HALCON Version 5.2

’EC

MVTec Software GmbH

HDevelop
User’'s Manual

April 21, 1999

This manual explains the interactive tool HDevelop for HALCON version 5.2

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without prior written permission of the publisher.

1st Edition. July 1997

2nd Edition. November 1997
3rd Edition. March 1998

4th Edition. April 1999

M, EC

Copyright(© 1997-99 MVTec Software GmbH, Munich, Germaytec software GmbH

Information concerning HALCON:
http://www.mvtec.com

Address: MVTec Software GmbH
Orleansstr. 34
D-81667 Munich
Germany

E-mail: mvtec@Omvtec.com

Contents

1 About this Manual 5
1.1 Readers e e 5
1.2 Organization of thisManual 5
1.3 Additional Sources of Information 6
1.4 Release NoOtes e e 7
2 Introduction 9
2.1 Concepts e e 9
2.1.1 Workingenvironment. 9
2.1.2 DataStructures o e e e e e e 10
2.1.3 Module Structure 11
2.2 Configuration e 12
23 OnlineHelp e 14
3 Example Session 15
4 Graphical User Interface 21
4.1 InteractingwithHDevelop 21
4.2 MouseHandling. 22
4.3 MainWindow e e e 22
431 TitleBar e 23
432 MenuBar 24
4.3.3 ToolBar e 59
434 WINAOWArea v v e e e e e e e e e e 59
435 StatusBar. e 60
4.4 ProgramWindow e 60
4.5 OperatorWindow 61
4.6 VariableWindow e e 65
4.6.1 AreaforlconicData, 66
4.6.2 AreaforControlData 67
4.7 GraphicsWindow e 68
5 Language 71
5.1 Basic Typesof Parameters, 71
5.2 ControlTypesand Constants 72
5.3 Variables e 74
5.4 OperationsonlconicObjects 75

CONTENTS

5.5 Expressions for Input Control Parameters 75
5.5.1 General Features of Tuple Operations 75
55,2 Assignment 76
5.5.3 Basic TupleOperations... 78
55.4 TupleCreation 79
5.5.5 Simple Arithmetic Operations 80
55.6 BitOperations 81
55.7 StringOperations 81
5.5.8 ComparisonOperators... e 84
55,9 BooleanOperators i 84
5.5.10 TrigonometricFunctions, 85
5.5.11 Exponential Functions 85
5.5.12 Numerical Functions 85
5.5.13 Miscellaneous Functions. 87
5.5.14 Operator Precedence 88

56 ReservedWords e 88

57 Control Structures 88

5.8 Limitations e 90

Code Generation 91

6.1 Code GenerationforC++ 91
6.1.1 BasiCSteps e 91
6.1.2 Optimization e 92
6.1.3 UsedClasses o i i it i e 92
6.1.4 Limitations and Troubleshooting 93

6.2 Code Generation for VisualBasic 97
6.2.1 BasSiCSteps 97
6.2.2 Program Structure 97
6.2.3 Limitations and Troubleshooting 98

Program Examples 103

7.1 Stamp Segmentation 103

7.2 CapillaryVessel e 106

7.3 Particles 108

7.4 AnnualRINgS e 111

75 Bonding e 112

7.6 CalibrationBoard 113

7.7 DeVICES e 115

7.8 CellWalls e 118

7.9 RegionSelection e 120

7.10 ExceptionHandling 121

7.11 Road Scene o o 122

Miscellaneous 125

8.1 StartingofHDevelop 125

8.2 Keycodes 125

8.3 Interactions during Program Execution 125

CONTENTS

8.4 Warning- and Error-Windows
8.5 Restrictions

A Control
assign.
comment

ifelse.
insert

B Develop
devclearobj
devclearwindow
dev.closeinspectctrl
dev.closewindow.
devdisplay
deverrorvar
devinspectctrl
devmappar.
devmapprog.
devmapvar.
devopenwindow.
devsetcheck
devsetcolor
devsetcolored
devsetdraw
devsetline_width.
devsetlut.
devsetpaint
devsetpart
devsetshape.
devsetwindow
dev.setwindow extents. . . .
devunmappar
devunmapprog.
devunmapvar
devupdatepc
dev.updatetime.
devupdatevar
dev.updatewindow

C Glossary

.......................... 158

Index
Literature
Figures

Tables

CONTENTS

167

172

174

177

Chapter 1

About this Manual

This manual is a guide to HDevelop — the graphical user interface for HALCON. HDevelop
facilitates rapid prototyping using the concepiGdmputer Aided Vision Engineering (CAVE)
which offers a highly interactive programming environment for designing image analysis pro-
grams. Together with the HALCON library, it is a sophisticated image analysis package suit-
able for product development, research, and education. HALCON provides operators covering
a wide range of applications: Factory automation, quality control, remote sensing, aerial image
interpretation, medical image analysis, and surveillance tasks.

This manual provides all necessary information to understand HDevelop’s basic philosophy and
to use HDevelop.

1.1 Readers

This manual is intended for all new users of HALCON. It does not assume that you are an
expert in image processing. Regardless of your skills, it is quite easy to work with HDevelop.
Anybody should be able to understand the basic HALCON principles to solve his or her image
analysis problems quickly. Nevertheless, it is helpful to have an idea about the functionality
of graphical user interfaces (GUi) and about some basic image processing aspects (see, e.g.,
[Bal82][Jai89][Rus92)).

1.2 Organization of this Manual

Each part of the manual concerns different areas of application and shows different levels of
difficulty.
The HDevelop user’s manual is structured as follows:

Chapter 2 Introduction Section 2.1 explains the basic concepts of HDevelop (data structures,
configuration, etc.).

Chapter 3 Example SessionChapter 3 contains a first example that illustrates working with
HDevelop.

Chapter 4 Graphical User Interface Chapter 4 explains the graphical user interface of HDe-
velop. Sections 4.1 to 4.7 describe the interactive elements of the graphical user interface.

1Consult your platform’s documentation for general information.

5

6 CHAPTER 1. ABOUT THIS MANUAL

Chapter 5 Language Chapter 5 explains syntax and semantics of the language used in HDe-
velop programs.

Chapter 6.1 Code Generation for C++ This chapter explains the export of a HDevelop pro-
gram to C++. Further information about using HALCON operators within conventional
languages (C and C++) can be obtained in the user manuals HALCON/C and HAL-
CON/C++.

Chapter 6.2 Code Generation for Visual BasicThis chapter explains the export of a HDe-
velop program to Visual Basic. Further information about using HALCON operators with
the COM interface can be obtained in the user manuals HALCON/COM.

Chapter 7 Program Examples Programming in HDevelop is explained by examples in Chap-
ter 7.

Chapter 8 Miscellaneous Chapter 8 explains how to start HDevelop and describes keycodes,
warning- and error windows, and restrictions.

Further information and hints can be found in:
Settings: The following sections explain how to set up the system:

e 2.2: General settings
2.3: Help files for HTML-browser
8.1: Starting HDevelop

e 8.2: Keyboard settings of HDevelop
Debugging: Hints for debugging can be found in:

e Sections 2.2 and 8.1: Starting the program
e Section 5: Programming HDevelop

1.3 Additional Sources of Information

For further information, you may consult the following manuals:
e Getting Started User’'s Manual.

e HALCON/HDevelop: The reference manual for all HALCON operators (HDevelop ver-
sion).

e HALCON/C++ User’s Manual: How to use the HALCON library in your C++ programs.
e HALCON/C++: The reference manual for all HALCON operators (C++ version).

e HALCON/C User’s Manual: How to use the HALCON library in your C programs.

e HALCON/C: The reference manual for all HALCON operators (C version).

e HALCON/COM User’s Manual: How to use the HALCON library in your COM pro-
grams, e.g., in Visual Basic.

1.4. RELEASE NOTES 7

e HALCON C-Interface Programmer’s Guide: How to extend the HALCON system with
your own operators.

e Framegrabber Integration Programmer’s Manual: How to integrate a new framegrabber
into the HALCON system.

The reference manuals are available as HTML documents as well.

1.4 Release Notes

Please note the latest updates of this manual:

e 4 Edition, HALCON 5.2 (January 1999)
Keyboard shortcuts have been introduced for the most frequently used menu operations,
e.g.,<Ctrl> SforFile > Save. The menwFile contains two new entriegnsert. . .
andModules. ... The menu itenFile > Read Image now has a submenu with sev-
eral useful image directories. A new mektecute with entries to run, stop, and reset a
program has been added. The menu it€fis > Activate andEdit > Deactivate
have been moved to this menu. The menu itésualization > Image Info... has
been renamed tbisualization > Pixel Info.... A tool for realtime zooming of
graphics window contents has been added undenalization > Zooming.... A
tool to visualize the gray value histogram of an image and to select thresholds has
been added undéfisualization > Gray Histogram Info.... An inspection tool
for shape and gray value features of regions has been added Uilerlization
> Region Info.... The menu itenVisualization > Size Window > Reset has
been replaced with three, more convenient, menu iteginal, Original half, and
Original quarter. Two new HDevelop operators have been addrg: clear_obj
anddev_set_window_extents. The operator window has been extended withhgpil y
button that helps you to find the optimum parameters of an operator even more quickly.

e 37 Edition, HALCON 5.1 (March 1998)
The new operatorg§ev_set_check anddev_error_var, together with the constants for
return valuesH{_MSG_TRUE, etc.) have been introduced. The méhgualization has
been extended byize Window, Reset Parameters, Zooming, andPaint. Three new
parameter functionanéan, deviation andgen_tuple_const) have been introduced.
The chapters ‘About this Manual’, ‘Graphical User Interface’, and ‘Code Generation for
C++" have been revised. The selection of program lines has been changed. Now an ex-
tended mode<Shift> and<Ctrl> keys together with the mouse) is used. A description
can be found in section ‘Program Window’. The méptions has been extended. A vi-
sualization of a framegrabber handle with automatic online grabbing (double click inside
Variable Window has been introduced. Further examples for the use of different HAL-
CON operators can be found#HALCONROOT%\examples\hdevelop\<Chapter>*\x*.
Online inspection of gray values and basic image features has been introduced in the
menuVisualization > Image Info.... The edit button€ut andCopy have been
changed according to the standard order in other Windows NT tools.

o 274 Edition (November 1997)
The menwisualization > Set Parameters... has been extended and the descrip-
tion has been revised.

CHAPTER 1. ABOUT THIS MANUAL

Chapter 2

Introduction

2.1 Concepts

The following sections explain the basic ideas and concepts of HALCON.

2.1.1 Working environment
Basically, HALCON supports two methods of programming:
¢ Interactive development of programs via HDevelop (as described in this manual) and

e using the programming languages C, and C++. HALCON provides an interface to these
languages.

While developing programs according to the second method is done using standard program-
ming tools, HDevelop actively supports the user in different ways:

e With the graphical user interface of HDevelop operators and iconic objects can be directly
analyzed, selected, and changed within one environment.

e HDevelop suggests operators for specific tasks. In addition, a thematically structured op-
erator list helps you finding an appropriate operator.

¢ An integrated online help contains information about each HALCON operator, such as
a detailed description of the functionality, typical successor- or predecessor-operators,
complexity of the operator, costs of computation time, error handling, examples of ap-
plication. The online help is based on an internet browser such as Netscape Navigator or
Microsoft Internet Explorer.

e HDevelop comprises a program interpreter with edit and debug functions. It supports
programming features, such as loops and conditions.

e HDevelop immediately displays the results of operations. You can try different operators
and/or parameters, and directly see the effect on the screen.

e Several graphical tools allow the examination of iconic and control data.

e Variables with an automatic garbage collection are used to manage iconic objects or con-
trol values.

10 CHAPTER 2. INTRODUCTION

There are three basic ways to process and develop image analysis programs with HDevelop:
e Rapid prototyping in the interactive environment HDevelop.
e Development of an application that runs within HDevelop.

e Use HDevelop to develop an application that can be exported as C++ source code. This
program can then be compiled and linked with the HALCON library so it runs as a stand
alone (console) application.

2.1.2 Data Structures
HALCON distinguishes between two types of datanic andcontrol data.

e Iconic data are all kinds of imagebjects(images, regions, or XLD objects describing
areas and contours), whereas

e control data are all kinds of “numerical” values, such as integer, floating point numbers
and also strings.

Control data defines input values for operator control parameters and is used to build complex
structures like bar charts or arrays of control values. Botlteric andcontrol data — are pro-
cessed according to the “tuple scheme” within HALCON, i.e., they may be a tuple (a number of
items) consisting of several elements. HALCON always processes all elements of a tuple simul-
taneously. You can handle tuples just in the same way as single objects/values. For example, to
filter several images you may call the filter operator several times on the different images or you
can put them into one tuple iconic object and pass it as input to the filter operator. HALCON
processes the filter operation simultaneously on all tuple elements and returns another tuple
containing the resulting images.

We will now describe iconic data in detail to give you a better understanding how to handle
Image data. Basic types araagesregionsandXLD objectgeXtendedL ine Description).

Imagesare defined as a (sub-)set of pixels of a rectangular index range. An image consists of
one domain deftermining the image’s area of definition and one or more “channels” containing
the gray values of the pixels. Pixel data can be stored by the following types; integer

(1,2, and 4 byte)eal, andcomplex. While processing an image, an operator exclusively works

on the pixels inside the domain of the image. All pixels outside are ignored and may even have
invalid (undefined) values. The domain (i.e., region of interest) can beysghape and is not
restricted to rectangles like in many other systems. The region of interest concept allows you to
focusthe image processing. The amount of data to work on becomes smaller and the processing
is much faster.

Regionsare arbitrary subsets @& x Z. They are used to define image areas of any size and
shape at pixel precision. To reduce memory costs and to speed up the region processing they
are stored by a runlength encoding. Regions may define the domain of an image but can also
be used — a basic feature of HALCON — as a flexible data structure of its own. The size of
regions isnot limited to the size of images. This strongly influences the effect of operations,
e.g., in morphology, since it prevents image border artefacts. Moreover, regions may overlap
without an implicit merging that would happen when storing them as images. This results in a
flexible usage, e.g., for describing segmentation results or regions of interest.

2.1. CONCEPTS 11

XLD is the abbreviation forXtendedL ine Description. This is a data structure used for de-
scribing contours of areas (e.g., arbitrarily sized regions or polygons) and lines. An XLD object
Is built up by setting base points along the contour/lines and connecting them with lines. They
can represent a contour (or set of lines) at any precision by varying the number and position of
the base points at subpixel precision. Additional information, such as gradient, filter response, or
angle is stored with the points and lines. Typically, XLD objects describe the result of operators
for edge/line detection (e.gedges_sub_pix, lines_gauss). In particular, they are used for
image processing at subpixel precision and offer a wide range of features and transformations.

2.1.3 Module Structure

~ Applications

Language Independent Operator Interface

Visual MS
Basic Java

Frame-
grabber

Interface

Image Processing Library Extension
Package

Iconic Data Management Operator Knowledge Base

Figure 2.1:Layered structure of HALCON.

The basis of HALCON is thdata managemembgether with th@perator knowledge bas€he

data managementis reponsible for basic memory management (optimized for image processing)
and on top of this for the creation, handling, and deletion of iconic objects and tuples. The
knowledge base stores information about operators, which can be accessed while the system is
running. All other modules make use of it to process image operations and to obtain information
about the configuration and current state of the system. It is also usetbimaticallygenerate

the HALCON language interface (for C and C++), all operator information used by HDevelop,

the online help, and the reference manuals. The operator knowledge base contains information
about names and number of operators, as well as parameter types, assertions and suggested
values for the parameters. This data set is stored in a structured way. There exists a detailed

12 CHAPTER 2. INTRODUCTION

description for each operator which handles the effects of the operator and which indicates the
complexity, the operator class, as well as cross references and alternatives.

On top of these two modules the operators are implemented. Most of them are contained in the
HALCON image processing library, which is decribed in the Operator Reference Manual. This
library can dynamically be extended using so-cafladkagesThe operators of these packages
behave like normal HALCON operators, but they contain extensions to the standard library
either generated by MVTec (for easy update) or by the user. This concept permits the user to
extend the system in a very flexible way. For more information see the C-Interface Manual.
Using a similar mechanism, framegrabbers are integrated using dynamic libraries. This allows
the user to integrate his/her own framegrabber or to download new releases of framegrabber
interfaces via the internet for fast and easy update without further changes of the rest of the
system.

The next module is thenguage-independent operator interfattecontains modules for calling
operators, handling the input/output and passing data objects to the host language. An operator
call is performed by théanguage interfacevhich is generate@utomaticallyby a compiler

using the information in the operator data base. It allows to access HALCON operators within
the programming languages C, C++, and COM (Windows NT only). The interface to C++
allows the development of object oriented tools.

HDevelop is implemented on top of the language interface using HALCONC and the GUI
toolkit wxWindows developed by the Artificial Intelligence Applications Institute at The Uni-
versity of Edinburgh to get a portable user interface for Windows and UNIX.

2.2 Configuration

The following section describes the environment variables that are used by the HALCON li-
brary and HDevelop. A detailed description can be found the the Getting Started Manual. The
description here is given for the UNIX environment.

e HALCONROOT
This is the most important environment variable. It designates the directory in
which HALCON is installed. Typical paths might be, e.gysr/local/halcon Or
/usr/halcon on Unix systems, a€: \Program Files\MVTec\Halcon on Windows NT
systems. According to this variable the system can access subdirectories that are impor-
tant for running HALCON. Some of them are:

— $HALCONROOT/help
Here the operator data base is situated. It is accessible by all HALCON programs to
obtain information about HALCON operators.

— $HALCONROOT/doc/html/reference/hdevelop
HDevelop uses this directory for online help, which can be displayed by a suitable
HTML browser like Netscape Navigator.

— $HALCONROOT/1lut
User defined look-up tables are situated in this directory.

— $HALCONROOT/ocr
This directory includes trained fonts.

2.2. CONFIGURATION 13

— $HALCONROOT/license
This directory contains the license keys necessary for using HALCON.

— $HALCONROQT/images
If the variableHALCONIMAGES (see below) is not set the system looks for image files
in this directory.

e HALCONIMAGES
To search for image files specified by a relative path, the system uses this environment
variable. Usually it contains several directory names, which are separated by colons on
Unix systems and semicolons on Windows NT systems.

e ARCHITECTURE

Executable HALCON programs reside ir$HALCONROOT/bin/$ARCHITECTURE.

To indicate shared libraries the directorgHALCONROOT/1ib/$ARCHITECTURE

is used. ARCHITECTURE designates the used platform by an abbreviation (e.g.,
hppal.1-hp-hpux9 Or sparc-sun-solaris2.5; syntax:processothardwarevendor
operatingsystem or does not have any content (i.e., it is empty or undefined), if
the installation for HALCON was made for one architecture only. It is useful to in-
clude the path$HALCONROOT/bin/$ARCHITECTURE or $HALCONROOT/bin in the path
(environment variabl@ATH) of a shell script.

e LD_LIBRARY_PATH andSHLIB_PATH
Using anHP-UX architecture, the HALCON library path should be included in the envi-
ronment variabl&HLIB_PATH to access shared libraries. For all other Unix architectures
the environment variableD_LIBRARY_PATH is used.

e HALCONSPY
If this environment variable is defined (regardless of the value) before you start a HAL-
CON program, the HALCON spy tool is activated. This corresponds to executing the
HALCON operatorset_spy ("mode","on") in a HALCON program. With this, it is
possible to monitor an already linked HALCON program during runtime without modifi-
cations.

Additionally, you may specify any monitoring mode for the HALCON debugging
tool. For this you choose a parameter value (edpetator’, ’input_control’,
"output_control’, etc.) and activate it. This is done by adding these parameters to the
envitonment variabl#ALCONSPY:

setenv HALCONSPY operator=on:input_control=on

Please note that the default output of spy is “standard out”, which might lead to problems
in a Windows NT environment. For further information concerrseg_spy, please refer
to the HALCON reference manual.

e HALCONEXTENSIONS
This is a list of directories in which user-defined extension operators (so-called packages)
are kept. Each package consists of a number of operators linked into a shared library, plus
the additional operator documentation in help-files and HTML files. See the C-Interface
Programmer’s Manual for details on user packages.

14 CHAPTER 2. INTRODUCTION

e DISPLAY
On Unix systems, HALCON uses this environment variable to determine the display on
which to open windows. It is used in the same way as for other X11 applications.

e HOME
If you start HDevelop the system searches for a startup file in the home directory (see
page 125). The corresponding directory is designated by the varaitie

Typically, the definition of these environment variables belongs to a start shell script like
.cshrec.

Examples for entries incshrc
setenv HALCONROOT /usr/local/halcon
setenv ARCHITECTURE hppa2.0-hp-hpux10
setenv PATH ... :$HALCONROOT/bin/$ARCHITECTURE: . . .
setenv LD_LIBRARY_PATH ...:$HALCONROOT/lib/$ARCHITECTURE: ...
setenv HALCONIMAGES $HALCONROOT/images: .

On Windows NT systems they are set by the installation program. They may be changed by the
System Settings tool available from the Start menu.
You may obtain additional information concerning configuration in the Getting Started Manual.

2.3 Online Help

Online documentation is available in PDF and partly in HTML format. In a UNIX environment,
the full documentation is available in postscript format as well.

To display the HTML files containing information on HALCON operators, you need a browser.
It is not provided in the HALCON distribution, but nevertheless used by HDevelop. Such a
tool may already be installed on your computer. Otherwise you may obtain it for free, e.g., via
the Internet. One browser that is suitable for displaying HTML files is Netscape Navigator. It
is a WWW browser that is able to display HTML documents. Since the reference manual for
HALCON operators is also stored in HTML format, it is convenient to use a standard WWW
browser. In the tool HDevelop you may call Netscape via the niiedg > html-help. It will

start Netscape with the corresponding help files (see page 57). An alternative to Netscape is to
use the Microsoft Internet Explorer.

Besides HTML, the documentation is available in PDF format as well. To display the manuals,
the Adobe file viewer Acrobat Reader is included in the distribution for Windows NT systems.
This viewer is not activated from HDevelop, but has to be started from the start menu of Win-
dows NT.

Chapter 3

Example Session

To get a first impression how to use HDevelop, you may have a look at the following example
session. Every important step during the image processing session is explained in detail. Thus,
having read this chapter thoroughly, you will understand the main HALCON ideas and concepts.
Furthermore, you will learn the main aspects of HDevelop’s graphical user interface (for more
details see chapter 4). A simple introduction can be found the in Getting Started Manual as well.
In this example, the task is to detect circular marks attached to a person’s body in a gray value
image. The program can be found in the file

%HALCONROOT?%\examples\hdevelop\Manuals\HDevelop\marks.dev

After starting HDevelop (see pages 12 and 125), your first step is the loading of the image
marks.tif from the directory/HALCONROOTY\images. You may perform this step in three
different ways:

e First, you may specify the operator natread_image in the operator window’s input text
field.

e Second, you may select this operatobprerators > File > Images > read_image.

e The most often used and most convenient way is the third one. Here, you open the image
selection box pressing menu itétile > Read Image > ... The menwFile > Read
Image contains several predefined directories, one of whi¢tHig.CONROOTY,\images.
Usually, this directory will beC: \Program Files\MVTec\Halcon\images. Select this
directory by pressing the appropriate menu button. Now you can browse to your target
directory and choose a file name. By clicking the butigan, a dialog window appears,
in which you may specify a (new) name for the iconic variable which contains the image
you are about to load. The variable will be used later in the program to access this image.

To facilitate the specification process, HDevelop offers you a default variable name, which
Is derived from the image’s file name. Pressing the bultotransfers the operator into

the program window and inserts a first program line, similar to the following line, into
your program:

read_image (Marks, ’C:\\Program Files\\MVTec\\Halcon\\images\\marks.tif’)

This new program line is executed immediately and the loaded image is displayed in the
active graphics window. Please note the double backslashes, which are necessary since

15

16 CHAPTER 3. EXAMPLE SESSION

a single backslash is used to quote special characters (see page 73). In our example we
change the default for the name frofarks to Christof.

Using this selection box, you are able to search images rapidly without knowing their exact file
names. In contrast to the two other possibilities, the parameters of opesatbrimage are
specified automatically. Thus, an explicit input of path and file nhame is not necessary in this
case. An icon with an appropriate variable name is created in the iconic variable area of the
variable window. Double-clicking on such an icon displays its contents in the currently active
graphics window. Figure 3.1 shows a complete configuration of HDevelop for the explained
scenario. In addition, a new window is opened — after closing the default window — to display
the image in its original size.

Fie Edit Esecuts Wisualizaion Operators Suggestions Window Help

D& & [Ef@]<] F=E] EEE B ke

iter, Type, Width, Height)
Height, ‘biack, WindowiD)

32322696
yte'

768

575

3600

e
Figure 3.1:Screen configuration after image loading.

If you look closer at the image in figure 3.1 you will see the typical temporal offset between two
half images that occurs when taking images with a video camera. This temporal offset is 20 ms
for PAL systems and 16.6 ms for NTSC systems. HALCON offers an algorithm that computes
an interpolated full image from such a video image. The name of the appropriate operator is
fill_interlace (see the HALCON Reference Manual). The next step is to specify this name
in the operator window’s operator name field. If it is indicated completely, HDevelop shows the
operator immediately in the operator window. Now you have to specify the variable name of
your image. For this you put in the nar@eristof in the parameter fielimageCamera. To do

S0 you have two possibilities:

e Direct input via the keyboard.

e Using the combo box that is associated with the parameter text field, you may choose an
appropriate name.

17

The system’s suggestion for the interpolated imagemisgeFilled. By clicking button0K

you insert this operator into the program and execute it immediately. The computed image is
displayed automatically in the active graphics window.

In the next step you try to separate bright from dark pixels in the image using a threshold-
ing operation. In this case, a segmentation using the simple thresholding opgnadéehold

does not result in a satisfying output. Hence you have to use the dynamic thresholding op-
eratordyn_threshold. For execution you need the original image (i.e., the interpolated full
image) and an image to compare (containing the thresholds). You obtain this image by us-
ing the smoothing filter, e.gnpean_image. As input image you choose your original image
ImageFilled. After estimating the marks’ size in pixels, you specify a filter size which is

approximately twice the marks’ size (compare the HALCON Reference Manual entry for
dyn_threshold).

Fie Edit Esecuts Wisualizaion Operators Suggestions Window Help

Dl(E] 2 (Bl 2= =eE bl R

P

mmmmmmmmmmmmmmmmmm)
0, Wickh, Height, ‘black', WindawiD)

\\\\\\\\\\\\\\\

[WindowlD: 3600

mean_image (0.055)

Figure 3.2Selectingdperators > Filter > Smoothing > mean_image Opens an operator dialog
for the operatoimean_image. With the help of the opened combo box you may specify a reasonable value
for the filter size.

To choose the operataean_image, you traverse the menu hierarchyerators > Filter >
Smoothing > mean_image. It will be displayed in the operator window immediately. Now you
specify the image variable nam@sageFilled in the text field calledmage andImageMean

in the output text field. The filter matrix size is chosen by opening the combo boxes of the
corresponding text field#1§skWidth, MaskHeight). These combo boxes contain a selection

of reasonable input values which is offered by HDevelop. In our example the size is set to 29
(see figure 3.2).

By clicking the buttonOK you insert the operatatean_image in the program and execute it.
Now you have to search for the name of the dynamic thresholding. For this you specify a

18 CHAPTER 3. EXAMPLE SESSION

substring that is included in the operator name in the operator window’s operator name text field.
Three letters are already sufficient to produce a result. You will notice the open combo box that
presents all HALCON and/or HDevelop operators containing the first three specified letters.
Now you are able to select the operadighh_threshold and to specify its input parameters.
The valueImageFilled is used forOriginalImage. ImageMean iS used as the component

to compare (her@hresholdImage). For the output paramet@egionDynThresh the variable

name remains unchanged (see figure 3.3).

Fie Ec i ilization Operators Suagestions \window Help
D& & [Ef@]<] F=E] EEE B ke
P

[
Christof | ImageFill~ | Imageie~ | RegionDy~

Cortrol Variaies
PFointer: 26076640
Type

Wit

Height

VindowlD:

4

Figure 3.3:The displayed image is the threshold operation result.

Image pixels touching each other and remaining above the given threshold have to be merged
to single regions. The computation of these connected components is realized by operator
connection (menu itemOperators > Regions > Transformations). The input region
RegionDynThresh is specified in the text fieldegion. The output variable’s default name
ConnectedRegions iS changed t@onnectedRegionsDynThresh. After the operator's exe-
cution all resulting regions are stored in this output variable. This shows a great advantage of
HALCON's tuple philosophy: although you have several different results you do not have to
worry how to handle them. This is done transparently by HALCON. HALCON operators rec-
ognize a tuple type variable and process it accordingly. This results in more compact programs
because you may combine several similar operator calls in one operator.

To obtain a better visualization of the results after calltagnection you select the menu
Visualization > Colored. Here you specify the 12 predefined color presentation. Now ev-
ery computed region receives one of the 12 colors. This presentation mode is very useful to
indicate each region with a different color. If there are more than 12 regions the system uses
the same color for several different regions. Witéw_display of the imageImageFilled

you refresh the graphics window to see the results of next step much better. Select the menu

19

Operators > Develop > dev_display.

In the next step you have to specify the regions which correspond to the circular marks of the
indicated person in shape and size. For this you have to call the opetatett _shape in
menuOperators > Regions > Features. The first call is used to obtain a preselection with
the estimated object size given in pixels. With an estimated siz&é af15 pixels you will get
approximately25 pixels. After choosingelect_shape you specify the parameters as follows:

(i) The input region will beConnectedRegionsDynThresh,
(i) the output variable name remains unchanged,
(i) values’area’ and’and’ remain unchanged.
(iv) The region’s minimum size should B&0 (Min) and
(v) the region’s maximum size should not excé@d (Max).

(vi) The mean intensity should be betwel and255.

In figure 3.4 the extended program can be seen.

Fie Edt Operators Suggestions window Help

D& & (] o] F=E] EEE B ke

g Thresh, [7, anet, [150,1
dRegionsDynThresh, ImageFiled, Marks, 'mean, ‘and, 120, 255)

+ Operator

Regions [Marks] (resion sabiect)

cpertor: [ssceircry

Connecte~| Selected~

Cortrol Yariables:
TYRE ByTE

\Width 768

Height 575

\WindowlD. 3600

Anisometry: [1.12702204804, 111467319487, 1.18047561603, 1.12294618312, 1.42797741283, 1.1¢
Bulkiness: [1.00415718505, 1 00426338515, 1.00007240412, 1.00253432078, 1.00587048647, 1.0(
StructureFactor: [0.131718557464, 0119425455718, 0180560567328, 0.125792088964, 0436360306

|

Figure 3.4:Region selection based on shape features.

Now you have to extract from the remaining regions the regions that match the objects to
look for. As you can see, the regions representing the marks have a circular shape — con-
trary to all others. This is expressed by a compactness value closeFar this you have

to choose the operat@elect_shape once again. Use the combo box of the parameter text
field Features to specify the valueompactness. As a range of values you may specify

20 CHAPTER 3. EXAMPLE SESSION

the parameterfiin and Max with the valuesl.0 and 1.4, respectively. The output regions

of the first call felectedRegions) are the input regions for the second call of operator
select_shape. The output parameter’s nangelectedRegions iS replaced by the name
SelectedRegionsDynThresh.

The last step to make the application stable is to add a selection of regions bages value
features. This is done by using the operaterect_gray. In this case, the mean gray value is
used to discriminate the objects.

Finally, we want to obtain some numerical information about the matched marks. For example,
we might want to compute three shape features of the marks. They are derived from the regions’
geometric moments. The calculation is done by the opetatsntricity. The input param-

eters are all regions of the variablerks. The computed valuemisometry, Bulkiness, and
StructureFactor are displayed as a list (a tuple in HALCON terminology) in the variable
window. Figure 3.5 shows the example session’s result.

Fie Edit Esecuts Wisualizaion Operators Suggestions Window Help
D] & |m]e]o] 2= ErEE B mEE

i Graphics Window

¥, Type, Wieth, Heighty
. Height, 'black, WindowiD)

1, 'anct, [150,1

Christof | ImageFill- | ImageMe= | RegionDy~

Fointer: 323226596

Type. Byte’

Width 768

Height 575

WWindowlD: 3600

Anisometry: [1.12702204804, 1.11457319467, 1.18047551603, 112294618312, 142797741283, 1.182460
Bulkiness: [1.00415718505, 100426338515, 1.00007240412, 1.00253432078, 1.00587046647 , 1006111
StructureFactor. [0.131718557484, 0.119425453718, 0.15056067328, 0.125792066964, 0436360305355, 0.1

| 3

Figure 3.5:After calling the operatoeccentricity the output parameters are displayed in the vari-
able window in tuple notation.

As you can see in figure 3.5 and 3.4 it is possible to combine the two successive calls of
select_shape into one call. This reduces the length of the program and saves runtime.

Chapter 4

Graphical User Interface

HDevelop is annteractive toolto create image analysis programs. It comprisesdgitor, an
interpreterwith debug functions, emanagement unfor variables (iconic and control data) and
extensive possibilities to visualize iconic data. You may use HDevelopafud prototyping

as well as for developing complete programs. You create a program by choosing operators and
specifying their parameters. To do so, you may use default values or system-proposed values.
After having selected the appropriate parameters, you execute the operator and insert it into the
program text (i.e., the program window). You can modify and verify your generated program
interactively. All intermediate results (variables) are displayed graphically (images, regions and
polygons (XLD)) or textually (numbers and strings). If you want to get a detailed step by step
introduction, have a look at the Getting Started Manual.

You start HDevelop (on Windows NT) by calling:

Start > Programs > Halcon > HDevelop

After starting the tool, the main window, which includes the following windows, will appear on
your screen (see also figure 4.1):

e a program window,

e an operator window,

e avariable window, and
e a graphics window.

In the following you will learn the functionality of these five windows and their effective use
while creating HDevelop programs.

Please note that in the UNIX environment the main window, the program window, and the
operator window are combined into one window. Thus, there aretbrégwindows.

4.1 Interacting with HDevelop

You interact with HDevelop through its graphical user interface. With the mouse you can ma-
nipulate visual controls such as menus or buttons in the HDevelop windows.

1In chapter 8.1 you can obtain further information on how to start the tool (see page 125). The necessary settings
for the operation system are described in chapter 2.2 on page 12

21

22 CHAPTER 4. GRAPHICAL USER INTERFACE

4.2 Mouse Handling

You can use the mouse as follows:

¢ Clicking the left mouse button once,
you are able t@electwindow-specific components, such as menu items, iconic variables,
control variables, action buttons, checkboxes, and you give the insertion focus to a specific
text field. Some of these text fields comprise a combo box which you may open in the
same way.

Furthermore, you select (invert) text in certain windows, e.g., in the program window.
With this you are able to perform the general editor functionsdike, copy andpaste
(see sections 4.3.2 and 4.3.3).

In the program window there is an extended mode to select lines by presskghtHfe >

or the<Ctrl> key during the mouse click. More than one line can be activated using the
<Shift> key: All lines between the last activation and the new one will become activated.
The <Ctrl> key is used to active or deactivate more than one line using single mouse
clicks.

Clicking at an item for the second time (after a short pause) will deactivate it (e.g., linesin
the program window or variables in the variable window). Similarly the activation passes
to another item by clicking at it.

Very important is the possibility to set the program coungg) (at the left side of the
program window (see 4.4). By combining a mouse click with special keys you can activate
further functions:

— Clicking the left mouse button once while pressing¢laift> key:
This places the insert cursor in the program window (see 4.4).

— Clicking the left mouse button once while pressing ¢her1> key:
The breakpoint will bet set in the program window. By performing this action once
more, the breakpoint will disappear (see 4.4).

e Clicking the left mouse button twice
results in an action that will be performed with the activated item. In the program window
the operator corresponding to the program line together with its parameters is displayed
directly in the operator window and can then be modified.

Iconic and control variables are displayed in the graphics window or in specific dialogs.

4.3 Main Window

Themain windowcontains the other four HDevelop windows and possibly additional graphics
windows? The main window can handle HDevelop programs, manipulate the graphics output,
offer all HALCON and HDevelop operators, give suggestions and help on choosing operators
and manage the HDevelop windows. After starting HDevelop you will see a window configu-
ration similar to figure 4.1.

The main window comprises five areas:

2In a UNIX environment the main window comprises the program window and the operator window. It has no
special Window manager functionality like in Windows NT.

4.3. MAIN WINDOW 23

i HDevelop _ O] X]

File Edit Execute “izualization Operaforz Suggestions Window Help

D@ & B 2EE] 2PeE B B x|
[Pegan 0 W s

il Operator

op i ¥anable Watch =] B3
| lzo i Graphicz Window =] ES

Clear | Active [|

-
.3

Figure 4.1:The main window.

e atitle bar,

e amenu bar,

e atool bar,

e awindow area, and
e a status bar.

In the following chapters you will find all necessary information to interact with this window.

4.3.1 Title Bar

Your HDevelop main window is identified by the titi®evelop in the window’s title bar. After
loading or saving a file, the file name will be displayed in the title bar. Additionally it offers
three buttons on the right hand side to iconify and to maximize the window, and to exit the
HDevelop session.

24 CHAPTER 4. GRAPHICAL USER INTERFACE

4.3.2 Menu Bar

In the menu bar of the main window HDevelop functionality is offered. Here you may perform
the important actions to solve your image processing tasks, i.e., to choose any HALCON or
HDevelop operators or to manipulate the graphical output. Every menu item opeafisdawn

menu (henceforth abbreviated as menu) with optional submenus. You open a menu by click-
ing a menu item (inside the appropriate text) or via the keyboard (by pressing the key

in combination with the underlined letter of the menu item). All menu items are going to be
explained in the following.

Menu item: File

In the menu itenFile you will find all functions to load an image and existing programs
and to save recently created or modified programs, respectively. Furthermore, you may export
HDevelop programs to C++ and Visual Basic. Figure 4.2 shows all the functions in this menu
item.

i HDevelop [_ [O] x|
Edit Execute “isualization Operators Suggestions Window Help

N s o 1 53 1 e i N [T

Open... il+

Inzert... =10 %

Save Chrl+5 - |0 *

Save as.. ol =

Bead Image > do —|O) =

Cleanup

v

Optionz....
Modules. ..

Guit

L

Col

Create a new program (clear the current prograrm)

Figure 4.2.The menu iterfile.

e The menu itenFile > New (keyboard shortcwtCtrl> N) deletes the current program
and all associated variables. The contents of the variables are deleted before removing
them. In addition, all graphics windows except one are closed. The last window will be

4.3. MAIN WINDOW 25

cleared. The display parameters for the remaining graphics window are identical to those
when starting HDevelop. The first four parameters of the nieiie > Options are
reset to their initial state: The update of windows, varial#é@sand time is on.

A security check prevents you from deleting the current program accidentally if the pro-
gram has not been saved. A dialog box appears and waits for your response, whether you
really want to delete the HDevelop program. Your confirmation only deletes the HDe-
velop program you are working on and not the file associated with it. Now you are ready
to input a new HDevelop program. If you give a negative response, nothing will happen.
You have to press one of the two buttons before you are able to continue interacting with
HDevelop.

e By clicking on the menu iterfiile > Open... (keyboard shortcl{Ctrl> Q) you can
load an existing HDevelop program. Alternatively, you can sélété > Insert... to
insert a file into the current program at the line in which the insert cursor is located. In
both cases, a dialog window pops up and waits for your input (see figure 4.3). It is called
Load HDevelop Program File.Please note that text, Visual Basic and C++ versions of
a file cannot be loaded.

Load HDevelop Program File |

Look in: IEFEL - gl e
iadapt_pattern.dev? fin2.dev rim2.|:|ev

adappatendey nader
ballZ dev hul dev
board. dev ic. des

board2 dev pattern. dey

clip. dew prr_illu, dev

chp2.dev prr_illu_rot, dey

fiir. desw rirn. dev

File name: I*.dev QOpen
Files of type: IHDevelup *.dew j Cancel

[T Open as read-only

Figure 4.3The dialog window to open an HDevelop file.

In the topmost text field you may specify a directory which contains your HDevelop
programs. A combo box at the right hand side helps you browsing your directories. To
move one directory level up, you press the button on the right hand side of this text field.
The next button creates a new folder to store HDevelop programs. By pressing the last
button you can activate or deactivate the option to see more details about your HDevelop
programs, i.e., the program size, the program type, the date when the most recent user
update occurred, and file attributes.

26

CHAPTER 4. GRAPHICAL USER INTERFACE

The middle text area displays all available HDevelop files to choose from. By clicking the
left mouse button on a file name you select it. Double-clicking a file name opens the file
immediately and displays it in the program window (see chapter 4.4).

Furthermore, you may specify the file name in the text field below. The combo box for
file type has no effect because only HDevelop programs with the extenséencan be
loaded. If you want to open your file with a write protection choose the checkbox at the
bottom of this dialog window. To open your specified file, you pressplea button. This

action deletes an already loaded HDevelop program and all created variables. The same
actions as witlfFile > New are performed. Now you can see your new program in the
program window. The file name is displayed in the title bar of the main window. All its
(uninstantiated) variables are shown in the variable window. To indicate that they do not
have any computed values, the system provides the iconic and control variables with a
guestion mark. The program counter is placed on top of your program and you are ready
to execute it. The visualization and options will be reset after loading (sarmelas>

New).

If you want to cancel this task you have to press the corresponding button. By using one
of these two buttongpen or Cancel) the dialog window disappears.

After you have loaded a program the corresponding file name will be appended at the end
of the menwFile (after the menu iterQuit). This allows you to switch between recently
loaded files quickly. The most recently loaded file is always listed first.

The menu itenFile > Save (keyboard shortcwtCtrl> S) saves the current program
to a file. If no file name has been specified so far, the dialog correspondifigd éo>
Save As... will be activated.

Menu itemFile > Save As... saves the current program to a file. The type of file
(HDevelop, text, Visual Basic or C++) can be selected (see Figure 4.4).

A dialog box (similar to the window described in menu itBirle > Open. . .) iS opened

in which you can specify the appropriate settings. You may specify a new file name and
a directory where to locate this file. You may indicate whether the HDevelop program
remains a HDevelop program or is transformed to a C++, Visual Basic or an ASCII file.
This is done by clicking the combo box of the text field calfedes of type. In UNIX

the selection of the file type has to be done by entering the corresponding file extension
manually. For C++ code you have to addpp to the file name, for ASCII you have to

add . txt. Default type is the HDevelop type (extensiofev). The details of the C++

code generation are described in chapter 6.1. The extension for Visual Basig isThe

export to Visual Basic is described in Chapeter 6.2.

Similar to loading, the file name of the program you save is appended at the end of the
menuFile.

The menwFile > Read Image contains several directories from which images are usu-
ally loaded. The first entry of this menu always is the directory from which the most re-
centimage was loaded. This is useful, when several images from a non-standard directory
must be read. The remaining entries except the last one are the directories contained in
the%HALCONIMAGESY, environment variable. The final directory, denoted.bys the cur-

rent working directory of the HDevelop program, which usually will/A#ALCONROQT?

4.3. MAIN WINDOW 27

Save HDevelop ProgramFile __________HH|
Save in: I@Fa j ﬁl I_

adapt_pattern.dev fin. des rirn. des
ball. dew holes. dew

ball2.dev hull. dev

board. dew ic:. desy

board2 dew pattern.dev

clip. dew priv_ill, desy

clip2. dey pro_illu_rot, desy

fir. desw rirn. dew

File name: Sawve
Sawve as ivpe: IHDevelnp *.dew) j Cancel

[T Open as read-only

Figure 4.4:The dialog window to save a program to a file

on Windows NT systems, and the directory in which HDevelop was started on Unix sys-
tems.

When any of the directories is selected, an image file selection box appears. Again, its
functionality is similar to the dialog discribed in menu it€iile > Open. ... Figure 4.6
shows an example of tH®ad Image File dialog.

After selecting a file name, the name of the variable for the image in the HDevelop pro-
gram has to be selected. To do this, a small dialog appears after pressingr double
clicking a file. For easy handling, HDevelop suggests a name derived from the selected
file name. You may adopt or edit this name. If you want to use a hame of an already
created iconic variable, a combo box offers you all iconic variable names. To do so, you
click the button on the right side of the text field. Note that the reuse of a variable name
deletes the old content and replaces it with the new image.

e The menu itenFile > Cleanup deletes all unused variables (iconic and control data).
These are variables in the variable window that are no longer used in any operator of
the program. This can happen after the deletion of program lines or after editing variable
names, because the corresponding variables are not deleted automatically. You may use
this menu item during a longer editing process to reorganize your variable window (see
also page 65).

e Menu itemFile > Options... opens a control window, which you can use to modify
output behavior during runtime (see figure 4.7).

— Update PC
The first item (see page 60) concerns the display of the current position while run-

28

i HDevelop M=l E3

Edit Execute Wisualization Operators Suggestions Window Help

Hew
Open...
Inzert. ..
Save
Save as...

Bead Image

CHAPTER 4. GRAPHICAL USER INTERFACE

Culel b [| |] 2]l | G| el

Chrl+0

Clrl+5

Cleanup

E:\images

Optione...
Modules...

Quit

L

Cal

Read image from file

Figure 4.5The menu iterRile > Read Image.

ning the program. The so call&t (Program Counter always indicates the line

of the currently executing operator or the line before the next operator to execute.
Using thePC in this way is time consuming. Therefore, you may suppress this op-
tion after your test phase or while running a program with a lot of “small” operators
inside a loop.

Update Variables

This checkbox concerns the execution of a program: Every variable (iconic and con-
trol) is updated by default in the variable window (see page 65). This is very useful
in the test phase, primarily to examine the values of control data, since iconic data
Is also displayed in the graphics window. If you want to save time while excecuting
a program with many operator calls you may suppress this output. Independent of
the selected mode, the display of all variables will be updated after the program has
stopped.

Update Window

This item concerns the output of iconic data in the graphics window after the exe-
cution of a HALCON operator. With the default setting, all iconic data computed in
theRun mode (see page 32) is displayed in the current graphics window. You may
want to suppress this automatic output, e.g., because it slows down the performance

4.3. MAIN WINDOW

Load Image File |
Loak jn: Ia images j ﬁl
I:Iautcubahn ahgic-part, gif @) cornbine. f firr kif :
[bvlab_2p udiz. tif] die3.tf fin2.tf il tf
[bvlab_hp autobahi. kf] egypt1 it fina.bf ic1.tf
21 calib bE_1.kf 4] engraved.tif for. ic2 bt
20 fonts bitrot,kif 4] Fabik tf forest_airl. i3, bt
|1 stamps boktle2 tif @ faceT.tif farest_road. ki] latters hif
1 xing caltab. tif El face? tif horses tif 8] Marks tif
alpha tif clip. i] face .t bt meninggs. i
1] | o
File hame: I"‘.* Open
Files oftype: |4l Files (*¥) -] Cancel
[T Open as read-only

Figure 4.6:The dialog window to load an image.

Options E3
v Update PC
¥ Update Yariakles
v Update Window
¥ Show Processing Time
[Inzert Interactions
¥ Show Yariahle Usage
[~ Show Lowe Level Errars

[~ Automatic Program Save

=yrita IHaIu:u:unDeveIu:up - I

Digit= |1 2 - I
Ok | Cancel |

Figure 4.7:The options window.

time. If the output is suppressed you have the same behavior as exported C++ and
Visual Basic code, where automatic output of data is not supported.

— Show Processing Time
This checkbox indicates whether the required runtime of the last operator should be
displayed after the execution has stopped. It is a measurement of the needed time

CHAPTER 4. GRAPHICAL USER INTERFACE

for the current operator (without output and other management tasks of HDevelop).
Along with the required runtime, the name of the operator is displayed in the status
bar at the bottom of the main window. Please note that the displayed runtime can
vary considerably. This is caused by the inaccuracy of the operating system’s time
measurement procedure.

— Insert Interactions
Sometimes itis very helpful to record user interactions as a sequence of operators in
the program. To do so, you select this option. From now on interactions are inserted
as a program line in the program window. For example, select the graphic color red
by choosing the appropriate menu inserts the program line

dev_set_color(’red’)

into the program window.

— Show Variable Usage
If you activate a variable (by single-clicking on it) all lines in the program that
contain the variable are marked on the left with a black frame. This works with
iconic and control variables. You can activate one iconic and one control variable
simultaneously. Each activated variable is marked by a black background for the
name in the variable window.

— Show Low Level Errors
Low level errors of HALCON are normally invisible for the user because they are
transferred into more comprehensive error messages or simply ignored. Activating
this item generates a message box each time a low level error occurs.

— Automatic Program Save
If you activate this option, the program is automatically saved before each execution
of the program, i.e., before a Run or Step operation. The file name the program
is saved to is the file name of the current program. Therefore, if you create a new
program you have to seleEile > Save as... manually first to give the program
a file name.

— Syntax
Using a combo box, you may specify the output mode inside the program window.
Depending on the mode, each HALCON or HDevelop operator is shown in a specific
syntax likeHalconDevelop (default syntax)TRIAS, C or Pascal.

— Digits
With this checkbox, you can control how many digits of floating point numbers are
displayed in the Variable window. The selected number is the total number of digits
displayed. Therefore, if you have selected four digits, the result of the following
assignment

assign (4*atan(1), PI)

is displayed as 3.142. Note that the changes do not take effect until the values of the
variables are actually updated by running the program, i.e., the the variables are not
redisplayed automatically.

Before continuing your HDevelop session, you have to close the option window by press-
ing the buttorok or by cancelling the action. fnsert Interactions iS activated, the

4.3. MAIN WINDOW 31

changes applied inside the dialog will result in automatic operator insetftierpressing
OK.

e MenuitemFile > Modules... opens a window, in which the HALCON modules used
by the current program are displayed (see figure 4.8). This window allows you to get an
estimate of how many modules your application would need in a runtime license. Only
calls to the HALCON library are taken into account for the computation of the modules,
and not HDevelop control structures likesign or ifelse, or HDevelop operators like
dev_open_window Or dev_set_color. Therefore, when you export your program to C++
or Visual Basic, the actual number of modules required may be higher than the mod-
ules displayed in the Module window, depending on how many operators you add to the
program, e.g., for visualization purposes.

Uszed Modules

Basic operators
&~ Image Fregion FXLD handling
Image fiters
Subpixel operators
Template matching

Region processing

Y44

Marphology

Background estimation
Optical character recognition
Fourier descriptors

wiener fitter

Camera calibration

4~ Tools

System

Figure 4.8:The modules window.

e MenuitemFile > Quit terminates HDevelop without saving the current program.

Menu item: Edit
In this menu item you find all necessary functions to modify a HDevelop program in the
program window(see chapter 4.4). You have the following items to choose from:

e You may undo your previous activities by clickiEgit > Undo. For example, by click-
ing three times this item you cancel the last three user actions.

e You may use the iten®&lit > Cut,Edit > Copy, andEdit > Paste for changing the
program contents. First you have to select the part of the program (at least one program
line) that has to be changed (use the left mouse button). Then you may delete this part by
clicking the itemCut (keyboard shortcwtCtrl> Z). The deleted program part is stored
in an internal buffer. Thus, by using the itehaste (keyboard shortcu¢Ctrl> V) the
buffer remains unchanged.

32 CHAPTER 4. GRAPHICAL USER INTERFACE

=1 E3

i HDevelop
File Execute “izualization Operators Suggestions Window Help

e v ple | EEE e B wlE

] Copy Chil+C
Easte [ty
Delete

&l i Graphics Window

Cut program line(s)

Figure 4.9:Main window’s menu iterBdit.

e By clicking Copy (keyboard shortcutCtrl> C) you store the selected program lines
directly in an internal buffer. To insert this buffer in the HDevelop program you place
your mouse pointer at the desired position and then click teste. Menu itemEdit >
Delete deletes all selected program lines without storing them in an internal buffer. The
only way to get the deleted lines back in your program is to use thelteim

Menu item: Execute
In this menu item you find all necessary functions to execute a HDevelop program in the

program window(see chapter 4.4). You have the following items to choose from:

e By selectingéxecute > Run (keyboard shortcut5), HDevelop executes your program
depending on theC’s position in the program window. TIRE indicates the next program
line to execute. All following program lines are going to be performed until the program
end. Notice, that a breakpoint may interrupt the run of your program.

During the execution of operators the following special behaviour occurs:

— Although the mouse pointer indicates that HDevelop is not ready to handle user in-
put (clock shape of the mouse pointer) you may initiate limited transactions. For
example if you click variables, they will be visualized; you may modify output pa-
rameters for graphics windows; you may even modify the program. Note that HDe-
velop may be slow to react to your actions while the program is running. This is
caused by the fact that HALCON reacts to user input drdiweercalls to opera-
tors.

4.3. MAIN WINDOW 33

i HDevelop - clip.dev

File Edit JEENEN Yisualization Operators Suggestions Window Help

D|ﬁ|i EpelE Bl =]
| Progig

Step
*o

Stop Fa
Activate

= |res Deactivate

bairy

col Reset Program

=2l Clear Break Paint
ari -,)
area_center (Selected, Area, Row, Column)

‘area’, 'and', 5000, 100007

Execute next program

Figure 4.10Main window’s menu iterBxecute.

— A variable window update during runtime will only be performed if it has not been
suppressed (see page 36). In any case, the values of all variables are shown in the
variable window after the execution’s termination.

While the program is running, the meritsscute > Run andExecute > Step (andthe
toolbar button®un andStep) are grayed out, i.e., you cannot execute them. You have
the following possibilities to stop your HDevelop program:

(i) The program runs until the last operator in this program has been calle®CTike
positioned behind this operator. This is the usual way to terminate a program.

(i) The menuExecute > Stop (or the toolbar buttostop) has been pressed.

(i) A breakpoint has been set (see chapter 4.4). In this case the last operator that will be
executed is situateaeforethe breakpoint.

(iv) MenuitemFile > Quit has been executed (see page 31).

(v) A runtime error occurred. An input variable without a value or values outside a
valid range might be typical reasons. In this casePtieemains in the line of the
erroneous operator.

e SelectingExecute > Step (keyboard shortcur6) enables you to execute a program
(even if it is not complete) step by step. HDevelop executes the operator directly to the
right of the green arrow, which is used as the program coubp@®@i($ee chapter 4.4). The
mouse pointer changes its shape to a clock. This indicates that HDevelop is active and

34

CHAPTER 4. GRAPHICAL USER INTERFACE

not available for any user input. After the operator has terminated, all computed values
are assigned to their respective variables that are named in the ouput parameter positions.
Their graphical or textual representation in the variable window is also replaced. If iconic
data has been computed, you will see its presentation in the current graphics window.
In the status bar of the program window the operator runtime is indicated (if the time
measurement has not been deactivated).

ThePcC is set before the next operator to execute. If the operators are specified in a sequen-
tial order, this is the textual successor. In case of control statementsife.g.,. endif

or for ... endfor), thePC is setonthe end marker (e.gendif or endfor) after the
execution of the last operator inside the statement’s body. Afiéfor andendwhile

thePC is always set on the beginning of the loop. If a conditioni(@er while) evaluates

to FALSE, thePC is setbehindthe end marker.

Suggestions in the mersuggestions are determined for the recently executed operator.
Finally the mouse pointer’s shape switches to the arrow shape and HDevelop is available
for further transactions. Any user input which has been made during execution is handled
now.

You may terminate the execution of a program (mbae) by selectingExecute > Stop
(keyboard shortcuk9). If you do so, HDevelop continues processing until the current
operator has completed its computations. This may take a long time if the operator is
taking a lot of time to execute. There is no way of interrupting a HALCON operator. After
interrupting a program you may continue it by selectimgcute > Run andExecute

Step. You may even edit the program before restarting it (e.g., by parameter modification,
by exchanging operators with alternatives, or by inserting additional operators).

It is often useful for testing purposes to prevent some lines of the program from being
executed. This can be done by selecting the appropriate lines in the program window and
calling Execute > Deactivate from the menu. With this, an asterisk is placed on the
beginning of the selected lines, and hence appear as comments in the program window.
They have no influence on the program during runtime. The deactivated lines are still
part of the program, i.e., they are stored like all other lines in a file and their variables
are still needed like all other variables. To reverse this action you may presBdtem>
Activate.

Note that you can insert a comment into your program by using the operat@¢nt.

With the menu itenExecute > Reset Program you can reset the variables of the cur-
rent program to their initial states, i.e., all variables have undefined values. Furthermore,
the break point is cleared and the program counter is set to the first executable line of the
program. This menu item is useful for testing and debbuging of programs.

The menu itenExecute > Clear Break Point iS used to clear the break point. This
is often useful when the current program is long and you want to avoid having to scroll
the program window to locate the break point.

Menu item: Visualization
All items which can be selected are shown in figure 4.11.:

4.3. MAIN WINDOW 35

i HDevelop - clip.devw
File Edit Egecutewgperators Suggestions Window Help

Olzlml % e Epent\:'indow‘... .Ellll EI E|$|E|@|
esel
Clear Windaw

i Dperator LCloze Window

op WELETE PiselInfo..
ICDE Zooming...

E

Gray Histogram Infa...
Region Infa...

~ Size'Window
Zooming

LColared
Colar

Col Dram
— Line ‘width
original

Al Lut
R Paint

Ci inner_circle
Set Parameters. ..

Convex

3
4
3
»
]
»
4
»
3

outer_circle

rectanglel

Figure 4.11Submen$hape of menwisualization.

With this you are able to open or to close graphics windows and to clear their displays. Further-
more, you may specify their output behavior during runtime.

e Visualization > Open Window...
By using this menu item, you open additiohgtaphics windows.

For this, a dialog window pops up (see figure 4.12). Here you may specify some graphics
windows attributes. The position, size and background color of the new graphics window
can be specified. For example, it is more convenient to have a white background while
building graphics for slides or reports (see the HALCON operaiap window). If the
window height and width are set to -1, the window obtains the same size as the largest
image in the current session. A position value of -1 specifies that the window position is
determined by the window manager (UNIX). If you have not already created an image,
the size512 x 512 is used. The handling of graphics windows is described in chapter 4.7
at page 68.

3Normally upon starting, HDevelop automatically opens one graphics window.

36

CHAPTER 4. GRAPHICAL USER INTERFACE

Hew Window

Rowe |0

Column |0

Wich |-

Height |-

Background |{p50k j

ik Cancel |

Figure 4.12Dialog window of menu iteiisualization > Open Window. ..

Visualization > Reset Parameters

Here, the display parameters of all graphics windows are set to their initial state (the
state after starting the program). The only exception is the history of previously displayed
objects and the size of each window. To clear the history you caliss@lization >

Clear Window, to set the size you can u8é¢sualization > Size Window.

Visualization > Close Window
Selecting this item closes the active graphics window.

Visualization > Clear Window
The active graphics window is cleared. The history (previously displayed objects) of the
window is also removed.

Visualization > Pixel Info...

Here you can open an inspection display. This is used for interactive examination of gray
values of images. Apart from this, the size, pixel type, and the number of channels are
displayed.

The upper part of the dialog contains a gauge to display the gray value graphically. The
range goes from O (left) to 255 (right). Normally the gray value of the first channel is
displayed with a black bar. For color images in RGB-space (three channels with red,
green, and blue values) three colored bars are used. If the gray value is below 1 the gauge
is white (background). If the value is above 255 the gauge is black or colored for rgb
images.

Below the gauge, the gray values are displayed as numbers. If more than three channels
are present only the gray value of the first channel is displayed.

Below the gray values the coordinates of the mouse position is displayed. Below these,
the size, pixel type, and the number of channels of the selected image are shown.

Visualization > Zooming...
With this menu item, a tool for realtime viewing of zoomed parts of an image object is

4.3. MAIN WINDOW 37

Pixel Information E

GrayRGE: | 201

Rowe Column; I [563,523)
Width Height: | (530,522
Pizel Type: Ib\y‘te

Channels: |1

Figure 4.130nline gray value inspection and basic image features.

opened. Figure 4.14 shows the layout of the realtime zooming window.

i Zooming =] E3

Zooming factor |3 - |

Rawy, Column: ||:1 33, 387)

Figure 4.14Realtime zooming.

The upper part of the tool contains a window of fixed size 23%6, in which the part of

the graphics window, over which the mouse pointer is located, is displayed enlarged. In
the zooming window, this pixel is marked by a red square; its coordinates are displayed
at the bottom of the zooming window. The factor, by which the enlargement is done can

38 CHAPTER 4. GRAPHICAL USER INTERFACE

be adjusted with the combo b@soming factor. A zooming factor of O corresponds to
displaying the contents of the graphics window in to normal resolution, i.e., one pixel in
the image object corresponds to one pixel in the zooming window. Increasing the zooming
factor by 1 roughly increases the enlargement by a factor*ofdl can select a particular
pixel by single-clicking on it with the left mouse button. The zooming tool stores this
position internally, and will redisplay the thus selected part of the image object when you
leave the graphics window. This enables you to have a meaningful display in the zooming
tool whenever you want to do actions outside of the graphics window.

e Visualization > Gray Histogram Info...
This menu item opens a sophisticated tool for the inspection of gray value histograms,
that can also be used to select thresholds interactively and to set the range of displayed
gray values dynamically. Figure 4.15 shows the layout of the gray histogram inspection
window.

i Gray Histogram [_ (O] x|

Channel |1 vI >~ Rel " Abs v Accept

Displary INnne .I Send IEIack .,I

100

Static data:
Feak Graywalue: 112
Pixels number: 0.70 %
Range Win Graywvalue: a
ax Graywvalue: 255
Dynamic data:
Pixel number min: 0.EE %
Pixel number mazx: 0.24 %

Figure 4.150nline gray histogram inspection.

4Yes, only roughly by a factor of 2, since the image is scaled such that the red square that indicates the mouse
pointer position is located in the middle of the zooming window. Therefore, the zoom factor is adjusted to display
one pixel more than the power of 2 indicated by the zooming factor. The width and height of the zoomed part of
the image hence ag$—7/ + 1, wheref is the zooming factor.

4.3. MAIN WINDOW 39

When opening the tool, the histogram of the image shown in the currently active graphics
window is displayed. When the tool is already open, four modes of sending new image
data to the tool are available. The simplest mode is to display an image in the active graph-
ics window. Whenever you do so, the histogram of this image is computed and drawn,
and the tool records the graphics window from which the image was sent. Another simple
method to send new data to the tool is to single-click into an image that is displayed in
a graphics window. The third mode can be used whenever image data is displayed over-
laid with region data in a graphics window (the graphics window does not need to be
active for this). In this mode, you can click into any of the segmented regions, and the
histogram of the image within that region will be computed and shown. If you click into a
part of the image that is not contained in any of the overlaid regions, the histogram of the
entire image will be displayed. In the fourth mode, the same mechanism is used for re-
gions that have gray value information, e.g., image objects createddye_domain or
add_channels. Here, the histogram of the image object you click into will be displayed.
Finally, when the graphics window the image was sent from is cleared, the histogram is
not reset.

When a multi-channel image, e.g., a RGB color image, is sent to the tool, by default the
histogram of the first channel is displayed. The combo @imanel lets you select the
channel from which to compute the histogram.

The radio box in the upper center of the tool lets you select whether to display the his-
togram with relative or absolute frequencies. When you sélett the frequencies of
individual gray values are displayed as percentages; when you seledhey are dis-
played as the actual number of pixels having a particular gray value. See the operator
gray_histo in the HALCON Reference Manuals for details.

Sometimes it is desirable to suppress the updating of the histogram when new image
data is available, e.g., if you want to select thresholds for a gradient image, but want to
visualize the original image along with the segmentation (see below). To do so, you can
deselect the checkbaxcept.

The main part of the tool is the area, in which the histogram of the image is displayed
in blue. This area contains static parts and parts that can be interactively manipulated.
The first static part is the horizontal coordinate axis, which displays the gray values in
the image. For byte images, this range is always 0 . .. 255. For all other image types, e.g.,
real images, the horizontal axis runs from the minimum to the maximum gray value of
the image, and the labeling of the axis is changed accordingly. To the left of the display,
the vertical axis representing the frequency of the gray values is drawn in white. The final
static parts of the display are three cyan arrows. The two upward pointing arrows denote
the maximum and minimum grayvalue of the image. The downward pointing arrow de-
notes the gray value that occurs most frequently, i.e., the peak of the histogram. These
data are displayed in textual form within tBeatic data area of the display.

The dynamic parts of the histogram area are the three colored lines, which can be manip-
ulated. The dashed horizontal yellow line can be dragged vertically. The label on this line
indicates the frequency of gray values above this line. The vertical green and red lines
denote the minimum and maximum selected gray value of the histogram, respectively.
The selected range is drawn as a white bar below the horizontal gray value axis. The gray
values on which the two vertical lines lie are displayed next to the lines in the same color.

40

CHAPTER 4. GRAPHICAL USER INTERFACE

The frequency of the respective gray values is displayed withiDghemic data area
of the display.

The selected range of gray values can be used for two major purposes. First, when the
combo boxDisplay is set toThreshold, the image, from which the histogram was
computed, is segmented withtareshold operation with the selected minimum and
maximum gray value. Depending in the setting of the comboJaax, the segmentation

result is either displayed in the graphics window, from which the image was originally
sent end = Back), or to the active graphics windovBdnd = To Active). Second, if
Display IS set toScale, the gray values of the image are scaled such that the gray value
0 of the scaled image corresponds to the minimum selected gray value and the gray value
255 to the maximum selected gray value. Again, the combodamxd determines the
graphics window, in which the result is displayed. This mode is useful to interactively set
a “window” of gray values that should be displayed with a large dynamic range.

If you want to select threshold parameters for a single image, display the image in the
active graphics window and open the histogram tool. For optimum visualization of the
segmentation results, it is best to set the visualization color to a color different from black
or white (seeVisualization > Color below). Now seDisplay to Threshold and
interactively drag the two vertical bars until you achieve the desired segmentation result.
The parameters of the threshold operation can now be read off the two vertical lines.

If you want to select threshold parameters for an image, which is derived from another im-
age, but want to display the segmentation on the original image, e.qg., if you want to select
thresholds for a gradient image, two different possibilities exist. First, you can display the
derived image, open the histogram tool, deselectpt, display the original image, and
then select the appropriate thresholds. This way, only one window is needed for the vi-
sualization. For the second possibility you can display the derived image in one window,
make another window active or open a new window, display the original image there,
make the first window active again, open the histogram tool, make the second window
active again, sedend to To Active, and select your thresholds. Although in this case it

IS not necessary to deseldcicept, it is advantageous to do so, because this prevents the
histogram from being updated if you click into a graphics window accidentaly.

Visualization > Region Info...

This menu item opens a tool for the convenient inspection of shape and gray value fea-
tures of individual regions. It can, for instance, be used to determine thresholds for op-
erators that select regions based on these featuresselgct_shape or select_gray.

Figure 4.16 shows the layout of the region feature inspection window.

The strategy to determine the data from which to compute the features is very similar
to that of the gray histogram inspection window. You can display an image or region by
double-clicking on it in the variable window or you can select a region or an image which
is already displayed, by single-clicking it. If you display or click into an image, only the
gray value features of the entire image will be calculated. If you click into a region that
Is not underlaid with an image, only the shape features of this region will be displayed.
If you click into a region that is underlaid with an image or into a region that has gray
value information (e.g., fromeduce_domain or add_channels), both the shape and gray
value features of that region will be displayed. Finally, if you have overlaid an image with
a region, but click into a part of the image that is outside the region, only the gray value

4.3. MAIN WINDOW 41

i Region Features (- [O]X]
Shape Features Gray “alue Features
area 18810 channel [-
. . o
center (r,c) (301.14, 205.79) Ity Bk
heit K
s S —
@ Jo 50
minimum
e b o _ J
145.464
:— e |||
T —
59.1289 &
et range
= — s
angle Idegrees 'l
angle 06125 erntropy 393026
saf ||| L 1 =
anisotropy -0.597637
. -
Ied dir
G Imean VI
compactness 9.97741
| | et ENErY 0169344
=0 — Ei

convexity 0.706771 correlation 0630879

. EN | .

homogeneity 0.779978

anizometry 251085

bulkiness 1 46616 contrast 1 56384

Setl Set
ERERE — alpha -6.07081-005
. N - .
connected 1 heta 00425408

Figure 4.160nline region feature inspection.

features of the entire image will be calculated.

Analogously to the gray histogram inspection window, the gray value features of a multi-
channel image are calculated from the first channel by default. You can use the combo
box Channel to select the desired channel.

The shape features on the left side of the region inspection window are grouped into seven
categories, which correspond roughly to individual HALCON shape feature operators.
The topmost of the displays shows the most basic region features, namely the area and
center of gravity of the region (segea_center in the Reference Manual) and the width

and height of the smallest axis-parallel rectangle of the region. The latter is computed
from the output of the operatemallest_rectanglel.

The second display contains information about the orientatiagle) and size of the

region along the two principal directions (ra and rb) of the region. With the combo box
shape, you can select by what means the size is computed. If you gdlecpse, the size

is computed with the operateilliptic_axis. This means that the parameters ra and rb

are the major and minor axis of an ellipse that has the same moments as the selected re-
gion. Note that this ellipse need not enclose the region. If yosisgie to rectangle,

the size is computed with the operatafallest_rectangle2. This means, that ra and

42

CHAPTER 4. GRAPHICAL USER INTERFACE

rb are half the width and height of the smallest rectangle with arbitrary orientation that
completely contains the selected region. The orientation of the region is computed in both
cases with the operatorientation_region to get the full range of 360for the angle.

You can select whether to display the angléégrees or radians with the correspond-

ing combo box.

The next three displays show simpler shape features of the selected region. The first of
these displays shows the contour lenght of the region, i.e., the euclidean length of its
boundary (seeontlength). The second one shows the compactness of the region, i.e.,
the ratio of the contour length of the region and the circumference of a circle with the
same area as the region (seepactness). The compactness of a region is always larger
than 1. The compacter the region, the closer the value of the compactness is to 1. The
third display shows the convexity of the selected region, i.e., the ratio of the area of the
region and the area of the convex hull of the region (sesexity). The convexity of a

region is always smaller than 1. Only convex regions will reach the optimum convexity
of 1.

The last but one display shows shape features derived from the ellipse parameters of the
selected region, which are calculated wadtentricity. The anisometry of the region

is the ratio of the major and minor axis of the ellipse (i.e., the ratio of ra and rb in the
second display if you sethape to ellipse). This feature measures how elongated the
region is. Its value is always larger than 1, with isometric regions having a value of 1.
The definition of the more complex features bulkiness and structure factor (abbreviated
as structure in the display) can be obtained from the HALCON Reference Manual.

The final shape feature display shows the connected components and number of holes of
the selected region, as computeddayinect_and_holes.

The gray value features are grouped into five displays on the right side of the region
inspection window. Again, they correspond roughly to individual HALCONoperators.
The first display shows the mean gray value intensity and the corresponding standard
deviation of the selected region. These are computed with the opéemataisity.

The second display shows the output of the opetatarmax_gray. This operator com-

putes the distribution (hestogram) of gray values in the image and returns the gray values
corresponding to an upper and lower percentile of the distribution. This percentile can

be selected with the slider at the to of the display. For a percentile of O (the default), the

minimum and maximum gray values of the region are returned. The display also shows

the range of gray values in the region, i.e., the difference between the maximum and
minimum gray values.

In the third display, the gray value entropy of the selected region is displayed (see
entropy_gray. Again, this is a feature derived from the histogram of gray values in
the region. The feature entropy measures whether the gray values are distributed equally
within the region. This measure is always smaller than 8 (for byte images — the only
suppurted image type for this operator). Only images with equally distributed gray values
reach this maximum value. The feature anisotropy measures the symmetry of the distri-
bution. Perfectly symmetric histograms will have an anisometry of -0.5.

The fourth display contains gray value features derived from the coocurrence matrix of the
selected region are displayed (s®ec_feature_image. The combo boxd can be used
to select the number of gray values to be distinguish&d.(The combo boxiir selects

4.3. MAIN WINDOW 43

the direction in which the coocurrence matrix is computed. The resulting features —
energy, correlation, heomgeneity, and contrast — have self-explanatory names. A detailed
description can be found in the reference of the opekaiot_feature matrix.

The final display contains the output of the operatatients_gray_plane. This are the
angles of the normal vector of a plane fit through the gray values of the selected region.

Dialog E

Minimum Maximum

|0 |100000

Coy=x &y = s
=y = log00%) =y = log1 Olog 00

QK I Apply | Reset | Cancell

Figure 4.17 Configuration dialog for single region features.

Each of the gauges corresponding to a display can be configured to set the minimum and
maximum values for each gauge. Furthermore, the scaling function of the gauge can be
determined. This can be used to make the relation of the features of different regions more
intuitive. For example, features that depend on the area of the region are more intuitively
grasped when the scaling is setstgrt (x). The configuration dialog is the same for all
gauges, and is shown in figure 4.17. It can be brought up by pressing the arrow button
next to each gauge.

e Visualization > Size Window
There are convenient methods to change the size of the active graphics window dependent
on the size of the previously displayed image. Using the subrdefginal, the window
is set to the same size as the most recently displayed image, that means, for each pixel of
the image one pixel on the screen is used for displaying. Similar to this, you can select
Original half orOriginal quarter to make the window half or a quarter as big as
the displayed image. The submerissf andDouble change the size of the graphics
window to half and double its current size, respectively, independent of the size of the
previously displayed image. You can combibeuble with Original. The submenu
Aspect changes the aspect ratio of the graphics window, so that pixels are displayed as
squares on the screen. For this operation, again the size of the previously displayed image
IS used.

e Visualization > Zooming
This is a convenient menu for manipulation of the zooming mode. The subRreaet
switches zooming off, i.e., an image will be displayed so that it fills the graphics window
completely. The submen®om In andZoom Out apply a zooming “in” and “out” to
the image or region by a factor of two. Finally, there are two interactive modes to control
zooming:Draw Rectangle allows the specification of a rectangular part of the window
to be zoomed whil®raw Center allows the definition of a pixel coordinate that should
be at the center of the window (e.g., for a succesasoee In).

For more information see the mekilsualization > Set Parameters... > Zoom.

44

CHAPTER 4. GRAPHICAL USER INTERFACE

e Visualization > Colored

This is an easy way to display multiple regions or XLDs. Each region is displayed in a
different color, where the number of different colors is specified in the submenu. You can
choose between 3, 6 and 12 colors. If all regions are displayed with one color, you have
to use the operatatonnection beforehand. You can check this also with the operator
count_obj.

Visualization > Color

This item enables color specification to display segmentation results (regions and XLD),
text Write_string) and general line drawings (e.g., 3D plots, contour lines, and bar
charts). The number of colors which are available in the submenu depends on the graphics
display (i.e., the number of bits used for displaying). After selecting a color, the previously
displayed region or XLD object will be redisplayed with this color. The default color is
white.

Visualization > Draw

Here you can select a visualization mode to display region data. It can eitlidietie
(item £111) or thebordersare displayed only (itemargin). The border line thickness
of the displayed regions is specified using the menu iténe Width (see figure 4.19).

Visualization > Line Width

Here you determine the line width for painting XLDs, borders of regions or other types of
lines. You can select between a wide range of widths using the submenu. This parameter
is effective ifdev_set_draw is set to mod@argin only.

Visualization > Shape
Here you specify the representation shaperégions Thus you are able to display not
only the region’s original shape but also its enclosing rectangle or its enclosing circle.

Visualization > Lut

This menu activates different look up tables, which can used to display gray images and
color images in different intensities and colors. In the case of a true color display the
image has to be redisplayed due to the missing support of a look-up-table in the graphics
hardware. For color images only the gray look-up-tables can be used, which change each
channel (separately) with the same table.

Visualization > Paint
This menu defines the mode to display gray images. For more information see the menu
itemVisualization > Set Parameters....

Visualization > Set Parameters...

By using this menu item, a dialog call®dsualization Parameters is opened, which
handles more complex parameter settings. Select one setting with your left mouse but-
ton and the window brings up the according parameter box. Each box contains different
buttons, text fields, or check boxes to modify parameters.

Each box has afipdate button. If this button is pressed, every change of a parameter
will immediately lead to a redisplay of the image, regions, or XLD in the graphics
window. If the button is “off” the parameters become active for the next display of an
object (double click on an icon or excecution of an operator). By default the update is

4.3. MAIN WINDOW 45

Wizualization Parameters
It I Zoom
pen | paint
- [sopet o 5] ™ Updste,
mode: 3D—pll:¢_h|dden - e comorrrrrredt
Rowy: Sicale: eve height; eve distance;
||:| |15|:| |11D |150
Column: step:

] [+ colored IT

Close |

Figure 4.18Settings of parametgraint.

deactivated for the boxésit andPaint.

You may specify the following parameter settings.

— Visualization > Set Parameters... > Paint

He

re you can select between several graphical presentations for images. Examples

arecontourline and3D-plot. In the default mode the image will be displayed as
a picture (see figure 4.18).

Ify

ou have chosen a presentation mode, the window displays all possible parameters

you may modify. For example, after selecting the it&mplot you have to specify
the following parameters:

*

*

*

*

Step (the distance of plot lines in pixels),

Colored (use the gray value of a pixel to draw a line segment instead of one
graphic color),

Eye height,

Eye distance (view point),
Scale (height of 3D plot),

Row and

Column (position of the center).

— Visualization > Set Parameters... > Pen

He

re the display modes for regions and XLDs are specified. You can select the color

(single or multiple), the drawing mode (filled or border), the line width for border
mode and the shape of the regions.

46

CHAPTER 4. GRAPHICAL USER INTERFACE

Wizualization Parameters
It | Zoom
pen | paint
¥ Update
1 3 i ill i+ margin
s 12

barder width: |3 vI
shipe: Ioriginal vl

Close |

Figure 4.19Settings of parametegen.

You can select up to 12 colors by clicking the appropriate checkbox. They are used
to emphasize the connectivity of different regions in the graphics window. If you
choose a single color presentation you may specify this color by selecting it in the
list box (see figure 4.19).

With the parameter shape (defaulbisiginal) you may specify the presentation
shape for regions. Thus you are able to display not only the region’s original shape
but also its enclosing rectangle or its enclosing circle, etc.

For regions thelraw modecan be specified: Either it might d#led (item £111)
or thebordersare displayed (itenmargin) only. The border line thickness of the
presented regions is specified with help of the menu tetder width. This menu
is visible onlyif the draw mode is set tmargin, because in the draw mode1l
this parameter has no effect.

Visualization > Set Parameters... > Zoom

The menu item specifies which part of an image, region, XLD, or other graphic
item is going to be displayed (see figure 4.20). The upper left four text fields spec-
ify the coordinate systenleft/upper defines the pixel which will be displayed

at the upper left corner of the windowower/right defines the pixel which will

be displayed at the lower right side of the window. By selecting the upper button
Interactive. .. you specify a rectangular part in the graphics window interac-
tively. For this, you press the left mouse button to indicate the rectangle’s upper
left corner. Hold the button and drag the mouse to the lower right corner’s position.
Release the button and correct the size by grabbing the borders or corners of the
rectangle. By pressing the right mouse button inside your specified rectangle you
display the objects inside the rectangle in the graphics window.

You also have the possibility to enter the coordinates of the desired clipping man-

4.3. MAIN WINDOW a7

ually. In order to do so you have to specify the coordinates of the upper left corner
and the lower right corner in the respective text fields.

Wizualization Parameters
It | paint
pen | 200m
¥ Update

lett (column) upper (raw

|?? |3U

right {column] lowwer (Fawe)

|285 |234

center (calumn) certer (rowe)

|181 |132 Interactive... |

Reszet | Zoom out | Zoom in | Aspect |

Close |

Figure 4.20Settings of parametefoom.

Below the coordinates of the rectangle you see its center. This center can also be
specified interactively using the buttdnteractive. . .. Activating this mode, you

first have to click with the left button into the active graphics window. Now you can
correct this position by again pressing the left mouse button. To quit, press the right
mouse button.

The buttonZoom out andZoom in activate a zooming with factor 2 or 0.5, respec-

tively.
To get the image’s full view back on your graphics window you simply click the
checkboxkeset.

— Visualization > Set Parameters... > Lut

Usinglut you are able to load differeidok-up-tabledor visualization (see figure
4.21). With the help of a false color presentation you often get a better impression
of the gray values of an image. In the case of a true color display the image has to
be redisplayed due to the missing support of a look-up-table in the graphics hard-
ware. For color images only the gray look-up-tables can be used, which change each
channel (separately) with the same table.

Menu item: Operators
This menu item comprises all HALCON and HDevelop operators including the HDevelop
control constructs. In the following you will see a description of all items to select.
O The itemControl
Here you may select control structures for the program to create. This involves execution of

48 CHAPTER 4. GRAPHICAL USER INTERFACE

Wizualization Parameters
pen | fraint
Iurt | Zaom
i}
cubic_roat - WV Updste
iny _cubic_root
three
%
tvelve
twventy _four

calor
colar2
color3
colard
rainkowy

temperature
cyclic_gray

cyclic_tempersture
hisi

change1

change2

change3 255

L

Close |

Figure 4.21Settings of parametdrut.

a program segment (henceforth named body) dependent on ateshd ifelse) and the
repetition of a program segmerftofr andwhile). Furthermore, you may stop the program’s
execution at any positiorstop) or terminate HDevelopekit). The operatorassign and

insert do not influence the execution. They rather serve to specify values for control data
(assignment). The operatobmment is used to add a comment, that means any sequence of
characters, to the program. The corresponding menu is shown in figure 4.22.

Selecting a menu item displays the corresponding control construct in the operator window,
where you can set the necessary parameters. After specifying all parameters you may transfer
the construct into your program. A direct execution for loops and conditions is not possible,
in contrast to other HDevelop and HALCON operators, because you have to specify the loop’s
and condition’s body first to obtain useful semantics. If necessary, you may execute the program
after the input withStep or Run. The insertion cursor is positioned after the construct head to
ensure the input of the construct’s body occurs in the correct place. This body is indented to
make the nesting level of the control constructs visible, and thus to help you in understanding
the program structure (see figure 4.23). To get an idea how to use loops, you may look at the
example session in section 3, and at the programs in chapters 7.3, 7.8 and 7.9. The semantics
for loops and conditions are shown in chapter 5.7.

The operatorassign serves as an assignment operator for control variables (numbers and
strings). Analogously to “normal” operators the input is made in the operator window by spec-
ifying both “parametersInput andResult (i.e., right and left side of the assignment). An
instructionin C, e.g.,

X =y + Z;
is declared inside the operator window as

assign(y + z,x)

4.3. MAIN WINDOW 49

i HDevelop

File Edit Egecute “isualization Suggestions Window Help
mEEREEER Cee] asion
——— —————— - [Develop
Program Classification

J%Wariable Watch Il X
Op Graphics

_— Ie0 Image:

Lines
Morphology
Object
Regions
Segmentation
Syztem
Tools

ALD

ifelse:
for
while
stop
exit

Clear
comment

r v T T T ETETTTETTT T

(=]
=]

Cantral structure

Figure 4.22Menu itemControl.

i Program [_ O]

dev_open_windawy (0, 0, Width, Height, 'black’, WindowID) -
dev_=et_drawe (il
wp |dev_set_part (0, 0, Height-1, Wickh-11
threshold (Image, Region, 128, 255)
dev_set_color ("white")
connection (Region, ConnectedRegions)
zelect_shape (ConnectedRedions, CompactRedions, 'compactness', 'and', 1.5, 1.8)
Mumber = |CompactRegions|
gen_empty_okbj (Eyes)
far i:=1to Mumber by 1

Singleselected (= CompactRegions(i]

area_center (SingleSelected, Area, Row, Column)

dev_set_color ('green')
@ if ((Ares = 5007 and (Area < 500007

dew_szet_colar ['red")
Eves = [SingleSelected Eyes]

endif
endfar
dev_display (Image)
dev_=et_color ('red”) ;I

o

Figure 4.23Example for using &or loop.

and displayed in the program window by
X =y +2z

The operatotinsert implements the assignment of a single value (tuple of length 1) at a spec-

50 CHAPTER 4. GRAPHICAL USER INTERFACE

ified index position of a tuple. Thus an array assignment (here in C syntax)
alil = v;

IS entered as
insert(a,v,i,a)

in the operator window, and is displayed as
ali]l := v

in the HDevelop program window.

The operatorstop andexit are used to terminate the program. More precisglyp inter-
ruptsan execution andxit terminatesHDevelop. Having interrupted the execution you may
continue the program by pressifgep or Run. This is useful, e.g., in demo programs to install
defined positions for program interruption. Uskagit is in particular recommended in combi-
nation with the startup file (see page 125). Thus you may terminate HDevelop if your program,
which is included in the startup file, has been processed (see page 125).

The operatoromment allows to add a line of text to the program. This text has no effect on the
execution of the program. A comment may contain any sequence of characters.

O The itenDevelop

This menu contains several operators that help to adapt the user interface. These operators
offer the same functionality that you have using mouse interaction otherwise. They are used to
configure the environment without (or with little) user interaction. Using these operators, the
program performs actions similar to the setting of a color in the parameter window (see section
4.7), opening a window in the menu bar (see section 4.3.2) or iconifying the program window
with the help of the window manager. All operators in this menu start with the pdefix.

It has been introduced to have a distinction to the underlying basic HALCON operators (e.g.,
dev_set_color andset_color). You can find the complete listing in figure 4.24.

The effects of each operator are described as follows:

e dev_open_window, dev_close_window, dev_clear_window
The operatorgev_open_window anddev_close_window are used to open and to close a
graphics window, respectively.During opening, the parameterization allows you to spec-
ify the window’s size and position. The operati¥v_clear_window clears the active
window’s content and its history. This corresponds to the usage of the htitean in
the graphics window. Please note that_open_window anddev_close_window are not
supported for Visual Basic export because hereHdiadowXCtrl is used.

e dev_set_window_extents
With this operator, you can set the size and position of the active HDevelop graphics
window.

e dev_set_window
This operator activates the graphics window containing the given ID. This ID is an out-
put parameter oflev_open_window. After the execution, the output is redirected to this
window. This operator is not needed for exported code in C++, because here every win-
dow operation uses the ID as a parameter. The operator has no effect for exported code in
Visual Basic.

4.3. MAIN WINDOW 51

i HDevelop H=]

File Edit Execute Yisualization QSN l Suggestions ‘window Help

Dlimlnl ¥ ||E‘|ﬂ| ontrol v el =]) e [
] i} 1])
Classification » dev_close
' File: ¥ dev_clear_window
Filterl F dev zet window
Op ca - - Graphics ¥ dev_zet colored
_— _ Image: P dev set diaw
Lines b dev_set_line_width
Clear
Morphology » dev_set color
Object P dev zet |ut
Regions » dev_set paint
Segmentation » dev_set_shape
Syztem ¥ dev_zet_part
a Toolz F dev display
_— HLD b dev_inspect_chl
dev_close_inzpect_ctl
dev_map_par
dev_unmap_par
dav_map_var
dev_unmap_war
dev_map_prog
dev_unmap_prog

dev_update_window
dev_update_war
dev_update_time
dev_update_pe
de_error_war
dev_set_check

Internal HDevelop Operatar

Figure 4.240Operators in menu iterbevelop.

e dev_set_color, dev_set_colored
dev_set_color has the same effects as the menu itéigualization > Color.
dev_set_colored is equal to the menu itefisualization > Colored.

e dev_set_draw
This operator has the same effect¥asualization > Draw.

e dev_set_line width
For an explanation see iteisualization > Line Width.

e dev_set_lut
For an explanation see itevisualization > Lut.

e dev_set_paint
For an explanation see ite¥sualization > Paint. If youwantto specify all possible
parameters of a given paint mode, you have to specify them as a tuple, analogously to the
HALCON operatorset_paint.

e dev_set_shape
For an explanation see iteisualization > Shape.

e dev_set_part
This operator adjusts the coordinate system for image, region, XLD and other graphic out-
put. This is done by specifying the upper left and the lower right corner coordinates. This

52

CHAPTER 4. GRAPHICAL USER INTERFACE

specified part is shown in the entire graphics window. If the width or height of the speci-
fied rectangle has a negative value (&gw1 > Row?2) the result is equivalent to the menu
Visualization > Zooming > Reset:the zoom mode is switched off, i.e., thest re-
centlydisplayed image fills the whole graphics window. This featur@eet set_part is

not supported for exported C++ and Visual Basic code.

dev_display

Iconic variables are displayed in the active graphics window by this operator. It is rea-
sonable to do this when the automatic output is suppresseddsagdate _window and

File > Options... on page 29).

dev_clear_obj

This operator deletes the iconic object stored in the HDevelop variable that is passed as
the input parameter. In the variable window, the object is displayed as undefined (with a
7 asitsicon).

dev_inspect_ctrl

This operator opens an inspection window displaying the values of the variable passed to
the operator. In most cases a list dialog is opened, which shthwalues of the variable.

In the case of a framegrabber handle, a description of this framegrabber is opened. In
addition, this dialog allows online grabbing of images. This operator is not supported for
exported C++ and Visual Basic code.

dev_close_inspect_ctrl
This is the opposite operator éev_inspect_ctrl, and closes the inspect window. This
operator is not supported for exported C++ and Visual Basic code.

dev_map_par, dev_unmap._par

These operators open and close the parameter dialog, which can also be opened using
the menuwisualization > Set Parameters.... This operator is not supported for
exported C++ and Visual Basic code.

dev_map_var, dev_unmap._var

These operators iconify the variable windai&¢{_unmap_var), and retransform the iconi-

fied window to the normal visualization size, respectivabs(map_var). This means that

the variable window always remains visible on the display in one of the two ways of vi-
sualization. These operators can be executed with the help of the window manager. These
operators are not supported for exported C++ and Visual Basic code.

dev_map_prog, dev_unmap_prog

Analogously todev_map_var anddev_unmap_var, these operators iconify or deiconify

the program window. These operators are not supported for exported C++ and Visual
Basic code.

dev_update_window, dev_update_var, dev_update_time, dev_update_pc

Using these operators, you may configure the output at runtime. It corresponds to the
settings in menWisualization > Options... (See page 36). These operators are not
supported for exported C++ and Visual Basic code.

4.3. MAIN WINDOW 53

e dev_set_check
This operator is equivalent teet_check of the HALCON library. It is used to handle
runtime errors caused by HALCON operators that are executed inside HDevelop. The
parameter valuegive_error’, which is the default, leads to a stop of the program to-
gether with an error dialog if a value not equaHt®SG_TRUE is returned. Using the value
>~give_error’, errors or other messages are ignored and the program can continue.
This mode is useful in connection with operators Iget mposition, file_exists,
read_image, Of test_region_point, which can returi_MSG_FAIL. An example can be
found on page 121.

e dev_error_var
This operator specifies a variable that contains the return value (error code) of an oper-
ator after execution. This value can be used to continue, depending on the given value.
dev_error_var is normally used in connection wittev_set_check. An example how
to usedev_error_var in connection withdev_set_check can be found in

JHALCONROOT%\examples\hdevelop\Graphics\Mouse\get_mposition.dev .

Please note that operations concerning graphics windows and their corresponding operators
have additional functionality as HALCON operators with corresponding names (witkhoLit
graphics windows in HDevelop are based on HALCON windows (g& _window in the
HALCON reference manual), but in fact, they have an enhanced functionality (e.g., history of
displayed objects, interactive modification of size, and control buttons). This is also true for op-
erators that modify visualization parametetsy_set_color, dev_set_draw, etc.). For exam-

ple, the new visualization parameter is registered in the parameter window when the operator
has been executed. You can easily check this by opening the diabaglization > Set
Parameters... > Pen and apply the operata@rev_set_color. Here you will see the change

of the visualization parameters in the dialog box. You have to be aware of this difference if you
exportdev_* to C++ and Visual Basic code.

In contrast to the parameter dialog for changing display parameters like color, the corresponding
operators (likedev_set_color) do not change to contents of the graphics window (i.e., they
don’t cause a redisplay). They are used to prepare the parameterstiexttesplay action.

O All HALCON operators

Here you can find all HALCON operators, arranged in chapters and subchapters. This set of
image analysis operators forms the most important part of HALCON: the HALCON library.
HALCON operators implement the different image analysis tasks such as preprocessing, filter-
ing, or measurement (see figure 4.25).

You may look for a detailed description of each operator in the HALCON reference ntanual.
The menu has a cascade structure, according to the chapter structure of the HALCON refer-
ence manual. As this menu has to be built up after opening the program window, it might take
some time until it is available. During the build-up time the menu is “grayed out”. Selecting a
chapter of the menu opens a pulldown menu with the corresponding subchapters or operators,
respectively.

This operator hierarchy is especially useful for novices because it offers all operators sorted by
thematic aspects. This might be interesting for an experienced user, too, if he wants to compare,

SOperators of the menwntrol andDevelop are special operators of HDevelop. Thus you will not find
them in the reference manuals.

54 CHAPTER 4. GRAPHICAL USER INTERFACE

* HDevelop - ball. dev M= E3

File Edit Execute ‘izuslization QESEWER Suggestions 'window Help

] =20 TS =1 5 S s 2 2 e 51 [

Develop

* ball.dev: Inspection of Ball Fjle 3

' " (Bond, e Affine-Transformations ¥

read_image (Bond, 'die n "

threshold (Bond, Bright, 100 31aPHIES D) Aitielts %

shape_trans (Bright, Die, re IMage » Bt 4

reduce_domain (Bond, Die, | Lines ¥ Calor 3

threshold (DieGrey, Wires, 0 Morphology » Edges 3

il_up_shape (Aires, Miresl - pp o » Enhancement 3

opening_circle (AiresFilled, .

connection (Ballz, SingleBall Regions Y FFT 4

select_shape (SingleBalls, It Segmentation ¥ - Lines >

zort_region (IntermediateBal System b Match 3

smallest_circle (FinalBalz, B 7hgls » Misc e

MumBalls := [Radius| .

Diameter := 2*Radius ALY ' DISE > =
meanDiameter = sumiDiameter1l A Smaothing ld anisotiope_diff

b mimDiameter ;= min(Diamster) . g Texture b elminate_min_mas
=-» Wiener-Filter b elminate_sp
fll_interlace
© gauss_image

N

——————————————————— mear_sp
i Yariable Watch median_image

Iconic Yariables: median_separate

median_weighted
midrange_image
rank_image
sigma_image
smoath_image
trimmed_mean

Control Yariables:

Row: [125.879310345, 130277777778, 130411764706, 130.448529412, 174
Column: [117.120689655, 2205, 326.941176471, 429.772058524, 535.5, 641.¢
Radius: [18.8480195564 , 18 5645276853, 18.35223857452, 19.3302061918, 15
MumBalls: 5

Diarneter: [37.6960391127, 371280553706, 36.704477 1504, 38.6604123836, 3t
meanDiameter: 37 6264463801 t
G _>l_|

|Sm00th by averaging.

Figure 4.25Menu hierarchy of all HALCON operators.

e.g., different smoothing filters, because they reside in the same subchapter. To get additional in-
formation, a short description of an operator (while activating its name in the menu) is displayed
in the status bar (see figure 4.25).

Menu item: Suggestions

This menu shows you another possibility how to select HALCON operators. But here they are
proposed to you in a different manner. It is assumed that you have already selected or executed
an operator in a previous step. Depending on this operator, five different suggestions are offered.
Figure 4.26 shows possible successor suggestions for opesatbfimage.

Suggestions are separated into groups as follows:

Predecessor: Many operators require a reasonable or necessary predecessor operator. For
example before computing junction points in a skeletpim{tions_skeleton), you
have to compute this skeleton itsedkéleton). To obtain a threshold image you have to
use a lowpass filter before executing a dynamic threshigia ¢hreshold). Using the
watershed algorithmsigtersheds), it is reasonable to apply a smoothing filter on an
image first, because this reduces runtime considerably.

4.3. MAIN WINDOW 55

i HDevelop =] E3
File Edit Ezecute isualization Operators EieaEdats 'Window Help

Dl@lnl é{;ll@,lnl || Allematives ¥ [2)

— ———— ——— Seeako 4

Predecessar »

| Kepwords... threshold
Operatat: Iread_image ™ iegiongiowing

count_channels
decomposel
Image I Image clags_ndim_nom ject)
galzs_image
Fileame: I ‘fabrik' fill_interlace

|»

200M_jmage_gize

Ok I Enter C zoom_image_factor i |

crop_part
wiite_image
rgb1_to_gray

|Moegliche MNachfolge-Prozedur

Figure 4.26:Suggestions to select a successor of HALCON opetatad_image.

Successor: In many cases the task results in a “natural” sequence of operators. Thus as a rule
you use a thresholding after executing an edge filter or you execute a region processing
(e.g., morphological operators) after a segmentation. To facilitate a reasonable processing
all the possible operators are offered in this menu item.

Alternatives: Since HALCON includes a large library, this menu item suggests alterna-
tive operators. Thus, you may, for example, replacen_image with operators such as
gauss_image, sigma_image, Of smooth_image.

See also: Contrary toAlternatives, operators are offered here which have saoe-
nectionto the current operator. Thus, the median filteedian_image) is not a di-
rect alternative to the mean filtengan_image). Similarly, the regiongrowing operator
(regiongrowing) is no alternative for a thresholding. In any case, they offer another
approach to solve a task. References might consist of pure informative nature, too: the
operatorgen_lowpass, Which is used to create a lowpass filter in the frequency domain,
IS a reasonable reference to a Gaussian filter.

Keywords: This menu item gives access to HALCON operators by using keywords which are
associated with each operator. You get a window, divided into two parts, which contains
all keywords on the left hand side and the selected operators on the right (see figure 4.27).

After the suggestions for an operator have been generated, all keywords belonging to this
operator are marked (reversed) on the left hand side of the wihdamthe right side you

6Because there are many entries in the left keyword list, you may see all marked keywords only by scrolling it.

CHAPTER 4. GRAPHICAL USER INTERFACE

Keywords E
Kesyweards Operators

Clazs a | |clip_cortours _xd
Clazsification parition_rectangle
Clearing ' |partition_dynamic
iClippl : clip_region_rel
Closing clip_region
Clustering crop_domain_tel
Co-occurence-hiatrix

Coding

Coincidence

Calar

Caolor-Image

Calar-Table

Compact-Mode

Compactness

Comparizon ;I

Figure 4.270perator suggestions according to keyword “Clipping”.

will find all operators associated with at least one of these keywords. Clicking a keyword
on the left list causes the addition of operators belonging to this keyword. If you want to
transfer one of these operators to the operator dialog area, you click one of them with the
left mouse button. Afterwards the selection window is closed.

Menu item: Window

This menu item offers support to manage your four windows, i.e., the program, operator,
variable and graphics window. They are very useful while working with HDevelop. You see
the items in figure 4.28. This menu item is not supported in a UNIX environment, because
according to the X-Windows style we don’t have a main window with a functionality similar to
Windows NT.

e The itemCascade

By pressing this item, HDevelop arranges the four windows in a cascade as you can see
in figure 4.28.

The itemTile

You see all four windows inside the main window. They have the same size and fit exactly
in the main window. Thus, you get a global view of the windows’ contents at once. Notice
that the four windows may shrink depending on their size to fit in the main window. Figure
4.29 shows you the effect using this item.

The itemArrange Icons

As in every system using windows, you are able to iconify and deiconify your windows.
You may even move your icons on the display. This might create a confusing working en-
vironment if you are handling several graphics tools simultaneously. To get the HDevelop
icons back on top of the main window’s status bar you just have to press this button.

The itemNext

By using this item you bring the top window in the background. Hence it looses its win-
dow focus. The window to get the window focus and to become the top window is the
window which was only hidden by the former top window.

4.3. MAIN WINDOW 57

i HDevelop - clip2.dev

File Edit Ezecute Yisualzation Operators Suggestions

D(@] & [Fle]- | EuEE]]

i ¥ariable Watch Mext
Op

| L | | Graphics Window v 1 Praaram

20psrao
[[set_image_pointert (Clip, _, _, wictn, Hei| 3 Variable watch

dev_close_window () 4 Graphics Window
dev_open_windowy (0, 0, Wicth2, Height7X)

dev_display (Clip)

stop ()

s |bin_threskold (Clip, Dark)

connection (Dark, Single)

zelect_shape (Single, Selected, 'ared’, 'and', 5000, 10000)
dev_set_draw (il

dev_set_colored (12)

dev_display (Selected)

H stop ()
Wy dev_display (Clip)
Pl dev_set_color ('gresn")
Al J dev_display (Selected)
{ arientation_region [Selected, Phi)

Ri ares_center (Selected, Area, Row, Column)

Cil dev_set_line_width (3)
Le dev_set_draw ('margin’
Length := &0

B for i ;= 0t [Phil-1 by 1
dewv_set_color ("blue)
disp_arrow (WindowlD, Rowe[i], Calumn(i], Rowei]-Length*sin(Phili]), Column(i]+Length*cos(Pt
dev_set_color (‘orange’)
set_tposition (WindowID, Row(i], Column[i])
werite_string QAndowID, degiPhili[)+' deg’)

endfor

dev_update_window ('on')

[«

Figure 4.28 Window management functions.

If you use one of the next four item®rfogram Window, Operator Window, Variable
Window andGraphics Window) the specified window will become the top window and gets
the window focus.

Menu item: Help

Here you may query information about the system itself and all HALCON and HDevelop
operators.
The menu itenHelp > About. .. delivers information about the current HALCON version
(see figure 4.30).
The next menu item iBelp > Halcon Operators. This help is based on an HTML browser
(see chapter 2.3). The browser will display the main page of all HALCON and HDevelop op-
erators. It is quite easy for you to browse through this operator menu and to find the desired
operator.
The menu itenHielp > HDevelop Language starts the HTML browser with a description of
the language, similar to chapter 5 of this manual.

58 CHAPTER 4. GRAPHICAL USER INTERFACE

i HDevelop - clip2.dev = 3

File Edit Execute “izuslization Operators Suggestions Help

Elﬁlﬂl ||BI| E|||* Cade

i Graphics Window Affange icons i/ Program
Hext dlew_display (Clip) -
Clear | _ stop ()
1 Program bin_threshold (Clip, Dark)
v 2 Dperator connection (Dark, Single)

3 Wariable ‘Watch 1, 10000)

. . dey_set_draw (il
4 Giraphics Window dey_set_colored (12)

"/(dev_display (Selected)
TN de . stop ()
.y 1 deg dev_display (Clip)
— dey_set_calor ('gresn')

dev_display (Selected)
orientation_region (Selected, Phi)
area_center (Selected, Area, Row, Column)
dlewv_set_line_width (3)
dey_set_draw ('margin’)
Length ;= 80
fari:=0to |Phi-1 by 1
dew_set_color ('blue’)
dizp_arrove (WindowID, Rowe[i], Column[i], Row(i]-Lengtt®zinPhilil), Column
dew_set_color ('orange’)
=zet_tposition AindowlD, Row(i], Column(il)
werite_string QvvindowID, degPhi[i+ deg”)
endfar
dey_update_window ('on’)

s
| | ABZ
+ Operator M=l E || NShSEIESEER (=]
Iconic Yariables:
Operatar: Iseled_shape j
&
Redions ISingIe - | e :Dééﬂ aﬁg ﬂ
_ S0 | [IRES
SelectedRegions ISeIected j (e Clip Dtk Single Selected
Features I'area' bl BE
Control “ariahles:
Operation I'and' - | (=t - -
_ byte
Wi [5000 =] iere Width: 830
Height: 822
Mgz | 10000 - | (re
I J WindmwlD: 3500
,TI fo— pr—— | Phi: [0.B9B166860103, 2.49775691802, -0.671220445793, (
— Area: [5791, B489, 6792, B265, 6161, 5702, 5632, 6339, 621
R o (125882751465, 165.13522937, 197.817428589, 270 .4
Calurmn; [182.452299805, 437 936951201, 622.510131836, 239
Length: a0
i 12
« | o | L | ,
|dev_update_wind0w (0.00s)

Figure 4.29The window management functitile.

About HDevelop E

Halzon - Wersion 5.2

HOevelop - YWersion 3.0

MW T ec Software GmbH

Orleansstr. 34, 81667 Munich, Germany
E-mail: myvtecE@mytec. com

WA httpe e mvtec, com

= 1996-93 MY Tec Software GmbH

Figure 4.30information about the current HALCON version.

4.3. MAIN WINDOW 59

Another possibility of requesting information about the current operator is pressing belion
inside the operator window (see page 61).

4.3.3 Tool Bar

You use most icons in this tool bar to accelerate accessing important HDevelop features. These
are features which you are performing many times while working with HDevelop. Hence there
are buttons to handle your HDevelop programs and to edit them. The most important buttons
are used to start and to stop a program (or parts of a program). These icons are explained in
figure 4.32:

D= & [Ele] | =] EPeE B Bl

Figure 4.31The HDevelop tool bar.

These icons are shortcuts for the menu it@ike > New, File
> Load, andFile > Save in the menu bar. For a detailed de-
scription, see page 24ftf.

T

These icons are shortcuts for the menu it@&adst > Cut, Edit
) > Copy, Edit > Paste, andEdit > Undo in the menu bar. For
a detailed description, see page 31ff.

[
L

These icons are shortcuts for the menu iteBrscute > Run,
Execute > Step andExecute > Stop in the menu bar. For a
detailed description, see page 32ff.

i
| | | (A

These icons are shortcuts for the menu iteBwecute >
Activate, Execute > Deactivate, and Execute > Reset
Program in the menu bar. For a detailed description, see
page 32ff.

mi
i
mi

This icon is a shortcut for the menu itémsualization > Set
Parameters. .. in the menu bar. For a detailed description, see
page 34ff.

> Pixel Info..., Visualization > Zooming.. .,
Visualization > Gray Histogram Info..., and
Visualization > Region Info... in the menu bar. For
a detailed description, see page 34ff.

['Eh' |H| {3 | These icons are shortcuts for the menu itémsSualization

Figure 4.32: The different parts to the HDevelop toolbar.

4.3.4 Window Area

The window area contains all necessary windows to show your HDevelop programs, to visualize
your iconic and control results, and to specify any operator’s parameters. Additionally, you may

60 CHAPTER 4. GRAPHICAL USER INTERFACE

open as many graphics windows as you want to get a detailed view of your iconic results.

You are free to move the windows according to your needs and preferences inside this area. You
may iconify and/or deiconify them. To handle these windows in a comfortable way, HDevelop
supports you with some window management functions (see 4.3.2).

4.3.5 Status Bar

The status bar at the bottom of the program window shows you information which is important
while working with HALCON, e.g., context sensitive information about a specific user action
or the operator runtime (if time measurement has not been deactivated).

4.4 Program Window

The program window is divided into two areas. The left one (a small column) contains the
program counterPC, represented as a green arrow pointing to a program line), the insertion
cursor (a triangle between two program lines) and optionablyeakpoint(BP — a red STOP
sign). You may position or activate these three labels as follows:

e ThePC is set by pressing the left mouse button only.
e The insertion cursor is set by pressing the left mouse button andtigt> key.
e TheBP is set by pressing the left mouse button and<ter1> key.

The program counter resides in the line of the next operator to execute. The insertion cursor in-
dicates the position to insert a new program line. The breakpoint shows the program line before
which the program is stopped. Clicking on the breakpoint again while pressirgth&> key
deletes it. A breakpoint is active only if it is visible. You may activate only one breakpoint. In
figure 4.33 you see a program and the column withPthé@ndicated as an arrow), trP and

the insertion cursor.

The big text area at the right side of the program window contains the program code of the HDe-
velop program. Here the user has the possibility to obtain information about the inserted opera-
tors. A program is built up such that every line contains examtlgoperator with its parameters

or an assignment. An exception are the condition constifcsidifelse respectively, and the

loop constructshile andfor. They contain two, in case affelse even three, program lines,
which enclose the body. Every line starts with an operator name, which is indented if necessary,
to highlight the structure created by the above mentioned control structures. After the operator
name the parameters are displayed in parentheses. Parameters are separated by commas.
The program window is used tasualizeprogram lines, but not to modify them. You cannot
change a program by modifying the text directly. Editing the program text in HDevelop is done
in the operator window(this will be described below). The main reason for this principle is the
advantage of providing sophisticated help. Thus you are able to avoid many input errors.

To edit a line of a program you chose an operator in the program window by clicking the left
mouse button twice. In case of conditions and loops it is unimportant which linesfiecgr
endfor) are selected. In any case, the head with its parameters is selected. You may edit only
oneoperator at a time.

4.5. OPERATOR WINDOW 61

! Program [_ O]

dev_open_windowe (0, 0, Width, Height, 'black’, WindowID) s
dev_set_drawe (fill')
wp |dev_set_part (0, 0, Height-1, Width-1)
threshold (Inage, Region, 123, 255)
dev_zet_color ("white")
connection (Region, ConnectedRegions)
select_shape (ConnectedRegions, CompactRegions, 'compactness', 'and', 1.5, 1.8)
Mumber = |CampactRegions|
gen_empty_okj (Eves)
for i =1 to Mumber by 1

SingleSelected = CompactRegions[i]

area_center (SingleSelected, Area, Roww, Column)

dew_set_color ('green’)
@ if ((Ares = 5007 and (Area = S00007)

dew_szet_colar ['red")
Eyes = [SingleSelected Eves)]

endif
endfar
dev_dizplay (Image)
dev_zet_color ['red") ;I

ol

Figure 4.33:Program example with theC (the arrow pointing to the right), insertion cursor and the
the breakpoint&P).

Besides editing the parameters of a single operator, single and multiple lines can be deleted, cut,
or pasted in one step using simple mouse functions. To use this feature, one has to select one or
more lines using the mouse:

e The selection obneline is done by clicking on it. Previously activated lines will then
become deactivated.

e To activate more than one line you have to press<tttier1> key while clicking on the
line. If the line is already activated it will become deactivated, while the state of all other
lines remains unchanged.

e The<Shift> key is used to activate a sequence of lines using one mouse click: All lines
between the most recent activation and the new one will become activated.

After the selection of lines, the edit function can be activated by either using the Edenu
(see sections 4.3.2) or the tool bar (see sections 4.3.3). Further information on the use of the
mouse can be found in section 4.2.

4.5 Operator Window

This window is mainly used to edit and display an operator and all its parameters. Here you
will obtain information about the number of the operator’s parameters, the parameter types,
and parameter values. You are able to modify the parameter values according to your image
processing tasks. For this you may adopt the proposed system values or specify your own values.
The operator window consists of the following three parts:

e The first one is the operator text field.

62 CHAPTER 4. GRAPHICAL USER INTERFACE

e The second one is the largest part. It is called parameter display and is used to edit the
parameters of an operator.

e The last one is a row of buttons to control the parameter display.

Parameter Display

The parameter display is the main part of the operator window. It is empty in its initial state.
If you have selected an operator, HDevelop displays the operator’s parameter data, i.e., name,
number, type, and default values, in the display.

¢ In the first column of the operator window you find the parameter names.

e The second column consists of the text fields, which contain variable names in case of
iconic and control output parameters and expressions in case of control input parameters.
If you want to change the suggestions offered by the system (variable names or default
values) you may do so either manually or by pressing the arrow button connected with the
respective text field. This opens a list containing a selection of already defined variables
and other reasonable values from the operator knowledge base. By clicking the appropri-
ate item you set the text field and the list disappears.

e The third column indicates the parameter’s default type in parentheses. This is a raw hint
for the user, what types of data have to be specified for each operator.

Please refer to the following rules on how parameters obtain their values and how you may
specify them:

Iconic input parameters:
These are the only parameters that do not have any defaults. You have to make sure
that there is an input. Possible inputs are iconic variables of the corresponding list. If
there is no need to execute the operator immediately, you may even specify new variable
names, i.e., names, that do not already exist in the variable window, but will be instantiated
later by adding further operators to the program. In any case you have to specify iconic
parametergxclusively with variable namekl is not possible to use expressions.

Iconic output parameters:
These parameters contain default variables, which have the same names as the parameters
themselves. If a variable with the same name as the output parameter is already being
used, a number is added to the name to make it unique. Because the parameter names
characterize the computed result very well, you may adopt these default names in many
cases. Besides this, you are free to choose arbitrary names either by yourself or by opening
the list (see above). If you use a variable that already has a value, this value is deleted
during execution before overwriting it with new results. It is possible to specify a variable
both in an input and output position.

Control input parameters:
These parameters normally possess a default value. In particular, this is to support novices
selecting an appropriate value. As an alternative, you may use the text field’s button to
open a combo box and to select a value suggestion. In addition, this combo box contains

4.5. OPERATOR WINDOW 63

a list of variables that contain values of the required type. A restriction of proposed vari-
ables is especially used for parameters that contain data like file, framegrabber, or ocr
handles.

Input control parameters may contain constants, variables, and expressions. Common
types are integer numbersnfteger), floating point numbersreal), boolean values

(true andfalse) and character strings€{ring). You are able to use multiple values

of these types at once. This is done by usingtti@e type This is an enumeration of
values, separated by commas and enclosed in brackets. Furthermore, you may build up
expressions with these values. The possibilities of using tuples are very extensive. You
may use expressions in HDevelop similar to the use of expressions in C or in Pascal. You
will find a more detailed description in section 5.5.

Control output parameters:
These parameters are handled in the same way as output object parameters. Their de-
faults are variables, named with their parameter names. Other possibilities to obtain a
control output variable name are either using the combo box or specifying variable names
manually. You cannot use any expressions for these parameters, either.

After discussing what can be input for different parameters, it is expldiogdthis is done.
Nevertheless, you have to keep in mind that you need to modify a parameter only, if it contains
no values or if you are not satisfied with the HALCON default values.

Text input:
To specify a parameter using your keyboard is the simplest but not the most often used
method. Here you have to click into a text field with the left mouse button. This activates
the field and prepares it for user input. Simultaneously, the writing position is marked
by a vertical bar. Now you may input numbers, strings, expressions, or variables. There
are some editing functions to help you doing inptBackspace> deletes the left and
<Delete> deletes the right character. You may also select (invert) a sequence of charac-
ters in the text field using the mouse. If there is a succeeding input, the marked region is
going to be deleted first and afterwards the characters are going to be written in the text
field. You can find additional editing functions on page 125.

Combo box selection:
Using this input method, you can obtain rapid settings of variables and constants. To do
so, you have to click the button on the text field’s right side. A combo box is opened, in
which you may select an item. Thus you are able to choose a certain variable or value
without risking erroneous typing. This item is transferred to the operator name field. Pre-
vious entries are deleted. Afterwards the combo box is closed. If there are no variables or
appropriate values, the combo box remains closed.

Below the parameter edit fields you find four buttons that comprise the following functions (see
figure 4.34):

e By clicking OK you execute the operator with the specified parameters. In doing so, the
execution mode is dependent on the position ofRbelf the PC is placed above the
insertion position, the system computes the program fronpthentil the insertion po-
sition first. Thenthe operator that has been edited in the operator window is executed.

64

CHAPTER 4. GRAPHICAL USER INTERFACE

1 Dperator M=l E
Operatar; Iselect_shape j
e
Regions IREginn j (region fohject) —
ZelectedRegions ISeIectedRegiuns j [region [object)
Festures I'area' j [=tring)
Operstion I'and' j [=tring)
Min | 150 | reai
ha IQQQQQ j (real)
Ok | Erter Cancel | Apply | Helg |
Jud
1| | B

Figure 4.340perator window with operatoselect_shape.

The reason for this is that the parameter values that are used as input values for the new
operator have to be calculated. In caseRbes placed at or after the insertion position,

this operator is executed only. Before execution the operator is entered into the program
window. ThePC and the insertion cursor are positioned after the new operator. The com-
puted output parameter values are displayed in the variable window. Iconic variables are
shown in the current graphics window, if you haven't suppressed this option (see page
36). Afterwards the operator window is cleared. If you did not specify all parameters or

if you used wrong values, an error dialog is raised and execution is canceled. In this case,
the operator window remains open to support appropriate changes.

By clicking the buttorEnter the program line is only transferred in the program window.
There is no operator execution, i.e., the position offbiés not changed. The insertion
cursor is positioned after the new operator.

If you click Apply the operator is executed with the specified parameters, but not entered
into or changed in the program. This enables you to determine the optimum parameters
of an operator rapidly since the operator dialog remains open, and hence you can change
parameters quickly. Unlike the butt@X, only the single line you edit or enter is ex-
ecuted, no matter where tie€ is located. Thus, you have to ensure that all the input
variables contain maningful values. By pressipgly, the corresponding output vari-
ables are changed or created, if necessary, to allow you to inspect their values. If you
decide to not enter the line into the program, some unused variables may thus be created.
You can easily remove them by selectifigle > Cleanup.

Cancel clears the contents of the operator window. Thus, there are neither changes in the
program nor in any variables.

Help invokes an appropriate help text for the selected operator. For this the system acti-
vates an HTML-browser (see chapter 2.3).

4.6. VARIABLE WINDOW 65

Operator Name Field

The operator name field is another possibility to select operators. You simply have to enter a
substring of an operator name. By pressiigturn> or pressing the button of the combo box

the system is looking for all operators (in the mé@pgrators) that contain the user-specified
substring (see figure 4.35). If there is an unambiguous search result, the operator is displayed
immediately in the operator window. If there are several matching results, a combo box opens
and displays all operators containing the specified substring. By clicking the left mouse button
you select one operator and the combo box disappears. Now the operator’s parameters are shown
in the operator window.

i HDevelop =]

File Edit Execute “izualization Operators Suggestion: ‘window Help

DB # e =R EeEE B =)
T T~ |

Operator: | SEEEUERE j
read_cam_par =

read_char -
read_class_hox
read_gray_se

read_image
read_kalman
read_ocr
read_ocr_traint

read_ocr_trainf_names

read_ocr_trainf_select =
read_pose
read_region
read_sampset

Figure 4.350perator selection in the operator name field.

If you are already more familiar with HDevelop, it is reasonable to select an operator in the
operator name field. However, in order to do so, you obviously have to be familiar with the
operator names.

4.6 Variable Window

There are two kinds of variables in HALCON. This corresponds to the two parameter types of
HALCON: iconic objects (images, regions, and XLDs) and control data (numbers, strings). In
HALCON the corresponding variables are called iconic and control variables. These variables
may possess a value or be undefined. An undefined variable is created, for example, when load-
ing a program or after inserting an operator with a new variable that is not executed immediately
into a program. You may access these undefined variables by writing them only. If you try to
read such a variable, a runtime error occurs. If a variable obtains a value, the variable type is

66 CHAPTER 4. GRAPHICAL USER INTERFACE

specified more precisely. A control variable that contains, for example, an integer is of type
integer. This type might change after specification of new values for this variakiead or

a tuple ofinteger. But it always remains a control variable. The more refined type is bound

to the value and not to the variable. Similarly, this is the case for iconic variables, which may
contain regions, images, or XLDs. You may assign new values as often as you want to. But you
cannot change them to the state before the first assignment (see above).

Creation of a new variable happens in the operator dialog area during specification of operator
parameters. Here every sequence of characters without single quotation marks is interpreted as
a variable name. If this name did not exist before, the variable is created in the operator dialog
area by pressingK or Enter. The variable type is specified through the type of the parameter
where it was used for the first time: Variables that correspond to an iconic object parameter
create an iconic variable; variables for a control parameter create a control variable. Every time
an operator is excecuted the results are stored in variables connected to its output parameters.
This is done by first deleting the contents of the variable and then assigning the new value to it.
The variable window is a kind of watch window used in window-oriented debuggers. Inside this
window you are able to keep track of variable values. Corresponding to the two variable types,
there are two areas in the variable window. One for iconic data (above) and the other for control
data (below) (see figure 4.36).

i Yarniable Watch

lconic Variables:

Die DieGrey Wires WiresFill~ Balls
| 3

Corntral Wariakbles:
Row: (125.879310345, 130277777775, 130 4111764706, 130.448529412, 124
Column: (117 120689655, 220 5, 326941176471, 429 772055824, 535 5, 641 ¢
Radius: [18.8450195564 , 18.9645276353, 18.3522305752, 19.3302061918, 18
MurmBalls: B
Diarneter: [37.6960391127, 37 1290053706, 36.704477 1504, 30.6604123836, 36
meanDiameter;, 37 6264463801 ?
i e s _'I_I

Figure 4.36Variable window for both iconic and control data.

All computed variables are displayed showing their iconic or control values (see page 27). In
case of a tuple result which is too long, the tuple presentation is shortened, indicated by three
dots.

4.6.1 Area for Iconic Data

Here you can see iconic variables. They are represented by icons, which contain a gray image,
a region or an XLD, depending on the current value. The icons are created depending on the
type of data according the following rules:

4.6. VARIABLE WINDOW 67

¢ In the case of images the icon contains a zoomed version of it filling the icon completely.
Due to the zooming onto the square shape of the icon the aspect ratio of the small image
might be wrong. If there is more than one image in the variable, onlyitstamage is
used for the icon. Similarily for multi channel images only tinst channel is used.

e Regions are displayed by first calculating the smallest surrounding rectangle and then
zooming it so that it fills the icon using a border of one pixel. In contrast to images, the
aspect ratio is always correct. This can lead to black bars at the borders. The color used
to draw the region is always white without further modifications (except zooming).

e XLD data is displayed using the coordinate system of the largest image used so far. The
color used for XLD objects is white on black background.

Due to the different ways of displaying objects you have to be aware that the coordinates cannot
be compared. The variable name is positioned below each icon. They are displayed in the vari-
able window in the order of creation from left to right. If there is not enough space, a horizontal
scrollbar is created, which you can use to scroll the icons.

Clicking on an icon with the mouse will select this icon. This is indicated by the black back-
ground for the icon name. For an activated icon all operators that use the corresponding variable
are marked in the program area with a black rectangle on the left.

Double-clicking with the left mouse button on an icon displays the data in the active graphics
window. If you use images of different sizes in a program, the system uses the following output
strategy for an automatic adaption of the zooming: Every window keeps track of the size of
the most recently displayed image. If you display an image with a different size, the system
modifies the graphics window coordinate system in a way that the image is visible completely
in the graphics window. If a partial zooming has been activated before (see chapter 4.7), it is
going to be suppressed.

Normally, regions, images, and XLDs are represented in variable icons. Besides this there are
three exceptions which are shown by special icons:

e Empty variables are displayed as a question maykcOn. You mayto write but not read
them, because they do not have any values.

e Brackets (1) are used if a variable is instantiated but does not contain an iconic object
(empty tuple). This may be the case using operatorsdikect_shape with “wrong”
specified thresholds or using operatapty_obj. Such a value might be reasonable if
you want to collect iconic objects in a variable gradually in a loogn€at_obj). Here,
an empty tuple is used as starting value for the loop.

e A last exception is aempty regionThis isoneregion that does not contain any pixels
(points), i.e., the area (number of points) is 0. You must not confuse this case with the
empty tuple, because there the area is not defined. The empty region is symbolized by an
empty set icon().

4.6.2 Area for Control Data

To the right of the variable name you find their values in the default represeritatipou spec-
ify more than one value for one variable (tuple), they are separated by commas and enclosed by

"You have to keep in mind that a floating point number without significant fractional part is represented as an
integer (e.g., 1.0 is representedids

68 CHAPTER 4. GRAPHICAL USER INTERFACE

brackets. If the number of values exceeds an upper limit, the output is clipped. This is indicated
by three dots at the end of the tuple. For empty variables, their name aadeashown in the
variable field. An empty tuple is represented @y Both exceptions use the same symbols as
the corresponding cases for the iconic variables.

Clicking on a variable will select it. Similar to iconic variables, all program lines that use this
variable are then marked with a black rectangle on the left.

Double-clicking a control variable opens a window that displays all its values. In most cases
this will be a dialog containing a scrolled list. This is helpful if you have variables with a
large number of values that you want to inspect. In the case of a framegrabber handle, a dialog

FGHandle

whicith: |E4D

Height: I‘QE"j

Mame: IPHC

Pixel: Irgb |24

Part: I-1

Device: |-1

Trigger: Ifﬁ|SE

online [

Status: I

Figure 4.37Variable inspection for framegrabber handles.

representing basic framegrabber parameters is opened (see figure 4.37). Here you find the size,
name, device, port, and other features of the framegrabber. The toggle ittare allows to

grab images continuously and to display them in the active graphics window. If an error occurs
during grabbing, itis displayed in the status bar of the dialog. At most one of these framegrabber
dialogs can be opened at the same time.

4.7 Graphics Window

This window displays iconic data. It has the following properties:
e The user may open several graphics windows.
e The active graphics window is shown by the green dot inAittei ve button.

e Pressing thelear button clears the graphics window content and the history of the
window.

e You close a graphics window using the close button of the window frame.

4.7. GRAPHICS WINDOW 69

i Graphics Window

Clear Active D

Figure 4.38HDevelop’s graphics window.

Figure 4.38 shows an example for a graphics window.

The the origin of the graphics window is the upper left corner with the coordinates (0,0). The x
values (column) increase from left to right, the y values increase from top to bottom. Normally,
the coordinate system of the graphics window corresponds to the the most recently displayed
image, which is automatically zoomed so that every pixel of the image is visible. The coordinate
system can be changed interactively using the n¥emualization > Set Parameters...

> Zoom (See section 4.3.2) or with the operatav_set_part (see page 50). Every time an
image with another size is displayed, the coordinate system will be adapted automatically.
Each window has a history that contains all

e objects and
e display parameters

that have been displayed or changed since the most réteat or display of an image. This
history is used for redrawing the contents of the window. The history is limited to a maximum
number of 30 “redraw actions”, where one redraw action contains all objects of one displayed
variable.

70 CHAPTER 4. GRAPHICAL USER INTERFACE

Other output like text or general graphics li&esp_line or disp_circle or iconic data that
displayed using HALCON operators like sp_image or disp_region arenot part of the his-

tory, and arenot redrawn. Only the object classes image, region, and XLD that are displayed
with the HDevelop operatodev_display or by double clicking on an icon are part of the
history.

You may change the size of the graphics window interactively by “gripping” the window border
with the mouse. Then you can resize the window by dragging the mouse pointer. After this size
modification the window content is redisplayed. Now you see the same part of the window with
changed zoom.

The menu area of the graphics window has an additional function: If the mouse cursor is in this
area the look up table of the window is reactivated. This is necessary if other programs use their
own look up table. Thus if there is a “strange” graphics window presentation, you may load the
proper look up table by placing the mouse near the buttons.

If you want to specify display parameters for a window you may select the menu item
Visualization in the menu bar. Here you can set the appropriate parameters by clicking the
desired item (see section 4.3.2). The parameters you have set in this way are @dedifor

dows. The effects of the new parameters will be applied direcly ttasiebject of the window
history and alter its parameters only.

For further information on parameter effects please refer to the appropriate HALCON operators
in the reference manual.

Chapter 5
Language

The following chapter introduces the syntax and the semantics of the HDevelop language. In
other words, itillustrates what you can enter into a parameter slot of an operator. In the simplest
case this is the name of a variable, but it might also be an expressiosglik&€A) . Besides,
control structures (like loops) and the semantics of parameter passing are described.

Chapter 7 explains the application of this language in image analysis. However, the HAL-
CON operators are not described in this chapter. For this purpose refer to the HALCON ref-
erence manual. All program examples used in this chapter can also be found in the directory
$HALCONROOT/examples/hdevelop/Manuals/HDevelop.

5.1 Basic Types of Parameters

HALCON distinguishes two kinds of data: control data (numerical/string) and iconic data (im-
ages, regions, etc.).

By further distinguishingnput from output parametersve get four different kinds of parame-

ters. These four kinds always appear in the same order in the HDevelop parameter list. Table 5.1
shows their order of appearance.

iconic | input
iconic | output
control | input
control | output

Table 5.1:0rder of appearance of the four basic parameter types

As you see, iconic input objects are always passed as the first parameter(s), followed by the
iconic output objects. The iconic data is followed by the control data, and again, the input
parameters succeed the output parameters. Each parameter is separated from its neighbours by
acomma:

read_image (Image, ’Name’)
area_center (Region, Area, Row, Column)
mean_image (Image, Mean, 11, 11)

71

72 CHAPTER 5. LANGUAGE

In the above example the operatgrad_image has one output parameter for iconic objects
(Image) and one input control parameter (flename}ea_center accepts regions as in-

put (iconic) and three control parameters as outpuéd, Row, Column). The filter operator
mean_image has one iconic parameter as input and one as output. Its two input control parame-
ters specify the size of the filter mask.

Input control parameters can either be variables, constants or even complex expressions. An
expression is evaluatdxbforeit is passed to a parameter that receives the result of the evalua-
tion. Since iconic objects always are represented by variables all iconic parameters only accept
variables. Control output parameters must always contain variables, too, as they store the results
of an operator evaluation.

5.2 Control Types and Constants

All non-iconic data is represented by so caltexhtrol data(numerical/string) in HDevelop. The

name is derived from their respective functions within HALCON operators wherectirgyol

the behaviour (the effect) of image processing operators (e.g., thresholds for a segmentation
operator). Control parameters in HDevelop may contain arithmetic or logical operations. A
control data item can be of one of the following typesteger, real, boolean, andstring.

e The typesinteger andreal are used under the same syntactical rules as in C. Integer
numbers can be input in the standard decimal notation, in hexadecimal by prefixing the
number withOx, and in octal by prefixing the number with For example:

4711

-123
Oxfebl2
073421
73.815
0.32214

.56
-17.32e-122
32E19

Data items of typenteger or real are converted to their machine-internal representa-
tions:real becomes the C-typ#uble (8 bytes) andnteger becomes the C-typbong
(4 or 8 bytes).

e A String (string) is a sequence of characters that is enclosed in single qugteBhe
maximum string length is limited to 1024 characters. Special characters, like the line feed,
are represented in the C-like notation, as you can see in table 5.2 (see the reference of the
C language for comparison). Examples of strings are shown in table 5.3.

e The constantsrue andfalse belong to the typ@oolean. The valuetrue is internally
represented by the number 1 and the vahiese by 0. This means, that in the expression
Val := true the effective value ofal is set to 1. In general, every integer vak4eO
meangrue. Please note that some HALCON operators take logical values for input (e.g.,
set_system). In this case the HALCON operators expect string constants tikee’ or
>false’ rather than the represented valtiese or false.

5.2. CONTROL TYPES AND CONSTANTS 73

Meaning Abbreviation| Notation
line feed NL (LF) \n
horizontal tabulator HT \t
vertical tabulator | VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
bell BEL \a
backslash \ \\
single quote) \’

Table 5.2:Surrogates for special characters

String Meaning

’Hugo’ letters

’10.9° numbers (noteal)
>Text...\n’ NL at the end of the string

two tabs in a text
single quote within the tex
Directory

"\t Textl \t Text2’
’Sobel\’s edge-filter’
>c:\\Programs\\MVTec\\Halcon\\images’

—

Table 5.3:String examples

e There are constants for the return value (result state) of an operator. The constants can
be used together with the operattav_error_var anddev_set_check. These constants
represent the normal return value of an operator, so callessaged-or errors no con-
stants are availableln table 5.4 all return messages can be found.

Constant Meaning Value
H_MSG_TRUE | No error; for tests:f{rue) 2
H_MSG_FALSE | For testsfalse 3
H_MSG_VOID | No result could be computed4
H_MSG_FAIL | Operator did not succeed |5

Table 5.4:Return values for operators

The control types are only used within the generic HDevelop typée A tuple of length 1

is interpreted as an atomic value. A tuple may consist of several numerical data items with
differenttypes. The standard representation of a tuple is a listing of its elements included into
brackets (see figure 5.1).

[1 specifies the empty tuple. A Tuple with just one element is to be considered as a special case,
because it can either be specified in the tuple notation or as an atomic ¥@$dedefines the

same constant &b. Examples for tuples are:

1There exist more than 400 error numbers internally (see C-Interface Manual).

74 CHAPTER 5. LANGUAGE

Tuple constant Vaue

e
i nteger
HII

bool ean

Figure 5.1:The syntax of tuple constants.

(]

4711

0.815

’Text’

[16]
[100.0,100.0,200.0,200.0]
[’FileName’,’Extension’]
[4711,0.815, Hugo’]

The maximum length of a tuple is limited to 2000000.

5.3 Variables

Names of variables are built up as usual by composing letters, digits and the underscore
maximum length of a variable name is limited to 256 characters. The kind of a variable (iconic
or control variable) depends on its position in the parameter list in which the variable identifier
Is used for the first time (see also chapter 5.1). The kind of the variable is determined during
the input of the operator parameters: whenever a new identifier appears, a new variable with the
same identifier is created. Control and iconic variables must have different names. The value
of a variable (iconic or control) is undefined until the first assignment defines it (the variable
hasn’t been instantiated yet). A read access to an undefined variable leads to a runtime error
(Variable <x> not instantiated).

Instantiated variables contain tuples of values. Depending on the kind of the variable the data
items are either iconic objects or control data. The length of the tuple is determined dynamically
by the performed operation. A variable can get new values any number of times, but once a value
has been assigned the variable will always keep beeing instantiated, unless you select the menu
itemExecute > Reset Program. The content of the variable is deleted before the variable is
assigned with new values.

The concept of different kinds of variables allows a first (“coarse”) typification of variables
(control or iconic data), whereas the actual type of the data tegl, integer, string, etc.)

is undefined until the variable gets assigned with a concrete value. Therefore, it is possible that
the type of a new data item differs from that of the old.

5.4. OPERATIONS ON ICONIC OBJECTS 75

5.4 Operations on Iconic Objects

Iconic objects are exclusively processed by HALCON operators. HALCON operators work
on tuples of iconic objects, which are represented by their surrogates in the HALCON data
management. The results of those operators are again tuples of iconic objects or control data
elements. For a detailed description of the HALCON operators refer to the HALCON reference
manual and the remarks in chapter 5.5.3.

5.5 Expressions for Input Control Parameters

In HDevelop, the use of expressions is limited to control input parameters; all other kinds of
parameters must be assigned by variables.

5.5.1 General Features of Tuple Operations

This chapter is intended to give you a short overview over the features of tuples and their op-
erations. A more detailed description of each operator mentioned here is given in the following
sections.

Please note that in all following tables variables and constants have been substituted by letters.
These letters give information about possible limitations of the areas of definition. A single letter
(inside these tables) represents a data type. Operations on these symbols can only be applied to
parameters of the indicated type or to expressions that return a result of the indicated type. To
begin with, table 5.5 specifies the names and types of the symbolic names.

Symbol| Types
i integer
arithmetic, that isinteger orreal
boolean
string
all types (atomic)
all types (tuple)

[ST ¢ B o V)

Table 5.5:Symbolic variables for the operation-description

Operators are normally described for atomic tuples (tuples of length 1). If the tuple contains
more than one element, most operators work as follows:

¢ If one of the tuples is of length one, all elements of the other tuples are combined with
that single value for the chosen operation.

e If both tuples have a length greater than one, both tuples must have the same length
(otherwise a runtime error occurs). In this case, the selected operation is applied to all
elements with the same index. The length of the resulting tuples is identical to the length
of the input tuples.

o If one of the tuples is of length O_{), a runtime error occurs.

In table 5.6 you can find some examples for arithmetic operations with tuples. In this example
you should pay special attention to the order in which the string concatenations are performed.

76 CHAPTER 5. LANGUAGE

Input Result

5 % 5 25

[6] = [5] 25

[1,2,3] * 2 [2,4,6]

[1,2,3] *x 2.1 + 10 [12.1,14.2,16.3]
[1,2,3] *x [1,2,3] [1,4,9]

[1,2,3] * [1,2] runtime error
’Textl’ + ’Text2’ ’Text1Text2’
17.23 + ’ Text’ ’17.23 Text’
"Textl > + 99 + ’ Text2’ | 'Textl 99 Text2’
’Text > + 3.1 % 2 ’Text 6.2°

3.1 x (2 + 7 Text’) runtime error

3.1 + 2+’ Text’ ’5.1 Text’

3.1 + (2 + 7 Text’)) ’3.12 Text’
’Text > + 2.1 + 3 ’Text 2.13°

Table 5.6:Examples for arithmetic operations with tuples and strings

5.5.2 Assignment

In HDevelop, an assignment is treated like an operator. To use an assignment you have to select
the operatonssign (Input, Result). This operator has the following semantics: It evalu-
atesInput (right side of assignment) and stores iR#sult (left side of assignment). However,

in the program text the assignment is represented by the usual syntax of the assignment opera-
tor: ' :=". The following example outlines the difference between an assignment in C syntax and
its transformed version in HDevelop:

The assignment in C syntax

u = sin(x) + cos(y);

is defined in HDevelop using the assignment operator as
assign(sin(x) + cos(y), u)

which is displayed in the program window as:
u := sin(x) + cos(y)

If the result of the expression doesn’'t need to be stored into a variable, the expression can
directly be used as input value for any operator. Therefore, an assignment is necessary only if
the value has to be used several times or if the variable has to be initialized (e.g., for a loop).

A second assignment operator is availablaisert (Input,Value, Index,Result)). It is

used to assign tuple elements. If the first input parameter and the first output parameter are
identical, the call:

insert (Areas, Area, Radius-1, Areas)

IS not presented in the program text as an operator call, but in the more intuitive form as:

Areas[Radius-1] := Area.

5.5. EXPRESSIONS FOR INPUT CONTROL PARAMETERS 77

To construct a tuple withinsert, normally an empty tuple is used as initial value and the
elements are inserted in a loop:

Tuple = []

for i := 0 to b5 by 1
Tuple[i] = sqrt(real(i))

endfor

As you can see from this example, the indices of a tuple start at O.
An insertion into a tuple can generally be performed in one of the following ways:

() In case of appending the value at the ’back’ or at the 'front’, the concatenation can be
used. Here thessign operator is used with the following parameters:

assign([Tuple,NewVal],Tuple)
which is displayed as
Tuple := [Tuple,NewVal]

(ii) If the index position is somewhere in between, the operatafert has to be used. It
takes the following arguments as input: first the tuple in which the new value should be
inserted; then the new value and after that the index position as the third input parameter.
The result (the fourth parameter) is almost identical with the input tuple, except of the
new value at the defined index position.

In the following example regions are dilated with a circle mask and afterwards the areas are
stored into the tupl@reas. In this case the operatansert is used.

read_image (Mreut, ’mreut’)

threshold (Mreut, Region, 190, 255)

Areas := []

for Radius :=1 to 50 by 1
dilation_circle (Region, RegionDilation, Radius)
area_center (RegionDilation, Area, Row, Column)
Areas[Radius-1] := Area

endfor

Please note that first the variallleeas has to be initialized in order to avoid a runtime error.
In the exampléireas is initialized with the empty tuple[(). Instead ofinsert the operator
assign with tuple concatenation

Areas := [Areas,Area]

could be used, because the element is appended at the back of the tuple.
More examples can be found in the prograssign.dev.

78 CHAPTER 5. LANGUAGE

[t,t] concatenation of tuples
It| number of elements
t[i] selection of an element
t[i:1] selection of (a part of) a tupl

(1%}

Table 5.7:Basic operations on tuples

5.5.3 Basic Tuple Operations

A basic tuple operation may be selecting one or more values, combining tuples (concatenation)
or reading the number of elements.

The concatenation accepts one or more variables or constants as input. They are all listed be-
tween the brackets, separated by commas. The result again is a tuple.

[t1,t2] is the concatenation of tuptg andt,. Example:

[[5,’Text’],[5.9]]1 — [5,’Text’,5.9]

So even the following hold<:[t]1] = [t] = t.

It| returns the number of elements of a tuple. The indices of elements range from zero to the
number of elements minus one (i.et,| -1). Therefore, the selection index has to be within this
range?

Tuple := [V1,V2,V3,V4]

for i := 0 to [Tuplel-1 by 1
fwrite_string (FileHandle,Tuple[i]+’\n’)

endfor

There are no direct operations on parameter position for the handling of iconic variables. This
means that single iconic objects cannot be directly selected using [] and their number cannot be
directly determined using []. For this purpose, however, HALCON operators are offered which
carry out the equivalent tasks. In table 5.8 you can see tuple operations that work on control data
and their counterparts that work on iconic data. In the table the symi@gresents a control

tuple, and the symbols andq represent iconic tuples. Further examples can be found in the
progranttuple.dev.

control | iconic

[l empty_obj O

[t] count_obj (p, num)

[t1,t2] | concat_obj (pl, p2, q)
t[i] select_obj(p, q, i+1, 1)
t[i,j] copy_obj(p, q, i+1l, j-i+1)

Table 5.8:Equivalent tuple operations for control and iconic data

2Please note that the index of objects (esglect_object) ranges from 1 to the number of elements.

5.5. EXPRESSIONS FOR INPUT CONTROL PARAMETERS 79

5.5.4 Tuple Creation

The simplest way to create a tuple, as mentioned in section 5.2, is the use of constants together
with theassign operator:

assign([],empty_tuple)
assign(4711,one_integer)
assign([4711,0.815],two_numbers)

This code is displayed as

L]
4711
[4711,0.815]

empty_tuple :
one_integer :
two_numbers :

This is useful for constant tuples with a fixed (small) length. More general tuples can be created
by successive application of the concatenation oritl¥ert function together with variables,
expressions or constants. If we want to generate a tuple of length 100, where each element has
the value 4711, it might be done like this:

assign([],tuple)
for i :=1 to 100 by 1
assign([tuple,4711],tuple)

which is transformed to

tuple := []
for i :=1 to 100 by 1
tuple := [tuple,4711]

Because this is not very convenient a special function cgladtuple_const is available to
construct a tuple of a given length, where each element has the same value. Using this function,
the program from above is reduced to:

assign(gen_tuple_const(100,4711) ,tuple)
which is displaed as
tuple := gen_tuple_const(100,4711)

If we want to construct a tuple with the same length as a given tuple there are two ways to get
an easy solution, The first one is basedzen_tuple_const:

assign(gen_tuple_const(|tuple_old|,4711),tuple_new)
which is displayed as
tuple_new := gen_tuple_const(|tuple_old|,4711)
The second one is a bit tricky and uses arithmetic functions:
assign((tuple_old * 0) + 4711,tuple_new)

which is displaed as

80 CHAPTER 5. LANGUAGE

tuple_new := (tuple_old * 0) + 4711

Here we get first a tuple of the same length with every element set to zero. Then we add the
constant to each element.

In the case of tuples with different values we have to use the loop version to assign the values
to each position:

assign([],tuple)
for i :=1 to 100 by 1
assign([tuple,ix*i],tuple)

which is displaed as

tuple := []
for i :=1 to 100 by 1
tuple := [tuple,ixi]

In this example we construct a tuple with the square values trotm 1002,

5.5.5 Simple Arithmetic Operations

Table 5.9 shows an overview of the available simple arithmetic operations.

All operations are left-associative, except the right-associative unary minus operator. The evalu-
ation usually is done from left to right. However, parentheses can change the order of evaluation
and some operators have a higher precedence than others (see chapter 5.5.14). The arithmetic

division

multiplication

addition andconcatenatiorof strings
subtraction

-a negation

PSP
+ * N
PSP

Table 5.9:Arithmetic operations

operations in HDevelop match the usual definitions. Expressions can have any number of paren-
theses.

The division operatora / a) can be applied tanteger as well as tareal. The result is of
typereal, if at least one of the operands is of typeal. If both operands are of typmteger

the division is an integer division. The remaining arithmetic operators (multiplication, addition,
subtraction, and negation) can be applied to eithereger or real numbers. If at least one
operand is of typeeal, the result will be aeal number as well. In the following example.

Vi := 4/3
V2 := 4/3.0
V3 := (4/3) * 2.0

V1is setto 1V2 to 1.3333333, andi3 to 2.0. Simple examples can be found in the program
arithmetic.dev.

5.5. EXPRESSIONS FOR INPUT CONTROL PARAMETERS 81

5.5.6 Bit Operations

This section describes the operators for bit processing of numbers. The operands have to be
integers.

1sh(i,i) left shift
rsh(i,i) right shift
i band i bitwise and
i bor i bitwise or
i bxor i bitwise xor
bnot i bitwise complement

Table 5.108Bit operations

The result oflsh(i1,12) is a bitwise left shift ofi1 that is appliedi2 times. If there is no
overflow this is equivalent to a multiplication /2. The result ofrsh(i1,i2) is a bitwise

right shift of i1 that is appliedi2 times. For non-negativel this is equivalent to a division

by 212, For negativei1 the result depends on the used hardware.llsarandrsh the result

is undefined if the second operand has a negative value or the value is larger than 32. More
examples can be found in the progratit . dev.

5.5.7 String Operations

There are several string operations available to modify, select and combine strings. Furthermore,
some operations allow to convert numbearsal andinteger) to strings.

v$s string conversion
v + v concatenatiorof strings and addition
strchr(s,s) search character in string
strstr(s,s) search substring
strrchr(s,s) search character in string (reverse)
strrstr(s,s) search substring (reverse)
strlen(s) length of string
s{i} selection of one character
s{i:i} selection of substring
split(s,s) splitting in substrings

Table 5.11String operations

$ converts numbers to strings or modifies strings. The operator has two parameters: The first one
(left of the$) is the number that has to be converted. The second one (right 6§ gpecifies
the conversion. This format string consists of the following four parts

<flags><field width><precision><conversion characters>

So a conversion might look like

82 CHAPTER 5. LANGUAGE

1332.4554 § ’.6¢e’

flags Zero or more flags, in any order, which modify the meaning of the conversion specifi-
cation. Flags may consist of the following characters:

- The result of the conversion is left justified within the field.
+ The result of a signed conversion always begins with a signm,-.

<space> If the first character of a signed conversion is not a sign, a space character is
prefixed to the result. This means that if the space flag+aftaly both appear, the
space flag is ignored.

The value is to be converted to an “alternate form”. Boand s conversions, this
flag has no effect. Fos conversion (see below), it increases the precision to force
the first digit of the result to be a zero. Foror X conversion (see below), a non-
zero result hasx or 0X prefixed to it. Fore, E, £, g, andG conversions, the result
always contains a radix character, even if no digits follow the radix characteg. For
andG conversions, trailing zeros are not removed from the result, contrary to usual
behavior.

field width An optional string of decimal digits to specify a minimum field width. For an
output field, if the converted value has fewer characters than the field width, it is padded
on the left (or right, if the left-adjustment flag, - has been given) to the field width.

precision The precision specifies the minimum number of digits to appear fat,tbex, or
X conversions (the field is padded with leading zeros), the number of digits to appear after
the radix character for the e and f conversions, the maximum number of significant digits
for the g conversion, or the maximum number of characters to be printed from a string
in s conversion. The precision takes the form of a periddllowed by a decimal digit
string. A null digit string is treated as a zero.

conversion characters A conversion character indicates the type of conversion to be ap-
plied:

d,o0,x,X The integer argument is printed in signed decim@l (unsigned octal d),
or unsigned hexadecimal notation 4nd X). The x conversion uses the numbers
and letter9123456789abcdef, and theX conversion uses the numbers and letters
0123456789ABCDEF. The precision component of the argument specifies the min-
imum number of digits to appear. If the value being converted can be represented
in fewer digits than the specified minimum, it is expanded with leading zeroes. The
default precision is 1. The result of converting a zero value with a precision of 0 is
no characters.

f The floating-point number argument is printed in decimal notation in the style
[-]1dddrddd, where the number of digits after the radix charactens equal to
the precision specification. If the precision is omitted from the argument, six digits
are output; if the precision is explicitly 0, no radix appears.

e,E The floating-point-number argument is printed in the st#@édrddde+dd, where
there is one digit before the radix character, and the number of digits after it is
equal to the precision. When the precision is missing, six digits are produced; if the

5.5. EXPRESSIONS FOR INPUT CONTROL PARAMETERS 83

precision is 0, no radix character appears. Enmnversion character produces a
number withE introducing the exponent insteadefThe exponent always contains

at least two digits. However, if the value to be printed requires an exponent greater
than two digits, additional exponent digits are printed as necessary.

g,G The floating-point-number argument s printed in styter e (or in styleE in the case
of aG conversion character), with the precision specifying the number of significant
digits. The style used depends on the value converted; stideused only if the
exponent resulting from the conversion is less than -h or greater than or equal to
the precision. Trailing zeros are removed from the result. A radix character appears
only if it is followed by a digit.

s The argument is taken to be a string, and characters from the string are printed until
the end of the string or the number of characters indicated by the precision specifi-
cation of the argument is reached. If the precision is omitted from the argument, it
Is interpreted as infinite and all characters up to the end of the string are printed.

b Similar to the s conversion specifier, except that the string can contain backslash-escape
sequences which are then converted to the characters they represent.

In no case does a nonexistent or insufficient field width cause truncation of a field; if the
result of a conversion is wider than the field width, the field is simply expanded to contain
the conversion result.

Examples for the string conversion can be found in the programning . dev.

The string concatenatior) can be applied in combination with strings or all numerical types;

If necessary, the operands are first transformed into strings (according to their standard repre-
sentation). At least one of the operands has to be already a string so that the operator can act as a
string concatenator. In the following example a filename (eligme5 . tiff’) is generated. For

this purpose two string constantdiéme’ and’ .tiff’) and an integer value (the loop-index

i) are concatenated:

for i := 1 to b by 1
read_image (Bild, ’Name’+i+’.tiff’)
endfor

str(r)chr(s1,s2) returns the index of the first (last) as a tuple occurrence of one character in
s2 in strings1, or -1 if none of the characters occurs in the string.

str(r)str(sl,s2) returns the index of the first (last) occurrence of string s2 in string s1, or
-1 if s2 does not occur in the string.

strlen(s) returns the number of characterssin

s{1i} returns the character at index positioin s. The index ranges from zero to the length of
the string minus 1. The result of the operator is a string of length one.

s{i1:i2} returns all characters from index positibn up to positioni2 in s as a string. The
index ranges from zero to the length of the string minus 1.

split(s1,s2) devides the string1 into single substrings. The string is split at those positions
where it contains a character frasp. As an example the result of

split(’/usr/image:/usr/proj/image’,’:’)
consists of the two strings

[’/usr/image’,’/usr/proj/image’]

84 CHAPTER 5. LANGUAGE

5.5.8 Comparison Operators

In HDevelop, the comparison operators are defined not only on atomic values, but also on tuples
with an arbitrary number of elements. They always return values oftypeean. Table 5.12
shows all comparison operators.

t < t lessthan
t > t greater than
t <=t lessorequal
t >= t greater or equal
t =t equal
t # t notequal

Table 5.12Comparison operators

t = t andt # t are defined on all types. Two tuples are equalg), if they have the same
length and all the data items on each index position are equal. If the operands have different
types fnteger andreal), the integer values are first transformed intal numbers. Values

of typestring cannot be mixed up with numbers, i.etring values are considered to be not
equal to values of other types.

1st Operand 2nd Operand Operation| Result
1 1.0 = true
(1 (] = true
20 (] = false
[1,°2°] [1,2] = false
[1,2,3] [1,2] = false
[4711, ’Hugo’] | [4711, Hugo’] | = true
’Hugo’ ’hugo’ = false
2 1 > true
2 1.0 > true
[5,4,1] [5,4] > true
[2,1] [2,0] > true
true false > true
’Hugo’ ’hugo’ < true

Table 5.13Examples for the comparison of tuples

The four comparison operators compute the lexicographic order of tuples. On equal index po-
sitions the types must be identical, however, values of typeger, real andboolean are
adapted automatically. The lexicographic order applies to strings, artsbthean false is
considered to be smaller than the booleate (false < true). Inthe prograntompare.dev

you can find examples for the comparison operators.

5.5.9 Boolean Operators

The boolean operatossid, or, xor andnot are defined only for tuples of lengthl.and 1is
set totrue (1) if both operands arerue (1), wheread or 1 returnstrue (1) if at least one of

5.5. EXPRESSIONS FOR INPUT CONTROL PARAMETERS 85

not 1 negation
1 and 1 logical 'and’
1 or 1 logical 'or
1 xor 1 logical 'xor’

Table 5.14Boolean operators

the operands isrue (1).1 xor 1 returntrue (1) if exactly one of both operands is trust
1 returnstrue (1) if the input isfalse (0), andfalse (0), if the input istrue (1).

5.5.10 Trigonometric Functions

All these functions work on tuples of numbers as arguments. The input can either be of type
integer Orreal. However, the resulting type will be of typeal. The functions are applied to

all tuple values and the resulting tuple has the same length as the input tupleak®the two

input tuples have to be of equal length. Table 5.15 shows the provided trigonometric functions.

sin(a) sine ofa

cos(a) cosine ofa

tan(a) tangent ofa
asin(a) arc sine ok inthe intervall -7 /2, 7/2],a € [-1,1]
acos(a) arccosinexintheintervall -7/2,7/2],a € [—1,1]
atan(a) arctangent intheintervall F-7/2,7/2],a € [-1,1]

atan2(a,b) arc tangen&/b in the intervall -7, 7]

sinh(a) hyperbolic sine ok
cosh(a) hyperbolic cosine o4&
tanh(a) hyperbolic tangent oi

Table 5.15Trigonometric functions

For the trigonometric functions the angle is specified in radians.

5.5.11 Exponential Functions

All these functions work on tuples of numbers as arguments. The input can either be of type
integer or real. However, the resulting type will be of typeal. The functions are applied

to all tuple values and the resulting tuple has the same length as the input tuppewFaord

1dexp the two input tuples have to be of equal length. Table 5.16 shows the provided exponential
functions.

5.5.12 Numerical Functions

The functionanin andmax select the minimum and the maximum values of the tuple values.
All values either have to be of typsring, or integer/real. It is not allowed to mix strings
with numerical values. The resulting value will be of tyyea1, if at least one of the elements

is of typereal. If all elements are of typenteger the resulting value will also be of type

86 CHAPTER 5. LANGUAGE

exp(a) exponential functior®
log(a) natural logarithmn(a), a> 0
logil0(a) decadic logarithmlog,,(a), a> 0
pow(al,a2) a12
ldexp(al,a2) al .0a2

Table 5.16Exponential functions

integer. The same applies to the functieam that determines the sum of all values. If the
iInput arguments are strings, string concatenation will be used instead of addition.

min(t) minimum value of the tuple
max(t) maximum value of the tuple
sum(t) sum of all elements of the tuple
or string concatenation
mean(a) mean value
deviation(a) standard deviation
sqrt(a) square root/a
deg(a) convert radians to degrees
rad(a) convert degrees to radians
real(a) convertinteger toreal
round(a) convertreal to integer
abs(a) absolute value o (integer orreal)
fabs(a) absolute value of (alwaysreal)
ceil(a) smallestinteger value not smaller than
floor(a) largestinteger value not greater than
fmod(al,a2) fractional part ofa1/a2, with the same sign ast

Table 5.17Numerical functions

The functionssqrt, mean, deviation, deg, rad, fabs, ceil, floor andfmod can work with
integer andreal; the result is always of typeeal.

The functiomean calculates the mean value adwlriation the standard deviation of numbers.
sqrt calculates the square root of a number.

deg andrad convert numbers from radians to degrees and from degrees to radians, respectively.
The functionround always returns atinteger value and the functioabs always returns the
absolut value that is of the same type as the input value.

real converts annteger to areal. Forreal as input it returns the input.

round converts areal to aninteger and rounds the value. Fanteger it returns the input.
The following example (filenameiuclid_distance.dev) shows the use of some numerical
functions:

Vi := [18.8,132.4,33,19.3]

V2 := [233.23,32.786,234.4224,63.33]
Diff := V1 - V2

Distance := sqrt(sum(Diff * Diff))

5.5. EXPRESSIONS FOR INPUT CONTROL PARAMETERS 87

Dotvalue := sum(V1 * V2)

First, the Euclidian distance of the two vect@iisandVv2 is computed, by using the formula:

d= \/Z (V1 — V2,)2

The difference and the multiplication (square) are successively applied to each element of both
vectors. Afterwardsum computes the sum of the squares. Then the square root of the sum is
calculated. After that the dot productwf andv2 is determined by the formula:

(VLV2) =3 (V1i*V2)

)

5.5.13 Miscellaneous Functions

sort(t) sorting in increasing order
sort_index(t) return index instead of values
inverse(t) reverse the order of the values
number (v) convertstring to a number
is_number (v) testif value is a number
environment (s) Vvalue of an environment variable
ord(a) ASCII number of a character
chr(a) convert an ASCII number to a character
ords(s) ASCII number of a tuple of strings
chrt (i) convert atuple of integers into a string

Table 5.18Miscellaneous functions

sort sorts the tuple values in ascending order, that means, that the first value of the resulting
tuple is the smallest one. But again: strings must not be mixed up with nunsbetsindex

sorts the tuple values in ascending order, but in contraséie it returns the index positions
(0..) of the sorted values.

The functioninverse reverses the order of the tuple values. Batlrt andinverse are the
identity operation, if the input is empty, if the tuple is of length 1, or if the tuple contains only
one value in all positions, e.g., [1,1,...,1].

number converts astring to aninteger or areal depending on the representation. For
integer andreal it returns the input.

is_number returnstrue for numbers andtring if it represents a number.

environment returns the value of an environment variable. Input is the name of the environment
variable as a string.

ord gives the ASCIlI number of a character asiameger. chr converts an ASCIl number to a
character.

ords converts a tuple of strings into a tuple of (ASCII) integeis:t converts a tuple of integers

into a string.

88

5.5.14 Operator Precedence

Table 5.19 shows the precedence of the operators for control data. Some operations (like func-

CHAPTER 5. LANGUAGE

tions,| |, t[], etc.) are left out, because they mark their arguments clearly.

or, xor, bor, bxor
and, band

#, =

<=,>=,¢,>

+ -

/, *

- (unary minusy; !
$

Table 5.190perator precedence (increasing from top to bottom)

5.6 Reserved Words

The strings shown in table 5.20 are reserved words and their usage is strictly limited to their

predefined meaning. They cannot be used as variables.

true false and

X0r bor bxor

ord chrt ords

bnot not sum

cos tan asin

atan sinh cosh

exp log logl0
floor atan2 pow

abs fmod ldexp

deg rad min

sort inverse strlen
strrchr strstr strrstr
environment is_number number
1sh rsh deviation
sqrt gen_tuple_const H_MSG_TRUE
H_MSG_FAIL H_MSG_VOID

or
chr

band

sin

acos

tanh

ceil

fabs

round

max

strchr
split

real

mean
H_MSG_FALSE

Table 5.20Reserved words

5.7 Control Structures

HDevelop provides the following constructs to structure programs:

5.7. CONTROL STRUCTURES 89

e The simplest control structure if. The condition contains a boolean expression. If the
condition is true, the body is executed. Otherwise the execution is continued at the first
expression or operator call that follows the wetdiif.

if (<Condition>)
endif

¢ Another simple control structure is the condition with alternative. If the condition is true,
all expressions and calls between the head and the wwmtdlf are performed. If the
condition is false the part betweense andendif is executed. Note that the operator is
calledifelse and itis displayed asf in the program text area.

if (<Condition>)
else
endif

e Thewhile loop has a boolean expression as the conditional part. As long asritié$
the body of the loop is performed. In order to enter the loop, the condition has to be true
in the first place.

while (<Condition>)
endwhile
In chapter 7.3 you can find an example for usingithé&le loop.

e Thefor loop is controlled by a start and termination value and an incrementation value
that determines the number of loop steps. These values may also be expressions which
are evaluated immediately before the loop is entered. The expressions may be of type
integer or of typereal. If all input values are of typenteger the loop variable will
also be of typeinteger. In all other cases the loop variable will be of typeal. If the
start value is less or equal to the termination value, the loop index is assigned with the
starting value and the body of the loop is entered. If the increment is less than zero the
loop is entered if the start value is larger or equal to the end value. Each time the body is
executed, the loop index is incremented by the incrementation value. If the loop index is
equal to the termination value, the body of the loop is performed for the last time. If the
loop index is larger than the termination value the body will not be excecuted any fonger.
Please note that it is not necessary, that the loop index has to be equal to the termination
value before terminating the loop. The loop index is set to the termination value when
the loop is being left. Please note, that the expressions for start and termination value
are evaluated only once whentering the loopA modification of a variable that appears
within these expressions has no influence on the termination of the loop. The same applies
to the modifications of the loop index. It also has no influence on the termination. The loop

3For negative increment values the loop is terminated if the loop index is less than the termination value.

90 CHAPTER 5. LANGUAGE

value is assigned to the correct value each timeftheoperator is executed. For more
details, see section 6.1.4 on the code generatidoofoops.

If the for loop is left too early (e.g., if you preskop and set the’C) and the loop is
entered again, the expressions will be evaluated, as if the loop were entered for the first
time.

for <loop value> := <Start> to <End> by <Increment>

endfor
In the following example the sine from O up tar 6s computed and printed in to the
graphical window (filenamegine.dev):

old_x := 0

old_y := 0

dev_set_color (’red’)

dev_set_part(0, 0, 511, 511)

for x :=1 to 511 by 1
y := sin(x / 511.0 * 2 * 3.1416 * 3) * 255
disp_line (WindowID, -old_y+256, old_x, -y+256, x)

old_x := x
old_y =y
endfor

In this example the assumption is made that the window is of size512. The drawing
is always done from the most recently evaluated point to the current point.

Further examples on how to use ther loop can be found in chapter 7.8 and 7.9.

e stop stops the program after the operator is executed. The program can be continued by
pressing the&tep or Run button.

e exit terminateghe session of HDevelop.

5.8 Limitations

This section summarizes the restritions of the HDevelop language:
e Maximum number of objects per parameter : 100000
e Maximum length of strings : 1024 characters
e Maximum length of a variable name : 256 characters
e Maximum length of a tuple : 2000000

The general restrictions of the HALCON operators can be found in the “Getting Started” Man-
ual.

Chapter 6

Code Generation

The idea of code generation is as follows: After developing a program according to the given
requirements it has to be transferred to its final environment. Here, you often don’t want to
use HDevelop to save memory or disk space. In addition the program should execute as fast as
possible, especially without the overhead of an interpreter. Therefore the program is transferred
into another language that can be compiled and allows a faster execution. In addition to this
features of the new environment like special libraries or graphical user interface builder can be
used.

The aim of this chapter is to describe the general steps of program development using this
feature. Later on some details of the code generation and optimization aspects are discussed.

6.1 Code Generation for C++

In this section the use of HALCON in C++ is describes.

6.1.1 Basic Steps
Interactive Development

The first step is the well known process of program development in HDevelop as it is described
in the rest of this manual.

Program Export

The next step is to export the program using the metile > Save As. Here you have to
select the language (C++) and save it to file. In UNIX you specify the file by giving it the
corresponding extension, which isc¢pp”. A file will be created that contains the HDevelop
program as C++ source code in a procedateion (). This procedure is called in function
main (). Besides the program code, the file contains all necessarylude instructions. All
variables (iconic as well as control) are declared locally in the procegittreon(). Iconic
variables belong to the clafisbject and all other variables belong #duple.

Compiling and Linking

The last step is now to compile and link this new program. In the case of UNIX
this can be done using the predefineakefile which can be found in the directory

91

92 CHAPTER 6. CODE GENERATION

$HALCONROOT/examples/C++. To compile and link a program callegst . cpp, you call the
makefile like

make PROG_NAME=test

or set the variabl@ROG_NAME in makefile to test and then just typ@ake. In the Windows
NT environment, Visual C++ is used for the compiling and linking. For details see the User’s
Manual of HALCON/C++.

6.1.2 Optimization

Optimization might be necessary for variables of cléBsple. This kind of optimization can
either be done in HDevelop or in the generated C++ code. In most cases optimization is not
necessary if you program according to the following rules.

(i) Using the tuple concatenation, it is more efficient to extend a tuple at the “right” side,
like:

T := [T,New]
because this can the transformed to
T.Append (New) ;
in C++ and requires no creation of a new tuple, whereas
T := [New,T]
which is transferred to
T = New.Append(T);

would need the creation of a new tuple.

(i) Another good way to modify a tuple is the operatarsert (see section 5.5.2). In this
case HDevelop code like

T[i] := New
can directly be transferred to the efficient and similar looking code
T[i] = New;

6.1.3 Used Classes

There are only two classes that are ustuiple for control parameters antbbject for iconic

data. There is no need for other classes as long as the program has the same functionality
as in HDevelop. When editing a generated program you are free to use any of the classes of
HALCON/C++ to extend the functionality.

6.1. CODE GENERATION FOR C++ 93

6.1.4 Limitations and Troubleshooting

Besides the restrictions mentioned in the next section, please check also the description of the
HDevelop operators on page 50.

Assignment

In HDevelop each time a new value is assigned to a variable its old contents are removed. This
is also the case for iconic objectobject). The clasdTuple also has a destructor which
removes the data stored inside a tuple. But problems arise if a tuple contains a handle (for
example file, windows, ocr, etc.). In this case, the memory of the handle, but not the data which
it points at, is automatically removed. Using C++, this data has to be removed explicitly by
calling the corresponding operators caltddse_x like close_ocr or close_ocv. That means

that theclose_* operators for all handles in use have to be called

e before a new value is assigned to a handle and

e at the end of the program.

for - Loops

HDevelop and C++ have different semantics for loops, which can cause confusion. Because
the problems are so seldom and the generated code would become very difficult to understand
otherwise, the code generation ignores the different semantics. Now, what are these differences:

(i) In C++ you can modify the loop variable (e.g., by setting it to the end value of the con-
dition) to terminate the loop. This can’t be done in HDevelop, because here the current
value is stored “inside” theéor-operator and is automatically updated when it is executed
again.

(i) In C++ you can modify the step range if you use a variable for the increment. This is also
not possible with HDevelop because the increment is stored “insidet ¢heperator
when the loop is entered.

(i) The last difference concerns the value of the loop variable after exiting the loop. In C++
it has the value with which the condition becomes false for the first time. In HDevelop it
contains the end value, which was calculated when the loop was entered.

Looking at the mentioned points we recommend to do the programming according to the fol-
lowing rules:

(i) Don't modify the loop variable or the step value inside the loop. If you need this behaviour
use thevhile-loop.

(i) Don’t use the loop variable after the loop.

94 CHAPTER 6. CODE GENERATION

Automatic Display

Normally, the result of every operator is displayed in the graphics window of HDevelop. This
is not the case when using an exported C++ program. It behaves like the HDevelop program
running with the options: “update window = off”. That means, whenever you want to have data
to be displayed you must explicitly call the operafierr_display. This will be converted to

the appropriate C++ call in the exported code. Of course, you have to open a window (e.g. via
dev_open_window) before displaying any data.

Exception Handling

In HDevelop, every exception normally causes the program to stop and report an error message
in a dialog window. This might not be useful in C++. In addition there are different default
behaviours concerning the result state of operators.

Messages In the case of C++ only severe errors cause an exception handling which terminates
the program and prints an error message. This might cause problems with minor errors, so called
messagedB HALCON. These messages are handled as return values of the operators and can
have the following values, which are also available in HDevelop as constants:

H_MSG_TRUE
H_MSG_FALSE
H_MSG_FAIL
H_MSG_VOID

One of these messages is always returned indicating the status of the operator. Normally, the
result iSH MSG_TRUE. Some operators retui MSG_FAIL like read_image Or read region

to indicate that they could not open a file or there was no permission to read it. In this case
the programmer has to check the return value and apply some adequate action. If the message
H_MSG_FALSE is ignored, errors like

Halcon Error #4056: Image data management: object-ID is NULL

will happen in successive operators, because the predecessor operator did not calculate an ap-
propriate value.

Errors In the case of hard errors (i.e., no message as described above) the program stops
with an error message. To prevent this behaviour the HDevelop opertorsrror_var

and dev_set_check can be used to control the exception handling in the application. This
works similarly in HDevelop and C++. One difference is caused by the dynamic evaluation
of dev_error_var in HDevelop. That means that each time the operator is executed (e.g., in a
loop) the use of the error variable might change. In contrast to this, in C++ special code is added
to store the return values of operators. This code will therefore be static and cannot change dur-
ing program excecution. To understand how the code generation works let us have a look at a
short example. Here at first the HDevelop program:

dev_set_check(’“give_error’)
dev_error_var (error,true)
threshold(image,region,100,255)

6.1. CODE GENERATION FOR C++ 95

dev_error_var (error,false)

if (error # H_MSG_TRUE)
write_string(WindowId,’error number = ’ + error)
exit ()

endif

dev_set_check(’give_error’)

This program will be translated to

HTuple error;

: :set_check("“give_error");

error = ::threshold(image,®ion,100,255);

if (error !'= 2)

{
::write_string(WindowId,HTuple("error number = ") + HTuple(error));
exit(1);

}

: :set_check("give_error");

As can be seen, the operatav_error_var is eliminated and replaced by the use of the error
variable later on.
The points mentioned above might cause these two problems:

¢ If the second parameter @év_error_var cannot be derived from the program (because
no constanfalse or true are used but expressions, the value will be interpretedas
that means: “start to use the variable”. To avoid confusion use only the constasts
or true as values for the second parameter.

e The usage of a variable starts after the first calleof error _var (ErrVariable,true).
In C++ this means that all successive lines (i.e., lines “below”), until the first
dev_error_var(ErrVariable,false) will have the assignment exrVariable. This
might lead to a different behaviour compared with HDevelopgif_error_var is called
inside a loop, because here the operators inside the loop bifererror_var might
also useErrVariable after the second excecution of the loop body. Therefore: Try not
to usedev_error_var inside a loop. Use it right at the beginning of the program.

Wrong Window-ID

In HDevelop, no window identifiers for most graphic operators are used, because windows
are simply inspection tools during program development and the concept of “active” windows
is used. But the window operators of the HALCON/C++ library require a window identifier.
Therefore it is added automatically to each operator call. But in the case of multiple HDevelop
windows the mechanism might fail, especially if het i vate-button was used during program
execution.

Compiler errors
Sometimes it happens that messages like

CC: "./example.cpp", line 17: bad operands for *: int * HTuple

96 CHAPTER 6. CODE GENERATION

or
CC: "./example.cpp", line 17: error ambiguous call
CC: "./example.cpp", line 17: choices of HTuple::operator *():
CC: "./example.cpp", line 17: HTuple: :operator *(const HTuple&) const;
CC: "./example.cpp", line 17: HTuple: :operator *(double) const;
CC: "./example.cpp", line 17: HTuple: :operator *(int) const;

are reported by the compiler. Both errors are caused by conflicting operators. In this case one
either has to change the HDevelop or the C++ program. To understand how, let us look at the
code which caused the errors abdveor the first error the C++ program would look like this:

HTuple T1,T2;
Tl = 2 x T2;

Because there is no operatarc * HTuple a compiler error is given. This error can be handled
in two ways:

(i) Do appropriate type casting in C+¥1 = HTuple(2) * T2;

(i) Change the order of the Operands in HDevelop and export the program again:
T1 = T2 * 2;

Both changes will do. The first one would be used by the code generation anyway.
The second error mentioned above is caused by a similar reason. The program might look like
this:

HTuple T1,T2;
long val;
T1 = T2 * val;

In this caseval is along variable and there is no multiplication available for the typeg in
the clasdiTuple. So again we have to change the program slightly by adding the cast Operator:

HTuple T1,T2;
long val;
T1 = T2 * HTuple(val);

System Parameters

You should know that HDevelop performs some changes of system parameters of HALCON
by calling the operataget_system (See reference manual). This might cause the C++ program
not to produce identical output. If such a problem arises, you may query the system parameters
by means oget_system in HDevelop after or while running the original HDevelop version of

the program. Depending to the problem, you can now modify relevant parameters by explicitly
calling the operatoget_system in your own C++ program.

1Both concrete errors shown above are hypothetical, as they would be avoided by the automatic code generation
in this special case. But they are good examples for similar errors that might be caused by conflicting operators.

6.2. CODE GENERATION FOR VISUAL BASIC 97

Graphics Windows

The graphics windows of HDevelop and the basic window of the HALCON/C++ library have
different functionality. Because the HDevelop windows are not available in C++, one is re-
stricted to the basic windows. To get more information about both types of windows look at
section 4.7 in this manual and read the descriptioopeh_window in the HALCON/C++ ref-
erence manual.

6.2 Code Generation for Visual Basic

This section describes the export of an HDevelop program to Visual Basic. HALCON can be
used together with Visual Basic based on the COM interface of HALCON. The description of
the interface can be found in the HALCON/COM interface User’s Manual.

6.2.1 Basic Steps
Interactive Development

The first step is the well known process of program development in HDevelop as it is described
in the rest of this manual.

Export

The next step is to export the program using the nfeine > Save As. Here you have to select
the languageWisual Basic) and save it to file. In UNIX you specify the file by giving it the
corresponding extension, which isbas”. The result is a new file with the given name and the
extension “bas”.

Visual Basic Template

The exported file is intended to be used together with the predefined Visual Basic project that
can be found in

%HALCONROOT%\examples\vb\HDevelopTemplate

This template has to be loaded by Visual Basic. The project contains a form with a display
window HWindowXCtrl) and aRun-button. The file generated by HDevelop has to be added
to this project. This is done by using the mehtbject > Add Module > Existing and
selecting the file. Now the project is ready for execution: Run the project and then press the
Run-button of the form which will call the exported code.

6.2.2 Program Structure

The file created by HDevelop consists of the subrowingialcon () which corresponds to the
original program. In addition to this another subroutine is created with the tait#alcon().

This subroutine applies the same initializations which HDevelop does.

Most of the variables (iconic as well as control) are declared locally in the subroutine
RunHalcon(). Iconic variables insid&unHalcon() belong to the clas#UntypedObjectX

98 CHAPTER 6. CODE GENERATION

and control variables belongYariant. The subroutinBunHalcon () has a paramet@indow

which is of typeHWindowX. This is the link to the window in the panel where all output opera-
tions are passed to.

In addition to this, depending on the program, additional subroutines and variables are declared.

Array Assignment

If a single value is assigned to a variant array, a special subroutine is called to ensure that the
index is valid. If the array is to small the variable is resized.

Expressions

All parameter expression inside HDevelop are transferred to expressions based on the HALCON
tuple operators. Therefore an expression might look somewhat complex. In many cases these
expressions can be exchanged by simple Visual Basic expressions;pike sub becomes a
simple subtraction. To ensure that the exported program has the same effect in Visual Basic this
exchange is not applied automatically, because the semantic is not always identical.

Stop

The HDevelop operatastop is transferred into a subroutine in Visual Basic which creates a
message box. This message box causes the program to halt until the button is pressed.

Exit

The HDevelop operatogxit is transformed into the Visual Basic routiBed. Because this
routine has no parameter the parameteksxat are suppressed.

Used Classes

There are only six classes/types that are useskiant for control parameters and
HUntypedObjectX for iconic data. In addition to this there is the container class1eX which
comprises all operators of HALCON processing tuples, in this case the datétypent. Then

there are the class##indowXCtrl and its low level conterfWindowX. HWindowXCtrl is used

inside the project for the output window and a variable of claksidowX directs the output to

this window. Finally the clas80peratorSetX is used as a container for all HALCON op-
erators. There is no need for other classes as long as the program has the same functionality
as in HDevelop. When editing a generated program you are free to use any of the classes of
HALCON/COM to extend the functionality.

6.2.3 Limitations and Troubleshooting

Besides the restrictions mentioned in the next section, please check also the description of the
HDevelop operators on page 50.

6.2. CODE GENERATION FOR VISUAL BASIC 99

Duplicate Parameters

Due to the parameter handling of Visual Basic / COM it is not possible to use the same variable
more than once in one call. Thus for input and output parameters different variables have to be
used. Also it is not possible to use the same variable twice for input or output. Examples for

code which isnotallowed are:

mean_image (Image, Image,3,3)
add_image (Image, Image,Add,1,0)

You have to introduce additional variables.

Reserved Words

In contrast to C++ and HDevelop Visual Basic has many reserved words. Thus the export adds
the prefixdXP to all variables to avoid collisions with these reserved words.

Graphics Windows

The graphics windows of HDevelop and the basic window of the HALCON/COM library have
different functionality.

¢ Instead of the HDevelop windovasiewindow of the clas&iWwindowXCtrl is used. Thus
if you want to use more than one window you have to modify the code accordingly.

e The size of the window in the panel is predefingt2(x 512) thus it will normally not fit to
your image size. Therefore you have to adapt this interactively or by using the properties
of the window.

e The graphics windows in HDevelop automatically adapts to new image sizes. This is
not the case in Visual Basic. Thus you have to specify the zooming using the operator
(dev_)set_part.

To get more information about both types of windows look at section 4.7 in this manual and
read the description afpen_window in the HALCON Reference Manual.

Assignment

In HDevelop each time a new value is assigned to a variable its old contents is removed. This
is also the case for iconic object8latyped0bjectX). The typeVariant also has a destructor
which removes the data stored inside a tuple. But problems arise if a tuple contains a handle (for
example file, ocr, etc.). In this case, the memory of the handle, but not the data which it points
at, is automatically removed. Using the exported code, this data has to be removed explicitly
by calling the corresponding operators callgdse_* like close_ocr or close_file. That

means that thelose_* operators for all handles in use have to be called

e before a new value is assigned to a handle and

e at the end of the subroutine.

The ideal way would be to use the specific COM classes for this kind of data in combination
with the member function. This exchange has to be done “by hand” because the export is not
able to generate appropriate code.

100 CHAPTER 6. CODE GENERATION

for - Loops

HDevelop and Basic have different semantics for loops, which can cause confusion. Because
the problems are so seldom and the generated code would become very difficult to understand
otherwise, the code generation ignores the different semantics. Now, what are these differences:

() In Visual Basic you can modify the loop variable (e.g., by setting it to the end value of
the condition) to terminate the loop. This can’t be done in HDevelop, because here the
current value is stored “inside” the»r-operator and is automatically updated when it is
executed again.

(i) In Visual Basic you can modify the step range if you use a variable for the increment.
This is also not possible with HDevelop because the increment is stored “inside” the
for-operator when the loop is entered.

(i) The last difference concerns the value of the loop variable after exiting the loop. In Vi-
sual Basic it has the value with which the condition becomes false for the first time. In
HDevelop it contains the end value, which was calculated when the loop was entered.

Looking at the mentioned points we recommend to do the programming according to the fol-
lowing rules:

(i) Don't modify the loop variable or the step value inside the loop. If you need this behaviour
use theshile-loop.

(i) Don’t use the loop variable after the loop.

Automatic Display

Normally, the result of every operator is displayed in the graphics window of HDevelop. This

IS not the case when using an exported Basic program. It behaves like the HDevelop program
running with the options: “update window = off”. That means, whenever you want to have data
to be displayed you must explicitly call the operater_display. This will be converted to the
appropriate Basic call in the exported code. Because the template project already has a window,
there is no need to explicitly open a window inside HDevelop.

Exception Handling

In HDevelop, every exception normally causes the program to stop and report an error message
in a dialog window. This might not be useful in Visual Basic. The standard way to handle this in
Visual Basic is by using then Error Goto command. This allows to access the reason for the
exception and to continue accordingly. Thus for HDevelop programs containing error handling
(dev_set_error_var) the corresponding code is automatically included.

Please note that a call gflev_)set_check("give_error") has no influence on the operator

call. The exception wilalwaysbe raised. This is also true for messagesHiR&ESS _FAIL which

are not handled as exceptions in C++ e.g..

6.2. CODE GENERATION FOR VISUAL BASIC 101

Special Comments

HDevelop comments containing tkkesymbol as the first character are exported as Visual Basic
statement. Thus the line

* #Call MsgBox("Press button to continue",vbYes,'"Program stop","",1000)
in HDevelop will result in
Call MsgBox("Press button to continue",vbYes,"Program stop","",1000)

in Visual Basic. This feature can be used to integrate Visual Basic code into an HDevelop
program.

System Parameters

You should know that HDevelop performs some changes of system parameters of HALCON
by calling the operatoget_system (See reference manual). This might cause the Visual Basic
program not to produce identical output. If such a problem arises, you may query the system
parameters by means gét_system in HDevelop after or while running the original HDevelop
version of the program. Depending to the problem, you can now modify relevant parameters by
explicitly calling the operatoget_system in your own Visual Basic program.

Multiple Windows

The exported code is intended to work together with the Visual Basic template. Thus only
one window is available. All window operations likepen window, close_window and
set_window_extents are therefore suppressed. If you want to use more than one window you
have to modify the Basic code and project accordingly.

102 CHAPTER 6. CODE GENERATION

Chapter 7

Program Examples

This chapter contains examples that illustrate how to program with HDevelop. To understand
the examples you should have a basic knowledge of image analysis.

The user interface is described in chapters 3 and 4. Language details are explained in chapter 5.
The examples of this chapter are also available as program code in the directory

$HALCONROOT/examples/hdevelop/Manuals/HDevelop
for UNIX or
%HALCONROOT%\examples\hdevelop\Manuals\HDevelop

on WindowsNT. More detailed information on HALCON operators is available in the reference
manuals.

7.1 Stamp Segmentation

File name: stamps .dev

The first example performs a document analysis task.Figure 7.1 shows a part of a stamp catalog
page. It contains two types of information about stamps: a graphical presentation and a textual
description of the stamp.

In this example you have to transform the textual information into a representation that can be
processed by a computer with little effort. You might use an OCR program for this task, but you
will soon recognize that most of the available products create many errors due to the graphi-
cal presentation of the stamps. Thus another task has to be preprocessed: the elimination of all
stamps (i.e., changing stamps to the gray value of the paper). After this preprocessing it is pos-
sible to process the remaining text using an OCR program. Figure 7.2 shows the segmentation
result.

When creating an application to solve this kind of problem, it is helpful to describe characteristic
attributes of the objects to be searched (here: stamps). This task can be solved by a novice with
some experience, too. In this case, a characterization might look as follows:

e Stamps are darker than paper.
e Stamps are connected image areas that do not overlap.

e Stamps have a minimum and maximum size.

103

104 CHAPTER 7. PROGRAM EXAMPLES

oo SCnwerz
1408, 26 C. Philatelie —480 — 50 1990. 5.9. ?WJdlrnEummﬂ.
1410. 36 C. S-Bahn Zlrich 12D 1—-—
1411. 50 C. Bergbauer 1,680 —EIJ
1412, 80 C. Elshokey-WM I— 275
FOC 6,60 Satz 4 W) 650 4,76

1990. 6. 3. 1421. 50 C. mehrfarbig 1,80 —75

Mensch und Beruf. 1422. 30 C. mehrfarbig 360 325
FDC &8 — Saz 65— 44—
FDGC 12—

1413. 3,75F. Fischer = = 1990. 5. 9. Kilnstler-
Partraits.

Bufl. 5 Mill.

1880. 6. 3.
Hauskatze.

FDG 3.50
1414, 50C. 1,40 —50

1423. 35C.CF M 128 1,—

1424 50 C. A Ka n 1,50 —.80

LYETIA FOC 1425 80 C. B. Cendrars 2,50 250
o 1426. 90 C. F. Buchser 325 a2s

. 50 C. mehrfarbig 1,50 — &0 FOC 89— Satz (4W.] B850 T.26

. 90 C. mehrfarbig 275 2,50
p 1990. 5. 9. HELVETIA GENEVE. Aull. 1& Mill.
M FXROBITION HATIGHALE GF PHILATELIE

VINIVIE TN I0InS0did

EXFOEIZIN MATIUNALS DA FILAFELI A

i
:
E
H

1417. 35+15C.mehrfarblg 1,75 1,60 | 1427. B50+25 C. mehrfarblg 3,50 3,50
1418. 50+20 C. mehrfarblg 225 220 | 1428. 50425 C. mehrfarbig 3,50 3,50
1419, BO+40 C. mehrfarbig 4. 350 | 1425, 50426 C mehrfarbig 3,50 3,50
1420. 90440 C. mehrfarbig 4,50 4— | 1430. 50436 C. 3560 350
FOG 13— Salz (4 W) 1250 11— | Foc1a— Block 16— 15—

Figure 7.1Part of the page of Michel catalog

e Stamps are rectangular.

The task would be very simple if the attribute list would directly represent the program. Unfor-
tunately, this is not possible due to the ambiguity of spoken language. Thus you need language
constructs with a precise syntax and a semantics that are as close as possible to the informal
description. Using the HDevelop syntax, an appropriate program would look like this:

dev_close_window ()

read_image (Catalog, ’swissl.tiff’)

get_image_pointerl (Catalog, Pointer, Type, Width, Height)
dev_open_window (0, O, Width/2, Height/2, ’black’, WindowID)

7.1. STAMP SEGMENTATION 105

Saw) 680 1o
1990. 5. 9. HELVETIA GENEVE. Aufl. 1,3 Mill.

Figure 7.2:Segmentation result for stamps.

dev_set_part (0, 0, Height-1, Width-1)

dev_set_draw (°fill’)

threshold (Catalog, Dark, 0, 110)

dev_set_colored (6)

connection (Dark, ConnectedRegions)

fill_up (ConnectedRegions, RegionFillUp)

select_shape (RegionFillUp, StampCandidates, ’area’,
>and’, 10000, 200000)

select_shape (StampCandidates, Stamps,
’compactness’, ’and’, 1, 1.5)

106 CHAPTER 7. PROGRAM EXAMPLES

smallest_rectanglel (Stamps, Rowl, Columnl, Row2, Column2)
dev_display (Catalog)

dev_set_draw (’margin’)

dev_set_line_width (3)

disp_rectanglel (WindowID, Rowl, Columnl, Row2, Column2)

Due to the unknown operators and unfamiliar syntax this program appears unclear to the user
at first glance.
But if you look closer at the operators you will notice the direct relation to the description above.

threshold selects all image pixels darker than the paper.
connection merges all selected pixels touching each other to connected regions.
select_shape Selects the regions with areas (attributerea’) inside a specified interval.

smallest_rectanglel computes each region's coordinates (row/column) of the enclosing
rectangle.

Once the user is familiar with the single operators and their syntax, the transformation becomes
easy. In particular, it is not important to the program whetireimageor a set of regionss
processed. You can handle them both in the same way. In addition memory management of
internal data structuresis transparent to the user. Thus, you do not need to bother about memory
management and you can concentrate on the image analysis tasks to solve.

7.2 Capillary Vessel

File name:vessel.dev

The task of this example is the segmentation of a capillary vessel. In particular, you have to
separate the cell area in the upper and lower part of figure 7.3 (left image) from the area in the
middle of the image.

Figure 7.3:Capillary vessel (left) and texture transformation (right).

7.2. CAPILLARY VESSEL 107

The area boundaries are very blurred and even a human viewer has difficulties recognizing
them. At first glance it seems very difficult to find a segmentation criterion: There is neither a
clear edge nor a significant difference between the gray values of both areas. Thus it is not very
promising to use an edge operator or a threshold operation.

One solution of this problem makes use of the different textures within the areas: Cells are
more textured than the part which is supplied with blood. To emphasize this difference you
can use dexture transformatiomy Laws [Laws80]. Texture transformations are linear filters
that intensify certain frequencies which are typical for the requested texture. The correspond-
ing HALCON operator istexture_laws. You have to specify the filter size and type. Both
attributes determine the frequency properties. In this program the fdter with mask size

5 x 5is used. It performs a derivation in vertical direction and a smoothing in horizontal direc-
tion. Thus structures in vertical direction are intensified. You cannot directly use the computed
result oftexture_laws (See figure 7.3 right), because it is too speckled. Therefore you must
generalize the texture image by a mean filteraph_image). From this you obtain the so called
texture energyfigure 7.4 left).

Figure 7.4 Capillary vessel texture energy (left) and segmentation (right).

The filter mask is chosen very large within this program. The mask size for the horizontal
direction is 211 and 61 for the vertical direction. The asymmetry is used, because the vessel is
nested in horizontal direction. From this you obtain an image with an upper and lower part that
is brighter than that in the middle.

read_image (Image, ’vessel’)
texture_laws (Image, Texture, ’el’, 5, 5)
mean_image (Texture, Energy, 211, 61)
bin_threshold (Energy, Vessel)

To separate these areas you just have to find the appropriate threshold. In this case — we have
only two types of textures — the threshold can be found automatically. This is done by the
operatobin_threshold, which also applies the resulting threshold and thus extracts the vessel.
The right side of figure 7.4 shows the result of the segmentation.

108 CHAPTER 7. PROGRAM EXAMPLES

7.3 Particles

File name: particle.dev
This program example processes an image that was taken from a medical application. It shows
tissue particles on a carrier (figure 7.5 left).

»-

Figure 7.5Tissue particles (left) and large objects (right).

As in many other medical applications, the existing objects have to be evaluated statistically.
This means that different objects have to be extracted and classified according to their size or
other attributes for example. After this, you can analyze them. An important step to solve this
problem is the image segmentation that locates the relevant objects. For the statistical evaluation
you may have a look at appropriate literature about statistics.

In our case there are two object classes:

e large, bright particles

e small, dark particles

The large, bright particles differ clearly from the background because of their gray values. The
informal description 'brighter than the background’ leads directly to the algorithmic solution
using a thresholding. The only thing to decide is whether you specify the threshold automat-
ically or empirically. In our case, a fixed threshold is completely sufficient due to the good
contrast. Hence you get the following simple segmentation operator:

read_image (Particle, ’particle’)
threshold (Particle, Large, 110, 255)

The variabldLarge contains all pixels whose gray values are brighter than 110. You can see the
result on the right side of figure 7.5.

It is more difficult to find the small, dark particles. A first effort to specify a threshold inter-
actively shows that there is no fixed threshold suitable to extract all particles. But if you look
closer at the image you will notice that the smaller particles are much brighter than their local
environment, i.e., you may specify suitable threshold values that are valid for a small image part

7.3. PARTICLES 109

each. Now it is easy to transform this observation into an algorithm. One way is to determine
the threshold values locally (e.g., from a bar chart). Another solution might be the definition of

a local environment by an x n window. This method is used in the example. The window’s
mean value is used as an approximation of the background intensity. This can be done by ap-
plying a low pass filter, such as a mean filter or a Gaussian filter. The window:. sleéines

the size of the local environment and should approximately be twice as large as the objects to
search for. Since they show an average diameter of 15 pixels, a mask size of 31 is used.

The resulting pixels are specified by the comparison of the original gray values with the mean
image. To reduce problems caused by noise you add a constant to the mean image (3). The
appropriate program segment looks as follows:

mean_image (Particle, Mean, 31, 31)
dyn_threshold (Particle, Mean, Small, 3, ’light’)

The operatodyn_threshold compares two images pixel by pixel. You can see the segmenta-
tion result in figure 7.6 left.

Figure 7.6:Small objects: simple (left) and advanced segmentation (right).

As we see, all objects have been found. Unfortunately, the edges of the large particles and
several very small regions that emerged due to the noisy image material were found, too.

We first try to suppress the edges. One way is to eliminate all objects that exceed a certain
maximum size. You can do this by calling:

conncetion (Small, SmallSingle)
select_shape (SmallSingle, ReallySmall, ’area’, ’and’, 1, 300)

By the same method you might also eliminate all objects which are too small (blurring). For this,
you would just have to increase the minimum size with the calledfect_shape. But if you
examine the segmentation results again, you will notice that some of the resulting pixels were
already extracted by the first segmentation. Thus you should search the small particles within
the complement of the large ones only. To avoid the segmentation of small particles in the direct
neighbourhood of the large ones, those are enlarged before building their complement. Thus we
get the following modified program:

110 CHAPTER 7. PROGRAM EXAMPLES

dilation_circle (Large, LargeDilation, 8.5)
complement (LargeDilation, NotLarge)

reduce_domain (Particle, NotLarge, ParticleRed)
mean_image (ParticleRed, Mean, 31, 31)

dyn_threshold (ParticleRed, Mean, Small, 3, ’light’)

This method shows two advantages: First, the (reliable) model of the large particles can be used
to extract the small ones. This increases the quality of the segmentation. Second, the processing
speed isincreased, as the second segmentation works only on a part of the image data. The right
side of figure 7.6 shows the segmentation result.

Unfortunately, the image still contains noise. To remove it, you may either sort out noisy objects
by their area as described above, or bypeningoperation. We prefer the second method as it
additionally smooths the object edges.

opening_circle (Small, SmallClean, 2.5)

Here, a circle is used as the structuring element of the opening operation. The operator preserves
regions only that may at least cover a circle of radius 2.5. Smaller regions are eliminated.

'Y N 'Y -
4 -t - ": . ..a 1 - - ": . ..a
‘ . - R .: .. . ‘ . - R .: .. .
¢ ¢
t ‘® . .. - g ° '.’ 9
. s wi ™ » . o wd » »
e L) - @ e N .] * o - - -
° .o ‘. . ° .o ‘.
- FICI I LI - v pe 0, LI
. - 8 : ¢ . «f c LI] : o a® «f
”*» .‘i .. * ... ”*» .‘i .‘. * ...
.- . . . 1) .- . \ . % ¢
L J L J
<L e . PERLERRT TR
. - . ‘ . - ." ‘

Figure 7.7:Noise-removed segmentation (left) and final result (right).

Figure 7.7 shows the result of the segmentation with noise removal on the left side. The right
side contains the final result.

Finally, we would like to show within this example how to select regions with the mouse in-
teractively. At this, a loop is executed until you press the middle or right mouse button. When
pressing a mouse button, the opergfet_mbutton returns the button that was pressed and the
position (coordinates) where it was pressed. This information is used to select the chosen object.
In the following you see the corresponding program part:

dev_clear_window (WindowID)
connection (SmallClean, SmallSingle)
Button := 1

dev_set_color (’red’)

7.4. ANNUAL RINGS 111

while (Button = 1)
get_mbutton (WindowID, Row, Column, Button)
select_region_point (SmallSingle, OneObject, Row, Column)
intensity (OneObject, Particle, MeanGray, Deviation)
endwhile

First, the window is cleared videv_clear _window. After that,connection calculates all con-

nected components to allow the selection of single regions. This also displays the region com-
ponents in the HDevelop window. Then you may set the drawing color (here: red) to visualize
the selected regions. The loop is initialized by assigning 1 to the vasabten (1 is the code

for the left mouse button). Within the loop the mouse state is queried and the chosen region is
selected. As an example the mean gray value and the standard deviation are computed for each
selected region. As long as you press only the left mouse button within the window the loop
continues. You can terminate it by pressing any other mouse button.

7.4 Annual Rings

File name:wood.dev

Everyone knows the task to determine the age of a tree by counting its annual rings. This will
now be done automatically using the example program. The first step is the segmentation of
annual rings. This is quite simple as you can see them clearly as bright or dark lines. Again, the
dynamic thresholdingiyn_threshold) can be used (as before during the particle segmentation

in section 7.3). To achieve a suitable threshold image you apply the meanéer {mage)

with size 15x 15 first.

The segmentation result contains many tiny regions that are no annual rings. To eliminate them
you have to create the connected componerisnection) and suppress all regions that are

too small gelect_shape). Counting the rings becomes difficult, as there might be fissures in
the wood (see figure 7.8).

!

Thus, we suggest the following method: You define the start and end point of a line across the
annual rings using your mouse. Then the number of intersections with annual rings is counted

e

Figure 7.8:Annual rings of a tree.

112 CHAPTER 7. PROGRAM EXAMPLES

along this line. This can be done by the following HALCON operators: The start and end points,
represented by their x- and y-coordinates, are transformed into gtnergegion_line). This

line is intersectedifhtersection) with the annual ringsSelectedRegions). The number

of the connected regionsdunt_obj) in this intersection is the number of annual rings. The
complete program looks as follows:

dev_close_window ()
read_image (WoodPiecel, ’woodring’)
get_image_pointerl (WoodPiecel, Pointer, Type, Width, Height)
dev_open_window (0, O, Width/2, Height/2, ’black’, WindowID)
mean_image (WoodPiecel, ImageMean, 9, 9)
dyn_threshold (WoodPiecel, ImageMean, Regions, 5.0, ’dark’)
threshold (WoodPiecel, Dark, 0, 90)
dilation_rectanglel (Dark, DarkDilation, 30, 7)
difference (Regions, DarkDilation, RegionBright)
connection (RegionBright, ConnectedRegions)
select_shape (ConnectedRegions, SelectedRegions,
’area’, ’and’, 30, 10000000)
get_mbutton (WindowID, Rowl, Columnl, Buttonl)
get_mbutton (WindowID, Row2, Column2, Button2)
gen_region_line (Line, Rowl, Columnl, Row2, Column2)
intersection (Line, SelectedRegions, Inters)
connection (Inters, ConnectedInters)
Number := |ConnectedInters]|

7.5 Bonding

File name:ball.dev
This is the first example in the field of quality inspection. The task is to detect bonding balls.
Figure 7.9 shows two typical microscope images dfea

Figure 7.9:Examplary images with bonding balls ordee.

7.6. CALIBRATION BOARD 113

Thedie border and the bonding wires appear dark. Thus you may apply a thresholding. Since
the background is also dark we have to extractdiesbefore doing the segmentation. THie
Is rather bright. Thus we can select the pixels by their gray values.

read_image (Bond, ’die3’)
threshold (Bond, Bright, 120, 255)
shape_trans (Bright, Die, ’rectangle2’)

All pixels of thedie that got lost by the thresholding can be recoverd by using a hull compu-
tation. Since thelie is rectangular and may be slightly turned during the assembly we use the
smallest enclosing rectangle as a hull.

Now you can start the segmentation of wires and bonding balls. Since only those parts of wires
and balls are of interest that lie within tliée area, you may restrict the segmentation to this
region. All dark pixels within thelie area belong to wires. Unfortunately, there are some bright
reflections on the wires that are not found by the segmentation. You may fill these gaps by using
fi1l_up_shape. In our case, the gaps with a certain size (1 up to 100 pixels) are filled.

reduce_domain (Bond, Die, DieGray)

threshold (DieGray, Wires, 0, 100)

fill_up_shape (Wires, WiresFilled, ’area’, 1, 100)

opening_circle (WiresFilled, Balls, 15.5)

connection (Balls, SingleBalls)

select_shape (SingleBalls, IntermediateBalls, ’circularity’,and,0.85, 1.0)
sort_region (IntermediateBalls, FinalBalls, ’FirstPoint’, ’True’, ’column’)
smallest_circle (FinalBalls, Row, Column, Radius)

Since the balls are wider than the wires, you may clean this region using a simple opening.
The radius (here 15.5) should correspond to the minimum size of one ball. In both images
you see an erroneous segmentation that was created by a rectangular dark region. This can be
suppressed by a shape segmentation. Since in practice a bonding detection would be performed
only close to the anticipated positions of bonding balls. Figure 7.10 shows the results of the
whole segmentation.

Balls are shown in white color. Every radius of a ball you can find in the tuple variable Radius.
The number of balls within the example you can get with the absolute value of Radius.

NumBalls := |Radius]|

Diameter := 2*Radius

MeanDiameter := sum(Diameter)/NumBalls
MinDiameter := min(Diameter)

Diameter, MeanDiameter and MinDiameter are some examples for calculations possible with
HDevelop.

7.6 Calibration Board

File name: calib.dev
This example works with the image of a calibration board. It is used to specify the internal

114 CHAPTER 7. PROGRAM EXAMPLES

Figure 7.11Calibration board anckray_inside result.

parameters of a CCD camera. Therefore, you have to extract the circles on the board (see left
side of figure 7.11).

This example describes an interesting operator. It is cgliegy_inside and is a so-called
fuzzy operatarin this case, fuzzy means that the value of each pixel is not interpreted as gray
value but as thaffiliation to a certain class. The bigger the number (max. 1), the stronger the
affiliation!

By applyinggray_inside to an image every pixel value is interpreted as the “potential energy”
you have to afford to get from the pixel position to the image border. The dark pixels present
valleys and the bright pixels mountains. Thus a dark region in the middle of an image is equiv-
alent to a hole in a mountain that needs a lot of energy to be left. This is also true for the dark
circles on the bright background in the image of the calibration board.

Before callinggray_inside you should use a smoothing filter to suppress small valleys. This

1In HALCON the range of 0 to 1 is mapped to values of a byte image (0 to 255).

7.7. DEVICES 115

reduces runtime considerably.
If you look at the operator result on the right side of figure 7.11 you will notice the circles as
significant bright points. Now a simple thresholding is sufficient to extract them.

read_image (Caltab, ’caltab’)
gauss_image (Caltab, ImageGauss, 9)
gray_inside (ImageGauss, ImageDist)
threshold (ImageDist, Bright, 110, 255)
connection (Bright, Circles)
elliptic_axis (Circles, Ra, Rb, Phi)

After calculating the ellipse parameters of each cirelel{ptic_axis), you may compute the
camera parameters.

7.7 Devices

File name:ic.dev

This example discusses the combination of different segmentation methods. It works with an
image of multiple electronic components. These differ in shape, size and arrangement. The left
side of figure 7.12 shows the input image.

Figure 7.12:Board with electonic devices (left) and the corresponding color value image in the HSV
space (right).

First you extract resistors and capacitors. This is quite simple because you have a color image
and both component types have different colors. The input image consists of three channels
containing the red, green, and blue channels. Since segmentation in the RGB space is difficult,
you have to transform the image into the HSV space. Here the color information is stored in
one single channel. The right side of figure 7.12 shows the image representation in this channel
(Hue). Elements that are too small can be eliminatedseibect _shape. The program sequence

to extract resistors and capacitors is shown below:

116 CHAPTER 7. PROGRAM EXAMPLES

read_image (ICs, ’ic’)

decompose3 (ICs, Red, Green, Blue)

trans_from_rgb (Red, Green, Blue, Hue, Saturation, Intensity)
threshold (Saturation, Colored, 100, 255)

reduce_domain (Hue, Colored, HueColored)

threshold (HueColored, Blue, 114, 137)

connection (Blue, BlueConnect)

select_shape (BlueConnect, BluelLarge, ’area’, ’and’, 150, 100000)
shape_trans (BluelLarge, Condensators, ’rectangle2’)

threshold (HueColored, Red, 10, 19)

connection (Red, RedConnect)

select_shape (RedConnect, RedLarge, ’area’, ’and’, 150, 100000)
shape_trans (RedLarge, Resistors, ’rectangle2’)

If you look closer at this program segment you will notice some obvious enhancements that can
be made. One is necessary due to the color model: The thresholding of the color image chooses
all pixels with a certain color. This selection is independent of the color saturation. Thus it might
happen that very bright pixels (nearly white pixels) or very dark pixels (nearly black pixels) have
the same color value as the components. But you are only looking for stronger colors. For this
you select all pixels first whose color is strong, i.e., all pixels with a high saturation.

The second enhancement concerns the objects’ shape. As the devices are rectangular you
can specify the smallest enclosing rectangle of all connected components to enhance the seg-
ments.On the left side of figure 7.13 the resulting components are marked.

Figure 7.13Resistors and capacitors (left) and ICs (right).

In a second step, we will search for all ICs. This seems to be easy, as they are rather large and
dark. However, some problems emerge due to the bright labels that are printed across some
ICs. Thus a simple thresholding alone is not sufficient. In addition you have to combine the
segments belonging to one IC. This is done by examining the spatial adjacencies of the seg-
ments. A dilation is used to enlarge the regions until they overlap each other. This dilation must
not be so large that different ICs are merged. Thus gaps caused by labels have to be smaller
than gaps between ICs. Now you can separate the enlarged ICs in their connected components.

7.7. DEVICES 117

Unfortunately, they have become too large by the dilation. Another thresholding for each con-
nected component will detect the dark pixels of each IC. Finally, you can specify the enclosing
rectangles analogously to the resistors and the capacitors (see above).

threshold (Intensity, Dark, 0, 50)
dilation_rectanglel (Dark, DarkDilate, 15, 15)
connection (DarkDilate, ICLarge)

add_channels (ICLarge, Intensity, ICLargeGray)
threshold (ICLargeGray, ICsDark, 0, 50)
shape_trans (ICsDark, IC, ’rectangle2’)

The right side of figure 7.13 shows the resulting ICs. We have to mention two aspects
about the program segment above. Here the opesdtbichannels has been used instead of
reduce_domain. This is necessary aeveralregions have to be “supplied” with gray values.

The situation of previous programs was quite different: there the number of valid pix@te of
image has been restricted. From this follows the second point: here the opgradéehold

gets several images as inguEhe thresholding is performed in every image. Thus you receive

as many regions as input images.

Finally, the segmentation of IC contacts has to be done. They are bright and small. Thus it
is easy to extract them using a dynamic thresholding (compare chapter 7.3). However, several
other tin elements on the board remain a problem, because they have to be distinguished from
the IC contacts. This can be done by restricting the searchregien of interestIC contacts

may only appear either on the right or the left side of IC’'s. The coarse region of interest is
defined by enlarging the IC regions with a following set subtraction. Then the result is resized
appropriately by using another dilation. Figure 7.14 shows the operator result on the left side.

I i

I
L

Figure 7.14Searching regions for contacts (left) and IC contacts (right).

CLLE R L LN

=20 du200s

moRnoscosan
IH#EDQU—
Jopopamy
o LA
sNopaoDg

2000000008
e o g
—
regdeo@ooBO
Foommnongy
sFodnd e

&

oSO D AIDE
el MESWVal

3
AOOssdaccoda
rof fdod e olob acdda

Now you only have to intersect the result of the thresholding with the region of interest.

dilation_rectanglel (IC, ICWidth, 5, 1)
difference (ICWidth, IC, SearchingArea)

20One matrix is shared by several iconic objects to reduce costs of memory and computation time.

118 CHAPTER 7. PROGRAM EXAMPLES

dilation_rectanglel (SearchingArea, SearchingAreaWidth, 14, 1)
unionl (SearchingAreaWidth, SearchingAreaUnion)

reduce_domain (Intensity, SearchingAreaUnion, SearchGray)
mean_image (SearchGray, Mean, 15, 15)

dyn_threshold (SearchGray, Mean, Contacts, 5, ’light’)

connection (Contacts, ContactsConnect)

fill_up (ContactsConnect, ContactsFilled)

select_shape (ContactsFilled, ContactsRes, ’area’, ’and’, 10, 100)

The result of the intersection is still not satisfying. Too many small and too many wrong regions
have been found. So we have to eliminate them by usingct_shape. Figure 7.14 shows the
final result of the segmentation on the right side.

7.8 Cell Walls

File name:wood cells.dev
In this example we will examine the alteration of the cell wall’'s proportion during a tree’s
growth. The input image is a microscope view of wooden cells (see figure 7.15).

JI i l[_l”IiL} TILOTIITT THT
ALTILTTTY ;l_‘l._
WLLITE] Il I sasly
FFEFER G P gy W
Y T LU
1)
LIIIII LI TY rrrrlr
1 Y I R XTI T ETT 1
AMITILTINITT
1 TIRRINNLTY
AALILLI T LT
ITLITXLI11
LTI
I TITI1TT
T A Ty
FIririll
I ITTLL
EIRRERE s 1
A L L IT T T IIYT X “mlf
JLITIITLIYY |
11
) = - I
T T 11
TTTI L L]
ALY
I 1] #
11 T
I"J fapaaanyg r
:rrnrrr TIXIT T +4
LET T JIILITILIrr
:II'-II_!' _]

Figure 7.15Microscope image of wooden cells.

7.8. CELL WALLS 119

You can clearly see the single cells and the discontinuity that is caused by the stopped growing
in winter.

Extracting cell walls is simple because they are significantly darker. The remaining “difficulty”
lies in the computation of the distribution in growth direction, i.e., along the image x-axis. First,
we define the width of the window over which the cell distribution is computed by assigning it to
the variabl&X in the program. Then we fetch the image size ugetg image pointerl to get

the corresponding loop parameters. The broader the search range, the stronger the smoothing
during the measurement.

Now the loop starts from the “left” side to compute the whole image. The ratio of the area of
the cell walls and a rectangle of widxhs computed for every value of the loop variatlelhe
number of pixels belonging to a cell wallfea) is determined byrea_center. This value is
transformed to percent for the output.

X := 20

read_image (WoodCellsl, ’woodcell’)

threshold (WoodCellsl, CellBorder, 0, 120)

get_image_pointerl (WoodCellsl, Pointer, Type, Width, Height)

open_file (’wood_cells.dat’, ’output’, FileHandle)

for i := 0 to Width-X-1 by 1
clip_region (CellBorder, Part, 0, i, Height-1, i+X)
area_center (Part, Area, Row, Col)
fwrite_string (FileHandle, i + ’> > + (Area * 100.0 / (X * Height)))
fnew_line (FileHandle)

endfor

close_file (FileHandle)

Figure 7.16 shows the measurement result.

90 T T T T T T T T T
"wood_cells.dat" —

Anzahl

0 100 200 300 400 500 600 700 800 900
Position

Figure 7.16Cell wall proportion in growth direction in percent

120 CHAPTER 7. PROGRAM EXAMPLES

To allow further processing of the data (such as for plotting uginglot as in figure 7.16)

it has to be written to a file. Therefore, a text file is opened fugef _file). Now you can

write to this file by usingfwrite_string andfnew_line. Note the formatting of output when
usingfwrite_string. The output text starts with the loop variable that is followed by a space
character. Thus the number is transformed into a string. Finally, the proportion of the cell wall
(in percent) is concatenated to the string. At this it is important that the first or second value
of the expression is a string, so that the following numbers are converted into strings: Here
denotes the concatenation of characters instead of the addition of numbers.

7.9 Region Selection

File name: eyes.dev

This example explains how to handle single iconic objects. In contrast to numerical data, where
many different functions may be executed on parameter positions (see chapter 5.5), iconic ob-
jects may only be handled by using HALCON operators. The most important operators to select
and combine iconic objects are shown in this example.

The task is to search the eyes of the mandrill in figure 7.17.

Figure 7.17Mandrill and the detected result.

This is a simple task. First, we extract the bright parts by a thresholding. Then we have to
examine the connected components according to their shape and size to select the eyes. At this,
you could use the operateelect_shape and get a fast program of five lines that processes the
task. For demonstration purpose we use a kind of “low level” version instead: every region is
extracted separately and examined afterwards. If it conforms to a given shape, it is added to a
result variable.

dev_close_window ()

read_image (Image, ’monkey’)

threshold (Image, Region, 128, 255)

connection (Region, ConnectedRegions)
select_shape (ConnectedRegions, CompactRegions,

7.10. EXCEPTION HANDLING 121

’compactness’, ’and’, 1.5, 1.8)
Number := |CompactRegions|
Eyes := []
for i := 1 to Number by 1
SingleSelected := CompactRegions[il
area_center (SingleSelected, Area, Row, Column)
dev_set_color (’green’)
if ((Area > 500) and (Area < 50000))
dev_set_color (’red’)
Eyes := [SingleSelected,Eyes]
endif
endfor

Note that you have to specify the number of regiottsuft_obj) in order to run afor loop

from 1 to Number. Within this loop a region is selecteddlect_obj) according to the loop
variablei in order to evaluate its attributes. If its area is within certain bounds the region is
added to variabl€yes (concat_obj). You have to specify the variabByes properly, as it is

also used as input faroncat_obj. This can be done by usirgnpty_object that assigns no
iconic object in a defined way to the variable, isunt_obj returns zero for it.

During the run time of the program you can see how the individual regions are selected and
examined. To speed up the processing you can use the fi@éau> Options to suppress the
automatic output.

7.10 Exception Handling

File name: exception.dev

In some applications it is necessary to have explicit control over the result state of an operator.
By default HDevelop stops if an operator returns a different state Hhé8G_TRUE and gives

an error message. To have explicit control over the result state, two HDevelop operators are
availabledev_error_var anddev_set_check. The following example shows how to use these
operators.

The task is to get online information about the position of the mouse inside a graphics window
and to display the gray value at this position. This can be achieved using the two operators
get_mposition andget_grayval. The problem withget mposition in HDevelop is, that it
returnsiH_MSG_FAIL if the mouse is outside of the window to indicate that the mouse coordi-
nates are invalid. This would lead to an interruption of the program. Therefore an explicit error
handling is needed. The complete program is given below:

read_image (Image, ’mreut’)
dev_close_window ()
dev_open_window (0, 0, -1, -1, ’black’, WindowID)
dev_display (Image)
Button := 1
while (Button # 4)
dev_error_var (Error, 1)
dev_set_check (’~give_error’)
get_mposition (WindowID, Row, Column, Button)

122 CHAPTER 7. PROGRAM EXAMPLES

dev_error_var (Error, 0)

dev_set_check (’give_error’)

if (Error = H_MSG_TRUE)
get_grayval (Image, Row, Column, Grayval)
dev_set_color (’black’)
disp_rectanglel (WindowID, 0, 0, 22, 85)
dev_set_color (’white’)
set_tposition (WindowID, 15, 2)
write_string (WindowID, ’(’+Row+’,’+Column+’)=’+Grayval)

endif

endwhile

After loading an image and opening a window we enter the loop to query the mouse position.
Because the operatget mposition might cause an exception we cadkv_set_check to
declare that HDevelop should not stop if an exception ocagrs.set_check has to be called
before and after the critical call(s). If we want to know which error occurred we have to specify
the variable in which the return value will be stored. This is done by ugévgerror_var.

Now get_mposition can be called independent of the context. To check if the coordinates are
valid, the error variable is compared to one of the constants for standard return values (like
H_MSG_TRUE or H.MSG_FAIL). If the call succeeded, this coordinate is used to query the gray
value of the corresponding pixel in the image, which is then displayed in the window.

7.11 Road Scene

File name: road_signs.dev

The computing time is a critical factor in many image analysis tasks. Thus the system has
to offer features to speed up the processing. But direct hardware access must be avoided in
any case. All operators should work on encapsulated data structures. To allow optimization for
performance, data structures have to be used that support transparent and efficient programming.
The example segmentation of a road scene demonstrates how HALCON helps to achieve this
goal.

Here the task is to find the middle and border road markings of a motorway. The program is
performed by a normal workstation with a processing time of maximum 20 ms per half image
(video frequency) at a resolution of 5%2512 pixels. In figure 7.18 you see an image of such a
road sequence on the left side.

Assume that there is no specialized operator for this task. Thus, you have to make use of stan-
dard methods. The data structure used consists of a gray value image with a covering mask, i.e.,
the definition rangé.All operators work only on those parts of the image data that lie within

the definition range. This can be exploited to reduce computation time.

The following assumptions on the image data help to specify a region as a search mask:

() Road markings remain in a certain image part only.
(i) Road markings have a certain minimum length in y-direction.

(i) Road markings are separated by an edge from their environment.

3See section 2.1.2 for a short introduction to the data structures used by HDevelop.

7.11. ROAD SCENE 123

Figure 7.18Part of an image sequence (left) and search grid for marking band (right).

The first two assumptions can restrict the search area enormously. To make use of this, we create
a region as a grid whose line distance is determined by the minimum size of the road marking.
Figure 7.18 shows the corresponding region (= line grid) on the right side.

While performing an edge filter within the grid all pixels with a high gradient are candidates
on the contour of a road marking. By enlarging these pixels by the minimum diameter of the
markings (dilation) with rectangle, you will get the search window shown in figure 7.19 on the
left side.

Figure 7.19Search areas for markings (left) and segmentation (right).

Now the road markings can be easily extracted by a thresholding within the search windows.
The segmentation result is shown on the right side of figure 7.19. The corresponding HDevelop
program looks as follows:

MinSize := 30
set_system (’init_new_image’, ’false’)

124 CHAPTER 7. PROGRAM EXAMPLES

read_image (Motorway, ’motorway’)

count_seconds (Seconds1)

gen_grid_region (Grid, MinSize, MinSize, ’lines’, 512, 512)
clip_region (Grid, GridRoad, 130, 10, 450, 502)
reduce_domain (Motorway, GridRoad, Mask)

sobel_amp (Mask, Gradient, ’sum_abs’, 3)

threshold (Gradient, Points, 40, 255)

dilation_rectanglel (Points, RegionDilation, MinSize, MinSize)
reduce_domain (Motorway, RegionDilation, SignsGray)
threshold (SignsGray, Signs, 190, 255)

count_seconds (Seconds?2)

Time := Seconds2-Secondsl

dev_display (Signs)

First you create a grid by usingn_grid_region. It is reduced to the lower image half with
clip_region. The operatotreduce domain creates an image containing this pattern as def-
inition range. This image is passed to the operatgdrel_amp. You obtain pixels with high
gradient values usinthreshold. These pixels are enlarged to the region of interest (ROI) by a
dilation with a rectangular mask. Within this region another thresholding is performed. Correct
road markings are equivalent to bright areas in the search window (ROI).

The HALCON program needs an average of 20 ms on a standard Pentium. Notice that this is
even possible under the following restrictions:

(i) Only standard operators have been used.

(i) Only encapsulated data structures have been used.
(iif) Despite optimization the program is quite comprehensible.
(iv) The program is very short.

This example shows that you can write efficient programs even while using complex data struc-
tures. Hence a significant reduction of development time is achieved. Furthermore, data encap-
sulation is a basic condition for the portability of the whole system and the user software.

Chapter 8

Miscellaneous

In this chapter different aspects of working with HDevelop are discussed in detalil.

8.1 Starting of HDevelop

In UNIX HDevelop is started from the shell like any other program. Optionally, an application
name can be given as a parameter to HDevelop:

hdevelop <File>.dev

This application is then loaded. This is identical to a normal invocation of HDevelop (without
any parameter) and a subsequent loading of the application. If you want to run the application
immediately after it has been loaded, you can invoke HDevelop as follows:

hdevelop -run <File>.dev

This is identical to a normal invocation of HDevelop (without any parameters) with a loading
of the application and pressing tRen-button in HDevelop. After the application has been
executed, HDevelop waits for input from the user. The program can be interrupted or stopped
by pressing th&top-button. To stop or halt the complete program without user interaction the
stop Or exit operator can be used.

8.2 Keycodes

In order to speed up the entering of values in the input fields of HDevelop (e.g., operator pa-
rameters), several keycodes are defined, which have special functions. They conform to the
standards of themacs editor. This feature is only available for UNIX systems. Some of them
are shown in table 8.1.

8.3 Interactions during Program Execution

The interpreter of HDevelop allows some user interactions during the execution of a program.
First, the stop button has to be mentioned, which is responsible for interrupting the execution
of a program. When the stop button is pressed, the execution is stopped at the active HALCON
operator.

125

126 CHAPTER 8. MISCELLANEOUS

Delete Delete single character at current cursor position.

<Ctrl> a | Move the cursor to the beginning of the line.

<Ctrl> b | Move cursor left one character.

<Ctrl> d | Analogous telete

<Ctrl> e | Move cursor to last character in line.

<Ctrl> f | Move cursor right one character.

<Ctrl> h | Delete single character immediately preceding current cursor position
<Ctrl> k | Delete all characters from current position to end of line.
<Meta> b | Backward to previous word.

<Alt> b | Backward to previous word.

<Meta> d | Delete from current cursor position to end of current word.
<Alt> d | Delete from current cursor position to end of current word.
<Meta> f | Forward to next word.

<Alt> £ | Forward to next word.

Table 8.1: Keycodes for special editing functions

Other features of the HDevelop interpreter are the possibility to display iconic variables by
simply double clicking on them, and the facility to set the parameters which control the display
to the appropriate values. In addition to this, it is possible to insert commands into the program
text, no matter whether this makes any sense or not. Please note that interactions during the
execution of HALCON application can only be used in a sensible way, if the single operators
have short runtimes, because HDevelop can only react within the “gaps”, that is, between the
calls to the HALCON library.

Please note that neither t®€ nor theBP can be set during the execution of the HALCON
application.

8.4 Warning- and Error-Windows

Warning- and error-windows are popups, that make the user aware of user errors. Usually, they
interrupt the faulty actions with a description of the error. For this purpose information about
the kind of the error is determined during the execution. Figure 8.1 shows an example of an
error window.

8.5 Restrictions

Not every HALCON operator that is available in HALCON/C or HALCON/C++ can or should

be used in HDevelop. There are two reasons for this. On the one hand the HALCON system is
influenced by HDevelop so deeply, that some operators don’t behave like in a normal user pro-
gram. Usually this concernes the graphical operatorskkecolor. For this class of operators,
specific versions for HDevelop are available, edgy_set_color.

On the other hand some low-level operators exist (fi&get_obj_db or clear_obj), that will

bring HDevelop “out of balance.”

8.5. RESTRICTIONS 127

Error

spntaw error in parameter #1; <car''

Figure 8.1:Example for an error-window

Not the whole functionality of HDevelop can be transferred to a C++-program, because the
graphics windows of HDevelop are more comfortable than the simple HALCON windows.
However, the points described above are very special and will not bother the normal user,
because the appropriate functions can be found in both working environments. If you use
dev_set_color in HDevelop, for example, you would uset_color as its counterpart in
HALCON/C++. Further restrictions can be found in section 6.1.4.

128 CHAPTER 8. MISCELLANEOUS

Appendix A

Control

assign (: : Input : Result)

Assign a new value to a control variable.

assign assigns a new value to a variable. In HDevelop an assignment is treated like an op-
erator. To use an assignment you have to select the operaiogn (Input,Result). This
operator has the following semantics: It evaluatesut (right side of assignment) and stores

it in Result (left side of assignment). However, in the program text the assignment is repre-
sented by the usual syntax of the assignment operatsr:The following example outlines the
difference between an assignment in C syntax and its transformed version in HDevelop:

The assignment in C syntax
u = sin(x) + cos(y);
is defined in HDevelop using the assignment operator as

assign(sin(x) + cos(y), u)

which is displayed in the program window as:

u := sin(x) + cos(y)
Parameter
> Input (inputcontrol) real(-array)~~ reall integer / string
New value.
Defaultvalue: 1
> Result (outputcontrol)............................ real(-array)~ reall integer / string

Variable that has to be changed.

129

130

APPENDIX A. CONTROL

Tuplel := [1,0,3,4,5,6,7,8,9]

Val := sin(1.2) + cos(1.2)

Tuplel[1] := 2

Tuple2 := []

for i := 0 to 10 by 1
Tuple2[i] := i

endfor

assign returns 2 (HMSG_TRUE) if the evaluation of the expression yields no error.

Alternatives

insert

Basic operators

comment (: : Comment :)

Add a comment of one line to the program.

comment allows to add a comment of one line to the program. As parameter value, i.e. as
comment, all characters are allowed. This operator has no effect on the program execution.

Parameter

> Comment (inputcontrol)
Arbitrary sequence of characters.

......................... string ~» string

* This is a program width comments
* ’this is a string as comment’
* here are numbers: 4711, 0.815

stop ()

comment always returns 2 (MSG_TRUE).

Basic operators

exit (: : :)

Terminate HDevelop.

exit terminates HDevelop. The operator is aquivalent to the nfne > Quit. Internally

and for exported C++ code the C-function catlit (0) is used.

131

Example

read_image (Image, ’fabrik’)
intensity (Image, Image, Mean, Deviation)
open_file (’intensity.txt’, ’output’, FileHandle)

fwrite_string (FileHandle, Mean + ’ ’ + Deviation)
close_file (FileHandle)
exit O
Result
exit returns 0 (0.k.) to the calling environment of HDevelop = operating system.
See Alsa
stop
Module
Basic operators
for (: : Start, End, Step : Variable)

Execute the body for a fixed number.

The for loop is controlled by a start and termination value and an incrementation value that
determines the number of loop steps. These values may also be expressions which are evaluated
immediately before the loop is entered. The expressions may be ofitypger or of type

real. If all input values are of typeénteger the loop variable will also be of typenteger.

In all other cases the loop variable will be of typeal. If the start value is less or equal to the
termination value, the loop index is assigned with the starting value and the body of the loop
Is entered. If the increment is less than zero the loop is entered if the start value is larger or
equal to the end value. Each time the body is executed, the loop index is incremented by the
incrementation value. If the loop index is equal to the termination value, the body of the loop is
performed for the last time. If the loop index is larger than the termination value the body will
not be excecuted any longer. For negative increment values the loop is terminated if the loop
index is less than the termination value.

Please note that it is not necessary, that the loop index has to be equal to the termination value
before terminating the loop. The loop index is set to the termination value when the loop is
being left. Please note, that the expressions for start and termination value are evaluated only
once when entering the loop. A modification of a variable that appears within these expressions
has no influence on the termination of the loop. The same applies to the modifications of the
loop index. It also has no influence on the termination. The loop value is assigned to the correct
value each time theéor operator is executed.

If the for loop is left too early (e.g. if you presop and set theC) and the loop is entered
again, the expressions will be evaluated, as if the loop were entered for the first time.

Attention
For exported C++ please note the different semantics of the for loop.

132 APPENDIX A. CONTROL

Parameter

> Start (inputcontrol) number -~ integer real
Start value for the loop variable.
Defaultvalue: 1

> End (inputcontrol) o number~- integerl real
End value for the loop variable.
Defaultvalue: 5

> Step (iNnputcontrol) ... i number~- integer real
Increment value for the loop variable.
Defaultvalue: 1

> Variable (outputcontrol)...................... number~- integer real
Loop variable.

Example

dev_update_window (’off’)

dev_close_window ()

dev_open_window (0, 0, 728, 512, ’black’, WindowID)
read_image (Bond, ’die3’)

dev_display (Bond)

stop ()

threshold (Bond, Bright, 100, 255)

shape_trans (Bright, Die, ’rectangle2’)
dev_set_color (’green’)

dev_set_line_width (3)

dev_set_draw (’margin’)

dev_display (Die)

stop ()

reduce_domain (Bond, Die, DieGrey)

threshold (DieGrey, Wires, 0, 50)

fill_up_shape (Wires, WiresFilled, ’area’, 1, 100)
dev_display (Bond)

dev_set_draw (’fill’)

dev_set_color (’red’)

dev_display (WiresFilled)

stop ()

opening_circle (WiresFilled, Balls, 15.5)
dev_set_color (’green’)

dev_display (Balls)

stop ()

connection (Balls, SingleBalls)

select_shape (SingleBalls, IntermediateBalls, ’circularity’, ’and’, 0.85, 1.0)
sort_region (IntermediateBalls, FinalBalls, ’first_point’, ’true’, ’column’)
dev_display (Bond)

dev_set_colored (12)

dev_display (FinalBalls)

stop ()

133

smallest_circle (FinalBalls, Row, Column, Radius)

NumBalls := |Radius|

Diameter := 2*Radius

meanDiameter := sum(Diameter)/NumBalls
mimDiameter := min(Diameter)

dev_display (Bond)
disp_circle (WindowID, Row, Column, Radius)
dev_set_color (’white’)
set_font (WindowID, ’system26’)
for i := 1 to NumBalls by 1
if (fmod(i,2)=1)
set_tposition (WindowID, Row[i-1]-1.5%Radius[i-1], Column[i-1]-60)
else
set_tposition (WindowID, Row[i-1]+2.5*Radius[i-1], Column[i-1]-60)
endif
write_string (WindowID, ’Diam: ’+Diameter[i-1])
endfor
dev_set_color (’green’)
dev_update_window (’on’)

Result
for returns 2 (HMSG_TRUE) if the evaluation of the expression yields no ersadfor (as
operator) always returns 2 (MSG_TRUE)

Alternatives
while
See Alsa
if, ifelse
Module

Basic operators

if (: : Condition :)

Conditional statement.

if is a conditional statement. The condition contains a boolean expression. If the condition
Is true, the body is executed. Otherwise the execution is continued at the first expression or
operator call that follows the correspondiagiif.

Parameter
> Condition (inputcontrol)..... ... i integer ~ integer
Condition for the if statement.
Defaultvalue: 1
Result

if returns 2 (HMSG_TRUE) if the evaluation of the expression yields no ereardif (as
operators) always returns 2 (MSG_TRUE)

134 APPENDIX A. CONTROL

Alternatives
ifelse
See Alsa
for,while
Module

Basic operators

ifelse (: : Condition :)

Condition with alternative.

ifelse is a condition with an alternative. If the condition is true (i.e. not 0), all expressions and
calls between the head and operatndif are performed. If the condition is false (i.e. 0) the
part betweerelse andendif is executed. Note that the operator is caliadelse and it is
displayed a4 f in the program text area.

Parameter
> Condition (inputcontrol)...........o i integer ~» integer
Condition for the if statement.
Defaultvalue: 1
Result

ifelse returns 2 (HMSG_TRUE) if the evaluation of the expression yields no erease and
endif (as operators) always return 2 (AISG_TRUE)

Alternatives
if
See Alsa
for, while
Module
Basic operators
insert (: : Input, Value, Index : Result)

Assignment of a value into a tuple.

insert assigns a single value into an tuple. If the first input parameter and the first output
parameter are identical, the call:

insert (Areas, Area, Radius-1, Areas)
is not presented in the program text as an operator call, but in the more intuitive form as:

Areas[Radius-1] := Area

135

Parameter

> Input (inputcontrol) real(-array)~ reall integer / string
Tuple, where the new value has to be inserted.
Defaultvalue: [J’

> Value (inputcontrol) i real ~ reall integer / string
Value that has to be inserted.
Defaultvalue: 1
Value Range:0 < value < 1000000

> Index (Inputcontrol) i integer ~» integer
Index position for new value.
Defaultvalue: 0
Value Suggestionsindex € {0,1,2,3,4,5, 6
Minimal Value Step: 1

> Result (outputcontrol)............................ real(-array)~ reall integer / string
Result tuple with inserted values.

Result
insert returns 2 (HMSG_TRUE) if the evaluation of the expression yields no error.
Alternatives
assign
Module

Basic operators

stop (: : :)

Stop program execution.

stop stops the program execution of HDeveltyePC is then placed at the program line behind
stop. The operator is equivalent the presing ghep button in the menu bar.

Attention

stop is not available in C++.
Example

read_image (Image, ’fabrik’)
regiongrowing (Image, Regions, 3, 3, 6, 100)
Number := |Regions]|
dev_update_window (’off’)
for i := 1 to Number by 1
RegionSelected := Regions[i]
dev_clear_window ()
dev_display (RegionSelected)
stop (O
endfor

136 APPENDIX A. CONTROL

Result
stop always returns 2 (IMSG_TRUE)
See Alsa
exit
Module

Basic operators

while (: : Condition :)

Continue to execute the body as long as the condition is true.

while executes the body as long as the condition is true. wlitige loop has a boolean ex-
pression as the conditional part. As long as itdse (i.e. not equal 0), the body of the loop is
performed. In order to enter the loop, the condition has to be true in the first place.

Parameter

> Condition (inputcontrol)........... integer ~» integer
Condition for loop.

Example

dev_update_window (’off’)

dev_close_window ()

dev_open_window (0, 0, 512, 512, ’black’, WindowID)
read_image (Image, ’particle’)

dev_display (Image)

stop ()

threshold (Image, Large, 110, 255)
dilation_circle (Large, LargeDilation, 7.5)
dev_display (Image)

dev_set_draw (’margin’)

dev_set_line_width (3)

dev_set_color (’green’)

dev_display (LargeDilation)

dev_set_draw (°fill’)

stop ()

complement (LargeDilation, NotLarge)
reduce_domain (Image, NotLarge, ParticlesRed)
mean_image (ParticlesRed, Mean, 31, 31)
dyn_threshold (ParticlesRed, Mean, SmallRaw, 3, ’light’)
opening_circle (SmallRaw, Small, 2.5)
connection (Small, SmallConnection)
dev_display (Image)

dev_set_colored (12)

dev_display (SmallConnection)

stop ()

137

dev_set_color (’green’)
dev_display (Image)
dev_display (SmallConnection)
Button := 1
while (Button = 1)
dev_set_color (’green’)
get_mbutton (WindowID, Row, Column, Button)
dev_display (Image)
dev_display (SmallConnection)
dev_set_color (’red’)
select_region_point (SmallConnection, SmallSingle, Row, Column)
dev_display (SmallSingle)
NumSingle := |SmallSingle]
if (NumSingle=1)
intensity (SmallSingle, Image, MeanGray, DeviationGray)
area_center (SmallSingle, Area, Row, Column)
dev_set_color (’yellow’)
set_tposition (WindowID, Row, Column)
write_string (WindowID, ’Area=’+Area+’, Int=’+MeanGray)
endif
endwhile
dev_set_line_width (1)
dev_update_window (’on’)

Result
while returns 2 (HMSG_TRUE) if the evaluation of the expression yields no ereadwhile
(as operator) always returns 2 (AISG_TRUE)

Alternatives
for
See Alsa
if, ifelse
Module

Basic operators

138 APPENDIX A. CONTROL

Appendix B

Develop

dev_clear_obj (Objects : : :)

Delete an iconic object from the HALCON database.

dev_clear_obj deletes iconic objects, which are no longer needed, from the HALCON
database. It should be noted thiatvr_clear_obj cannot be exported to C++ due to the au-
tomatic memory management in C++.

Attention
Never uselear_obj to clear objects in HDevelop. The operader_clear_obj has to be used
instead.

Parameter

> Objects (inputobject)................ object(-array)~» Hobject
Objects to be deleted.

Result
dev_clear_obj returns 2 (HMSG_TRUE) if the variable is instantiated. If necessary, an ex-
ception is raised.

See Alsa
clear_obj, test_obj_def, dev_set_check, reset_obj_db

Module

Basic operators

dev_clear window (: : :)

Clear the active graphics window.

dev_clear_window clears the graphics window content and the history of the active window.
Parameters assigned to this window (e.g. Wik _set_color, dev_set_draw, etc.) remain un-
modified. The operator is equivalent to pressingthear button of the active graphics window.

A graphics window can be activated by callidgv_set_window.

Attention

139

140 APPENDIX B. DEVELOP

If dev_clear_window should be used for exported Code (C++), please note the description of
clear _window due to the different semantics in C++.

Example

read_image (Image, ’fabrik’)
regiongrowing (Image, Regions, 3, 3, 6, 100)
Number := |Regions]|
dev_update_window (’off’)
for i := 1 to Number by 1
RegionSelected := Regions[il]
dev_clear_window ()
dev_display (RegionSelected)
* stop O
endfor

Result
dev_clear_window always returns 2 (tMSG_TRUE).

Possible Predecessor Functians
dev_set_window, dev_open_window, dev_display

Possible Successor Functions

dev_display

See Alsa
clear_window

Module
System operators
dev_close_inspect_ctrl (: : Variable :)

Close an inspect window of a control variable.

dev_close_inspect_ctrl is the opposite operator ev_inspect_ctrl, and closes the in-
spect window corresponding ariable. The window can also be closed by pressing the
Close-button of the dialog.

Attention
This operator is not supported for exported C++ code.
Parameter
> Variable (inputcontrol) real(-array)~~ reall integer / string

Name of the variable which inspect window has to be closed.
Example

Var := 1
dev_inspect_ctrl (Var)

141

Var := [1,2,3,9,5,6,7,8]
Var[3] := 4

stop

dev_close_inspect_ctrl (Var)

Result
If an inspect window associated wittariable is opendev_close_inspect_ctrl returns 2
(H.MSG_TRUE).

Possible Predecessor Functions

dev_inspect_ctrl
Module

Basic operators

dev_close window (: : :)

Close the active graphics window.

dev_close_window closes the active graphics window which have been opened by
dev_open_window or by HDevelop (default window). The operator is equivalent to press-
ing theClose button of the active window. A graphics window can be activated by calling
dev_set_window.

Attention
If dev_close_window should be used for exported Code (C++), please note the description of
close_window due to the different semantics in C++.

Example

* close all windows
for i :=1 to 10 by 1
dev_close_window ()
endfor
read_image (For5, ’forb5’)
get_image_pointerl (For5, Pointer, Type, Width, Height)
dev_open_window (0, O, Width, Height, ’black’, WindowHandle)
dev_display (For5)

Result
dev_close_window always returns 2 (tMSG_TRUE).

Possible Predecessor Functions
dev_set_window, dev_open_window

Possible Successor Functions

dev_open_window

See Alsa

close_window

Module

System operators

142 APPENDIX B. DEVELOP

dev_display (Object : : :)

Displays image objects in the current graphics window.

dev_display displays an image object (image, region, or XLD) in the active graphics window.
This is equivalent to a double click on an icon variable inside the variable window.

Attention
If dev_display should be used for exported Code (C++), please note the description of
disp-obj due to the different semantics in C++.

Parameter

> Object (inputobject). ..., object(-array)~» Hobject
Image objects to be displayed.

Example

read_image (Image, ’fabrik’)

regiongrowing (Image, Regions, 3, 3, 6, 100)
dev_clear_window ()

dev_display (Image)

dev_set_colored (12)

dev_set_draw (’margin’)

dev_display (Regions)

Result
dev_display always returns 2 (IMSG_TRUE)
Alternatives
disp_object, disp_image, disp_region, disp_x1d
See Alsa
dev_set_color, dev_set_colored, dev_set_draw, dev_set_line_width
Module
System operators
dev_error_var (: : ErrorVar, Mode :)

Define or undefine an error variable.

dev_error_var defines an error variable, i.e. a variable which contains the status of the last call
of an operatorErrorVar will be HMSG_TRUE (2) if no error had occured. The parameter
Mode specifies if the error variable should be used (1) or not (0). If an error variable is active it
will be updated each an operator excetion is finished. Thus a value is only valid until the next
call of an operator. The value can be saved by assigning it to another variable (see example) or
by callingdev_error_var (ErrorVar,0).

143

Attention
If dev_error_var should be used for exported Code (C++), please note the different handling
of return values in C++.

Parameter
> ErrorVar (inputcontrol) L. integer(-array)~» integer
Name of the variable which shall contain the error status.
> Mode (iNPULCONLIOl)o integer ~ integer
Switch the error variable on or off.
Defaultvalue: 1
Value List: Mode € {0, 1}
Example

dev_close_window ()

dev_open_window (0, 0, 512, 512, ’black’, WindowHandle)
dev_error_var (Error, 1)

dev_set_check (’“give_error’)

FileName := ’wrong_name’
read_image (Image, FileName)
ReadError := Error

if (ReadError # H_MSG_TRUE)
write_string (WindowHandle, ’wrong file name: ’+FileName)
endif

Result
dev_error_var always returns 2 (HMSG_TRUE)

Possible Predecessor Functions

dev_set_check

Possible Successor Functions
dev_set_check, if, ifelse, assign

See Alsa
set_check

Module
Basic operators
dev_inspect_ctrl (: : Variable :)

Open a window to inspect a control variable.

dev_inspect_ctrl opens a dialog to check the contents of a control variable. This dialog has

a scrolled list with all the values of the variable. In the case of an framegrabber handle a spe-
cific dialog is opened which displays the most important framegrabber parameters and can
be used to switch the framegrabber only interactively. The contents of the dilaog will be up-
dated whenever the value(s) of variable changes. The update mode can influenced by the op-
eratordev_update_ctrl. The dialog can be closed by pressing these-button or by calling
dev_close_inspect_ctrl.

144 APPENDIX B. DEVELOP

Attention
This operator is not supported for exported C++ code.

Parameter

> Variable (inputcontrol)........................ integer(-array)~ integer! real / string
Name of the variable to be checked.

Example

read_image (Image, ’fabrik’)

regiongrowing (Image, Regions, 3, 3, 6, 100)
area_center (Regions, Area, Row, Column)
dev_inspect_ctrl (Area)

Result
dev_inspect_ctrl always returns 2 (IMSG_TRUE)
See Alsa
dev_update_var
Module

Basic operators

devmap_par (: : :)

Open the dialog to specify the display parameters.

dev_map_par opens the dialog which can also be accessed from the fignialization >
Set Parameters.... The dialog is used to configure the modes to display data like images,
regions, or polygons.

Attention
This operator is not supported for exported C++ code.

Example

read_image (Image, ’fabrik’)
threshold (Image, Region, 128, 255)
dev_map_par ()

Result
dev_map_par always returns 2 (HMSG_TRUE)

Possible Successor Functions

dev_unmap_par
Module

Basic operators

145

devmap_prog (: : :)

Make the main window of HDevelop visible.

dev_map_prog is used to map the main window of HDevelop after it has been unmapped by
dev_unmap_prog.

Attention
This operator is not supported for exported C++ code.

Depending on the operating system or the window manager the executiav afap prog
will result only in a visible icon of the window. In this case it has to be opened by the user with
mouse interaction.

Result
dev_map_prog always returns 2 (IMSG_TRUE)

Possible Predecessor Functions

dev_unmap_prog

Possible Successor Functions

dev_unmap_prog

See Alsa

dev_map_par, dev_map_var

Module

Basic operators

devmap-var (: : :)

Map the variable window on the screen.

dev_map_var maps the variable window on the screen (i.e. makes it visible) that has been un-
mapped usingev_unmap_var.

Attention
This operator is not supported for exported C++ code.

Result
dev_map_var always returns 2 (HMSG_TRUE)

Possible Predecessor Functions

dev_unmap_var

Possible Successor Functions

dev_unmap_var

See Alsa

dev_map_par, dev_map_prog
Module

Basic operators

146 APPENDIX B. DEVELOP

dev_open_window (: : Row, Column, Width, Height, Background :
WindowHandle)

Open a graphics window.

dev_open_window opens a new graphics window, which can be used to perform output of gray
value data, regions, and graphics as well as to perform textual output. This new window auto-
matically becomes active, which means that all outpet(display and automatical display

of operator results) is redirected to this window. This is shown by the green dot ke thee

button.

In the case of the standard display operators (ik€p_image, disp_region, disp_line, etc.)
instead odev_display the logical window numbeiindowHandle has to be used.

The background of the created window is set to the color specifiBddkground.

Pressing th€lear button clears the graphics window contents and the history of the window.
This can also be achived by using the operdtor_clear_window. You close a graphics win-
dow using thelose button of the window frame or by callingev_close_window.

The the origin of the graphics window is the upper left corner with the coordinates (0,0). The x
values (column) increase from left to right, the y values increase from top to bottom. Normally,
the coordinate system of the graphics window corresponds to the the most recently displayed
Image, which is automatically zoomed so that every pixel of the image is visible. The coordinate
system can be changed interactively using the marswalization > Set Parameters

Zoom or with the operatodev_set_part. Every time an image with a different size is displayed,

the coordinate system will be adapted automatically.

Each window has a history which contains all

e objects and
¢ display parameters

which have been displayed or changed since the most recent clear action or display of a full
image. This history is used for redrawing the contents of the window. Other output like text or
general graphics likeisp_line or disp_circle or iconic data that is displayed using HAL-
CON operators likelisp_image or disp_region arenot part of the history, and aneot re-
drawn. Only the object classes image, region, and XLD that are displayed with the HDevelop
operatordev_display or by double clicking on an icon are part of the history.

You may change the size of the graphics window interactively by “gripping” the window border
with the mouse. Then you can resize the window by dragging the mouse pointer. After this size
modification the window content is redisplayed. Now you see the same part of the window with
changed zoom.

If the mouse cursor is inside the window its look-up-table is reactivated. This is necessary
if other programs use their own look-up table. Thus if there is a “strange” graphics window
presentation, you may load the proper look-up table by placing the mouse inside the window.

Opening a window causes the assignment of a default font. It is used in connection with pro-
cedures likewrite_string and you may overwrite it by performinget_font after calling

147

dev_open_window. On the other hand you have the possibility to specify a default font by call-
iINg set_system(’default_font’,<Fontname>) before opening a window (and all following
windows; see alsquery_font).

If you want to specify display parameters for a window you may select the menu item
Visualization in the menu bar. Here you can set the appropriate parameters by clicking the
desired item. Parameters which you have set in this way are usetl feindows (in contrast

to standard windows opened witlben_window). The effects of the new parameters will be
applied direcly to théast object of the window history and alter its parameters only.

Attention
Never use close_window to close an HDevelop graphics window. The operator
dev_close_window has to be used instead.

If dev_open_window should be used for exported Code (C++), please note the description of
open_window due to the different semantics in C++.

Parameter

> Row (inputcontrol) rectangle.origin.y~ integer
Row index of upper left corner.
Defaultvalue: 0
Value Range:0 < Row
Minimal Value Step: 1
Recommended Value Stepl
Restriction: Row > 0

> Column (inputcontrol) i rectangle.origin.x~ integer
Column index of upper left corner.
Defaultvalue: O
Value Range:0 < Column
Minimal Value Step: 1
Recommended Value Stepl
Restriction: Column > 0

> Width (inputcontrol) rectangle.extent.x integer
Width of the window.
Defaultvalue: 256
Value Range:0 < Width
Minimal Value Step: 1
Recommended Value Stepl
Restriction: (Width > 0) V (Width = -1)
> Height (inputcontrol)o i rectangle.extent.y» integer
Height of the window.
Defaultvalue: 256
Value Range:0 < Height
Minimal Value Step: 1
Recommended Value Stepl
Restriction: (Height > 0) V (Height = -1)
> Background (inputcontrol) oL integer ~» integer string
Color of the background of the new window.
Defaultvalue: "black”

148 APPENDIX B. DEVELOP

> WindowHandle (outputcontrol) i window ~» integer
Window identifier.

Example

dev_close_window ()

read_image (For5, ’forb5’)

get_image_pointerl (For5, Pointer, Type, Width, Height)
dev_open_window (0, O, Width, Height, ’black’, WindowHandle)
dev_display (For5)

dev_set_lut (’rainbow’)

dev_display (For5)

stop ()

dev_set_lut (’default’)

dev_display (For5)

stop ()

dev_set_part (100, 100, 300, 300)

dev_display (For5)

Result
If the values of the specified parameters are correet_open_window returns 2
(H.MSG_TRUE). If necessary an exception handling is raised.

Possible Successor Functians
dev_display, dev_set_lut, dev_set_color, dev_set_draw, dev_set_part

Alternatives
open_window
See Alsa
query._color
Module
System operators
dev_set_check (: : Mode :)

Specify the error handling.

dev_set_check sepcifies how HDevelop should react if an error occure$odk has the value
‘give_error’ — which is the system default — HDevelop stops the program execution if an ex-
ception occures and displays an error message. If yotigise_error’ the exception will be
ignored and the program continuelv_set_check is intended to used in connection with
dev_error_var, which allows to check for the result state of an operator.

Attention
If dev_set_check should be used for exported Code (C++), please note the description of
set_check due to the different semantics in C++.

149

Parameter
> Mode (iNnputcontrol)...... i string ~» string
Mode of error handling.
Defaultvalue: 'give_error’
Example

dev_close_window ()
dev_open_window (0, 0, 512, 512, ’black’, WindowHandle)
dev_error_var (Error, 1)
dev_set_check (’“give_error’)
FileName := ’wrong_name’
read_image (Image, FileName)
dev_set_check (’give_error’)
ReadError := Error
if (ReadError # H_MSG_TRUE)
write_string (WindowHandle, ’wrong file name: ’+FileName)
endif
* Now the program will stop with an exception
read_image (Image, FileName)

Result
dev_set_check always returns 2 (HMSG_TRUE)

Possible Successor Functions

dev_error_var

See Alsa
set_ckeck

Module
System operators
dev_set_color (: : ColorName :)

Set output color.

dev_set_color defines the color for region and line oriented output in the graphics win-
dows. The available colors can be queried with the operatety_color. The “colors”
‘black’ and 'white’ are available for all screens. If colors are used that are not displayable
on the screen, HALCON can choose a similar, displayable color of the output. For this,
set_check(’~“color’) must be called.

The defined color is used unéibv_set_color ordev_set_colored is called.
Colors are defined for all graphics windows in contrast to the opegatokolor.

Attention
If dev_set_color should be used for exported Code (C++), please note the description of
set_color due to the different semantics in C++.

150 APPENDIX B. DEVELOP

Parameter

> ColorName (inputcontrol)............... string(-array)~» string
Output color names.
Defaultvalue: 'white’
Value SuggestionsColorName € {'white’, 'black’, ‘'grey’, 'red’, 'green’, 'blue’}

Example
read_image (Image, 'mreut’)
dev_set_draw(’fill’)
dev_set_color(’red’)
threshold(Image,Region, 180,255)
dev_set_color(’green’)
threshold(Image,Region,0,179)

Result

dev_set_color always returns 2 (HMSG_TRUE)

Possible Predecessor Functians
dev_open_window, query_color, query_all_colors

Possible Successor Functions

dev_display

Alternatives
dev_set_colored
See Alsa
dev_set_draw, dev_set_line_width, set_color
Module
System operators
dev_set_colored (: : NumColors :)

Set multiple output colors.

dev_set_colored allows the user to display a tuple of regions in different coldusiColors
defines the number of colors that are used. Valid valuediiaColors can be queried with
query_colored.

Attention
If dev_set_colored should be used for exported Code (C++), please note the description of
set_colored due to the different semantics in C++.

Parameter

> NumColors (inputcontrol)..... ..., integer ~ integer
Number of output colors.
Defaultvalue: 6
Value List: NumColors € {3, 6, 12

151

Example
read_image (Image, ’monkey’)
threshold(Image,Region,128,255)
dev_set_colored(6)
connection(Region,Regions)

Result

dev_set_colored always returns 2 (tMSG_TRUE)
Possible Predecessor Functions

dev_open_window

Possible Successor Functions

dev_display

Alternatives
dev_set_color
See Alsa
dev_set_draw, dev_set_line_width, set_colored
Module
System operators
dev_set_draw (: : DrawMode :)

Define the region fill mode.

dev_set_draw defines the region fill mode. frawMode is set to ‘fill’, output regions are filled,
if set to 'margin’, only contours are displayed. It is used by region outputdéedisplay,
disp_region, disp_circle, disp_rectanglel, disp_rectangle2, disp_arrow, etc. If the
mode is ‘'margin’, the contour can be affecteddey _set_line width, set_line_approx and
set_line_style.

Attention
If dev_set_draw should be used for exported Code (C++), please note the description of
set_draw due to the different semantics in C++.

Parameter

> DrawMode (INPULCONLION) e string ~ string
Fill mode for region output.
Defaultvalue: "fill
Value List: DrawMode € {'fill’, 'margin’ }

Example

read_image (Image, 'monkey’)
threshold(Image,Region, 128,255)
dev_clear_window
dev_set_color(’red’)

152 APPENDIX B. DEVELOP

dev_set_draw(’fill’)
dev_display(Region)
dev_set_color(’white’)
dev_set_draw(’margin’)
dev_display(Region)

Result
dev_set_draw always returns 2 (IMSG_TRUE)

Possible Successor Functions
dev_set_line_width, dev_display

See Alsa
set_draw

Module
System operators
dev_set_line_width (: : LineWidth :)

Define the line width for region contour output.
dev_set_line_width defines the line width (in pixel) in which a region contour or lines are
displayed (e.g. witllev_display, disp_region, disp_line, disp_polygon, etc.).

Attention
If dev_set_line width should be used for exported Code (C++), please note the description
of set_line_width due to the different semantics in C++.

Parameter

> LineWidth (inputcontrol)..... i integer ~ integer
Line width for region output in contour mode.
Defaultvalue: 1
Restriction: LineWidth > 1

Example

read_image (Image, 'monkey’)
threshold(Image,Region, 128,255)
dev_set_draw(’margin’)
dev_set_line_width(5)
dev_clear_window
dev_display(Region)

Result
dev_set_line_width always returns 2 (MSG_TRUE)

Possible Successor Functions

dev_display
See Alsa

set_line _with, query_line_width

153

Module

System operators

dev_set_lut (: : LutName :)
Set “look-up-table” (lut).

dev_set_lut sets look-up-table of the the output window. A look-up-table defines the transfor-
mation of a “gray value” within an image into a gray value or color on the screen. It describes
the screen gray value/color as a combination of red, green and blue for any image gray value
(0..255) (so it is a 'table’ to 'look up’ the screen gray value/color for each image gray value:
look-up-table). Transformation into screen-colors is performed in real-time at every time the
screen is displayed new (typically this happens about 60 - 70 times per second). So itis possible
to change the look-up-table to get a new look of images or regions. Please remind that not all
machines support changing the look-up-table (e.g. monochrome resp. truecolor).

For common monitors only one look-up-table can be loaded per screen. Wheteast _1ut

can be activated separately for each window. There is the following solution for this problem:
It will always be activated the look-up-table that is assigned to the “active window” (a window
Is set into the state “active” by placing the mouse inside the window).

look-up-tables can also be used with truecolor displays. In this case the look-up-table will be
simulated in software. This means, that the look-up-table will be used each time an image is
displayed.

query_lut lists the names of all look-up-tables.

Attention
If dev_set_1lut should be used for exported Code (C++), please note the descriptien.afut
due to the different semantics in C++.

Parameter

> LutName (inputcontrol) string ~» string
Name of look-up-table, values of look-up-table (RGB) or file name.
Defaultvalue: 'default’
Value SuggestionsLutName € {'default’, 'linear’, 'inverse’, ’sqr’, 'inv_sqr’, ‘cube’,
'inv _cube’, 'sgrt’, 'inv_sqrt’, ‘cubic_root’, 'inv_cubicroot’, 'colorl’, 'color2’, 'color3’,
‘colord’, 'three’, ’six’, 'twelfe’, 'twenty _four’, rainbow’, temperature’, 'cyclicgray’,
‘cyclic_temperature’, ’hsi’, '‘changel’, 'change2’, ‘changé3’

Example
read_image (Image, 'mreut’)
dev_set_lut(’inverse’)

* For true color only:
dev_display (Image)
Result

dev_set_lut always returns 2 (HMSG_TRUE)

154 APPENDIX B. DEVELOP

Possible Successor Functions

dev_display
See Alsa

set_lut
Module

System operators

dev_set_paint (: : Mode :)

Define the grayvalue output mode.

dev_set_paint defines the output mode for grayvalue display in the graphics window. The
mode is used bygev_display.

This page describes the different modes, that can be used for grayvalue output. It should be
noted, that the mode 'default’ is the most suitable.

A different way to display grayvalues is the histogram (mode: "histogram’). This mode has three
additional parameter values: Row (second value) and column (third value). They denote row and
column of the histogram center for positioning on the screen. The scale factor (fourth value)
determines the histogram size: a scale factor of 1 distinguishes 256 grayvalues, 2 distinguishes
128 grevalues, and so on. The four values are passed as a tuple, e.g. ['histogram’, 256,256,1]. If
only the first value is passed ('histogram’), the other values are set to defaults or the last values,
respectively. For histogram computation geey_histo.

The modes ’line’ and 'column’ allow to display gray values along lines or columns, respecively.
The position (line- and columnindex) is passed with the second paramter value. The third pa-
rameter value is the scale factor in percent (100 means 1 pixel per grayvalue, 50 means one
pixel per two grayvalues).

Gray images can also be interpreted as 3d data, depending on the grayvalue. To view these 3d
plots, select the modes 'contourline’, ’3D-plot’ or '3D-plbidden’.

Paramters for modes that need more than one parameter can be passed the following ways:

e Only the name of the mode is passed: the defaults or the last values are used, respectively.
Exampledev_set _paint (’contourline’)

e All values are passed: all output characteristics can be set. Example:
dev_set_paint([’contourline’,10,1])

e Only the first n values are passed: only the passed values are changed. Example:
dev_set_paint([’contourline’,10])

Attention
If dev_set_paint should be used for exported Code (C++), please note the description of
set_paint due to the different semantics in C++.

155

Parameter

> Mode (inputcontrol) ... string-array~ string/ integer
Grevalue output name. Additional parameters possible.
Defaultvalue: 'default’
Value List: Mode € {'default’, "histogram’, 'line’, ‘column’, 'contourline’, '3D-plot’,
'3D-plot_hidden’, '3D-plotpoint’}

Example

read_image (Image,’fabrik’)
dev_set_paint (’3D-plot’)
dev_display (Image)

Possible Predecessor Functions

dev_open_window

Possible Successor Functions

dev_set_color, dev_display

See Alsa
set_paint
Module
System operators
dev_set_part (: : Rowl, Columnl, Row2, Column2 :)

Modify the displayed image part.

dev_set_part modifies the image part that is displayed in the graphics window.
(Row1,Columnl) denotes the upper left corner arkb§2,Column?2) the lower right corner of
the image part to display.

If Row1 is larger tharRow2 the zooming will be reset. That means that the last displayed image
will be completetly visible. Please note that this is not possible with the opesatopart
outside HDevelop.

Attention
If dev_set_part should be used for exported Code (C++), please note the description of
set_part due to the different semantics in C++.

Parameter

> Rowl (inputcontrol)............. rectangle.origin.y~ integer
Row of the upper left corner of the chosen image part.
Defaultvalue: 0

> Columnl (inputcontrol) rectangle.origin.x~ integer
Column of the upper left corner of the chosen image part.
Defaultvalue: 0

> Row2 (inputcontrol) rectangle.corner.y~» integer
Row of the lower right corner of the chosen image part.
Defaultvalue: 128

156 APPENDIX B. DEVELOP

> Column2 (inputcontrol) rectangle.corner.x- integer
Column of the lower right corner of the chosen image part.
Defaultvalue: 128

Example

read_image (Image, ’fabrik’)

for i := 1 to 240 by 10
dev_set_part (i, i, 511-i, 511-i)
dev_display (Image)

endfor

dev_set_part (1, 1, -1, -1)

dev_display (Image)

Result
dev_set_part always returns 2 (IMSG_TRUE)

Possible Successor Functions

dev_display

See Alsa
set_part

Module
System operators
dev_set_shape (: : Shape :)

Define the region output shape.

dev_set_shape defines the shape for region output. The output shape is uséskbyisplay
for regions. The available shapes can be queried guiglry_shape.

Available modes:

‘original’: The shape is displayed unchanged. Nevertheless modifications via parameters like
dev_set_line width can take place. This is also true for all other modes.

‘outer _circle’: Each region is displayed by the smallest surrounding circle. (See
smallest_circle.)

'inner _circle’: Each region is displayed by the largest included circle. (S@er _circle.)

‘ellipse’: Each region is displayed by an ellipse with the same moments and orientation (See
elliptic_axis.)

'rectanglel’: Each region is displayed by the smallest surrounding rectangle parallel to the
coordinate axes. (Semallest_rectanglel.)

‘rectangle2’: Each region is displayed by the smallest surrounding rectangle. (See
smallest_rectangle2.)

‘convex’: Each region is displayed by its convex hull (S#@pe_trans.)

157

‘icon’ Each region is displayed by the icon set watt _icon in the center of gravity.

Attention
If dev_set_shape should be used for exported Code (C++), please note the description of
set_shape due to the different semantics in C++.

Parameter

> Shape (inputcontrol) string ~» string
Region output mode.
Defaultvalue: original’
Value List: Shape € {’original’, ‘convex’, 'outer circle’, 'inner_circle’, rectanglel’,
rectangle2’, ’ellipse’, 'icon}

Example

read_image (Image, ’monkey’)
threshold(Image,Region, 128,255)
connection(Region,Regions)
dev_set_shape(’rectanglel’)
dev_set_draw(’margin’)
dev_display(Regions)

Possible Successor Functions

dev_display, dev_set_color

See Alsa
set_shape, dev_set_line with
Module
System operators
dev_set_window (: : WindowID :)

Activate a graphics window.

dev_set_window activates a graphics window. This is equivalent to pressing ¢heve button
of the graphics window.

Attention
If dev_set_window should be used for exported Code (C++), please note the different handling
of windows in C++.

dev_set_window iS not supported for C++.
Parameter

> WindowID (inputcontrol) window ~» integer
Window.id.

Example

158 APPENDIX B. DEVELOP

dev_open_window (1, 1, 200, 200, ’black’, WindowID1)
dev_open_window (1, 220, 200, 200, ’black’, WindowID2)
read_image (Image, 'monkey’)

dev_set_window(WindowID1)

dev_display(Image)

dev_set_window(WindowID2)

dev_display (Image)

Possible Predecessor Functions
dev_open_window

Possible Successor Functions

dev_display
Module

Basic operators

dev_set_window_extents (: : Row, Column, Width, Height :)

Change position and size of a graphics window.

dev_set_window_extents changes the position and/or the size of the currently active graphics
window.

The parameterRow andColumn specify the new position (upper left corner) of the window.

If one of both values is negative, the position will remain unchanged. The pararietets
andHeight specify the new size of the window. This is the size of the inner part that actually
displayes the data. If one of the two values is negative, the size will remain unchanged.

Attention
Never useset_window_extents to change the size and position of an HDevelop graphics win-
dow. The operatodev_set_window_extents has to be used instead.

Parameter

> Row (inputcontrol) rectangle.origin.y~ integer
Row index of upper left corner.
Defaultvalue: 0
Value Range:0 < Row
Minimal Value Step: 1
Recommended Value Stepl
Restriction: (Row > 0) V (Row = -1)
> Column (inputcontrol) rectangle.origin.x~ integer
Column index of upper left corner.
Defaultvalue: 0
Value Range:0 < Column
Minimal Value Step: 1
Recommended Value Stepl
Restriction: (Column > 0) V (Column = -1)

159

> Width (inputcontrol)l rectangle.extent.x» integer
Width of the window.
Defaultvalue: 256
Value Range:0 < Width
Minimal Value Step: 1
Recommended Value Stepl
Restriction: (Width > 0) V (Width = -1)
> Height (inputcontrol) i rectangle.extent.y» integer
Height of the window.
Defaultvalue: 256
Value Range:0 < Height
Minimal Value Step: 1
Recommended Value Stepl
Restriction: (Height > 0) V (Height = -1)
Example

dev_close_window ()

read_image (For5, ’for5’)

get_image_pointerl (For5, Pointer, Type, Width, Height)
dev_open_window (0, O, Width, Height, ’black’, WindowHandle)
dev_display (For5)

stop ()

dev_set_window_extents (-1,-1,Width/2,Height/2)

dev_display (For5)

stop ()

dev_set_window_extents (200,200,-1,-1)

Result
If the values of the specified parameters are cortiest set_window_extents returns 2
(H.MSG_TRUE). If necessary an exception handling is raised.

Possible Successor Functians
dev_display, dev_set_lut, dev_set_color, dev_set_draw, dev_set_part

See Alsa

set_window_extents

Module

System operators

dev_unmap.par (: : :)

Hide the window for the graphic parameters.

dev_unmap_par hides the window for the graphic parameters so that it is no longer visible. It
can be mapped again using the operator map _par.

Attention
This operator is not supported for exported C++ code.

160 APPENDIX B. DEVELOP

Result
dev_unmap_par always returns 2 (HMSG_TRUE)

Possible Successor Functions

dev_map_prog

See Alsa
dev_map_par, dev_map_prog, dev_map_var

Module

Basic operators

dev_unmap_prog (: : :)

Hide the main window.

dev_unmap_prog hides the main window so that it is no longer visible. It can be mapped again
using the operatatev_map_prog.

Attention
This operator is not supported for exported C++ code.

Result
dev_unmap_prog always returns 2 (IMSG_TRUE)

Possible Successor Functions

dev_map_prog, stop

See Alsa
dev_map_par, dev_map_prog, dev_map_var

Module

Basic operators

dev_unmap_var (: : :)

Hide the variable window.

dev_unmap_var hides the variable window so that it is no longer visible. It can be mapped again
using the operatatev_map_var.

Attention
This operator is not supported for exported C++ code.

Result
dev_unmap_var always returns 2 (MSG_TRUE)

Possible Successor Functions

dev_map_var

See Alsa

dev_map_par, dev_map_prog
Module

Basic operators

161

dev_update_pc (: : DisplayMode :)

Specify the behaviour of the PC during program execution.

dev_update_pc specifies the behaviour of the PC during program execution. In the mode 'on’

(default) the PC is always displayed in front of the current operator. In addition the program
text is scrolled — if necessary — so that the current operator is visible. In the mode 'off’ the PC
is not visible during program execution and the program text will not be scrolled automatically.

This option can also be controled by the dialog
File > Options > Update PC.

Attention
This operator is not supported for exported C++ code.
Parameter
> DisplayMode (inputcontrol) string ~ string

Mode for runtime behaviour.
Defaultvalue: 'off’
Value List: DisplayMode € {’on’, 'off’ }

Result
dev_update_pc always returns 2 (HMSG_TRUE)
See Alsa
dev_update_time, dev_update_window, dev_update_var
Module
Basic operators
dev_update_time (: : DisplayMode :)

Switch time measurement for operators on or off.
dev_update_time controls if the execution time of an operator has to be measured.
This option can also be controled by the dialog

File > Options > Show Processing Time.

Attention
This operator is not supported for exported C++ code.
Parameter
> DisplayMode (inputcontrol) string ~» string

Mode for graphic output.
Defaultvalue: 'off’
Value List: DisplayMode € {'on’, 'off’ }

Result
dev_update_time always returns 2 (HMSG_TRUE)

162 APPENDIX B. DEVELOP

See Alsa
dev_update_pc, dev_update_window, dev_update_var
Module
Basic operators
dev_update_var (: : DisplayMode :)

Specify the behaviour of the variable window during program execution.

dev_update_var specifies the behaviour of the variable window during program execution.
Using the mode 'on’ (default) the contents of the variable window (iconic and control variables)

Is updated each time a variable is modified by the program. In the mode ’off’ the variables are
updated only when the execution is finished. Please not that update in this contents only means
the graphical representation of the internal values in the variable window.

This option can also be controled by the dialog
File > Options > Update Variables.

Attention
This operator is not supported for exported C++ code.
Parameter
> DisplayMode (inputcontrol) string ~» string

Mode for graphic output.
Defaultvalue: 'off’
Value List: DisplayMode € {'on’, 'off’ }

Result
dev_update_var always returns 2 (IMSG_TRUE)
See Alsa
dev_update_pc, dev_update_window, dev_update_time
Module
Basic operators
dev_update_window (: : DisplayMode :)

Specify the output behaviour during program execution.

dev_update_window specifies the output behaviour during program execution. By default every
object (image, region, or XLD) is displayed in the active graphics window. This can be changed
by using the value ’off’ foDisplayMode. In this case objects are only displayed in single step
mode. Here one would use the operatev_display to output objects.

This option can also be controled by the dialog
File > Options > Update Window.

Attention
This operator is not supported for exported C++ code.

163

Parameter

> DisplayMode (inputcontrol) string ~» string
Mode for graphic output.
Defaultvalue: 'off’
Value List: DisplayMode € {’on’, 'off’ }

Result
dev_update_window always returns 2 (IMSG_TRUE)

Possible Successor Functions

dev_display

See Alsa
dev_update_pc, dev_update_var, dev_update_time

Module

Basic operators

164 APPENDIX B. DEVELOP

Appendix C

Glossary

Boolean is the type name for the truth valuesue andfalse as well as for the related boolean
expressions.

Body A body is part of a conditional instruction£) or a loop ¢hile or for) and consists of
a sequence of operator calls. If you considerftbe-loop, for instance, all operator calls,
that are located betweeinr andendfor form the body.

Button A button is part of a graphical user interface. With the mouse the user can press a button
to cause an action to be performed.

Control data Control data can be either numbersifteger andtreal), character strings
(Tstring) and truth valuestpolean). This data can be used as atomic values (i.e., single
values) or agtuples (i.e., arrays of values).

Empty region An emptyfregion contains no points at all, i.e., its area is zero.

Graphics window A graphics window is used itHDevelop for displayingimages;regions,
or tXLD.

HDevelop is an interactive program for the creation of HALCON applications.

Iconic data are image data, i.e., image arrays and data, which are described by coordinates and
are derived from image arrays, e.tyegions,timage andXLD.

Image An image consists of one or more (multichannel image) image arrays anetjeon
as the definition domain. All image arrays have the same dimension, but they can be of
different pixel types. The size of tHeegion is smaller or equal than the size of the image
arrays. Theregion determines all image points that should be processed.

Iconic object Generic implementation dficonic data in HALCON.

integer is the type name for integer numbers. Integers are implemented using the Gotigpe
(4 or 8 byte).

Operator data base The operator data base contains information about the HALCON opera-
tors. They are loaded at runtime from the binary file$HALCONROOT% \help.

Program window In HDevelop the program window contains the program. It is used to edit
(copy, delete, and paste lines) and to run or debug the program.

165

166 APPENDIX C. GLOSSARY

Operator window In the operator window of HDevelop the parameters of the selected opera-
tors can be entered or modified.

Real is the type name for floating point numbers. They are implemented using the C-type
double (8 bytes).

Region Aregion is a set of image points without gray values. A region can be imagined as a bi-
nary image (mask). Regions are implemented using runlength encoding. The region size is
not limited to the image size (see atset_system(’clip_region’,’true’/’false’)
in the HALCON reference manual.

String is the type name for character strings. A string starts and ends with a single quote; in
between any character can be used except single quote. The empty string consists of two
consecutive single quotes. The maximum length of a character string is limited to 1024
characters.

Tuple Atupleis an ordered multivalue set. In casg obntrol data a tuple can consist of a large
number of items with different data types. The term tuple is also used in conjunction with
Ticonic objects, if it is to be emphasized that severabnic objects will be used.

Type ticonic variables can be assigned with data items of tyipgge,fregion, andfXLD.
The types offcontrol data items can be onefafnteger, Treal, Thoolean, Or fstring.

Variable window In HDevelop the variable window manages tlo®ntrol andticonic data.

XLD is the short term for X¥tendedLine Description. It is used as a superclass for contours,
polygons, and lines (see also the HALCON Reference Manual).

Index

add_channels, 39, 40, 117 contlength, 42
Aerial image interpretation, 5 Control data, 10, 65, 165
Application areas, 5 Control parameter, 71
Applications, 103 Control structures, 47, 48, 88
area_center, 41, 119 exit, 90
Assertions, 11 for, 89
assign, 48, 76, 77,79, 129 if, 89
Attributes, 103 ifelse, 89
stop, 90
bin_threshold, 107 while, 89
Boolean, 165 Control-Variable, 143
Breakpoint, 33, 60 convexity, 42
Buffer, 146 cooc_feature_image, 42
Button, 165 cooc_feature matrix, 43
C.6,9 11 Coord?nate system, 51
C++ 6,9-11, 24, 91 Coordlnat'e-System, 146
Compile, 91 count_obj, 112, 121
Export, 10, 91 Data structures, 10, 71, 72, 75
Link, 91 Database, 139
CAVE, 5 Debugging, 6
Cleanup, 27, 64 dev_clear_obj, 52, 139
Clear, 139 dev_clear_window, 50, 111, 139
clear_obj, 126 dev_close_inspect_ctrl, 52, 140
Clearing, 139 dev_close_window, 50, 141
clip.region, 124 dev_display, 52, 94, 100, 142
Closing, 141 dev_error_var, 53, 73, 94, 121, 142

Code generation, 91, 97 dev_inspect_ctrl, 52, 143

Color, 116 dev_map_par, 52, 144

COM, 97 dev_map_prog, 52, 145

Comment, 130 dev_map_var, 52, 145

comment, 34, 48, 50, 130 dev_open_window, 50, 94, 146
compactness, 42 o dev_set_check, 53, 73, 94, 121, 148
Computer Aided Vision Engineering, 5 dev_set_color, 51, 149
concat_obj, 121 dev_set_colored, 51, 150
Condition, 134 dev_set_draw, 51, 151
Configuration, 12, 14 dev_set_line_width, 51, 152
connect_and_holes, 42 dev_set_lut, 51, 153

Connected components, 111, 116

dev_set_paint, 51, 154
connection, 106, 111

dev_set_part, 51, 155

167

168

dev_set_shape, 51, 156
dev_set_window, 50, 157
dev_set_window_extents, 50, 158
dev_unmap_par, 52, 159
dev_unmap_prog, 52, 160
dev_unmap_var, 52, 160
dev_update_pc, 52, 161
dev_update_time, 52, 161
dev_update_var, 52, 162
dev_update_window, 52, 162
Dilation, 116, 123
Document analysis, 103
Domain, 10
dyn_threshold, 54
dyn_threshold, 109, 111

eccentricity, 42
edges_sub_pix, 11
Edit
Copy, 31, 32
Cut, 31
Paste, 31
Undo, 31
Editor, 21
elliptic_axis, 41,115
empty_obj, 121
Encapsulation, 122
entropy_gray, 42
Environment Variable, 12-14
ARCHITECTURE, 13
DISPLAY, 14
HALCONEXTENSIONS, 13
HALCONIMAGES, 13, 26
HALCONROOT, 12, 26
HALCONSPY, 13
HOME, 14
LD_LIBRARY_PATH, 13
SHLIB_PATH, 13
Error message, 126
Error-code, 142
Example, 71
Annual Rings, 111
Board, 115
Bonding, 112
Calibration board, 113
Capillary vessel, 106
Cell walls, 118

INDEX

Devices, 115
Exception, 121
IC, 116
Medical, 108
Region selection, 120
Road scene, 122
Stamps, 103
Tissue particles, 108
Example session, 15
Exception, 142
Exception handling, 94, 100
Execute
Activate, 34
Clear break point, 34
Deactivate, 34
Reset program, 34, 74
Run, 32-34
Step, 33, 34
Stop, 33, 34
Execution time, 29
Exit, 130
exit, 48, 50, 90, 125, 130
Extended line description, 10, 11

FA, 5
Factory automation, 5
false, 72, 165
File, 120
Cleanup, 27, 64
Insert, 25
Modules, 31
New, 24, 26
Open, 25, 26
Options, 25, 27
Quit, 33
Read image, 26
Save, 26
Save as, 26, 30
£i11 up_shape, 113
Filter
Gaussian, 109
Linear, 107
Low pass, 109
Mean, 109
Smoothing, 114
fnew_line, 120
for, 48, 89, 93, 100, 121, 131, 165

INDEX

Framegrabber, 52
fwrite_string, 120

gen_grid region, 124
gen_region_line, 112
gen_tuple_const, 79
get_mbutton, 110
get_grayval, 121
get_image pointerl, 119
get_mposition, 121
get_system, 96, 101
Gnuplot, 120

Graphics, 146, 158

Graphics window, 21, 68, 97, 99, 165

Activate, 50
Clear, 36
Close, 36, 50
Color, 44
Draw, 44
History, 70
Line width, 44
Look up table, 44, 47
Open, 35, 50
Paint, 44, 45
Parameter, 50
Pen, 45
Position, 50
Reset, 36
Size, 43, 50
Zoom, 43, 46
Gray value, 10
gray_histo, 39
gray_inside, 114

H.MSG_FAIL, 73,94, 121
H_MSG_FALSE, 73, 94
H_MSG_TRUE, 73, 94, 121
H_MSG_VOID, 73, 94
Help, 57

History, 70, 139, 146
Host language, 12
HP-UX, 13

Iconic data, 10, 165

Iconic object, 65, 71, 120, 165
Iconic-Object, 139

if, 48, 89, 133, 165

ifelse, 48, 89, 134

Image, 10, 65, 165
Image analysis, 53
insert, 48, 49, 76, 79, 92, 134
Insertion cursor, 60
Inspection, 143
intensity, 42
Interaction, 125
Internet Explorer, 14
Interpreter, 21
Intersection, 118
intersection, 112

junctions_skeleton, 54

Keyboard shortcuts
<Ctrl> C, 32
<Ctrl> N, 24
<Ctrl> 0,25
<Ctrl> S, 26
<Ctrl> V, 31
<Ctrl> 7,31
F5, 32
F6, 33
F9, 34

Keycodes, 125

Language definition, 71
Language interface, 9, 11

Language-independent operator interface,

12
Laws filter, 107
lines_gauss, 11
Loop, 48, 131, 136
Body, 165
Lut, 47

Main window, 21, 22
Menu bar, 24
Title bar, 23
Tool bar, 59
Manuals, 5
mean_image, 107, 111
Medical image analysis, 5
Memory management, 106
Menu bar, 50
min _max_gray, 42
Miscellaneous, 125
moments_gray_plane, 43

169

170

Morphology, 10
Mouse handling, 22

Netscape Navigator, 14
Noise removal, 110
Notation
Decimal, 72
Hexadecimal, 72
Octal, 72

open_file, 120
Opening, 110
Operation
Arithmetics, 80
Boolean, 84
Comparison, 84
String, 81
Trigonometric, 85
Tuple, 78
Operator
Data base, 165
Description, 12
Name field, 65
Sequence, 55
Suggestions, 54
Operator text field, 61
Operator window, 21, 59, 61, 63, 166
Apply, 64
Cancel, 64
Enter, 64, 66
Help, 64
Input parameter, 62
0K, 63, 66
Output parameter, 62, 63
Optimization, 92
orientation_region, 42

Output, 27, 51

Package, 12, 13
Paint mode, 45
Parameter display, 62
Parameter expressions, 75
Parameter types, 71
Pixel, 10
Preprocessing, 53
Program, 25, 60
Counter, 28, 33, 60
Execution, 32-34, 48

Termination, 50
Program window, 21, 60, 165
Programming, 103

Quality control, 5

Rapid prototyping, 21
read_image, 54
reduce_domain, 39, 40, 117, 124
Region, 10, 65, 166

Empty, 165
Region of interest, 10, 117, 123
Remote sensing, 5
Reserved words, 88
reset_obj_db, 126
Restrictions, 90, 93, 98, 126
ROI, 10, 124
Run, 50, 125
Run mode, 28
Runtime error, 33, 94, 121

Segmentation, 103, 106, 122
select_gray, 40
select_obj, 121

select_shape, 40, 106, 109, 111,

120
Semantics, 71
set_system, 96, 101
Settings, 6
Shell, 125
skeleton, 54
smallest_rectanglel, 41, 106
smallest_rectangle2, 41
sobel_amp, 124
Status bar, 60
Step, 50
Stop, 135
Stop, 125
stop, 48, 50, 90, 125, 135
String, 81, 166
Concatenation, 75
Operations, 81
Suggestion, 54
Alternative, 55
Keyword, 55
Predecessor, 54
See also, 55
Successor, 54

INDEX

115, 118,

INDEX

Surveillance tasks, 5
Syntax, 71
System parameters, 6

Termination, 130
Texture, 107
Texture energy, 107
texture_laws, 107
Threshold, 106-108, 113, 115, 117, 120,
123
threshold, 40, 106, 117, 124
true, 72, 165
Tuple, 63, 67, 166
Arithmetic, 75
Concatenation, 77, 78
Type, 66, 166
boolean, 72, 75, 84, 165
Control parameter, 71, 72
Iconic object, 71, 75
integer, 10, 63, 72, 74, 75, 81, 165
Numerical, 72
real, 10, 63, 72, 74, 75, 81, 165, 166
string, 10, 63, 72, 74, 75, 165, 166
Tuple, 63

User extensions, 13

Variable, 74
Control, 65, 67
Iconic, 52, 65, 66
Visualization, 28
Variable window, 21, 30, 52, 65, 66, 166
Visual Basic, 24, 97
Export, 97
Visualization
Line width, 51
Region, 51
Regions, 44
Segmentation results, 44
XLD, 44

watersheds, 54
while, 48, 89, 93, 100, 136, 165
Window, 139, 141, 146, 158
Halcon, 53
ID, 50, 95
Window-size, 158
Working environment, 9

XLD, 10, 11, 65, 166

171

172 INDEX

Bibliography

[Jai89] A.K. JainFundamentals of Digital Image Processjmiyentice—Hall International Edi-
tions, Englewood Cliffs, New Jersey, 1989

[Bal82] D.H. Ballard, C.M. BrownComputer VisionPrentice—Hall, Englewood Cliffs, New
Jersey, 1982

[Rus92] J.C. Rus$he Image Processing Handbqo@RC Press, Boca Raton, Florida, 1992

[Radig93] B. Radig (Hrsg.\Verarbeiten und Verstehen von Bildei@ldenbourg, Mihchen,
1993

[Abmayr94] W. AbmayrEinfihrung in die digitale Bildverarbeitund.G.Teubner, Stuttgart,
1994

[Haralick92] R.M. Haralick, L.G. Shapir@omputer and Robot VisipAddison-Wesley, Mas-
sachusetts, 1992

[Eckstein91] W. Eckstein, W. GloclDevelopment and Implementation of Methods for Seg-
mentation of bond-wedgekh R. Klette, editor, Proc. 4th Computer Analysis of Images and
Patterns, volume 5 of Research in Informatics, pages 153-161, Dresden, 1991.

[Eckstein93] W. Eckstein, G. Lohmann, U. Meyer-Gruhl, R. Riemer, L. Altamirano Robles,
J. WunderwaldBenutzerfreundliche Bildanalyse mit HORUS: Architektur und KonzE&pte
ceedings DAGM 1993, Springer Verlag, Berlin, 1993

[Jaehne89] B.akineDigitale BildverarbeitungSpringer-Verlag, Berlin, 1989

[Laws80] K.I. LawsTexture image segmentatid®h.D. dissertation, Dept. of Engineering, Uni-
versity of Southern California, 1980

[Eck86] W. Eckstein, S.J. dbpl. PSIWAG - A Language for Logic Programming in Image
Analysis Proc. 8th ICPR, Paris, 1986

[Eck88] W. EcksteinDas ganzheitliche Bildverarbeitungssystem HORB®c. 10. DAGM
Symposium, zfich, 1988

[Eck93] W. EcksteinDie Bildanalysesprache TRIABissertation. Infix-Verlag, St. Augustin,
1993.

[Hae86] S. Haenel, W. Ecksteiiin Arbeitplatz zur halbautomatischen Luftbildauswertung
Proc. 8. DAGM Symposium, Paderborn, 1986

173

174 BIBLIOGRAPHY

[KIo93] K. Klotz. Eine mehrschichtige Architektur zur Fehlerdiagnose und Fehlerbehebung bei
der Entwicklung von logischen Programmeénssertation, Infix-Verlag, St. Augustin, 1993.

[Kri92] H. Kristen, O. Munkelt. Markov-Feld-basierte Bildinterpretation mit automatisch
generierter Datenbasj$roc. 14. DAGM Symposium, Dresden, 1992.

[Lan91] S. Lanser, W. Ecksteilicine Modifikation des Deriche-Verfahrens zur Kantendetek-
tion, Proc. 13. DAGM Symposium, Ntichen, 1991

[Mes92] T. MesselWissensbasierte Synthese von Bildanalyseprogranbigsertation, Infix-
Verlag, St. Augustin, 1992.

[Rad92] B. Radig, W. Eckstein, K. Klotz, T. Messer, J. Pafiitomatization in the Design of
Image Understanding Systengoc. 5th International Conference, IEA/AIE-92, Paderborn,
Springer-Verlag 1992, LNAI 604, S. 35-45

List of Figures

2.1

3.1
3.2
3.3
3.4
3.5

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10
411
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30

Layered structure of HALCON, 11
HDevelop loadinganimage 16
HDevelop handlingean, 17
HDevelop processingyn_threshold 18
select_shape with attributesarea andcompactness 19
HDevelop after segmentation termination 20
The mainwindowofHDevelop 23
The menuiterfiile i 24
The dialog window to open an HDevelopfile. 25
The dialogwindowtosaveas 27
The menuiterfiile > Read Image o v v v v v 28
The dialog window toloadanimage. 29
The optionswindow. 29
The moduleswindow. 31
Main window's menu iterBdit.o 32
Main window’s menu iterixecute. 0 e e 33
Menwisualizationinthemenubar. 35
Menu itenOpen window... inHDevelop. 36
Online gray value checking. 37
Realtime zooming.. e 37
Online gray histogram inspection. 38
Online region feature inspection.. 41
Configuration dialog for single region features. 43
Settings of parametpéint. 45
Settings of parametpen. 46
Settings of parametesom. 47
Settings of parametkat. 48
Menu itenTontrol. v i i e e e e e e e e 49
Exampleforloop 49
MENWDEVELOp o v v o e i e e e e e e 51
Menu hierarchy of all HALCON operators. 54
Suggestions to select a operator (successar). 55
Operator suggestions according to keyword “Clipping”. 56
Window management functions.. oL 57
The window management functioile. 58
Information about the current HALCON version. 58

175

176

4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38

5.1

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19

8.1

LIST OF FIGURES
Toolbar e 59
The different parts to the HDevelop toolbar.. 59
Program example with tt*€, theBP and the insertioncursor 61
Operator window with operateelect _shape. 64
Operator selection in the operator namefield... 65
Variablewindow 66
Variable inspect (framegrabber) 0oL 68
Graphics window of HDevelop.. L. 69
The syntax of tupleconstants 74
Stampcatalogpart 104
Segmentationresultforstamps L 0oL 105
Capillary vessel and texture transformation. 106
Capillary vessel texture energy and segmentation. 107
Tissue particles and largeobjects oL 108
Tissue particles smallobjects 109
Tissue particles finalresult, 110
Number determination of annualrings 111
Bonding positionimages 112
Detected bonding positions oL 114
Calibrationboard 114
Board withdevices. 115
Boarddevices 116
Searchingregionsandcontacts 117
Woodencells e 118
Distribution of cell wall proportion 119
Mandrill'seyes e 120
Segmentationofaroadscene L oo 123
Marking segmentation 123

Anerror-window L s 127

List of Tables

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20

8.1

Order of appearance of the four parameterkinds 71
Surrogates for special characters oo 73
Stringexamples e 73
Return values foroperators 73
Symbolic variables for the operation-description 75
Examples for arithmeticoperations 76
Basic operationsontuples L 78
Tuple operations for control and iconicdata 78
Arithmeticoperations 80
Bitoperations 81
Arithmeticoperations 81
Comparison Operators o v o e 84
Examples for relational operations 84
Booleanoperators... 85
Trigonometric functions 85
Exponential functions oL 86
Numerical functions e 86
Miscellaneous functions Lo 87
Operator precedence i i i e 88
Reservedwords 88
Keycodes for special editing functions 126

177

