
HALCON Version 6.0.4

MVTec Software GmbH

HALCON / C++

User’s Manual

How to use the image analysis tool HALCON, Version 6.0.4, in your own C++ programs

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without prior written permission of the publisher.

Edition 1 July 1997

Edition 2 November 1997

Edition 3 March 1998 (HALCON 5.1)

Edition 4 April 1999 (HALCON 5.2)

Edition 5 October 2000 (HALCON 6.0)

Edition 5a July 2001 (HALCON 6.0.1)

Edition 5b February 2002 (HALCON 6.0.2)

Edition 5c August 2002 (HALCON 6.0.3)

Copyright c© 1997-2003 by MVTec Software GmbH, M¨unchen, Germany MVTec Software GmbH

Microsoft, Windows, Windows NT, Windows 2000, Windows XP, and Visual C++ are either
trademarks or registered trademarks of Microsoft Corporation.

All other nationally and internationally recognized trademarks and tradenames are hereby rec-
ognized.

More information about HALCON can be found at:

http://www.mvtec.com/halcon/

About This Manual

This manual describes the interface of HALCON to the programming language C++. It pro-
vides all necessary information to understand and use the provided C++ classes in your own
programs. A set of example programs shows how to apply HALCON/C++ to solve typical
image processing tasks.

The reader of this user manual should be familar with basic concepts of image analysis and the
programming language C++.

The manual is divided into the following chapters:

• Introducing HALCON/C ++
A first example shows how easy image processing becomes using HALCON/C++.

• The HALCON Parameter Classes
This chapter describes how to use the parameter classes of HALCON in your C++ pro-
gram.

• The ClassHWindow
This chapter describes the HALCON/C++ class for graphics windows.

• Structure of the Reference Manual
This chapter explains how to read the description of the operators in the HALCON/C++
reference manual.

• Exception Handling
This chapter shows how to handle runtime errors in your C++ program.

• Creating Applications Using HALCON/C++
This chapter explains how to compile and link C++ programs with HALCON/C++.

• Typical Image Processing Problems
This chapter contains example programs for typical image processing tasks.

Release Notes

Please note the latest updates of this manual:

• Edition 5c, HALCON 6.0.3 (August 2002)
The chapter “Exception Handling” now contains an example showing how to use the C++
exception handling mechanism (try...catch) together with the classHException.

• Edition 5b, HALCON 6.0.2 (February 2002)
Errors in the description of the class HException were corrected.

• Edition 5a, HALCON 6.0.1 (July 2001)
Since HALCON 6.0.1 does not support HP-UX anymore, the corresponding references
have been deleted from the manual.

• Edition 5, HALCON 6.0 (October 2000)
The manual has been restructured and revised slightly, especially the chapter “Creating
Applications Using HALCON/C++”.

Contents

1 Introducing HALCON C++ 1
1.1 Additional Sources of Information. 1
1.2 A First Example. 2

2 The HALCON Parameter Classes 5
2.1 Iconic Objects (HObject) . 5

2.1.1 Regions (HRegion) . 6
2.1.2 Region Arrays (HRegionArray) . 9
2.1.3 Images (HImage) . 11
2.1.4 Pixel Values (HPixVal) . 15
2.1.5 Image Arrays (HImageArray) . 15
2.1.6 Byte Images (HByteImage) . 17

2.2 Low-level Objects (Hobject) . 18
2.3 Control Parameters. 19

2.3.1 The ClassHCtrlVal . 20
2.3.2 The ClassHTuple . 21
2.3.3 The Simple Mode. 23
2.3.4 The Tuple Mode. 24

3 The ClassHWindow 25

4 Structure of the Reference Manual 27

5 Exception Handling 29
5.1 Using the High-Level Classes. 29
5.2 Using the Low-Level Operators. 31

6 Creating Applications Using HALCON C++ 33
6.1 Windows NT / 2000 / XP. 35
6.2 UNIX . 36

7 Typical Image Processing Problems 39
7.1 Thresholding an Image. 39
7.2 Edge Detection. 39
7.3 Dynamic Threshold. 40
7.4 Texture Transformation. 40
7.5 Eliminating Small Objects. 40
7.6 Selecting Oriented Objects. 41
7.7 Smoothing Contours. 41

Index 43

Chapter 1

Introducing HALCON C++

HALCON/C++ is the interface of the image analysis system HALCON to the programming
language C++. Together with the HALCON library, it allows to use the image processing
power of HALCON inside C++ programs. HALCON provides operators covering a wide
range of applications, e.g., factory automation, quality control, remote sensing, aerial image
interpretation, medical image analysis, and surveillance tasks.

After pointing out additional sources of information about HALCON, we start with a first ex-
ample application. The following chapters describe the use of the HALCON operators in C++
programs in more detail.Chapter 2introduces the four different kinds of parameters of the
HALCON operators and the corresponding C++ classes. We will explain how to pass tuples of
numerical parameters to operators. Using this elegant way of tuples the aboveSelectShape()

calls in the example program can be combined into one call in a really natural way. The class
HWindow is used for the output of images and regions and is explained inchapter 3. Chapter 4
describes the structure of the reference manual and how to use it. The exception handling and
return values of operators are discussed inchapter 5. Chapter 6gives some remarks on the use
of the HALCON library in your own application. Templates for solving typical image process-
ing problems are given inchapter 7.

1.1 Additional Sources of Information

For further information you may consult the following manuals:

• Getting Started with HALCON
An introduction to HALCON in general, including how to install and configure HALCON.

• HDevelop User’s Manual
An introduction to the graphical development environment of the HALCON system.

• HALCON/C User’s Manual
How to use the HALCON library in your C programs.

• HALCON/COM User’s Manual
How to use the HALCON library in your COM programs.

• Extension Package Programmer’s Manual
How to extend the HALCON system with your own operators.

1

2 CHAPTER 1. INTRODUCING HALCON C++

• Frame Grabber Integration Programmer’s Manual
A guide on how to integrate a new frame grabber in the HALCON system. Note that
in some cases you might define new operators (using the Extension Package Interface)
instead of using the standard HALCON Frame Grabber Integration Interface in order to
exploit specific hardware features of a frame grabber board.

• HALCON/C ++, HALCON/HDevelop, HALCON/C , HALCON/COM
The reference manuals for all HALCON operators (versions for C++, HDevelop, C, and
COM).

All these manuals are available as PDF documents. The reference manuals are available as
HTML documents as well. For the latest version of the manuals please check

http://www.mvtec.com/halcon/

1.2 A First Example

Let’s start with a brief sample program before taking a closer look inside HALCON/C++.

Figure 1.1: The left side shows the input image (a mandrill), and the right side shows the result
of the image processing: the eyes of the monkey.

The input image is shown infigure 1.1on the left side. The task is to find the eyes of the
monkey by segmentation. The segmentation of the eyes is performed by the C++ program
listed in figure 1.2, the result of the segmentation process is shown infigure 1.1on the right
side.

The program is more or less self-explaining. The basic idea is as follows: First, all pixels of
the input image are selected which have a gray value of at least 128, on the assumption that
the imageMandrill is a byte image with a gray value range between 0 and 255. Secondly, the
connected component analysis is performed. The result of the HALCON operator is an array of
regions. Each region is isolated in the sense that it does not touch another region according to
the neighbourhood relationship. Among these regions those two are selected which correspond

HALCON / C++, 2003-08-01

1.2. A FIRST EXAMPLE 3

#include "HalconCpp.h"

main()
{

HImage Mandrill("monkey"); // read image from file "monkey"
HWindow w; // window with size equal to image

Mandrill.Display(w); // display image in window
w.Click(); // wait for mouse click

HRegion Bright = Mandrill >= 128; // select all bright pixels
HRegionArray Conn = Bright.Connection(); // get connected components

// select regions with a size of at least 500 pixels
HRegionArray Large = Conn.SelectShape("area","and",500,90000);

// select the eyes out of the instance variable Large by using
// the anisometry as region feature:
HRegionArray Eyes = Large.SelectShape("anisometry","and",1,1.7);

Eyes.Display(w); // display result image in window
w.Click(); // wait for mouse click

}

Figure 1.2: This program extract the eyes of the monkey.

to the eyes of the monkey. This is done by using shape properties of the regions, the size and
the anisometry.

This example shows how easy it is to integrate HALCON operators in any C++ program. Their
use is very intuitive: You don’t have to care about the underlying data structures and algo-
rithms, you can ignore specific hardware requirements, if you consider e.g. input and output
operators. HALCON handles the memory management efficiently and hides details from you,
and provides an easy to use runtime system.

HALCON 6.0.4

4 CHAPTER 1. INTRODUCING HALCON C++

HALCON / C++, 2003-08-01

Chapter 2

The HALCON Parameter Classes

HALCON uses four different kinds of parameters for operators. Not all of them are used in
every operator:

• Iconic input objects.

• Iconic output objects.

• Numerical input parameters.

• Numerical output parameters.

Input parameters are passed to an operatorby value, output parameters are either a return value
of an operator or passed to the caller by using the &-operator, i.e.,by reference.

Most of the HALCON operators can handle more than one value for a parameter. In the case of
iconic objects, arrays of the corresponding types (region, image, XLD) are provided and in the
case of numerical parameters the tuple concept is used (seeclass HTuple in section 2.3.2).
The operatorConnection() in the example program infigure 1.2returns an array of iconic ob-
jects:RegionArray. See the HALCON reference manual if you are unsure whether a parameter
of an operator can have more than one value or not. Unfortunately, the standard C++ language
doesn’t provide polymorphic data structures for container classes. HALCON/C++ overcomes
this by using the classHTuple for numerical parameters (seesections 2.3.2and2.3.4). This
class implements the correct management of parameters, no matter if the type of the parameter
is int, float, string or array.

2.1 Iconic Objects (HObject)

Image processing without images is hard to imagine. HALCON provides a data model which
means more than handling simple image matrices. The base class of the HALCON/C++ class
hierarchy is the (abstract) classHObject which manages entries in the database, i.e., the copying
or releasing of objects. Entries in the database are represented by the classHobject (see also
section 2.2). The classesHObject andHobject can contain all types of iconic objects. This
has the advantage that important operators like the output (Display()) can be applied to all
types in the same manner.

Three classes are derived from the root classHObject:

5

6 CHAPTER 2. THE HALCON PARAMETER CLASSES

• ClassHImage for handling images.

• ClassHRegion for handling regions.

• ClassHXLD for handling polygons.

These classes are described in detail below. Besides the member functions listed below, the
classes contain further functions which are described in the HALCON reference manual.

2.1.1 Regions (HRegion)

A region is a set of coordinates in the image plane. Such a region does not need to be connected
and it may contain holes. A region can be larger than the actual image format. Regions are
represented by the so-called runlength coding in HALCON. The classHRegion represents a
region in HALCON and contains the following member functions oroperatorsin HALCON
terms:

• HRegion(void)

Default constructor. It creates an empty region, i.e., the area of this region is zero. Not all
operators can handle the empty region as input, e.g. some shape property operators.

• HRegion(const HDChord &line)

Constructing a region from a chord. A chord is a horizontal line.

• HRegion(const HDPoint2D &point)

Constructing a region from a discrete 2-dimensional point.

• HRegion(const HRectangle1 &rect)

Constructing a region from a rectangle parallel to the coordinate axis. The coordinates do
not need to be discrete.

• HRegion(const HRectangle2 &rect)

Constructing a region from an arbitrarily oriented rectangle. The coordinates do not need
to be discrete.

• HRegion(const HCircle &circle)

Constructing a region from a circle. The radius and center do not need to be discrete.

• HRegion(const HEllipse &ellipse)

Constructing a region from an arbitrarily oriented ellipse. The radii and center do not need
to be discrete.

• HRegion(const char *file)

Constructing a region by reading the representation from file. This file can be generated
by the member functionWriteRegion.

• HRegion(const HRegion ®)

Copy constructor.

• HRegion &operator = (const HRegion ®)

Assignment operator.

• ~HRegion(void)

Destructor. In contrast to the primitive class (Hobject) this class handles the release of
memory.

HALCON / C++, 2003-08-01

2.1. ICONIC OBJECTS (HOBJECT) 7

• void Display(const HWindow &w) const

Output of the region in a window.

• HRegion operator * (double scale) const

Zooming the region by an arbitrary factor. The center of scaling is the origin (0, 0).

• HRegion operator >> (double radius) const

HRegion &operator >>= (double radius)

Minkowsky subtraction of the region with a circle of radiusradius.

• HRegion operator << (double radius) const

HRegion &operator <<= (double radius)

Minkowsky addition of the region with a circle of radiusradius.

• HRegion operator + (const HDPoint2D &point) const

HRegion &operator += (const HDPoint2D &point)

Translating the region by a 2-dimensional point.

• HRegion &operator ++ (void)

Minkowsky addition of the region with a cross containing five points.

• HRegion operator + (const HRegion ®) const

HRegion &operator += (const HRegion ®)

Minkowsky addition of the region with another region.

• HRegion operator - (const HRegion ®) const

HRegion &operator -= (const HRegion ®)

Minkowsky subtraction of the region with another region.

• HRegion &operator -- (void)

Minkowsky subtraction of the region with a cross containing five points.

• HRegion operator ~ (void) const

Complement of the region.

• HRegion operator ! (void) const

Transpose the region at the origin.

• HRegion operator & (const HRegion ®) const

HRegion &operator &= (const HRegion ®)

Intersection of the region with another region.

• HRegion operator | (const HRegion ®) const

HRegion &operator |= (const HRegion ®)

Union of the region with another region.

• HRegion operator / (const HRegion ®) const

HRegion &operator /= (const HRegion ®)

Subtract another region from the region.

• HBool operator == (const HRegion ®) const

Boolean test if two regions are identical.

• HBool operator >= (const HRegion ®) const

HBool operator > (const HRegion ®) const

HBool operator <= (const HRegion ®) const

HALCON 6.0.4

8 CHAPTER 2. THE HALCON PARAMETER CLASSES

HBool operator < (const HRegion ®) const

Boolean test if another region is included in the region by using the subset of the corre-
sponding coordinates.

• double Phi(void) const

Orientation of the region by using the angle of the equivalent ellipse.

• double Ra(void) const

Length of the major axis of the equivalent ellipse of the region.

• double Rb(void) const

Length of the minor axis of the equivalent ellipse of the region.

• long Area(void) const

Area of the region, i.e., number of pixels.

• double X(void) const

double Y(void) const

Center point of the region.

• double Contlength(void) const

Length of the contour of the region, seeContlength().

• double Compactness(void) const

Compactness of the actual region, seeCompactness().

• double Anisometry(void) const

double Bulkiness(void) const

double StructureFactor(void) const

Shape factors, see HALCON reference manual.

• double M11(void) const

double M20(void) const

double M02(void) const

double Ia(void) const

double Ib(void) const

Moments of the region, see HALCON reference manual.

• HRectangle1 SmallestRectangle1(void) const

Smallest surrounding rectangle parallel to the coordinate axis.

• HBool In(const HDPoint2D &p) const

Boolean test if a point is inside a region.

• HBool IsEmpty(void) const;

Boolean test if the region is empty, i.e., the area of the region is zero.

A program shows the power of the classHRegion, seefigure 2.1.

First, an aerial image (mreut.tiff) is read from a file. All pixels with a gray value≥ 190 are
selected. This results in one region (region).

This region is transformed by the next steps: All holes in the region are filled (FillUp()) , small
parts of the region are eliminated by two morphological operations, first an erosion, a kind of
shrinking the region, followed by a dilation, a kind of enlarging the region. The last step is the
zooming of the region. For that the region is first shifted by a translation vector(−100,−150)

HALCON / C++, 2003-08-01

2.1. ICONIC OBJECTS (HOBJECT) 9

#include "HalconCpp.h"
#include "iostream.h"

main ()
{

HImage image("mreut"); // Reading an aerial image
HRegion region = image >= 190; // Calculating a threshold
HWindow w; // Display window
w.SetColor("red"); // Set color for regions
region.Display(w); // Display the region
HRegion filled = region.FillUp() // Fill holes in region
filled.Display(w); // Display the region
// Opening: erosion followed by a dilation with a circle mask
HRegion open = (filled << 3.5) >> 3.5;
w.SetColor("green"); // Set color for regions
open.Display(w); // Display the region
HDPoint2D trans(-100,-150); // Vector for translation
HRegion moved = open + trans; // Translation
HRegion zoomed = moved * 2.0; // Zooming the region

}

Figure 2.1: Sample program for the application of the class HRegion.

Figure 2.2: On the left the input image (mreut.tiff), and on the right the region after the
opening (open).

to the upper left corner and then zoomed by the factor two.Figure 2.2shows the input image
and the result of the opening operation.

2.1.2 Region Arrays (HRegionArray)

The classHRegionArray serves as container class for regions.HRegionArray has the follow-
ing member functions:

HALCON 6.0.4

10 CHAPTER 2. THE HALCON PARAMETER CLASSES

• HRegionArray(void)

Constructor for an empty array (Num() is 0).

• HRegionArray(const HRegion ®)

Constructor with a single region.

• HRegionArray(const HRegionArray &arr)

Copy constructor.

• ~HRegionArray(void)

Destructor.

• HRegionArray &operator = (const HRegionArray &arr)

Assignment operator.

• long Num(void)

Number of regions in the array, largest index isNum() − 1.

• HRegion const &operator [] (long index) const

Reading the elementi of the array. The index is in the range0 . . . Num()− 1.

• HRegion &operator [] (long index)

Assigning a region to the elementi of the array. The indexindex can be≥ Num().

• HRegionArray operator () (long min, long max) const

Selecting a subset between the lowermin and uppermax index.

• HRegionArray &Append(const HRegion ®)

Appending another region to the region array.

• HRegionArray &Append(const HRegionArray ®)

Appending another region array to the region array.

• void Display(const HWindow &w) const

Display the regions of the array in a window.

• HRegionArray operator << (double radius) const

Applying the Minkowsky addition to all regions using a circular mask.

• HRegionArray operator >> (double radius) const

Applying the Minkowsky subtraction to all regions using a circular mask.

• HRegionArray operator + (const HRegion ®) const

Applying the Minkowsky addition to all regions using another region as mask.

• HRegionArray operator - (const HRegion ®) const

Applying the Minkowsky subtraction to all regions using another region as mask.

• HRegionArray operator ~ (void) const

Applying the complement operator to each region of the array.

• HRegionArray operator & (const HRegionArray ®) const

Intersection of each region of the actual array with the union ofreg.

• HRegionArray operator | (const HRegionArray ®) const

Union of each region in the actual array with the union ofreg.

HALCON / C++, 2003-08-01

2.1. ICONIC OBJECTS (HOBJECT) 11

• HRegionArray operator / (const HRegionArray ®) const

Difference of each region in the actual array with the union ofreg.

Most HALCON operators acceptHRegionArray as data structure for the input parameter, e.g.
union(), intersection(), difference(), etc. The constructor instantiating the region ar-
ray HRegionArray by a single regionHRegion makes it possible to handle only one region.
Without changing the data structure aHRegionArray can be used as input parameter even in
the case of a single region.

Figure 2.3shows a short example how to use the classHRegionArray.

#include "HalconCpp.h"
#include "iostream.h"

main ()
{

HImage image("control_unit"); // Reading an image from file
// Segmentation by regiongrowing
HRegionArray regs = image.Regiongrowing(1,1,4,100);
HWindow w; // Display window
w.SetColored(12); // Set colors for regions
regs.Display(w); // Display the regions
HRegionArray rect; // New array
for (long i = 0; i < regs.Num(); i++) // For all regions in array
{ // Test size and shape of each region
if ((regs[i].Area() > 1000) && (regs[i].Compactness() < 1.5))

rect.Append(regs[i]); // If test true, append region
}
image.Display(w); // Display the image
rect.Display(w); // Display resulting regions

}

Figure 2.3: Sample program for use of the class HRegionArray.

The first step is to read an image. In this case it shows a control unit in a manufacturing
environment, seefigure 2.4on the left side. By applying a regiongrowing algorithm from the
HALCON library the image is segmented into regions. Each region inside the resulting region
arrayregs is now selected according to its size and its compactness. Each region of a size
larger than 1000 pixels and of a compactness value smaller than1.5 is appended to the region
arrayrect. After the processing of thefor loop only the regions showing on the right side of
figure 2.4are left.

2.1.3 Images (HImage)

Images contain at least one image matrix in conjuction with a region. This region defines the
domain of the image. Various pixel types are supported. The classHImage is the root class for
all derived image classes. By using the classHImage all different pixel types can be handled in
a unique way (polymorphism). The classHImage is not virtual, thus it can be instantiated. It
contains the following member functions:

HALCON 6.0.4

12 CHAPTER 2. THE HALCON PARAMETER CLASSES

Figure 2.4: On the left side the input image (control unit.tiff), and on the right side the
selected rectangles.

• HImage(void)

Default constructor, empty image.

• HImage(const char *file)

Constructing an image by reading from a file, s.ReadImage().

• HImage(int width, int height, const char *type)

Constructing an image of a defined size and a specific pixel type, seeGenImageConst().

• HImage(void *ptr, int width, int height, const char *type)

Constructing an image of a defined size and a specific pixel type by copying memory, see
GenImage1.

• HImage(const HImage &image)

Copy constructor.

• virtual ~HImage(void)

Destructor.

• HImage &operator = (const HImage &arr)

Assignment operator.

• virtual const char *PixType(void) const

Return the pixel type of the image.

• int Width(void) const

Return the width of the image.

• int Height(void) const

Return the height of the image.

• HPixVal GetPixVal(int x, int y) const

Access a pixel value via the(x, y) coordinates.

• HPixVal GetPixVal(long k) const

Linear access of a pixel value.

HALCON / C++, 2003-08-01

2.1. ICONIC OBJECTS (HOBJECT) 13

• virtual void SetPixVal(int x, int y, const HPixVal &val)

Set the pixel value via the(x, y) coordinates.

• virtual void SetPixVal(long k, const HPixVal &val)

Set the pixel value by linear access.

• virtual void Display(const HWindow &w) const

Display an image in a window.

• HImage operator & (const HRegion ®) const

Reduce the domain of an image, seeReduceDomain().

• HImage operator + (const HImage &add) const

Adding two images, seeAddImage().

• HImage operator - (const HImage &sub) const

Subtracting two images, seeSubImage().

• HImage operator * (const HImage &mult) const

Multiplication of two images, seeMultImage().

• HImage operator - (void) const

Inverting the values of the image seeInvert().

• HImage operator + (double add) const

HImage operator - (double sub) const

HImage operator * (double mult) const

HImage operator / (double div) const

Arithmetic operators, seeScaleImage().

• HRegion operator >= (const HImage &image) const

Selecting all pixel with gray values brighter than or equal to those of the input image, see
DynThreshold().

• HRegion operator <= (const HImage &image) const

Selecting all pixel with gray values darker than or equal to those of the input image, see
DynThreshold().

• HRegion operator >= (double thresh) const

Selecting all pixel with gray values brighter than or equal to a threshold, see
Threshold().

• HRegion operator <= (double thresh) const

Selecting all pixel with gray values darker than or equal to a threshold, seeThreshold().

• HRegion operator == (double thresh) const

Selecting all pixel with gray values equal to a threshold, seeThreshold().

• HRegion operator != (double thresh) const

Selecting all pixel with gray values not equal to a threshold, seeThreshold().

Figure 2.5gives an example of the use of the classHImage.

The example starts by reading a byte image from a file. The aim is to extract bright parts from
the image. The used filter and the segmentation process itself is applied only in a pre-chosen
part of the image in order to accelerate the runtime. This part is selected by drawing an arbitrary

HALCON 6.0.4

14 CHAPTER 2. THE HALCON PARAMETER CLASSES

#include "HalconCpp.h"
#include "iostream.h"

main ()
{

HImage image("mreut"); // Aerial image
HWindow w; // Output window
image.Display(w); // Display image
// Returning the size of the image
cout << "width = " << image.Width();
cout << "height = " << image.Height() << endl;
// Interactive drawing of a region by using the mouse
HRegion mask = w.DrawRegion();
// Reduce the domain of the image to the mask
HImage reduced = image & mask;
w.ClearWindow(); // Clear the window
reduced.Display(w); // Display the reduced image
// Applying the mean filter in the reduced image
HImage mean = reduced.MeanImage(61,61);
mean.Display(w);
HRegion reg = bild >= (mean + 3);
reg.Display(w);

}

Figure 2.5: Sample program for the use of the class HImage.

Figure 2.6: On the left side the input image (mreut.tiff), and on the right side the segmented
regions in the selected image domain.

region with the mouse. This regionmask serves as input for reducing the domain of the original
image (&-operator). The mean filter with a mask size of61×61 is applied to the resulting region
reduced. Bright pixels are selected by applying the>= operator. All pixels brighter than the
filtered part of the imagereduced +3 are selected.Figure 2.6shows the result of the sample
program infigure 2.5.

HALCON / C++, 2003-08-01

2.1. ICONIC OBJECTS (HOBJECT) 15

2.1.4 Pixel Values (HPixVal)

The classHPixVal is used for accessing the pixel values of the classHImage. Gray values can
be set and returned independent of their types:

• HPixVal(void)

Default constructor.

• HPixVal(const HComplex &Val)

Constructing a pixel value from a complex number.

• HPixVal(int Val)

Constructing a pixel value from an integer (int).

• HPixVal(long Val)

Constructing a pixel value from a long (long).

• HPixVal(HByte Val)

Constructing a pixel value from a byte (byte).

• HPixVal(double Val)

Constructing a pixel value from a double (double).

• HPixVal(const HPixVal &Val)

Copy constructor.

• HPixVal &operator = (const HPixVal &grey)

Assignment operator.

• operator HByte(void) const

Converting a pixel value to byte(0 . . . 255).

• operator int(void) const

Converting a pixel value toint.

• operator long(void) const

Converting a pixel value tolong.

• operator double(void) const

Converting a pixel value todouble.

• operator HComplex(void) const

Converting a pixel value toComplex.

The handling of the classHPixVal is explained by an example infigure 2.7.

The program infigure 2.7inverts the input image. The input image is a byte image. First, a copy
is generated and the image size is determined. In the first run the pixels are accessed linearly.
In the second run the pixel are accessed via the(x, y)-ccordinates.

2.1.5 Image Arrays (HImageArray)

The same way which was used to define arrays of regions is used to obtain arrays of images.
The class is namedHImageArray and contains the following member functions:

HALCON 6.0.4

16 CHAPTER 2. THE HALCON PARAMETER CLASSES

#include "HalconCpp.h"
#include <iostream.h>

main ()
{

HImage in("mreut"); // Aerial image
HWindow w; // Output window
in.Display(w); // Displaying the image
HImage out = in; // Copying the image
int width = out.Width(); // Width of the image
int height = out.Height(); // Height of the image
long end = width * height; // Number of pixel of the image

// 1. run: linear accessing
for (long k = 0; k < end; k++) {
int pix = in.GetPixVal(k); // Reading the pixel
out.SetPixVal(k,255-pix); // Setting the pixel

}
// Displaying the transformation
cout << "Transformed !" << endl; out.Display(w); w.Click();
cout << "Original !" << endl; in.Display(w); w.Click();

// 2. run: accessing the image via the coordiantes (x,y)
for (int y=0; y<height; y++) {
for (int x=0; x<width; x++) {

int pix = in.GetPixVal(x,y); // Reading the pixel
out.SetPixVal(x,y,255-pix); // Setting the pixel

}
}
// Displaying the transformation
cout << "Transformed !" << endl; out.Display(w); w.Click();
cout << "Original !" << endl; in.Display(w); w.Click();

}

Figure 2.7: Sample program for the use of the class HPixVal.

• HImageArray(void)

Default constructor: empty array, no element.

• HImageArray(const HImage ®)

Constructing an image array from a single image.

• HImageArray(const HImageArray &arr)

Copy constructor.

• ~HImageArray(void)

Destructor.

• HImageArray &operator = (const HImageArray &arr)

Assignment operator.

HALCON / C++, 2003-08-01

2.1. ICONIC OBJECTS (HOBJECT) 17

• long Num(void) const

Returning the number of elements in the array.

• HImage const &operator [] (long index) const

Reading the elementi of the array. The index is in the range0 . . . Num()− 1.

• HImage &operator [] (long index)

Assigning a region to the elementi of the array. The indexindex can be≥ Num().

• HImageArray operator () (long min, long max)

Selecting a subset between the lowermin and uppermax index.

• HImageArray &Append(const HImage &image)

Appending another image to the image array.

• HImageArray &Append(const HImageArray &images)

Appending another image array to the image array.

2.1.6 Byte Images (HByteImage)

An important specialization of the classHImage is the classHByteImage. The range of the pixel
values of the classHByteImage is between0 and255. This pixel type covers more than 90%
of all applications in the field of image processing. The advantage of the classHByteImage

in comparison to the classHImage is the simplified access to the pixel values. This is be-
cause the classHPixVal is not necessary. Besides the member functions ofHImage, the class
HByteImage contains the following extensions:

• HByteImage(void)

Default constructor.

• HByteImage(const char *file)

Constructing a byte image by reading a file.

• HByteImage(int width, int height)

Constructing an empty byte image of a given size.

• HByteImage(HByte *ptr, int width, int height)

Constructing a byte image by copying memory.

• HByteImage(const HByteImage &image)

Copy constructor.

• virtual ~HByteImage(void)

Destructor.

• HByte &operator[] (long k)

Setting a pixel value by linear accessing.

• HByte operator[] (long k) const

Reading a pixel value by linear accessing.

• HByte &operator() (long k)

Setting a pixel value by linear accessing.

HALCON 6.0.4

18 CHAPTER 2. THE HALCON PARAMETER CLASSES

• HByte operator() (long k) const

Reading a pixel value by linear accessing.

• HByte &operator()(int x, int y)

Setting a pixel value by accessing it via(x, y) coordinates.

• HByte operator()(int x, int y) const

Reading a pixel value by accessing it via(x, y) coordinates.

• HByteImage operator & (int i)

Applying the logical “and”-operation on each pixel withi.

• HByteImage operator << (int i)

Applying a left-shift on each pixel withi.

• HByteImage operator >> (int i)

Applying a right-shift on each pixel withi.

• HByteImage operator ~ (void)

Complement of each pixel.

• HByteImage operator & (HByteImage &ima)

Pixel by pixel logical “and”-operation of two images.

• HByteImage operator | (HByteImage &ima)

Pixel by pixel logical “or”-operation of two images.

• HByteImage operator ^ (HByteImage &ima)

Pixel by pixel logical “xor”-operation of two images.

The advantage of the classHByteImage can be seen when accessing each pixel, seefigure 2.8.

The classHPixVal is not necessary in this example. Furthermore the member functions
GetPixVal andSetPixVal are not used.HByteImage allows the accessing of pixel values
in a notation like in the programming language C. The result of the example infigure 2.8is
basically the same as in the example infigure 2.7. The program infigure 2.8is shorter, easy to
read, and has a better runtime performance.

2.2 Low-level Objects (Hobject)

For dealing with the entries in the database, i.e., with the low-level objects, HALCON/C++
provides the data type classHobject. This data type allows you to access the internal HALCON
data management. The class handles the keys of the database. The classHobject serves as the
basis for the classHObject and the derived classes. The classHobject has the following
member functions:

• Hobject(void)

Default constructor.

• Hobject(const Hobject &obj)

Copy constructor.

• virtual ~Hobject(void)

Destructor.

HALCON / C++, 2003-08-01

2.3. CONTROL PARAMETERS 19

#include "HalconCpp.h"
#include <iostream.h>

main ()
{

HByteImage in("mreut"); // Aerial image
HWindow w; // Output window
in.Display(w); // Displaying the image
HByteImage out = in; // Copying the image
int width = out.Width(); // Width of the image
int height = out.Height(); // Height of the image
long end = width * height; // Number of pixel of the image

// 1. run: linear accessing
for (long k = 0; k < end; k++)
out[k] = 255 - in[k]; // Reading and setting the pixel

// Displaying the transformation
cout << "Transformed !" << endl; out.Display(w); w.Click();
cout << "Original !" << endl; in.Display(w); w.Click();

// // 2. run: accessing the image via the coordinates (x,y)
for (int y=0; y<height; y++)
for (int x=0; x<width; x++)

out(x,y) = 255 - out(x,y); // Reading and setting the pixel

// Displaying the transformation
cout << "Transformed !" << endl; out.Display(w); w.Click();
cout << "Original !" << endl; in.Display(w); w.Click();

}

Figure 2.8: Sample program for accessing a pixel value using the class HByteImage.

• Hobject &operator = (const Hobject &obj)

Assignment operator.

• void Clear(void)

Freeing the memory, but preserving the key.

2.3 Control Parameters

HALCON/C++ can handle different types of (alphanumerical) control parameters for HAL-
CON operators:

• discrete numbers (long),

• floating point numbers (double), and

• strings (char *).

HALCON 6.0.4

20 CHAPTER 2. THE HALCON PARAMETER CLASSES

As already mentioned in the introduction to this chapter, using control parameter tuples in C++
isn’t as elegant as using image object tuples (arrays). To circumvent the missing polymorphic
classes in C++, it was necessary to introduce two different working modes into HALCON/C++:
Thesimple modeand thetuple mode. If a tuple is necessary for at least one control parameter,
the tuple mode has to be used for operator calls. In tuple mode,all control parameters of an
operator must be passed as the type classHTuple (Mixing of the two modes is not possible).
The tuple mode also has to be used if the number or type of values that a operators calculates
isn’t known beforehand.

The type of numerical input parameters is simply the classHTuple. This is becauseHTuple
provides constructors for all basic data types.

Mentioning the control parameter types — How is the default type of control parameters deter-
mined for a given operator? Basically there are three ways:

1. The operator description in the HALCON reference manual,

2. the HALCON system operator::get param info(...) and

3. the description of the HALCON interface in the fileHProto.h.

Sometimes the manuals mention more than one possible type. If only integers and floating point
numbers are allowed for a parameter, values have to be passed as parameters of typedouble.
For all other combinations of types, the tuple mode has to be used.

2.3.1 The Class HCtrlVal

Before considering the different ways of passing values to numerical parameters the classes
HTuple andHCtrlVal are discribed. The classHCtrlVal serves as basis for the classHTuple

and is normally hidden from the user because it is only used temporarily for type conversion:

• HCtrlVal(void)

Default constructor.

• HCtrlVal(long l)

Constructing a value fromlong.

• HCtrlVal(int l)

Constructing a value fromint.

• HCtrlVal(double d)

Constructing a value fromdouble.

• HCtrlVal(const char *s)

Constructing a value fromchar *.

• HCtrlVal(const HCtrlVal &v)

Copy constructor.

• ~HCtrlVal(void)

Destructor.

HALCON / C++, 2003-08-01

2.3. CONTROL PARAMETERS 21

• HCtrlVal& operator = (const HCtrlVal &v)

Assignment operator.

• int ValType() const

Type of a value.

• operator int(void) const

Conversion toint.

• operator long(void) const

Conversion tolong.

• operator double(void) const

Conversion todouble.

• operator const char*(void) const

Conversion tochar *.

• double D() const

Accessing a value and conversion todouble.

• long L() const

Accessing a value and conversion tolong.

• int I() const

Accessing a value and conversion toint.

• const char *S() const

Accessing a value and conversion tochar *.

• HCtrlVal operator + (const HCtrlVal &val) const

Adding two values.

• HCtrlVal operator - (const HCtrlVal &val) const

Subtracting two values.

• HCtrlVal operator * (const HCtrlVal &val) const

Multiplying two values.

• HCtrlVal operator / (const HCtrlVal &val) const

Division of two values.

2.3.2 The Class HTuple

The classHTuple is built upon the classHCtrlVal. The classHTuple implements an array
of dynamic length for instances of the classHCtrlVal. The default constructor constructs an
empty array (Num() == 0). This array can dynamically be expanded via assignments. The
memory management, i.e., reallocation, freeing, is also managed by the class. The index for
accessing the array is in the range between0 andNum()− 1.

The classHTuple plays an important role for the export of programs written in HDevelop to
C++ code. The following member functions reflect only a small portion of the total. For further
information please see the fileHTuple.h which is included in the HALCON distribution.

HALCON 6.0.4

22 CHAPTER 2. THE HALCON PARAMETER CLASSES

• HTuple(void)

Default constructor. Constructs an empty tuple.

• HTuple(long l)

Constructing an array of length1 from a discrete numberlong at index position0.

• HTuple(int l)

Constructing an array of length1 from a discrete number converted to the internal type
long at index position0.

• HTuple(HCoord c)

Constructing an array of length1 from a coordinate at index position0.

• HTuple(double d)

Constructing an array of length1 from a floating numberdouble at index position0.

• HTuple(const char *s)

Constructing an array of length1 from a stringchar* at index position0.

• HTuple(const HTuple &t)

Copying a tuple.

• ~HTuple()

Destructor.

• HTuple &operator = (const HTuple& in)

Assignment operator.

• HTuple Sum(void) const

Adding all elements in case they are numbers.

• HCtrlVal &operator [] (int i)

Setting thei−th element.

• HCtrlVal operator [] (int i) const

Reading thei−th element.

• HTuple operator + (const HTuple &val) const

Adding two tuples element by element. The arrays have to be of the same size.

• HTuple operator + (double &val) const

HTuple operator + (int &val) const

Adding a number to each element of the tuple.

• HTuple operator - (const HTuple &val) const

Subtracting two tuples element by element. The arrays have to be of the same size.

• HTuple operator - (double &val) const

HTuple operator - (int &val) const

Subtracting a number from each element of the tuple.

• HTuple operator * (const HTuple &val) const

Multiplying two tuples element by element. The arrays have to be of the same size.

• HTuple operator * (double &val) const

HTuple operator * (int &val) const

Multiplying a number with each element of the tuple.

HALCON / C++, 2003-08-01

2.3. CONTROL PARAMETERS 23

• HTuple operator / (const HTuple &val) const

Division of two tuples element by element. The arrays have to be of the same size.

• HTuple operator / (double &val) const

HTuple operator / (int &val) const

Division of each element of the tuple by a number.

• HTuple Concat(const HTuple &t) const

Concatenating two tuples.

• extern ostream& operator<<(ostream &s, const HTuple &t)

Output of a tuple.

• extern istream& operator>>(istream &s, HTuple &t)

Input of a tuple.

Figure 2.9shows a short sample how to use tuples, i.e., the classHTuple.

#include "HalconCpp.h"
#include <iostream.h>

main ()
{

HTuple t;
cout << t.Num() << ’\n’; // The length of the tuple is 0
t[0] = 0.815; // Assigning values to the tuple
t[1] = 42;
t[2] = "HAL";
cout << t.Num() << ’\n’; // The length of the tuple is 3
cout << "HTuple = " << t << ’\n’; // Using the << operator
double d = t[0]; // Accessing the tuple, if the
long l = t[1]; // the types of the elements
const char *s = t[2]; // are known
// Accessing the tuple, if the types of the elements are known
printf("Values: %g %ld %s\n",t[0].D(),t[1].L(),t[2].S());

}

Figure 2.9: Sample for the use of the class HTuple.

The default constructor generates an empty tuple. By assigning values to the tuple it is auto-
matically expanded, and the data types of the values are also stored. For accessing the tuple
the normal array notation can be used. If the data type of a value is not known in advance, an
explicit type conversion has to be performed, seefigure 2.9.

2.3.3 The Simple Mode

By applying the so-calledsimple modethe HALCON operators can be used in your own C++
programs in a very natural way. In the simple mode, all numerical output values are variables
having the following data types:

• long for discrete numbers,

HALCON 6.0.4

24 CHAPTER 2. THE HALCON PARAMETER CLASSES

• double for floating point numbers, and

• char* for strings.

The values are passedby referenceusing the &-operator. The data type string is a pointer to
char. The user has to take care of the memory allocation for the data type string in the case of
output numerical values.

2.3.4 The Tuple Mode

The tuple concept has been mentioned several times in this manual. A lot of HALCON oper-
ators have numerical parameters, and each parameter may have more than just one value. The
classHTuple has been introduced in order to handle such parameters in a highly efficient way.
Separate calls to one HALCON operator can be combined to just one call by using the tuple
concept.

Besides the simple mode described above, HALCON/C++ offers also the so-calledtuple mode.
If a numerical output parameter uses a tuple of values, the tuple mode has to be applied. A
mixture between simple and tuple mode is not possible. Furthermore the tuple mode has to be
used if thetypeor thenumberof the returned values of a HALCON operator is not known in
advance.

The syntax of tuple and simple mode are basically the same. The data type in the tuple mode is
justHTuple, that’s all.

If you are not interested in a certain value of a numerical output parameter you can use the
anonymous variable “” instead of passing a “dummy” tuple to that variable.

#include "HalconCpp.h"
#include "iostream.h"

main ()
{

HTuple SysFlags,Info; // Tuple variables
long i; // Loop variable

::get_system("?",&SysFlags); // Get system values

for (i=0; i<SysFlags.Num(); i++) {
::get_system(SysFlags[i].S(),&Info); // Get i-th Sysflag
out << SysFlags[i] << "=" << Info << "\n"; // Print i-th Sysflag

}
}

Figure 2.10: A sample program for using the tuple mode: output of the actual HALCON system
state.

The sample program infigure 2.10shows the use of a tuple. The program obtains information
on the actual HALCON system state. The call::get system("?",&SysFlags) gets all flags
of the system and its current values. Because the number and the type of the numerical output
parameter are not known in this case, the call has to be made in the tuple mode. The rest of the
program is self-explanatory.

HALCON / C++, 2003-08-01

Chapter 3

The Class HWindow

Another important class for building programs with HALCON/C++ is the classHWindow. This
class provides the management of HALCON windows in a very convenient way. The properties
of HALCON windows can be easily changed, images, regions, and polygons can be displayed,
etc. The class contains the following member functions:

• HWindow(int Row=0, int Column=0,

int Width=-1, int Height=-1,

int Father = 0, const char *Mode = "",

const char *Host = "")

Default constructor. The constructed window is opened.

• ~HWindow(void)

Destructor. This closes the window.

• void Click(void) const

Waiting for a mouse click in the window.

• HDPoint2D GetMbutton(int *button) const

Waiting for a mouse click in the window. It returns the current mouse position in the
window and the number of the button that was pressed.

• HDPoint2D GetMbutton(void) const

Waiting for a mouse click in the window. It returns the current mouse position in the
window.

• HDPoint2D GetMposition(int *button) const

Returning the mouse position and the pressed button without waiting for a mouse click.

• HDPoint2D GetMposition(void) const

Returning the mouse position without waiting for a mouse click.

• HCircle DrawCircle(void) const

Waiting for the user to draw a circle in the window.

• HEllipse DrawEllipse(void) const

Waiting for the user to draw an ellipse in the window.

• HRectangle1 DrawRectangle1(void) const

Waiting for the user to draw a rectangle parallel to the coordinate axis in the window.

25

26 CHAPTER 3. THE CLASS HWINDOW

• HRectangle2 DrawRectangle2(void) const

Waiting for the user to draw a rectangle with an arbitrary orientation and size in the win-
dow.

Besides those elementary member functions, the classHWindow contains more operators which
are explained in detail in the HALCON reference manual in theGraphics chapter.

Figure 3.1shows the typical use of some member functions of the classHWindow and the dif-
ferent possibilities of displaying images and regions.

#include "HalconCpp.h"

main ()
{

HImage image("control_unit"); // Reading an image from a file
HWindow w; // Opening an appropiate window
image.Display(w); // Display the image
w.SetLut("change2"); // Set a lookup table
w.Click(); // Waiting for a mouse click
w.SetLut("default"); // Set the default lookup table
w.SetPart(100,100,200,200); // Set a part of the window
image.Display(w);
w.Click();
// Adapting the part to the image again
w.SetPart(0,0,bild.Height()-1,bild.Width()-1);
image.Display(w);
HRegionArray regs = image.Regiongrowing(1,1,4,100);
w.SetDraw("margin");
w.SetColored(6);
regs.Display(w);
w.Click();
image.Display(w);
w.SetShape("rectangle1");
regs.Display(w);

}

Figure 3.1: Sample program for the use of the class HWindow.

The window is opened after reading the image from a file. This means, the window is scaled
to the size of the image. The lookup table is changed afterwards, and the program waits for a
mouse click in the window. A part of the image is zoomed now, and the program waits again
for a mouse click in the window. By applying a region growing algorithm from the HALCON
library (regiongrowing()) regions are generated and displayed in the window. Only the mar-
gin of the regions is displayed. It is displayed in 6 different colors in the window. The example
ends with another way of displaying the shape of regions. The smallest rectangle parallel to the
coordinate axes surrounding each region is displayed.

HALCON / C++, 2003-08-01

Chapter 4

Structure of the Reference Manual

The HALCON/C++ reference manual contains the complete description of all operators in the
HALCON system in C++ syntax. This chapter explains how to read the description of the
operators.

Most of the HALCON operators are used with more than one signature. The reasons for this
are:

• Operators can be accessed either via the low-level data structureHobject or via the high-
level classesHImage, HRegion, HImageArray, andHRegionArray. The user can choose
amongst them.

• Many of operators can have more than one value for a parameter, seechapter 2. This holds
for both iconic objects (images and regions) and for numerical parameters.

The user can choose between the different ways of calling an operator according to his needs.

The description in the reference manual reflects the low-level operators. This affects only the
way of calling the operator, not the description of the functionality itself. The latter remains the
same in any case.

If an operator is called using a low-level class, the return value of that operator is a state value
of type Herror. The operator itself doesn’t belong to a class hierarchy. Examples for such
operators are:

Herror ::fetch_polygon (Hobject Region,
const HTuple& Tolerance,
HTuple* Rows, HTuple* Columns)

Herror ::mean_image (Hobject Image, Hobject* MeanImage,
const HTuple& MaskWidth,
const HTuple& MaskHeight);

Herror ::area_center (Hobject Regions, long* Area,
double* Row, double* Column)

Herror ::area_center (Hobject Regions, HTuple* Area,
HTuple* Row, HTuple* Column)

27

28 CHAPTER 4. STRUCTURE OF THE REFERENCE MANUAL

The operator::area center can be called in simple and in tuple mode. If exactly one region is
passed, then size, row, and column refer only to single value. If more than one region is passed,
the numerical output parameter has to be of typeHTuple because foreachregion a value for
size, row, and column is passed.

The use of the member functions of the classesHRegion, HImage seems to be more complicated
if you view it from the reference manual. The reason for this is that values are returned by the
member functions and the operation itself is applied on the instance (this). This causes fewer
parameters of the operator. However, the rules for the transformation are very simple:

1. The type of thefirst input parameter determines the class to which the operator belongs
as a member function. This parameter vanishes from the set of parameters of this oper-
ator.

2. The first output parameter determines the return value of the operator. Again, this pa-
rameter vanishes from the set of parameters.

This is a very convenient way for calling operators from HALCON/C++. Consider this exam-
ple:

HRegion HImage::Threshold
(const HTuple &MinGrey, const HTuple &MaxGrey) const

HRegionArray HImageArray::Threshold
(const HTuple &MinGrey, const HTuple &MaxGrey) const

HImageArray HImageArray::MeanImage
(const HTuple &MaskWidth,
const HTuple &MaskHeight) const

Calling the member functions looks like:

HImage Image("control_unit");
HImage Mean = Image.MeanImage(11,11);
HRegion Region = Mean.Threshold(0,120);

Compare the above approach with the use of the low-level data typeHError:

Hobject Image, Mean, Region;
::read_image(&Image, "control_unit");
::mean_image(Image, &Mean, 11, 11);
::threshold(Mean, &Region, 0, 120);
::clear_obj(Image);
::clear_obj(Mean);
::clear_obj(Region);

The memory management has to be done manually by the user.

HALCON / C++, 2003-08-01

Chapter 5

Exception Handling

In HALCON/C++, there are two techniques to handle runtime errors, one for the high-level
classes and one for the low-level operators.

5.1 Exception Handling for the High-Level Classes

If a runtime error occurs in HALCON/C++, an instance of the classHException is created (see
figure 5.1for the declaration of the class). This instance contains all information concerning
the error. The important members of an exception are:

line: Number of the program line in which the error occurred
file: Name of the file in which the error occurred
proc: Name of the actual HALCON operator
err: Number of the error, see below
message: Error text

class HException {
public:

HException(const char *f, long l, const char *p, Herror e, const char *m);
HException(const char *f, long l, const char *p, const char *m);
HException(const char *f, long l, const char *p, Herror e);

static Handler InstallHHandler(Handler proc);

static Handler handler; // Exception-Handler
long line; // Line number
const char *file; // File name
const char *proc; // Name of the operator
Herror err; // Number of the error
const char *message; // Error text

void PrintException(void); // Default exception handler
};

Figure 5.1: Part of the declaration of the class HException.

29

30 CHAPTER 5. EXCEPTION HANDLING

After the generation, the instance ofHException is passed to a so-calledexception handler.
HALCON’s default exception handler prints the corresponding error message and terminates
the program.

As an alternative, you can implement and use your own exception handler. In order to act as a
HALCON exception handler, a procedure must have the following signature:

typedef void (*Handler)(const HException &except);

You “install” your exception handler procedure viaHException’s class method
InstallHHandler (see figure 5.1). In case of a runtime error, HALCON then calls
your procedure, passing the instance of the actual exception as a parameter.

The following example shows how to use your own exception handler together
with the standard C++ exception handling mechanism (try...catch). The cor-
responding programexample errorhandling.cpp can be found in the subdirectory
%HALCONROOT%\examples\cpp. At the beginning of the program, a user-specific exception
handler is installed with the folloing line:

HException::InstallHHandler(&MyHalconExceptionHandler);

The installed procedure simply hands the exception object to the C++ exception handling via
throw:

void MyHalconExceptionHandler(const HException& except)
{

throw except;
}

In the example program, the C++ exception handling is used to check whether an image file can
be read successfully. For this, the call toReadImage is encapsulated by atry block; a possibly
ensuing exception is then evaluated in a correspondingcatch block:

try
{

image = HImage::ReadImage(filename);
}
catch (HException &except)
{

error_num = except.err;
if (error_num == H_MSG_FAIL)
cout << "image not found!" << endl;

else
cout << except.message << endl;

}

HALCON / C++, 2003-08-01

5.2. USING THE LOW-LEVEL OPERATORS 31

5.2 Exception Handling for the Low-Level Operators

All low-level operators return a value of the typeHerror which can fall into two categories:
messagesH MSG * and errorsH ERR *. There are four different messages:

H MSG TRUE: The operator terminated without an error and the result value is the boolean
value true.

H MSG FALSE: The operator terminated without an error and the result value is the boolean
value false.

H MSG VOID: The operator terminated without an error and the result value void is returned.

H MSG FAIL: The operator terminated without an error and the result value means the op-
erator has not performed successfully. This means, e.g. an operator is not
responsible or a specific situation has not occurred.

Nearly all HALCON operators return the messageH MSG TRUE if no error occurs.

In case of an error, HALCON by default prints the corresponding error message and termi-
nates the program. You can deactivate (and reactivate) this reaction by calling the operator
::set check. The following code checks whether a file could be opened successfully; in case
of an error, it prints the corresponding error message, which can be determined with the operator
::get error text.

Herror error_num;
char message[MAX_STRING];
long file;

::set_check("~give_error");
error_num = ::open_file("not_existing_file", "input", &file);
::set_check("give_error");

if (error_num != H_MSG_TRUE)
{

::get_error_text(error_num, message);
cout << "HALCON error " << error_num << ": " << message;

}

HALCON 6.0.4

32 CHAPTER 5. EXCEPTION HANDLING

HALCON / C++, 2003-08-01

Chapter 6

Creating Applications Using HALCON
C++

The HALCON distribution contains examples for building an application with HALCON/C++.
Here is an overview of the HALCON/C++ (Windows notation of paths):

include\cpp\HalconCpp.h:
include file; contains all user-relevant definitions of the HALCON system and the decla-
rations necessary for the C++ interface.

bin\i586-nt4\halcon.lib,halcon.dll:
The HALCON library (Windows NT / 2000 / XP).

bin\i586-nt4\halconcpp.lib,halconcpp.dll:
The HALCON/C++ library (Windows NT / 2000 / XP).

bin\i586-nt4\parhalcon.lib,parhalcon.dll,parhalconcpp.lib,parhalconcpp.dll:
The corresponding libraries of Parallel HALCON (Windows NT / 2000 / XP).

lib\%ARCHITECTURE%\libhalcon.so:
The HALCON library (UNIX).

lib\%ARCHITECTURE%\libhalconcpp.so:
The HALCON/C++ library (UNIX).

lib\%ARCHITECTURE%\libparhalcon.so,libparhalconcpp.so:
The corresponding libraries of Parallel HALCON (UNIX).

include\cpp\HProto.h:
External function declarations.

examples\cpp\example1-11.cpp:
Example programs.

examples\cpp\i586-nt4\example1-11\:
Example projects to compile and link the example programs (Windows NT / 2000 / XP).

examples\cpp\makefile, make.%ARCHITECTURE%:

Example makefiles to compile the example programs (UNIX).

33

34 CHAPTER 6. CREATING APPLICATIONS USING HALCON C++

images\:
Images used by the example programs.

help\english.*:
Files necessary for online information.

doc*:
Various manuals (in subdirectories).

There are several example programs in the HALCON/C++ distribution. To experiment with
these examples we recommend to create a private copy in your working directory.

example1.cpp reads an image and demonstrates several graphics operators.

example2.cpp demonstrates the direct pixel access.

example3.cpp is an example for the usage of pixel iterators.

example4.cpp demonstrates the edge detection with a sobel filter.

example5.cpp solves a more complicated problem.

example6.cpp is a very simple test program.

example7.cpp demonstrates the generic pixel access.

example8.cpp is an example for the usage of the tuple mode.

example9.cpp introduces the XLD structure.

example10.cpp demonstrates the usage of several contour structures.

example11.cpp is another simple example for the usage uf tuples.

exampleerrorhandling.cpp demonstrates the C++ exception handling (seesection 5.1).

Additional examples for using HALCON/C++ can be found in the subdirectories
examples\mfc andexamples\motif.

In the following, we briefly describe the relevant environment variables; see the manual
Getting Started with HALCON for more information, especially about how to set these vari-
ables. Note, that under Windows NT / 2000 / XP, all necessary variables are automatically set
during the installation.

While a HALCON program is running, it accesses several files internally. To tell HALCON
where to look for these files, the environment variableHALCONROOT has to be set.HALCONROOT
points to the HALCON home directory.HALCONROOT is also used in the sample makefile.

The variableARCHITECTURE describes the platform HALCON is used on. The following ta-
ble gives an overview of the currently supported platforms and the corresponding values of
ARCHITECTURE.

HALCON / C++, 2003-08-01

6.1. WINDOWS NT / 2000 / XP 35

ARCHITECTURE Operating System (Platform) Compiler

Windows NT 4.0, Windows 2000, Windows XP
i586-nt4

on Intel Pentium or compatible
Visual Studio

i586-linux2.2 Linux 2.2/2.4 on Intel Pentium (or compatible) gcc 2.95

sparc-sun-solaris7 Solaris 7 on Sparc Workstations CC 5.0

mips-sgi-irix6.5 IRIX 6.5 on SGI Workstations (Mips processors)CC

alpha-compaq-osf5.1 Tru64 UNIX 5.11 on Alpha processors cxx

If user-defined packages are used, the environment variableHALCONEXTENSIONS has to be set.
HALCON will look for possible extensions and their corresponding help files in the directories
given inHALCONEXTENSIONS.

Two things are important in connection with the example programs: The default directory for
the HALCON operatorread image(...) to look for images is%HALCONROOT%\images. If
the images reside in different directories, the appropriate path must be set inread image(...)

or the default image directory must be changed, usingset_system("image_dir","...").
This is also possible with the environment variableHALCONIMAGES. It has to be set before start-
ing the program.

The second remark concerns the output terminal under UNIX. In the example programs, no host
name is passed toopen window(...). Therefore, the window is opened on the machine that
is specified in the environment variableDISPLAY. If output on a different terminal is desired,
this can be done either directly in::open_window(...,"hostname",...) or by specifying
a host name inDISPLAY.

In order to link and run applications under UNIX, you have to include the HALCON library
path$HALCONROOT/lib/$ARCHITECTURE in the system variableLD LIBRARY PATH.

6.1 Creating Applications Under Windows NT / 2000 /
XP

Your own C++ programs that use HALCON operators must include the fileHalconCpp.h,
which contains all user-relevant definitions of the HALCON system and the declarations nec-
essary for the C++ interface. Do this by adding the command

#include "HalconCpp.h"

near the top of your C++ file. In order to create an application you must link the library
halconcpp.lib/.dll to your program.

The example projects show the necessary Visual C++ settings. For the examples the project
should be of the WIN 32 ConsoleApplication type. Please note that the Visual C++ compiler
implicitly calls “Update all dependencies” if a new file is added to a project. Since HALCON
runs under UNIX as well as under Windows NT / 2000 / XP, the include fileHalconCpp.h

1formerly called DIGITAL UNIX

HALCON 6.0.4

36 CHAPTER 6. CREATING APPLICATIONS USING HALCON C++

includes several UNIX-specific headers as well if included under UNIX. Since they don’t exist
under NT, and the Visual C++ compiler is dumb enough to ignore the operating-system-specific
cases in the include files, you will get a number of warning messages about missing header files.
These can safely be ignored.

Please assure that the stacksize is sufficient. Some sophisticated image processing problems
require up to 6 MB stacksize, so make sure to set the settings of your compiler accordingly (See
your compiler manual for additional information on this topic).

If you want to use Parallel HALCON, you have to link the librariesparhalcon.lib/.dll and
parhalconcpp.lib/.dll instead ofhalcon.lib/.dll andhalconcpp.lib/.dll in your
project.

Please note thatwithin an application you can use only one HALCON language interface,!
be it directly or indirectly, e.g., by including a DLL that uses a second interface. Thus, you
cannot use both the HALCON/C++ and the HALCON/COM interface in one and the same
application.

6.2 Creating Applications Under UNIX

Your own C++ programs that use HALCON operators must include the fileHalconCpp.h,
which contains all user-relevant definitions of the HALCON system and the declarations nec-
essary for the C++ interface. Do this by adding the command

#include "HalconCpp.h"

near the top of your C++ file. Using this syntax, the compiler looks forHalconCpp.h in the
current directory only. Alternatively you can tell the compiler where to find the file, giving it
the-I<pathname> command line flag to denote the include file directory.

To create an application, you have to link two libraries to your program: The li-
brary libhalconcpp.so contains the various components of the HALCON/C++ interface.
libhalcon.so is the HALCON library.

Please take a look at the example makefiles for suitable settings. If you callmake without further
arguments, the example applicationexample1 will be created. To create the other example
applications (e.g.,example2), call

make TEST_PROG=example2

You can use the example makefiles not only to compile and link the example programs but also
your own programs (called e.g.test.cpp) by calling

make TEST_PROG=test

You can link the program to the Parallel HALCON libraries by calling

make parallel TEST_PROG=test

HALCON / C++, 2003-08-01

6.2. UNIX 37

Please note thatwithin an application you can use only one HALCON language interface,!
be it directly or indirectly, e.g., by including a library that uses a second interface. Thus, you
cannot use both the HALCON/C++ and the HALCON/C interface in one and the same applica-
tion.

HALCON 6.0.4

38 CHAPTER 6. CREATING APPLICATIONS USING HALCON C++

HALCON / C++, 2003-08-01

Chapter 7

Typical Image Processing Problems

This chapter shows the power the HALCON system offers to find solutions for image processing
problems. Some typical problems are introduced together with sample solutions.

7.1 Thresholding an Image

Some of the most common sequences of HALCON operators may look like the following one:

HByteImage Image("file_xyz");
HRegion Threshold = Image.Threshold(0,120);
HRegionArray ConnectedRegions = Threshold.Connection();
HRegionArray ResultingRegions =

ConnectedRegions.SelectShape("area","and",10,100000);

This short program performs the following:

• All pixels are selected with gray values between the range 0 and 120.

• A connected component analysis is performed.

• Only regions with a size of at least 10 pixel are selected. This step can be considered as a
step to remove some of the noise from the image.

7.2 Edge Detection

For the detection of edges the following sequence of HALCON/C++ operators can be applied:

HByteImage Image("file_xyz");
HByteImage Sobel = Image.SobelAmp("sum_abs",3);
HRegion Max = Sobel.Threshold(30,255);
HRegion Edges = Max.Skeleton();

A brief explanation:

39

40 CHAPTER 7. TYPICAL IMAGE PROCESSING PROBLEMS

• Before applying the sobel operator it might be useful first to apply a low-pass filter to the
image in order to suppress noise.

• Besides the sobel operator you can also use filters likeEdgesImage, Prewitt, Robinson,
Kirsch, Roberts, BandpassImage, or Laplace.

• The threshold (in our case 30) must be selected appropiately depending on data.

• The resulting regions are thinned by aSkeleton() operator. This leads to regions with a
pixel width of 1.

7.3 Dynamic Threshold

Another way to detect edges is e.g. the following sequence:

HByteImage Image("file_xyz");
HByteImage Mean = Image.MeanImage(11,11);
HRegion Threshold = Image.DynThreshold(Mean,5,"light");

Again some remarks:

• The size of the filter mask (in our case11 × 11) is correlated with the size of the objects
which have to be found in the image. In fact, the sizes are proportional.

• The dynamic threshold selects the pixels with a positive gray value difference of more
than 5 (brighter) than the local environment (mask11 × 11).

7.4 Texture Transformation

Texture transformation is useful in order to obtain specific frequency bands in an image. Thus, a
texture filter detects specific structures in an image. In the following case this structure depends
on the chosen filter; 16 are available for the operatorLawsByte().

HByteImage Image("file_xyz");
HByteImage TT = Image.LawsByte(Image,"ee",2,5);
HByteImage Mean = TT.MeanImage(71,71);
HRegion Reg = Mean.Threshold(30,255);

• The mean filterMeanImage() is applied with a large mask size in order to smooth the
“frequency” image.

• You can also apply several texture transformations and combine the results by using the
operatorsAddImage() andMultImage().

7.5 Eliminating Small Objects

The following morphological operator eliminates small objects and smoothes the contours of
regions.

HALCON / C++, 2003-08-01

7.6. SELECTING ORIENTED OBJECTS 41

...
::segmentation(Image,&Seg);
HCircle Circle(100,100,3.5);
HRegionArray Res = Seg.Opening(Circle);

• The term::segmentation() is an arbitrary segmentation operator that results in an array
of regions (Seg).

• The size of the mask (in this case the radius is 3.5) determines the size of the resulting
objects.

• You can choose an arbitrary mask shape.

7.6 Selecting Oriented Objects

Another application of morphological operators is the selection of objects having a certain ori-
entation:

...
::segmentation(Image,&Seg);
HRectangle2 Rect(100,100,0.5,21,2);
HRegionArray Res = Seg.Opening(Rect);

• Again,::segmentation() leads to an array of regions (Seg).

• The width and height of the rectangle determine the minimum size of the resulting regions.

• The orientation of the rectangle determines the orientation of the regions.

• Lines with the same orientation asRect are kept.

7.7 Smoothing Contours

The last example in this user’s manual deals again with morphological operators. Often the
margins of contours have to be smoothed for further processing, e.g. fitting lines to a contour.
Or small holes inside a region have to be filled:

...
::segmentation(Image,&Seg);
HCircle Circle(100,100,3.5);
HRegionArray Res = Seg.Closing(Circle);

• Again,::segmentation() leads to an array of regions (Seg).

• For smoothing the contour a circle mask is recommended.

• The size of the mask determines how much the contour is smoothed.

HALCON 6.0.4

42 CHAPTER 7. TYPICAL IMAGE PROCESSING PROBLEMS

HALCON / C++, 2003-08-01

Index

Access,10, 17
AddImage(), 13
Anisometry(), 8
Append, 17
Append(), 10
Area(), 8

Bulkiness(), 8

Click(), 25
Compactness(), 8
Connection(), 5
Contlength(), 8

D(), 21
Display(), 7, 10
DrawCircle(), 25
DrawEllipse(), 25
DrawRectangle1(), 25
DrawRectangle2(), 26
DynThreshold(), 13

FillUp(), 8

GetMbutton(), 25

HALCON/COM, 36
HByte(), 15
HByteImage, 17
HCtrlVal, 20
HImage, 6, 11, 15
HImageArray, 15
HObject, 5
Hobject, 5, 18
HPixVal, 15
HRegion, 6
HRegionArray, 9
HTuple, 5, 20, 21
HWindow, 25
HXLD, 6

I(), 21
Ia(), 8
Ib(), 8

In(), 8
Invert(), 13
IsEmpty(), 8

L(), 21

M02(), 8
M11(), 8
M20(), 8
MultImage(), 13

Num(), 10, 17

Parallel HALCON,36
Phi(), 8

Ra(), 8
Rb(), 8
ReduceDomain(), 13

S(), 21
ScaleImage(), 13
SelectShape(), 1
Simple Mode,23
StructureFactor(), 8
SubImage(), 13
Sum(), 22

Threshold(), 13
Tuple Mode,24

X(), 8

Y(), 8

43

	1 Introducing HALCON C++
	1.1 Additional Sources of Information
	1.2 A First Example

	2 The HALCON Parameter Classes
	2.1 Iconic Objects (HObject)
	2.1.1 Regions (HRegion)
	2.1.2 Region Arrays (HRegionArray)
	2.1.3 Images (HImage)
	2.1.4 Pixel Values (HPixVal)
	2.1.5 Image Arrays (HImageArray)
	2.1.6 Byte Images (HByteImage)

	2.2 Low-level Objects (Hobject)
	2.3 Control Parameters
	2.3.1 The Class HCtrlVal
	2.3.2 The Class HTuple
	2.3.3 The Simple Mode
	2.3.4 The Tuple Mode

	3 The Class HWindow
	4 Structure of the Reference Manual
	5 Exception Handling
	5.1 Using the High-Level Classes
	5.2 Using the Low-Level Operators

	6 Creating Applications Using HALCON C++
	6.1 Windows NT / 2000 / XP
	6.2 UNIX

	7 Typical Image Processing Problems
	7.1 Thresholding an Image
	7.2 Edge Detection
	7.3 Dynamic Threshold
	7.4 Texture Transformation
	7.5 Eliminating Small Objects
	7.6 Selecting Oriented Objects
	7.7 Smoothing Contours

	Index

