
HALCON Version 6.0.4

MVTec Software GmbH

HALCON / C

User’s Manual

How to use the image analysis tool HALCON, Version 6.0.4, in your own C programs

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without prior written permission of the publisher.

Edition 1 July 1997

Edition 2 November 1997

Edition 3 March 1998 (HALCON 5.1)

Edition 4 April 1999 (HALCON 5.2)

Edition 5 October 2000 (HALCON 6.0)

Edition 5a July 2001 (HALCON 6.0.1)

Copyright c© 1997-2003 by MVTec Software GmbH, M¨unchen, Germany MVTec Software GmbH

Microsoft, Windows, Windows NT, Windows 2000, Windows XP, and Visual C++ are either
trademarks or registered trademarks of Microsoft Corporation.

All other nationally and internationally recognized trademarks and tradenames are hereby rec-
ognized.

More information about HALCON can be found at:

http://www.mvtec.com/halcon/

About This Manual

This manual describes the interface of HALCON to the programming language C. It provides
all necessary information to understand and use the provided data structures and mechanisms
in your own programs. A set of example programs shows how to apply HALCON/C to solve
typical image processing tasks.

The reader of this user manual should be familar with basic concepts of image analysis and the
programming language C.

The manual is divided into the following chapters:

• Introducing HALCON/C
A first example shows how easy image processing becomes using HALCON/C.

• The HALCON Parameter Classes
This chapter describes how to use the parameter classes of HALCON in your C program.

• Return Values of HALCON Operators
This chapter explains how to deal with the return values of HALCON operators.

• HALCON for Philips TriMedia DSPs
This chapter gives an overview over the HALCON version for Philips TriMedia DSPs.

• Generation of HALCON/C Applications
This chapter explains how to compile and link C programs with HALCON/C.

• Typical Image Processing Problems
This chapter contains example programs for typical image processing tasks.

Release Notes

Please note the latest updates of this manual:

• Edition 5a, HALCON 6.0.1 (July 2001)
The manual now also describes how to use HALCON on Philips TriMedia DSPs. Since
HALCON 6.0.1 does not support HP-UX anymore, the corresponding references have
been deleted from the manual.

• Edition 5, HALCON 6.0 (September 2000)
The manual has been restructured and revised slightly, especially the chapter “Generation
of HALCON/C Applications”.

Contents

1 Introducing HALCON/C 1
1.1 Additional Sources of Information. 1
1.2 A First Example. 2

2 The HALCON Parameter Classes 5
2.1 Image objects. 5
2.2 Control parameters. 6

2.2.1 The Simple Mode. 8
2.2.2 The Tuple Mode. 8

3 Return Values of HALCON Operators 15

4 HALCON for Philips TriMedia DSPs 17
4.1 Limitations . 18
4.2 Memory Management. 19

5 Generation of HALCON/C Applications 21
5.1 Windows NT / 2000 / XP. 23
5.2 UNIX . 24
5.3 Philips TriMedia . 25

6 Typical Image Processing Problems 27
6.1 Thresholding . 27
6.2 Detecting Edges. 27
6.3 Dynamic Threshold. 28
6.4 Simple Texture Transformations. 28
6.5 Eliminating Small Objects. 28
6.6 Selecting Specific Orientations. 29
6.7 Smoothing Region Boundaries. 29

Chapter 1

Introducing HALCON/C

HALCON/C is the interface of the image analysis system HALCON to the programming lan-
guage C. Together with the HALCON library, it allows to use the image processing power of
HALCON inside C programs.

After pointing out additional sources of information about HALCON, we start with a first exam-
ple application. The following chapters describe the details of integrating HALCON operators
into C programs. Chapter2 introduces the four different parameter classes of HALCON oper-
ators. We will explain the use of HALCON tuples (chapter2.2.2) for supplying operators with
tuples of control parameters in great detail: Using tuples, the twoselect shape(...) calls
in our example program could be combined into only one call. Chapter3 is dedicated to the
return values of HALCON operators. Chapter5 gives an overview over all the include-files
and C-libraries necessary for compiling C programs and shows how to create a stand-alone ap-
plication. Finally, chapter6 contains example solutions for some common problems in image
processing (like edge detection).

1.1 Additional Sources of Information

For further information you may consult the following manuals:

• Getting Started with HALCON
An introduction to HALCON in general, including how to install and configure HALCON.

• HDevelop User’s Manual
An introduction to the graphical development environment of the HALCON system.

• HALCON/C ++ User’s Manual
How to use the HALCON library in your C++ programs.

• HALCON/COM User’s Manual
How to use the HALCON library in your COM programs.

• Extension Package Programmer’s Manual
How to extend the HALCON system with your own operators.

• Frame Grabber Integration Programmer’s Manual
A guide on how to integrate a new frame grabber in the HALCON system. Note that

1

2 CHAPTER 1. INTRODUCING HALCON/C

in some cases you might define new operators (using the Extension Package Interface)
instead of using the standard HALCON Frame Grabber Integration Interface in order to
exploit specific hardware features of a frame grabber board.

• HALCON/C , HALCON/HDevelop, HALCON/C ++, HALCON/COM
The reference manuals for all HALCON operators (versions for C, HDevelop, C++, and
COM).

All these manuals are available as PDF documents. The reference manuals are available as
HTML documents as well. For the latest version of the manuals please check

http://www.mvtec.com/halcon/

1.2 A First Example

Before going into the details of HALCON/C, let’s have a look at a small example. Given the
image of a mandrill in figure1.1 (left), the goal is to segment its eyes. This is done by the C
program shown in figure1.2. The segmentation result is shown in figure1.1(right):

Figure 1.1: To the left, the image of a mandrill is shown (input image). To the right, the result
of the segmentation process in the example program can be seen (eyes).

The program is quite self-explanatory. We will describe the basic principles nevertheless: First,
all image pixels with gray values greater than 128 are selected. Then all connected components
of the region formed by these pixels are calculated. The corresponding HALCON operator
calculates a region tuple, and thus splits the image in different regions (objects). From these,
the mandrill’s eyes are selected by their area and shape.

This example shows how easy it is to integrate HALCON operators in any C program. Their
use is very intuitive: Users don’t have to think about the basic data structures and algorithms
involved. And since all HALCON operators are hardware independent, users don’t even have
to care about things like different I/O devices. HALCON has its own memory management and
provides a sophisticated runtime environment.

HALCON / C, 2003-08-01

1.2. A FIRST EXAMPLE 3

#include "HalconC.h"

main()
{

Hobject mandrill,thresh,conn,area,eyes; /* required objects */
long WindowHandle;

open_window(0,0,512,512,0,"visible","",&WindowHandle); /* open window */
read_image(&mandrill,"monkey"); /* read input image ("monkey") */
disp_image(mandrill,WindowHandle); /* display input image */
get_mbutton(WindowHandle,_,_,_); /* wait for mouse click */

/* Select image region with pixels in [128,255] */
threshold(mandrill,&thresh,128.0,255.0);
connection(thresh,&conn); /* compute connected components */

/* select regions with an area of at least 500 pixels */
select_shape(conn,&area,"area","and",500.0,90000.0);

/* select the eyes in these regions by using the anisometry feature */
select_shape(area,&eyes,"anisometry","and",1.0,1.7);
disp_region(eyes,WindowHandle); /* display result */

get_mbutton(WindowHandle,_,_,_); /* wait for mouse click */
close_window(WindowHandle); /* close window */

/* delete image objects from the Halcon database */
clear_obj(mandrill); clear_obj(thresh); clear_obj(conn);
clear_obj(area); clear_obj(eyes);

}

Figure 1.2: Introductory example program.

HALCON 6.0.4

4 CHAPTER 1. INTRODUCING HALCON/C

HALCON / C, 2003-08-01

Chapter 2

The HALCON Parameter Classes

HALCON distinguishes four different classes of operator parameters:

• Input image objects

• Output image objects

• Input control parameters

• Output control parameters

Input parameters are passedby value, output parameters are passedby reference(using the &-
operator). An exception to this rule are output control parameters of typechar*. Here, the
caller has to provide the memory and only a pointer to that memory is passed to the operator.

As a rule of thumb, all HALCON operators can also be called using tuples of parameters in-
stead of single values. Take theconnection(...) operator from our example program in the
previous chapter: It calculates a tuple of output image objects (the connected components). Of
course there are several HALCON operators that cannot be called with tuples for some or all
parameters. Whether this is the case for specific operators is described in detail in the HAL-
CON reference manual. Unfortunately, C doesn’t provide a generic list constructor (e.g., like
the one in PROLOG). Therefore, the use of tuples of control parameters is a little elaborate.
Using tuples of image objects on the other hand is in no way different from using single values.

HALCON/C provides the data structureHtuple for tuples of control parameters (see Chap-
ter2.2.2for details) and the data structureHobject for image objects (single objects as well as
object tuples — see Chapter2.1).

2.1 Image objects

Image processing isn’t possible without actual images. By using image objects, HALCON
provides a abstract data model that covers a lot more than simple image arrays.

Basically, there are two different types of image objects:

• Images

• Regions

5

6 CHAPTER 2. THE HALCON PARAMETER CLASSES

A region consists of a set of coordinate values in the image plane. Regions do not need to be
connected and may include “holes.” They may even be larger than the image format. Internally,
regions are stored in the so-called runlength encoding.

Images consist of at least one image array and a region, the so-calleddomain. The domain
denotes the pixels that are “defined” (i.e., HALCON operators working on gray values will
only access pixels in this region). But HALCON supports multi-channel images, too: Images
may consist of an (almost) arbitrary number of channels. An image coordinate therefore isn’t
necessarily represented by a single gray value, but by a vector of up ton gray values (if the
coordinate lies within the image region). This may be visualized as a “stack” of image arrays
instead of a single array. RGB- or voxel-images may be represented this way.

HALCON provides operators for region transformations (among them a large number of mor-
phological operators) as well as operators for gray value transformations. Segmentation opera-
tors are the transition from images (gray values) to regions.

HALCON/C provides the data typeHobject for image objects (both images and regions). In
fact, Hobject is a surrogate of the HALCON database containing all image objects. Input
image objects are passed to the HALCON operatorsby valueas usual, output image objects are
passedby reference, using the &-operator. Variables of typeHobject may be a single image
object as well as tuples of image objects. Single objects are treated as tuples with length one.

Of course, users can access specific objects in an object tuple, too. To do so, it is nec-
essary to extract the specific object key (converted to integer) first, using the operators
obj to integer(...) or copy obj(...). The number of objects in a tuple can be queried
with count obj(...). To convert the keys (returned fromobj to integer) back to im-
age objects again, the operatorinteger to obj(...) has to be used. It may be noted that
integer to obj(...) duplicates the image objects (Don’t worry, this doesn’t mean neces-
sarily that the corresponding gray value arrays are duplicated too. As long as there is only
read-access, a duplication of the references is sufficient). Therefore, all extracted objects have
to be deleted explicitly from the HALCON database, usingclear obj(...). Figure2.1con-
tains an excerpt from a C program to clarify that approach.

Some HALCON operators likeneighbor(. . .) or difference(...) allow the use of the
following specific image objects as input parameters:

NO OBJECTS: An empty tuple of image objects.

EMPTY REGION: An image object with empty region (area = 0).

FULL REGION: An image object with maximal region.

These objects may be returned by HALCON operators, too.

2.2 Control parameters

HALCON/C supports the following data types as types for control parameters of HALCON
operators:

• integers,

HALCON / C, 2003-08-01

2.2. CONTROL PARAMETERS 7

...
Hobject objects; /* tuple of image objects */
Hobject obj; /* single image object */
long surrogate; /* object key, converted to integer */
Htuple Tsurrogates; /* tuple of object keys */
Htuple Index,Num; /* temporary tuple for parameter passing */
long i; /* loop variable */
long num; /* number of objects */

...
count_obj(&num);
/* variant 1: object key -> control parameter */
create_tuple(&Index,1); set_i(Index,1,0);
create_tuple(&Num,1); set_i(Num,num,0);
T_obj_to_integer(objects,Index,Num,&Tsurrogates);
for (i=0; i<num; i++)
{

surrogate = get_i(Tsurrogates,i);
/* process single object */

}
/* variant 2: copying objects individually */
for (i=1; i<=num; i++)
{

copy_obj(objects,&obj,i,1);
/* process single object */

}
...

Figure 2.1: Accessing the i-th image object in a tuple of image objects.

• floating point numbers,

• character arrays (strings)

As already mentioned in the introduction to this chapter, using control parameter tuples in C
isn’t as elegant as using image object tuples. To circumvent the missing generic lists in C, it
was necessary to introduce two different working modes into HALCON/C: Thesimple mode
and thetuple mode. If a tuple is necessary for at least one control parameter, the tuple mode
has to be used for operator calls. In tuple mode,all control parameters of an operator must be
passed as typeHtuple (Mixing of the two modes is not possible). The tuple mode also has to
be used if the number or type of values that a operators calculates isn’t known beforehand.

Mentioning the control parameter types — How is the default type of control parameters deter-
mined for a given operator? Basically there are three ways:

1. The operator description in the HALCON reference manual,

2. the HALCON system operatorget param info(...) and

3. the description of the HALCON interface in the fileHProto.h.

HALCON 6.0.4

8 CHAPTER 2. THE HALCON PARAMETER CLASSES

Sometimes the manuals mention more than one possible type. If only integers and floating point
numbers are allowed for a parameter, values have to be passed as parameters of typedouble.
For all other combinations of types, the tuple mode has to be used.

HALCON operators, that are called in tuple mode are distinguished from simple mode calls by
a preceedingT . That means,

select shape(...)

is a call of the HALCON operatorselect shape (as described in the HALCON reference
manual) in simple mode, whereas

T select shape(...)

is a call of the same operator in tuple mode.

2.2.1 The Simple Mode

In the so-calledsimple mode, all operators described in the HALCON reference manual can be
used in a very intuitive way in your own C programs. All control parameters are variables (or
constants) of the data types

• long for integers (HALCON typeINT PAR),

• double for floating point numbers (DOUBLE PAR) or

• char* for character arrays (strings,STRING PAR).

long anddouble input control parameters are passedby valueas usual, the corresponding
output control parameters are passedby reference, using the &-operator. String parameters are
pointers tochar in both cases.Please note, that the memory for output control parameters (esp.
strings) has to be provided by the caller!Output parameter values that are of no further interest
can be denoted by the anonymous variables

• “ ” or “ i” for long-parameters,

• “ d” for double-parameters and

• “ s” for char*-parameters

As an example for the use of anonymous variables see the small introductory program in figure
1.2: We codedget mbutton(WindowHandle, , ,), because the actual button pressed is of
no further interest.

Examples for HALCON operator calls in simple mode can be found in the C programs in figures
1.2and2.1.

2.2.2 The Tuple Mode

We mentioned already that control parameter tuples for HALCON operators need special treat-
ment. In this chapter we will give the details on how to construct and use those tuples. The

HALCON / C, 2003-08-01

2.2. CONTROL PARAMETERS 9

HALCON reference manual describes a large number of operators that don’t operate on single
control values but on tuples of values. Using those operators, it is easy to write very compact
and efficient programs, because often it is possible to combine multiple similar operator calls
into a single call.

Unfortunately, C provides no generic tuple- or list constructor. In contrast, HALCON allows
tuples with mixed types as control parameter values (e.g., integers mixed with floating point
numbers).

Therefore, in addition to the very intuitive simple mode there is another mode in HALCON/C:
The tuple mode. Using this mode is a little more elaborate. If at least one of the control
parameters of a HALCON operator is passed as a tuple, the tuple mode has to be used for all
control parameters (Mixing of both modes isn’t possible). Furthermore, the tuple mode also has
to be used if thenumberor typeof the calculated values aren’t known beforehand.

Syntactically, tuple mode is distinguished from simple mode by aT preceeding the operator
name. For example, callingdisp circle in tuple mode is done by

T disp circle(...).

To ease the usage of the tuple mode, HALCON/C provides the abstract data typeHtuple for
control parameter tuples. Objects of typeHtuple may be constructed using values of the types

• long for integers (HALCON typeINT PAR),

• double for floating point numbers (DOUBLE PAR) or

• char* for character arrays (strings,STRING PAR)

in arbitrary combination. Control parameter tuples must be created, deleted, and manipulated
using the appropriate HALCON/C operatorsonly (overview in figures2.2and2.3).

The rules for parameter passing are valid in tuple mode, too: Input control parameters (type
Htuple) are passedby valueas usual, output control parameters are passedby reference, us-
ing the &-operator. Output parameters that are of no further interest can be denoted by the
anonymous variable “t” instead of a “dummy” tuple.

Let’s summarize the five most important steps when calling a HALCON operator in tuple
mode:

1. step First, memory must be allocated for all tuples of input control parameters, using
create tuple. Memory for output control parameter tuples is allocated by HAL-
CON/C (a call ofcreate tuple isn’t necessary).

2. step Now, the input control parameter tuples are constructed, using the appropriateset *

operators.set s, which inserts a string into a tuple allocates the needed memory
by itself and then copies the string.

3. step Then, the HALCON operator is actually called. The operator name is (as already
explained) preceeded by aT to denote tuple mode.

HALCON 6.0.4

10 CHAPTER 2. THE HALCON PARAMETER CLASSES

4. step Further processing of the output parameter tuples takes place, using the operators
length tuple, get type and get *. When processing strings (usingget s),
please note that the allocated memory is freed automatically upon deleting the tuple
with destroy tuple. If the string has to be processed even after the deletion of the
tuple, the whole string must be copied first. The maximal string length (incl. ter-
mination character “\0”) in HALCON is MAX STRING (1024 in HALCON version
6.0.4).

5. step Finally the memory allocated by all the tuples (input and output) has to be freed
again. This is done withdestroy tuple. If you still need the values of the tuple
variables, remember to copy them first. Now, the whole series can start again —
using different or the same tuple variables.

void create_tuple(tuple,length) or macro CT(tuple,length)
Htuple *tuple;
long length;
/* creates a tuple that can hold ’length’ entries */

void destroy_tuple(tuple) or macro DT(tuple)
Htuple tuple;
/* deletes a tuple (if the tuple contains string entries, */
/* the memory allocated by the strings is freed, too) */

long length_tuple(tuple) or macro LT(tuple)
Htuple tuple;
/* returns the length of a tuple (number of entries) */

void set_i(tuple,val,index) or macro SI(tuple,val,index)
Htuple tuple;
long val;
long index;
/* inserts an integer with value ’val’ into a tuple at */
/* position ’index’ (’index’ in [0,length_tuple(tuple) - 1]) */

void set_d(tuple,val,index) or macro SD(tuple,val,index)
Htuple tuple;
double val;
long index;
/* inserts a double with value ’val’ into a tuple at */
/* position ’index’ (’index’ in [0,length_tuple(tuple) - 1]) */

void set_s(tuple,val,index) or macro SS(tuple,val,index)
Htuple tuple;
char *val;
long index;
/* inserts a copy of string ’val’ into a tuple at */
/* position ’index’ (’index’ in [0,length_tuple(tuple) - 1]). */
/* The memory necessary for the string is allocated by set_s. */

Figure 2.2: HALCON/C Htuple operators (part one).

HALCON / C, 2003-08-01

2.2. CONTROL PARAMETERS 11

int get_type(tuple,index) or macro GT(tuple,index)
Htuple tuple;
long index;
/* returns the type of the value at position ’index’ in the */
/* tuple. Possible values: INT_PAR, DOUBLE_PAR or STRING_PAR */

long get_i(tuple,index) or macro GI(tuple,index)
Htuple tuple;
long index;
/* returns the integer at position ’index’ in the tuple */
/* (a type error results in a run time error) */

double get_d(tuple,index) or macro GD(tuple,index)
Htuple tuple;
long index;

/* returns the floating point number at position ’index’ in the */
/* tuple. (a type error results in a run time error) */

char *get_s(tuple,index) or macro GS(tuple,index)
Htuple tuple;
long index;

/* returns the pointer(!) to the string at position ’index’ in */
/* the tuple. (a type error results in a run time error) */

/* Attention: all indices must be in [0,length_tuple(tuple) - 1] */

Figure 2.3: HALCON/C Htuple operators (part two).

Before we end this chapter with a short example program, we will explain an alternativegeneric
calling mechanismfor HALCON operators in tuple mode. This mechanism is intended for
the use in interpreters or graphical user interfaces:

T call halcon(ProcName)

calls the HALCON operatorProcName in tuple mode. To do so, the operator parameters have
to be set first, using

set in opar, set out opar, set in tpar undset out tpar

Accessing these parameters is still possible with the ordinary tuple operators. Figure2.4sum-
marizes the operators of the generic HALCON/C calling interface.

But now to the mentioned example program (see figure2.5 or the file example3.c: The
aim is to get informations about the current HALCON system state. The HALCON opera-
tor get system(’?’,Values) (here in HDevelop syntax) returns all system flags with their

HALCON 6.0.4

12 CHAPTER 2. THE HALCON PARAMETER CLASSES

void set_in_opar(obj,par) or macro IO(obj,par)
Hobject obj;
int par;
/* defines ’obj’ as input image object parameter no. ’par’ */
/* (inside the input image object parameter parameter class) */

void set_out_opar(obj,par) or macro OO(obj,par)
Hobject *obj;
int par;
/* defines ’obj’ as output image object parameter no. ’par’ */
/* (inside the output image object parameter parameter class) */

void set_in_tpar(tuple,par) or macro IT(tuple,par)
Htuple tuple;
int par;
/* defines ’tuple’ as input control parameter no. ’par’ */
/* (inside the input control parameter parameter class) */

void set_out_tpar(tuple,par) or macro OT(tuple,par)
Htuple *tuple;
int par;
/* defines ’tuple’ as output control parameter no. ’par’ */
/* (inside the output control parameter parameter class) */

Herror T_call_halcon(ProcName) or macro TC(ProcName)
char *ProcName;
/* calls the Halcon operator ’ProcName’ using tuple mode; */
/* input and output parameters of ’ProcName’ must be declared */
/* using set_in_*par and set_out_*par first */

Figure 2.4: Generic calling mechanism for the HALCON/C tuple mode.

current values. Since in our case neither number nor type of the output parameters is known
beforehand, we have to use tuple mode for the actual operator call in HALCON/C. The rest of
the program should be self explanatory.

HALCON / C, 2003-08-01

2.2. CONTROL PARAMETERS 13

#include "HalconC.h"

main ()
{

Htuple In,SysFlags,Info; /* tuple variables */
long i,num;

printf("system informations:\n");
create_tuple(&In,1); /* prepare first query */
set_s(In,"?",0); /* only value of ’In’: "?" */
T_get_system(In,&SysFlags); /* first query */
destroy_tuple(In); /* free parameter */
num = length_tuple(SysFlags); /* number of system flags */
for (i=0; i<num; i++)
{ /* determine the value of the i-th system flag: */

create_tuple(&In,1); /* prepare query */
set_s(In,get_s(SysFlags,i),0); /* insert i-th system flag */
printf("%s ",get_s(SysFlags,i)); /* print name */
T_get_system(In,&Info); /* get corresponding info */
destroy_tuple(In); /* free parameter */
switch(get_type(Info,0))
{ /* print the value according to the flag’s type: */
case INT_PAR: printf("(int): %ld\n",get_i(info,0));

break;
case DOUBLE_PAR: printf("(double): %f\n",get_d(info,0));

break;
case STRING_PAR: printf("(string): %s\n",get_s(info,0));

break;
}
destroy_tuple(Info); /* free parameter */

} /* for(i=... */
}

Figure 2.5: Tuple mode example program: Printing the current HALCON system state.

HALCON 6.0.4

14 CHAPTER 2. THE HALCON PARAMETER CLASSES

HALCON / C, 2003-08-01

Chapter 3

Return Values of HALCON Operators

HALCON operator return values (typeHerror) can be divided into two categories:

• Messages (H MSG *) and

• Errors (H ERR *).

According to its procedural concept, HALCON distinguishes four kinds of messages:

• H MSG TRUE: The operator finished without error and returns the boolean value true.

• H MSG FALSE: The operator finished without error and returns the boolean value false.

• H MSG VOID: The operator finished without error, but doesn’t return a value.

• H MSG FAIL: the operator finished without error (!) and returns “operation failed”. This
could mean that the operator doesn’t consider itself relevant for the operation or that a
specific event didn’t happen.

Nearly all HALCON operators returnH MSG TRUE, if no error occurs.

Errors in HALCON operators usually result in an exception, i.e., a program abort with the
appropriate error message in HALCON/C (default exception handling). However, users can
disable this mechanism (with a few exceptions, like errors inHtuple operators), using

set_check("~give_error");

to provide their own error handling routines. In that case, the operatorerror text(. . .) is very
useful: This operator returns the plain text message for any given error number. Finally, the
operator

set_check("give_error");

enables the HALCON error handling again. Several examples showing the handling of error
messages can be seen in the fileexample5.c.

15

16 CHAPTER 3. RETURN VALUES OF HALCON OPERATORS

HALCON / C, 2003-08-01

Chapter 4

HALCON for Philips TriMedia DSPs

The Philips TriMedia is a real-time Digital Signal Processor (DSP) used primarily for multi-
media applications. Development and execution of TriMedia software are supported by the
TriMedia SDE (runtime and development software) that has to be installed on a host computer
running under Windows NT / 2000 / XP. The TriMedia Compilation System (TCS) translates C
and C++ programs generating code for a machine in the TriMedia architecture family. The gen-
erated executables can be loaded and run on the TriMedia via the host using e.g. the TriMedia
loadertmrun.

HALCON for TriMedia contains all relevant parts of the HALCON image processing library
plus the HALCON/C interface. The decision was made in favour of the C interface because it
produces slightly more efficient code regarding runtime and code size than the corresponding
HALCON/C++ interface. Taking into account the special requirements of the TriMedia, the
image processing library is built with an emphasis on optimizing runtime, code size and memory
allocation behavior. This implies that parts not necessary for image processing as well as some
online support features like textual error reports are left out of the library. The remainder of the
chapter is dedicated to explaining the differences between HALCON for TriMedia and standard
HALCON.

Currently HALCON for TriMedia runs on the TriMedia vision-boards Allegro, Fuga and Presto.
To support the existing TriMedia hardware, the Philips image processing software Rhapsody
version 2.0 has to be installed on the system.

17

18 CHAPTER 4. HALCON FOR PHILIPS TRIMEDIA DSPS

4.1 Limitations

Following functionalities of the standard HALCON image processing library are not contained
in HALCON for TriMedia:

• X-Windows and Windows NT / 2000 / XP display methods

• Frame grabber support

• Serial I/0

• Socket I/0

• HALCON Spy

• Gnuplot

• Online information about arbitrary HALCON operators

• Textual HALCON error messages

• The only supported image file formats are ima, tiff and bmp.

Corresponding to above enumeration the following list contains all operators not available in
HALCON for TriMedia:

• set fixed lut, get fixed lut, set lut gamma, getlut gamma, setfix, get fix, set lut, get lut, set lut style,
get lut style, drawlut, querylut, disp lut, write lut, draw polygon, drawregion, drawcircle,
draw circle mod, drawellipse, drawellipse mod, drawline, drawline mod, drawpoint, drawpoint mod,
draw rectangle1, drawrectangle1mod, drawrectangle2, drawrectangle2mod, dragregion1,
drag region2, dragregion3, getfont, setfont, queryfont, gettshape, settshape, querytshape,
get string extents, gettposition, settposition, newline, readchar, readstring, writestring, dispobj,
disp arc, disparrow, dispcircle, dispdistribution, dispellipse, dispcolor, dispchannel, dispimage,
disp line, disppolygon, disprectangle1, disprectangle2, dispregion, dispcaltab, getmbutton,
get mposition, getmshape, setmshape, querymshape, clearrectangle, clearwindow, closewindow,
copy rectangle, dumpwindow, getwindow extents, getwindow pointer3, getwindow type,
moverectangle, opentextwindow, openwindow, querywindow type, setwindow attr, setwindow extents,
set window type, slideimage, newexternwindow, setwindow dc, seticon, geticon, querycolor,
queryall colors, querycolored, querygray, queryinsert, queryline width, querypaint, queryshape,
get comprise, getdraw, gethsi, getinsert, getline approx, getline style, getline width, getpaint,
get part, getpart style, getpixel, getrgb, getshape, setcolor, setcolored, setcomprise, setdraw, setgray,
set hsi, setinsert, setline approx, setline style, setline width, setpaint, setpart, setpart style, setpixel,
set rgb, setshape, dispxld, write shapemodel, readshapemodel

• set framegrabberlut, get framegrabberlut, openframegrabber, closeframegrabber,
closeall framegrabbers, infoframegrabber, grabimage, grabimagestart, grabimageasync, grabregion,
grab regionasync, setframegrabberparam, getframegrabberparam

• openserial, closeserial, closeall serials, setserial param, getserial param, readserial, writeserial,
clear serial

• opensocketaccept, opensocketconnect, socketacceptconnect, closesocket, getnext socketdatatype,
sendtuple, receivetuple, sendxld, receivexld, sendregion, receiveregion, sendimage, receiveimage

• get spy, setspy, queryspy

• gnuplotopenpipe, gnuplotopenfile, gnuplotclose, gnuplotplot image, gnuplotplot ctrl, gnu-
plot plot funct 1d

• disp info, get chapterinfo, get keywords, searchoperator, getparaminfo, get operatorinfo,
get operatorname, queryparaminfo, queryoperatorinfo

HALCON / C, 2003-08-01

4.2. MEMORY MANAGEMENT 19

4.2 Memory Management

Due to hardware memory limitations on the TriMedia, HALCON for TriMedia should differ
from standard HALCON in certain aspects of memory allocation behavior. The HALCON sys-
tem parameter ’alloctmpsingleblock’ can be used to manipulate the internal HALCON stack
management. If set ’true’, all allocated stack memory is released immediately when no longer
in use and only as much new stack memory as needed is allocated. A slightly weaker approach
in order to limit the size of internally allocated memory is to use the system parameter ’al-
loctmp max blocksize’ to manually determine the maximum size of temporary memory blocks
which in the default case would be estimated internally by HALCON. If ’alloctmpsingleblock’
is ’true’ ’alloctmp max blocksize’ has no effect. Furthermore the general HALCON memory
management is modified to only allocate storage blocks of the size requested by a given operator
and to free all storage not longer needed without further internal usage.

Generally, the above modifications are aimed to reduce the amount of dynamically allocated
memory without having considerable negative effects on runtime behavior. In addition the
HALCON system parameters ’externalalloc funct’ and ’externalfree funct’ can be used to
pass pointers to external functions for allocating and deallocating memory for HALCON im-
ages. This can e.g. be useful if result images should always be written to the same position
within memory.

HALCON 6.0.4

20 CHAPTER 4. HALCON FOR PHILIPS TRIMEDIA DSPS

HALCON / C, 2003-08-01

Chapter 5

Generation of HALCON/C Applications

The HALCON distribution contains examples for building an application with HALCON/C.
Here is an overview of HALCON/C (Windows notation of paths):

include\c\HalconC.h:
include file; contains all user-relevant definitions of the HALCON system and the decla-
rations necessary for the C interface.

bin\i586-nt4\halcon.lib,halcon.dll:
The HALCON library (Windows NT / 2000 / XP).

bin\i586-nt4\halconc.lib,halconc.dll:
The HALCON/C library (Windows NT / 2000 / XP).

bin\i586-nt4\parhalcon.lib,parhalcon.dll,parhalconc.lib,parhalconc.dll:
The corresponding libraries of Parallel HALCON (Windows NT / 2000 / XP).

lib\%ARCHITECTURE%\libhalcon.so:
The HALCON library (UNIX).

lib\%ARCHITECTURE%\libhalconc.so:
The HALCON/C library (UNIX).

lib\%ARCHITECTURE%\libparhalcon.so,libparhalconc.so:
The corresponding libraries of Parallel HALCON (UNIX).

lib\tm1x-philips-nt4\libhalcon.a:
The HALCON library for Philips TriMedia DSPs.

include\c\HProto.h:
External function declarations.

examples\c\example1-11.c:
Example programs.

examples\c\i586-nt4\example1-11\:
Example projects to compile and link the example programs (Windows NT / 2000 / XP).

21

22 CHAPTER 5. GENERATION OF HALCON/C APPLICATIONS

examples\trimedia*.dev:
HDevelop example programs that can be exported to C and run on TriMedia DSPs.

examples\c\makefile, make.%ARCHITECTURE%:

Example makefiles to compile the example programs (UNIX).

images\:
Images used by the example programs.

help\english.*:
Files necessary for online information.

doc*:
Various manuals (in subdirectories).

There are several example programs in the HALCON/C distribution. To experiment with these
examples we recommend to create a private copy in your working directory.

example1.c reads an image and demonstrates several graphics operators.

example2.c introduces several image processing operators.

example3.c is an example for the usage of the tuple mode.

example4.c shows more (basic) image processing operators like the sobel filter for edge
detection, region growing, thresholding, histograms, the skeleton operator,
and the usage of different color lookup tables.

example5.c describes the HALCON messages and error handling.

example6.c demonstrates the generic calling interface for the tuple mode
(T call halcon(...)).

example7.c describes the handling of RGB images.

example8.c demonstrates the creation of an image from user memory.

example9.c describes some additional handling of RGB images.

A special case is the example programexample multithreaded1.c. It demonstrates the use
of Parallel HALCON in a multithreaded application. Please note, that this example must be
linked to the libraries of Parallel HALCON as described in the following sections. Of course, it
does not make sense to run on a single-processor computer.

In the following, we briefly describe the relevant environment variables; see the manual
Getting Started with HALCON for more information, especially about how to set these vari-
ables. Note, that under Windows NT / 2000 / XP, all necessary variables are automatically set
during the installation.

While a HALCON program is running, it accesses several files internally. To tell HALCON
where to look for these files, the environment variableHALCONROOT has to be set.HALCONROOT
points to the HALCON home directory.HALCONROOT is also used in the sample makefile.

The variableARCHITECTURE describes the platform HALCON is used on. The following ta-
ble gives an overview of the currently supported platforms and the corresponding values of
ARCHITECTURE.

HALCON / C, 2003-08-01

5.1. WINDOWS NT / 2000 / XP 23

ARCHITECTURE Operating System (Platform) Compiler

Windows NT 4.0, Windows 2000, Windows XP
i586-nt4

on Intel Pentium or compatible
Visual Studio

i586-linux2.2 Linux 2.2/2.4 on Intel Pentium (or compatible) gcc 2.95

sparc-sun-solaris7 Solaris 7 on Sparc Workstations CC 5.0

mips-sgi-irix6.5 IRIX 6.5 on SGI Workstations (Mips processors)CC

alpha-compaq-osf5.1 Tru64 UNIX 5.11 on Alpha processors cxx

Philips TriMedia DSPs,
tm1x-philips-nt4

on host: Windows NT 4.0 , 2000, XP
tmcc

If user-defined packages are used, the environment variableHALCONEXTENSIONS has to be set.
HALCON will look for possible extensions and their corresponding help files in the directories
given inHALCONEXTENSIONS.

Two things are important in connection with the example programs: The default directory for
the HALCON operatorread image(...) to look for images is%HALCONROOT%\images. If
the images reside in different directories, the appropriate path must be set inread image(...)

or the default image directory must be changed, usingset_system("image_dir","...").
This is also possible with the environment variableHALCONIMAGES. It has to be set before start-
ing the program.

The second remark concerns the output terminal under UNIX. In the example programs, no host
name is passed toopen window(...). Therefore, the window is opened on the machine that is
specified in the environment variableDISPLAY. If output on a different terminal is desired, this
can be done either directly inopen_window(...,"hostname",...) or by specifying a host
name inDISPLAY.

In order to link and run applications under UNIX, you have to include the HALCON library
path$HALCONROOT/lib/$ARCHITECTURE in the system variableLD LIBRARY PATH.

5.1 Creating Applications Under Windows NT / 2000 /
XP

Your own C programs that use HALCON operators must include the fileHalconC.h, which
contains all user-relevant definitions of the HALCON system and the declarations necessary for
the C interface. Do this by adding the command

#include "HalconC.h"

near the top of your C file. In order to create an application you must link the library
halconc.lib/.dll to your program.

The example projects show the necessary Visual C++ settings. For the examples the project
should be of the WIN 32 ConsoleApplication type. Please note that the Visual C++ compiler

1formerly called DIGITAL UNIX

HALCON 6.0.4

24 CHAPTER 5. GENERATION OF HALCON/C APPLICATIONS

implicitly calls “Update all dependencies” if a new file is added to a project. Since HALCON
runs under UNIX as well as under Windows NT / 2000 / XP, the include fileHalconC.h in-
cludes several UNIX-specific headers as well if included under UNIX. Since they don’t exist
under Windows, and the Visual C++ compiler is dumb enough to ignore the operating-system-
specific cases in the include files, you will get a number of warning messages about missing
header files. These can safely be ignored.

Please assure that the stacksize is sufficient. Some sophisticated image processing problems
require up to 6 MB stacksize, so make sure to set the settings of your compiler accordingly (See
your compiler manual for additional information on this topic).

If you want to use Parallel HALCON, you have to link the librariesparhalcon.lib/.dll

and parhalconc.lib/.dll instead ofhalcon.lib/.dll andhalconc.lib/.dll in your
project.

5.2 Creating Applications Under UNIX

Your own C programs that use HALCON operators must include the fileHalconC.h, which
contains all user-relevant definitions of the HALCON system and the declarations necessary for
the C interface. Do this by adding the command

#include "HalconC.h"

near the top of your C file. Using this syntax, the compiler looks forHalconC.h in the current
directory only. Alternatively you can tell the compiler where to find the file, giving it the
-I<pathname> command line flag to denote the include file directory.

To create an application, you have to link two libraries to your program: The library
libhalconc.so contains the various components of the HALCON/C interface.libhalcon.so

is the HALCON library.

Please take a look at the example makefiles for suitable settings. If you callmake without further
arguments, the example applicationexample1 will be created. To create the other example
applications (e.g.,example2), call

make TEST_PROG=example2

You can use the example makefiles not only to compile and link the example programs but also
your own programs (called e.g.test.c) by calling

make TEST_PROG=test

You can link the program to the Parallel HALCON libraries by calling

make parallel TEST_PROG=test

HALCON / C, 2003-08-01

5.3. PHILIPS TRIMEDIA 25

5.3 Creating Applications Under Windows NT / 2000 /
XP for Philips TriMedia DSPs

For a general description of HALCON for TriMedia refer to chapter4. The directory
%HALCONROOT%\examples\trimedia contains HDevelop programs that can be exported di-
rectly to C programs by calling HDevelop either via command line (e.g. hdevelop -convert
test.dev test.c) or from HDevelop running under Windows NT / 2000 / XP. The programs do
not contain any Windows display procedures or interaction and thus can be compiled and run
on the TriMedia without further modification. Make sure that the TriMedia SDE (runtime and
development software) is installed properly on your system and the environment variable TRI-
MEDIAROOT is set to the SDE install directory.

Your own C programs that use HALCON operators must include the fileHalconC.h, which
contains all user-relevant definitions of the HALCON system and the declarations necessary for
the C interface. Do this by adding the command

#include "HalconC.h"

near the top of your C file. To create an application, you have to link the librarieslibhalconc.a

andlibhalcon.a to your program.libhalconc.a contains the HALCON/C interface and
libhalcon.a contains the HALCON image processing library. Additionally, you currently
have to link the Philips image processing library Rhapsody version 2.0 allowing hardware sup-
port for the TriMedia.

Please take a look at the makefile for suitable settings. To create an application (e.g.,test), call

nmake TEST_PROG=test

from a command shell. You can load and run the application onto the TriMedia by calling

tmrun test

The majority of the HDevelop programs in %HALCONROOT%\examples\trimedia write out-
put data to file as either image or region format. This is done to compensate for the lack of
display routines in HALCON for TriMedia that otherwise would be used to visualize and thus
verify the output results.

HALCON 6.0.4

26 CHAPTER 5. GENERATION OF HALCON/C APPLICATIONS

HALCON / C, 2003-08-01

Chapter 6

Typical Image Processing Problems

This final chapter shows the possibilities of HALCON and HALCON/C on the basis of several
simple image processing problems.

6.1 Thresholding

One of the most common HALCON operators is the following:

read_image(&Image,"File_xyz");
threshold(Image,&Thres,0.0,120.0);
connection(Thres,&Conn);
select_shape(Conn,&Result,"area","and",10.0,100000.0);

Step-by-step explanation of the code:

• First, all image pixels with gray values between 0 and 120 (channel 1) are selected.

• The remaining image regions are split into connected components.

• By suppressing regions that are too small, noise is eliminated.

6.2 Detecting Edges

The following HALCON/C sequence is suitable for edge detection:

read_image(&Image,"File_xyz");
sobel_amp(Image,&Sobel,"sum_abs",3);
threshold(Sobel,&Max,30.0,255.0);
skeleton(Max,&Edges);

Some remarks about the code:

• Before filtering edges with the sobel operator, a low pass filter may be useful to suppress
noise.

27

28 CHAPTER 6. TYPICAL IMAGE PROCESSING PROBLEMS

• Apart from the sobel operator, filters likeedges image, roberts, bandpass image or
laplace are suitable for edge detection, too.

• The threshold (30.0, in this case) has to be selected depending on the actual images (or
depending on the quality of the edges found in the image).

• Before any further processing, the edges are reduced to the width of a single pixel, using
skeleton(...).

6.3 Dynamic Threshold

Among other things, the following code is suitable for edge detection, too:

read_image(&Image,"File_xyz");
mean_image(Image,&Lp,11,11);
dyn_threshold(Image,Lp,&Thres,5.0,"light");

• The size of the filter mask (11 x 11, in this case) depends directly on the size of the
expected objects (both sizes are directly proportional to each other).

• In this example, the dynamic threshold operator selects all pixels that are at least 5 gray
values brighter than their surrounding (11 x 11) pixels.

6.4 Simple Texture Transformations

Texture transformations are used to enhance specific image structures. The behavior of the
transformation depends on the filters used (HALCON provides 16 different texture filters).

read_image(&Image,"File_xyz");
Filter = "ee";
texture_laws(Image,&TT,Filter,2,5);
mean_image(TT,&Lp,31,31);
threshold(Lp,&Seg,30.0,255.0);

• mean image(...) has to be called with a large mask to achieve a sufficient generaliza-
tion.

• It is also possible to calculate several different texture transformations and to combine
them later, usingadd image(...), mult image(...) or a similar operator.

6.5 Eliminating Small Objects

The following morphological operation eliminates small image objects and smoothes the
boundaries of the remaining objects:

HALCON / C, 2003-08-01

6.6. SELECTING SPECIFIC ORIENTATIONS 29

...
segmentation(Image,&Seg);
gen_circle(&Mask,100.0,100.0,3.5);
opening(Seg,Mask,&Res);

• The size of the circular mask (3.5, in this case) determines the smallest size of the remain-
ing objects.

• It is possible to use any kind of mask for object elimination (not only circular masks).

• segmentation(...) is used to denote a segmentation operator that calculates a tuple of
image objects (Seg).

6.6 Selecting Specific Orientations

Yet another application example of morphological operations is the selection of image objects
with specific orientations:

...
segmentation(Image,&Seg);
gen_rectangle2(&Mask,100.0,100.0,0.5,21.0,2.0);
opening(Seg,Mask,&Res);

• The rectangle’s shape and size (length and width) determine the smallest size of the re-
maining objects.

• The rectangle’s orientation determines the orientation of the remaining regions (In this
case, the main axis and the horizontal axis form an angle of 0.5 rad).

• Lines with an orientation different from the mask’s (i.e., the rectangle’s) orientation are
suppressed.

• segmentation(...) is used to denote a segmentation operator that calculates a tuple of
image objects (Seg).

6.7 Smoothing Region Boundaries

The third (and final) application example of morphological operations covers another common
image processing problem — the smoothing of region boundaries and closing of small holes in
the regions:

...
segmentation(Image,&Seg);
gen_circle(&Mask,100.0,100.0,3.5);
closing(Seg,Mask,&Res);

• For the smoothing of region boundaries, circular masks are suited best.

• The mask size determines the degree of the smoothing.

HALCON 6.0.4

30 CHAPTER 6. TYPICAL IMAGE PROCESSING PROBLEMS

• segmentation(...) is used to denote a segmentation operator that calculates a tuple of
image objects (Seg).

HALCON / C, 2003-08-01

	1 Introducing HALCON/C
	1.1 Additional Sources of Information
	1.2 A First Example

	2 The HALCON Parameter Classes
	2.1 Image objects
	2.2 Control parameters
	2.2.1 The Simple Mode
	2.2.2 The Tuple Mode

	3 Return Values of HALCON Operators
	4 HALCON for Philips TriMedia DSPs
	4.1 Limitations
	4.2 Memory Management

	5 Generation of HALCON/C Applications
	5.1 Windows NT / 2000 / XP
	5.2 UNIX
	5.3 Philips TriMedia

	6 Typical Image Processing Problems
	6.1 Thresholding
	6.2 Detecting Edges
	6.3 Dynamic Threshold
	6.4 Simple Texture Transformations
	6.5 Eliminating Small Objects
	6.6 Selecting Specific Orientations
	6.7 Smoothing Region Boundaries

