred:

HALCON 6.1.4

76 Application Note on Image Acquisition

set_check ("~give_error");

error_num = grab_image (&image, fghandle);

set_check ("give_error");

switch (error_num)

{

case H_ERR_FGTIMEOUT:

As you see, in a C program you can use prefined constants for theerror codes (see the
Frame Grabber Integration Programmer’s Manualfor a list of image acquisition error codes and
their corresponding constants).

6.2.3 Error Handling Using HALCON/C++

If your application is based on HALCON/C++, there are two methods for error handling: If you
use operators in their C-like form, i.e., preceeded by a double colon (e.g.,::grab image), you
can apply the same procedure as described for HALCON/C in theprevious section.

In addition, HALCON/C++ provides an exception handling mechanism based on the class
HException, which is described in theHALCON/C++ User’s Manual. Whenever a HAL-
CON error occurs, an instance of this class is created. The main idea is that you can spec-
ify a procedure which is then called automatically with the created instance ofHException
as a parameter. How to use this mechanism is explained in the C++ example program
cpp\error handling timeout picport.cpp, which performs the same task as the examples
in the previous sections.

In the example programcpp\error handling timeout picport.cpp (preconfigured for the
HALCON PicPort interface), the procedure which is to be called upon error isvery simple: It
just raises a standard C++ exception with the instance ofHException as a parameter.

void MyHalconExceptionHandler(const HException& except)

{

throw except;

}

In the program, you “install” this procedure via a class method ofHException:

int main(int argc, char *argv[])

{

HException::InstallHHandler(&MyHalconExceptionHandler);

Now, you react to a timeout with the following lines:

try

{

image = framegrabber.GrabImage();

}

catch (HException except)

{

if (except.err == H_ERR_FGTIMEOUT)

{

framegrabber.SetFramegrabberParam("external_trigger", "false");

HALCON Application Guide, 2005-02-01

6.2.4 Error Handling Using HALCON/COM 77

As already noted, if your frame grabber interface does not provide the parameter
’external trigger’, you can realize a similar behavior by closing the connection and then
opening it again withExternalTrigger set to’false’:

if (except.err == H_ERR_FGTIMEOUT)

{

framegrabber.OpenFramegrabber(fgname, 1, 1, 0, 0, 0, 0, "default",

-1, "gray", -1, "false", camtype,

"default", -1, -1);

Note that when callingOpenFramegrabber via the classHFramegrabber as above, the operator
checks whether it is called with an already opened connection and automatically closes it before
opening it with the new parameters.

6.2.4 Error Handling Using HALCON/COM

The HALCON/COM interface uses the standard COM error handling technique where every
method call passes both a numerical and a textual representation of the error to the calling
framework. How to use this mechanism is explained in the Visual Basic example program
vb\error handling timeout picport\error handling timeout picport.vbp, which
performs the same task as the examples in the previous sections.

For each method, you can specify an error handler by inserting the following line at the begin-
ning of the method:

On Error GoTo ErrorHandler

At the end of the method, you insert the code for the error handler. If a runtime error occurs,
Visual Basic automatically jumps to this code, with the error being described in the variableErr.
However, the returned error number does not correspond directly to the HALCON error as in
the other programming languages, because low error numbersare reserved for COM. To solve
this problem HALCON/COM uses an offset which must be subtracted to get the HALCON
error code. This offset is accessible as a property of the classHSystemX:

ErrorHandler:

Dim sys As New HSystemX

ErrorNum = Err.Number - sys.ErrorBaseHalcon

The following code fragment checks whether the error is due to a timeout. If yes, the program
disables the external trigger mode and tries again to grab animage. If the grab is successful
the program continues at the point the error occurred; otherwise, the Visual Basic default error
handler is invoked. Note that in contrast to the other programming languages HALCON/COM
does not provide constants for the error codes.

If (ErrorNum = 5322) Then

Call FG.SetFramegrabberParam("external_trigger", "false")

Set Image = FG.GrabImage

Resume Next

If the error is not caused by a timeout, the error handler raises it anew, whereupon the Visual
Basic default error handler is invoked.

HALCON 6.1.4

78 Application Note on Image Acquisition

Else

Err.Raise (Err.Number)

End If

If your frame grabber interface does not provide the parameter ’external trigger’, you
can realize a similar behavior by closing the connection andthen opening it again with
ExternalTrigger set to’false’. Note that the classHFramegrabberX does not provide
a method to close the connection; instead you must destroy the variable with the following line:

Set FG = Nothing

6.3 Line Scan Cameras

From the point of view of HALCON there is no difference between area and line scan cameras:
Both acquire images of a certain width an height; whether theheight is 1, i.e., a single line,
or larger does not matter. In fact, in many line scan applications the frame grabber combines
multiple acquired lines to form a so-calledpagewhich further lessens the difference between
the two camera types.

The main problem is therefore whether your frame grabber supports line scan cameras. If yes,
you can acquire images from it via HALCON exactly as from an area scan camera. With the
parameterImageHeight of the operatoropen framegrabber you can sometimes specify the
height of the page; typically, this information is set in thecamera configuration file. Some
HALCON frame grabber interfaces allow to further configure the acquisition mode via the
operatorset framegrabber param.

The images acquired from a line scan camera can then be processed just like images from
area scan cameras. However, line scan images often pose an additional problem: The ob-
jects to inspect may be spread over multiple images (pages).To solve this problem, HAL-
CON provides special operators:tile images allows to merge images into a larger image,
merge regions line scan andmerge cont line scan xld allow to merge the (intermedi-
ate) processing results of subsequent images.

How to use these operators is explained in the HDevelop example program
hdevelop\line scan.dev. The program is based on an image file sequence which is
read using the HALCON virtual frame grabber interfaceFile; the task is to extract paper clips
and calculate their orientation. Furthermore, the gray values in a rectangle surrounding each
clip are determined.

An important parameter for the merging is over how many images an object can be spread. In
the example, a clip can be spread over 4 images:

MaxImagesRegions := 4

The continuous processing is realized by a simple loop: At each iteration, a new image is
grabbed, and the regions forming candidates for the clips are extracted using thresholding.

while (1)

grab_image (Image, FGHandle)

threshold (Image, CurrRegions, 0, 80)

The current regions are then merged with ones extracted in the previous image using the oper-
atormerge regions line scan. As a result, two sets of regions are returned: The parameter

HALCON Application Guide, 2005-02-01

6.3 Line Scan Cameras 79

a)

b)

c)

4

3
2

1

5 6

3

3

4

1

2

1

2

Figure 40: Merging regions extracted from subsequent line scan images: state after a) 2, b)
3, c) 4 images (large coordinate system: tiled image; small coordinate systems:
current image or most recent image).

CurrMergedRegions contains the current regions, possibly extended by fitting parts of the pre-
viously extracted regions, whereas the parameterPrevMergedRegions contains the rest of the
previous regions.

merge_regions_line_scan (CurrRegions, PrevRegions, CurrMergedRegions,

PrevMergedRegions, ImageHeight, ’top’,

MaxImagesRegions)

connection (PrevMergedRegions, ClipCandidates)

select_shape (ClipCandidates, FinishedClips, ’area’, ’and’, 4500, 7000)

The regions inPrevMergedRegions are “finished”; from them, the program selects the clips
via their area further processes them later, e.g., determines their position and orientation. The
regions inCurrMergedRegions are renamed and now form the previous regions for the next
iteration.

copy_obj (CurrMergedRegions, PrevRegions, 1, -1)

endwhile

Note that the operatorcopy obj does not copy the regions themselves but only the correspond-
ing HALCON objects, which can be thought of as references to the actual region data.

Before we show how to merge the images let’s take a look atfigure 40, which visualizes the
whole process: After the first two imagesCurrMergedRegions contains three clip parts; for
the first one a previously extracted region was merged. Note that the regions are described in

HALCON 6.1.4

80 Application Note on Image Acquisition

the coordinate frame of the current image; this means that the merged part of clip no. 1 has
negative coordinates.

In the next iteration (figure 40b), further clip parts are merged, but no clip is finished yet. Note
that the coordinate frame is again fixed to the current image;as a consequence the currently
merged regions seem to move into negative coordinates.

After the fourth image (figure 40c), clips no. 1 and 2 are completed; they are returned in
the parameterPrevMergedRegions. Note that they are still described in the coordinate
frame of the previous image (depicted with dashed arrow); tovisualize them together with
CurrMergedRegions they must be moved to the coordinate system of the current image using
the operatormove region:

move_region (FinishedClips, ClipsInCurrentImageCoordinates,

-ImageHeight, 0)

Let’s get back to the task of merging images: To access the gray values around a clip, one must
merge those images over which thePrevMergedRegions can be spread. At the beginning,
therefore an empty image is created which can hold 4 images:

gen_image_const (TiledImage, ’byte’, ImageWidth,

ImageHeight * MaxImagesRegions)

At the end of each iteration, the “oldest” image, i.e., the image at the top, is cut off from
the tiled image usingcrop part, and the current image is merged at the bottom using
tile images offset:

crop_part (TiledImage, TiledImageMinusOldest, ImageHeight, 0,

ImageWidth, (MaxImagesRegions - 1) * ImageHeight)

ImagesToTile := [TiledImageMinusOldest,Image]

tile_images_offset (ImagesToTile, TiledImage, [0,

(MaxImagesRegions-1)*ImageHeight], [0, 0], [-1,

-1], [-1, -1], [-1, -1], [-1, -1], ImageWidth,

MaxImagesRegions * ImageHeight)

As noted above, the regions returned inPrevMergedRegions are described in the coordinate
frame of the most recent image (depicted with dashed arrow infigure 40c); to extract the cor-
responding gray values from the tiled image, they must first be moved to its coordinate system
(depicted with longer arrows) using the operatormove region. Then, the surrounding rectan-
gles are created usingshape trans, and finally the corresponding gray values are extracted
usingadd channels:

move_region (FinishedClips, ClipsInTiledImageCoordinates,

(MaxImagesRegions-1) * ImageHeight, 0)

shape_trans (ClipsInTiledImageCoordinates, AroundClips, ’rectangle1’)

add_channels (AroundClips, TiledImage, GrayValuesAroundClips)

HALCON Application Guide, 2005-02-01

A HALCON Images 81

Appendix

A HALCON Images

In the following, we take a closer look at the way HALCON represents and handles images.
Of course, we won’t bother you with details about the low-level representation and the memory
management; HALCON takes care of it in a way to guarantee optimal performance.

A.1 The Philosophy of HALCON Images

There are three important concepts behind HALCON’s image objects:

1. Multiple channels

Typically, one thinks of an image as a matrix of pixels. In HALCON, this matrix is
called achannel, and images may consist of one or more such channels. For example,
gray value images consist of a single channel, color images of three channels.

The advantage of this representation is that many HALCON operators automatically
process all channels at once; for example, if you want to subtract gray level or color
images from another, you can applysub image without worrying about the image
type. Whether an operator processes all channels at once canbe seen in the pa-
rameter description in the reference manual: If an image parameter is described as
(multichannel-)image or (multichannel-)image(-array) (e.g., the parameter
ImageMinuend of sub image), all channels are processed; if it is described asimage

or image(-array) (e.g., the parameterImage of threshold), only the first channel is
processed.

For more information about channels please refer toappendix A.3.2.

2. Various pixel types

Besides the standard 8 bit (typebyte) used to represent gray value image, HALCON
allows images to contain various other data, e.g. 16 bit integers (typeint2 or uint2) or
32 bit floating point numbers (typereal) to represent derivatives.

Most of the time you need not worry about pixel types, becauseHALCON operators
that output images automatically use a suitable pixel type.For example, the operator
derivate gauss creates areal image to store the result of the derivation. As another
example, if you connect to a frame grabber selecting a value> 8 for the parameter
BitsPerChannel, a subsequentgrab image returns anuint2 image.

3. Arbitrarily-shaped region of interest

Besides the pixel information, each HALCON image also stores its so-calleddomainin
form of a HALCON region. The domain can be interpreted as a region of interest, i.e.,
HALCON operators (with some exceptions) restrict their processing to this region.

The image domain inherits the full flexibility of a HALCON region, i.e., it can be of
arbitrary shape and size, can have holes, or even consist of unconnected points. For
more information about domains please refer toappendix A.3.3.

HALCON 6.1.4

82 Application Note on Image Acquisition

The power of HALCON’s approach lies in the fact that it offersfull flexibility but does not
require you to worry about options you don’t need at the moment. For example, if all you do
is grab and process standard 8 bit gray value images, you can ignore channels and pixel types.
At the moment you decide to use color images instead, all you need to do is to add some lines
to decompose the image into its channels. And if your camera /frame grabber provides images
with more than 8 bit pixel information, HALCON is ready for this as well.

A.2 Image Tuples (Arrays)

Another powerful mechanism of HALCON is the so-calledtuple processing: If you want to
process multiple images in the same way, e.g., to smooth them, you can call the operator
(e.g.,mean image) once passing it all images as a tuple (array), instead of calling it multi-
ple times. Furthermore, some operators always return imagetuples, e.g.,gen gauss pyramid

or inspect shape model.

Whether an operator supports tuple processing can be seen inthe parameter description
in the reference manual: If an input image parameter is described asimage(-array) or
(multichannel-)image(-array) (e.g., the parameterImage of mean image), it supports tu-
ple processing; if it is described asimage or (multichannel-)image (e.g., the parameter
Image of find 1d bar code), only one image is processed.

For information about creating or accessing image tuples please refer toappendix A.3.6.

A.3 HALCON Operators for Handling Images

Below you find a brief overview of operators that allow to create HALCON images or to modify
“technical aspects” like the image size or the number of channels.

A.3.1 Creation

HALCON images are created automatically when you use operators like grab image or
read image. You can also create images from scratch using the operatorslisted in the HDe-
velop menuOperators ⊲ Image ⊲ Creation, e.g.,gen image const or gen image1 extern

(see alsosection 6.1).

A.3.2 Channels

Operators for manipulating channels can be found in the HDevelop menuOperators ⊲

Image ⊲ Channel. You can query the number of channels of an image with the opera-
tor count channels. Channels can be accessed usingaccess channel (which extracts a
specified channel without copying),image to channels (which converts a multi-channel im-
age into an image tuple), ordecompose2 etc. (which converts a multi-channel image into
2 or more single-channel images). Vice versa, you can createa multi-channel image using
channels to image or compose2 etc., and add channels to an image usingappend channel.

HALCON Application Guide, 2005-02-01

A.3.3 Domain 83

A.3.3 Domain

Operators for manipulating the domain of an image can be found in the HDevelop menu
Operators ⊲ Image ⊲ Domain. Upon creation of an image, its domain is set to the full im-
age size. You can set it to a specified region usingchange domain. In contrast, the operator
reduce domain takes the original domain into account; the new domain is equal to the inter-
section of the original domain with the specified region. Please also take a look at the operator
add channels, which can be seen as complementary toreduce domain.

A.3.4 Access

Operators for accessing infomation about a HALCON image canbe found in the HDevelop
menuOperators ⊲ Image ⊲ Access. For example,get image pointer1 returns the size of
an image and a pointer to the image matrix of its first channel.

A.3.5 Manipulation

You can change the size of an image using the operatorschange format or crop part,
or other operators from the HDevelop menuOperators ⊲ Image ⊲ Format. The menu
Operators ⊲ Image ⊲ Type-Conversion lists operators which change the pixel type, e.g.,
convert image type. Operators to modify the pixel values, can be found in the menu
Operators ⊲ Image ⊲ Manipulation, e.g.,paint gray, which copies pixels from one im-
age into another.

A.3.6 Image Tuples

Operators for creating and accessing image tuples can be found in the HDevelop menu
Operators ⊲ Object ⊲ Manipulation. Image tuples can be created using the operators
gen empty obj and concat obj, while the operatorselect obj allows to access an indi-
vidual image that is part of a tuple.

HALCON 6.1.4

84 Application Note on Image Acquisition

B Parameters Describing the Image

When opening a connection withopen framegrabber, you can specify the desired image for-
mat, e.g., ist size or the number of bits per pixel, using 9 parameters, which are described in the
following.

B.1 Image Size

The following 6 parameters influence the size of the grabbed images:HorizontalResolution
andVerticalResolution specify thespatial resolutionof the image in relation to the original
size. For example, if you chooseVerticalResolution = 2, you get an image with half the
height of the original as depicted infigure 41b. Another name for this process is (vertical and
horizontal)subsampling.

With the parametersImageWidth, ImageHeight, StartRow, andStartColumn you can grab
only a part of the (possibly subsampled) image; this is also called image cropping. In figure 41,
image part to be grabbed is marked with a rectangle in the original (or subsampled) image; to
the right, the resulting image is depicted. Note that the resulting HALCON image always starts
with the coordinates(0,0), i.e., the information contained in the parametersStartRow and
StartColumn cannot be recovered from the resulting image.

Depending on the involved components, both subsampling andimage cropping may be exe-
cuted at different points during the transfer of an image from the camera into HALCON: in
the camera, in the frame grabber, or in the software. Please note that in most cases you get no
direct effect on the performance in form of a higher frame rate; exceptions are CMOS cam-
eras which adapt their frame rate to the requested image size. Subsampling or cropping on the
software side has no effect on the frame rate; besides, you can achieve a similar result using
reduce domain. If the frame grabber executes the subsampling or cropping you may get a pos-
itive effect if the PCI bus is the bottleneck of your application and prevents you from getting the

a)

b)

c)

d)

Figure 41: The effect of image resolution (subsampling) and image cropping (ImageWidth
= 200, ImageHeight = 100, StartRow = 50, StartColumn = 100):
a) HorizontalResolution (HR) = VerticalResolution (VR) = 1; b) HR = 1,
VR = 2; c) HR = 2, VR = 1; d) HR = VR = 2.

HALCON Application Guide, 2005-02-01

B.2 Frames vs. Fields 85

full frame rate. Some frame grabber interfaces allowdynamic image croppingvia the operator
set framegrabber param.

Note that HALCON itself does not differentiate between areaand line scan cameras as both
produce images – the former in form of frames, the latter in form of so-calledpagescreated
from successive lines (number specified in the parameterImageHeight). Section 6.3contains
additional information regarding the use of line scan cameras.

B.2 Frames vs. Fields

The parameterField is relevant only for analog cameras that produce signals following the
video standards originally developed for TV, e.g., NTSC or PAL. In these standards, the camera
transmits images (also calledframes) in form of two so-calledfields, one containing all odd lines
of a frame, the other all even lines of the next frame. On the frame grabber board, these two
fields are theninterlaced; the resulting frame is transferred via the PCI bus into the computer
memory using DMA (direct memory access).

Figure 42visualizes this process and demonstrates its major draw back: If a moving object is
observed (in the example a dark square with the letter ’T’), the position of the object changes
from field to field, the resulting frame shows a distortion at the vertical object boundaries (also
calledpicket-fence effect). Such a distortion seriously impairs the accuracy of measurements;
industrial vision systems therefore often use so-calledprogressive scancameras which trans-
fer full frames (seefigure 43). Some cameras also “mix” interlacing with progressive scan as
depicted infigure 44.

You can also acquire the individual fields by specifyingVerticalResolution = 2. Via the
parameterField you can then select which fields are to be acquired (see alsofigure 45): If
you select’first’ or ’second’, all you get odd or all even fields, respectively; if you select
’next’, you get every field. The latter mode has the advantage of a higher field rate, at the

transfer camera

transfer frame

camera

frame grabber

t

t

software

to frame grabber
(analog signal)

grabber to
software (DMA)

odd field even field odd field even field odd field

interlacing interlacing

Figure 42: Interlaced grabbing (Field = ’interlaced’).

HALCON 6.1.4

86 Application Note on Image Acquisition

transfer camera

transfer frame

camera

frame grabber

t

t

software

to frame grabber
(analog signal)

grabber to
software (DMA)

full frame full frame full frame

Figure 43: Progressive scan grabbing (Field = ’progressive’).

transfer camera

transfer frame

camera

frame grabber

t

t

software

to frame grabber
(analog signal)

grabber to
software (DMA)

odd field even field odd field even field odd field

interlacing interlacing

Figure 44: Special form of interlaced grabbing supported by some cameras.

cost, however, of the so-calledvertical jitter: Objects may seem to move up and down (like
the square infigure 45), while structures that are one pixel wide appear and disappear (like the
upper part of the ’T’).

By specifying Field = ’first’, ’second’, or ’next’ for a full resolution image
(VerticalResolution = 1), you can select with which field the interlacing starts.

Figure 46shows a timing diagram for usinggrab image together with an interlaced-scan cam-
era. Here, you can in some cases increase the processing frame rate by specifying’next’ for
the parameterField. The frame grabber then starts to digitize an image when the next field

HALCON Application Guide, 2005-02-01

B.3 Image Data 87

a)

b)

c)

transfer camera

transfer frame

camera

t

frame grabber

t

software

transfer frame

frame grabber

software

t

transfer frame

frame grabber

software

t

to frame grabber
(analog signal)

grabber to
software (DMA)

grabber to
software (DMA)

grabber to
software (DMA)

odd field even field odd field even field odd field

Figure 45: Three ways of field grabbing: a) ’first’; b) ’second’; c) ’next’ .

arrives; in the example therefore only one field is lost.

B.3 Image Data

The parameters described in the previous sections concentrated on the size of the im-
ages. Theimage data, i.e., the data contained in a pixel, is described with the parameters
BitsPerChannel andColorSpace. To understand these parameters, a quick look at the HAL-
CON’s way to represent images is necessary: A HALCON image consists of one or more ma-
trices of pixels, which are calledchannels. Gray value images are represented as single-channel
images, while color images consist of three channels, e.g.,for the red, green, and blue part of
an RGB image. Each image matrix (channel) consists ofpixels, which may be of differentdata
types, e.g., standard 8 bit (typebyte) or 16 bit integers (typeint2 or uint2) or 32 bit floating

HALCON 6.1.4

88 Application Note on Image Acquisition

frame rate
processing

create
HImage

expose expose expose exposeexpose expose expose

frame rateoriginal

application

HFGI & SDK

frame

grabber

camera t

t

t

t

t

t
software grab_image

wait for
image

wait for
vsync

wait for
image

create
HImage

odd field odd field odd field odd fieldeven field even field even field

digitize digitizedigitize

GrabGrab

digitize
wait for
vsync

(DMA)

transfer

(analog)

transfer

process process
grab_image

Figure 46: Grabbing interlaced images starting with the ’next’ field.

point numbers (typereal). For detailed information about HALCON images please refer to
appendix A.

The two parameters correspond to the two main aspects of HALCON’s images: With the pa-
rameterColorSpace you can select whether the resulting HALCON image is to be a (single-
channel) gray value image (value’gray’) or a (multi-channel) color image (e.g., value’rgb’).
The parameterBitsPerChannel specifies how many bits aretransmittedper pixel per channel
from the frame grabber to the computer; the pixel type of the HALCON image is then chosen
to accommodate the transmitted number of pixels.

For example, if a frame grabber is able to transmit 10 bit grayvalue images, one selects
ColorSpace = ’gray’ andBitsPerChannel = 10 and gets a single-channel HALCON im-
age of the type’uint2’, i.e., 16 bit per channel. Another example concerns RGB images:
Some frame grabbers allow the values8 and5 for BitsPerChannel. In the first case, 3× 8 =
24 bit are transmitted per pixel, while in the second case only 3× 5 = 15 (padded to 16) bit are
transmitted; in both cases, a three-channel’byte’ image results.

HALCON Application Guide, 2005-02-01

	1 Application Note on Shape-Based Matching
	1 A First Example
	2 Creating a Suitable Model
	2.1 A Closer Look at the Region of Interest
	2.1.1 How to Create a Region
	2.1.2 How to Combine and Mask Regions
	2.1.3 Using Image Processing to Create and Modify Regions
	Example 1: Determining the ROI Using Blob Analysis
	Example 2: Further Processing the Result of inspect_shape_model

	2.1.4 How the ROI Influences the Search

	2.2 Which Information is Stored in the Model?
	2.2.1 Which Pixels are Part of the Model?
	2.2.2 How Subsampling is Used to Speed Up the Search
	2.2.3 Allowing a Range of Orientation
	2.2.4 Allowing a Range of Scale
	2.2.5 Which Pixels are Compared with the Model?

	2.3 Synthetic Model Images

	3 Optimizing the Search Process
	3.1 Restricting the Search Space
	3.1.1 Searching in a Region of Interest
	3.1.2 Restricting the Range of Orientation and Scale
	3.1.3 Visibility
	3.1.4 Thoroughness vs. Speed

	3.2 Searching for Multiple Instances of the Object
	3.3 Searching for Multiple Models Simultaneously
	3.4 A Closer Look at the Accuracy
	3.5 How to Optimize the Matching Speed

	4 Using the Results of Matching
	4.1 Introducing Affine Transformations
	4.2 Creating and Applying Affine Transformations With HALCON
	4.3 Using the Estimated Position and Orientation
	4.3.1 Displaying the Matches
	4.3.2 Dealing with Multiple Matches
	4.3.3 Dealing with Multiple Models
	4.3.4 Aligning Other ROIs
	4.3.5 Rectifying the Search Results

	4.4 Using the Estimated Scale

	5 Miscellaneous
	5.1 Adapting to a Changed Camera Orientation
	5.2 Reusing Models

	2 Application Note on Image Acquisition
	1 The Philosophy Behind the HALCON Frame Grabber Interfaces
	2 A First Example
	3 Connecting to Your Frame Grabber
	3.1 Opening a Connection to a Specified Configuration
	3.2 Connecting to Multiple Boards and Cameras
	3.2.1 Single Camera
	3.2.2 Multiple Boards
	3.2.3 Multiple Handles Per Board
	3.2.4 Port Switching
	3.2.5 Simultaneous Grabbing

	3.3 Requesting Information About the Frame Grabber Interface

	4 Configuring the Acquisition
	4.1 General Parameters
	4.2 Special Parameters
	4.3 Fixed vs. Dynamic Parameters

	5 The Various Modes of Grabbing Images
	5.1 Real-Time Image Acquisition
	5.1.1 Non-Real-Time Grabbing Using grab_image
	5.1.2 Grabbing Without Delay Using Asynchronously Resettable Cameras
	5.1.3 Volatile Grabbing
	5.1.4 Real-Time Grabbing Using grab_image_async
	5.1.5 Continuous Grabbing
	5.1.6 Using grab_image_async Together With Asynchronously Resettable Cameras
	5.1.7 Specifying a Maximum Delay

	5.2 Using an External Trigger
	5.2.1 Special Parameters for External Triggers

	5.3 Acquiring Images From Multiple Cameras
	5.3.1 Dynamic Port Switching and Asynchronous Grabbing
	5.3.2 Simultaneous Grabbing

	6 Miscellaneous
	6.1 Acquiring Images From Unsupported Frame Grabbers
	6.2 Error Handling
	6.2.1 Error Handling in HDevelop
	6.2.2 Error Handling Using HALCON/C
	6.2.3 Error Handling Using HALCON/C++
	6.2.4 Error Handling Using HALCON/COM

	6.3 Line Scan Cameras

	A HALCON Images
	A.1 The Philosophy of HALCON Images
	A.2 Image Tuples (Arrays)
	A.3 HALCON Operators for Handling Images
	A.3.1 Creation
	A.3.2 Channels
	A.3.3 Domain
	A.3.4 Access
	A.3.5 Manipulation
	A.3.6 Image Tuples

	B Parameters Describing the Image
	B.1 Image Size
	B.2 Frames vs. Fields
	B.3 Image Data

