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About This Manual

In a broad range of applications 2D measuring is applied to get spatial information about planar objects
or object parts that are extracted from images. This Solution Guide leads you through a variety of
approaches suited to measure in 2D with HALCON.

After a short introduction to the general topic in section 1 on page 7, section 2 on page 9 presents a first
example that gives an impression on the variety of methods usable for 2D measuring tasks. Section 3 on
page 13 then provides you with the basic knowledge about the suitable measuring tools, which comprise
methods like region processing or contour processing, as well as some simple geometric operations.

Section 4 on page 29 provides rules how to select the appropriate measuring tools for a specific measuring
task. Practical guidance is given by a comprehensive collection of HDevelop examples in section 5 on
page 39.

Section 6 on page 75 introduces miscellaneous topics that may be of interest when measuring in images.
In particular, it provides you with approaches for finding corresponding object parts in different images
and for measuring in world coordinates.

The HDevelop example programs that are presented in this Solution Guide can be found in the specified
subdirectories of the directory %HALCONROQTY.
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Chapter 1

Introduction

HALCON provides various methods and operations that are suited for a broad range of different 2D
measurement tasks. Measuring in images corresponds to the extraction of specific features of objects.
2D features that are often extracted comprise

* the area of an object, i.e., the number of pixels representing the object,

* the orientation of the object,

* the angle between objects or segments of objects,

* the position of an object,

* the dimension of an object, i.e., its diameter, width, height, or the distance between objects or parts
of objects, and

* the number of objects.
To extract the features, several tools are available. Which tool to choose depends on the goal of the

measuring task, the required accuracy, and the way the object is represented in the image. This Solution
Guide leads you through the alternative approaches common for 2D measuring applications.

Section 2 on page 9 gives a first impression on 2D measuring by illustrating a first HDevelop example.
In section 3 on page 13, the different HALCON methods that can be used to extract objects and their
features are introduced. The methods comprise

* region processing (see section 3.1 on page 13),

* contour processing (see section 3.2 on page 17), and

* simple geometric operations (see section 3.3 on page 26).
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Introduction

Section 4 on page 29 provides you with practical tips for the tool selection. In particular, section 4.1
on page 29 helps to guide you from the features to extract to the methods to choose and section 4.2
on page 34 compares the two most common and competing approaches, region processing and contour
processing. Both can be used for similar goals but are differently suited dependent on the required
precision and the appearance of the object in the image.

A collection of HDevelop examples then provides you with practical guidance in section 5 on page 39.

Additional aspects that may be of interest are discussed in section 6. In particular, the identification of
corresponding object parts in different images (see section 6.1 on page 75) and means to measure in
world coordinates (see section 6.2 on page 82) are discussed.
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Chapter 2

A First Example

This section shows a first example for a 2D measuring application that uses different basic measuring
tools. To follow the example actively, start the HDevelop program solution_guide\2d_measuring\
measure_metal_part_first_example.hdev, which extracts several features from a flat metal part;
the steps described below start after the initialization of the application (press Run once to reach this
point).

Step 1:  Create regions and extract basic features

threshold (Image, Region, 100, 255)

In a first step, region processing is used to extract some basic features. The image is segmented by a
simple threshold operator. The result of the operator is a single region that can consist of several
connected components. If more than one connected component is returned, the components can be
separated by the operator connection, which is recommended for most applications. Here, the returned
region consists of only one connected component, so no separation is necessary.

For the obtained region representing the metal part, the operators area_center and orienta-
tion_region calculate the area, position, and orientation (see figure 2.1).

area_center (Region, AreaRegion, RowCenterRegion, ColumnCenterRegion)
orientation_region (Region, OrientationRegion)
dev_display (Region)

A more advanced task is the extraction of features using the object’s outline, e.g., if you want to extract
the radii of the circular contour segments:

Step 2:  Extract contours

edges_sub_pix (Image, Edges, 'canny', 0.6, 30, 70)

Here, instead of a region the contours of the object are used to get information about the object. The
edges of the metal part are extracted as subpixel-precise XLD contours (see Quick Guide, section 2.1.2.3
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Center Row: 241.04 Area: 10190 pixel

Center Column: 373.95 Orientation: -0.43 rad

Figure 2.1: Region obtained by a threshold and display of extracted features.

on page 18 for XLDs) using the edge extractor edges_sub_pix. Figure 2.2 shows the metal part overlaid
with the extracted edges.

Figure 2.2: XLD contours obtained by a subpixel-precise edge extraction.

Step 3: Segment contours

segment_contours_x1d (Edges, ContoursSplit, 'lines_circles', 6, 4, 4)

The operator segment_contours_x1d segments the contours into linear and circular segments using the



parameter *lines_circles’. Alternative parameter values are >1lines’ to segment only into lines and
’lines_ellipses’ to segment into lines and ellipses. Figure 2.3 shows the line and circle segments
for the metal part in different colors.
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Figure 2.3: Individual segments of the contours.

Step 4: Divide contour segments into linear and circular segments

Now, the circular segments are selected from the list of contour segments. To achieve this, the opera-
tor segment_contours_x1d sets the global contour attribute ’cont_approx’ for each segment. The
value of this variable can be queried by the operator get_contour_global_attrib_x1d. It deter-
mines, whether the segment represents a line (’ cont_approx’ =-1), an elliptic arc (’ cont_approx’
=0), or a circular arc (’cont_approx’ =1). As we selected the parameter >1ines_circles’ inside
segment_contours_x1d, ’cont_approx’ can be -1 or 1. Depending on this value, each contour can
be approximated either by a circle or a line.

select_obj (ContoursSplit, SingleSegment, i)
get_contour_global_attrib_x1d (SingleSegment, 'cont_approx', Attrib)

Step 5:  Extract radii of circular contour segments

if (Attrib = 1)
fit_circle_contour_x1d (SingleSegment, 'atukey', -1, 2, 0, 5, 2, \
Row, Column, Radius, StartPhi, EndPhi, \
PointOrder)
gen_circle_contour_xld (ContCircle, Row, Column, Radius, 0, \
rad(360), 'positive', 1)
RowsCenterCircle := [RowsCenterCircle, Row]
ColumnsCenterCircle := [ColumnsCenterCircle, Column]
endif
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The operator fit_circle_contour_x1d approximates segments with the value 1 by circles, i.e., it de-
termines the parameters describing the circle that can be fitted best into the selected contour segment.
The parameters ’StartPhi’ and ’EndPhi’ determine the part of the circle belonging to the actual
contour segment. The parameters ’Radius’, ’Row’, and ’Column’ describe the radius and the posi-
tion of the circle and are used as input for the operator gen_circle_contour_x1d that generates the
corresponding circles. These are then displayed.

Step 6:  Extract distance between circle centers

distance_pp (RowsCenterCircle[1], ColumnsCenterCircle[1], \
RowsCenterCircle[2], ColumnsCenterCircle[2], Distance_2_3)

distance_pp (RowsCenterCircle[0], ColumnsCenterCircle[0], \
RowsCenterCircle[2], ColumnsCenterCircle[2], Distance_1_3)

distance_pp (RowsCenterCircle[3], ColumnsCenterCirclel[3], \
RowsCenterCircle[4], ColumnsCenterCircle[4], Distance_4_5)

Finally, distance_pp, a simple geometric operation, uses the obtained positions of the circles to com-
pute the distance between selected circle centers, in particular between the circles C2 and C3, C1 and
C3, as well as C4 and C5. Figure 2.4 shows the metal part, the approximated circles, the lines between
the selected circle centers for which the distance was computed, as well as the numerical results of the
measurement.

Circle radii:

Radius
Radius
Radius
Radius
Radius

6.
6.

Distance C1-C3

Distance C4-C5 =

Figure 2.4: Visualization of the fitted circles, selected distances, and numerical results.
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Basic Tools

In our first example the measuring task started with the creation of regions or contours extracted from an
image. In general, the extraction of elements from an image is preceded by another step: the image ac-
quisition. A good measurement result highly depends on the quality of the image. Thus, we recommend
to read the Solution Guide II-A, appendix C on page 57, which discusses how to obtain a good quality
image.

Having a suitable image at hand, the appropriate tool to extract the object feature of interest must be
chosen. Here, we shortly introduce the available basic tools, before section 4 on page 29 shows how to
select the tools suited best for specific applications. The basic tools partially correspond to the HALCON
methods described in the Solution Guide 1. In particular, the basic tools comprise

* region processing (see section 3.1), which corresponds mainly to the method blob analysis (Solu-
tion Guide I, chapter 4 on page 31),

* contour processing (see section 3.2), which here comprises the methods edge filtering (Solution
Guide I, chapter 6 on page 63), edge and line extraction (Solution Guide I, chapter 7 on page 73)
as well as contour processing (Solution Guide I, chapter 8 on page 83), and

* geometric operations (see section 3.3).

3.1 Region Processing

For objects or object parts that are represented by regions of similar gray value, color, or texture, blob
analysis is a fast and simple way to extract objects and their features. Here, the image is segmented into
so-called blobs, which are regions in the image that comprise a specific range or behavior of pixel values
(see Solution Guide I, chapter 4 on page 31). The blob analysis consists of different essential steps, in
particular

* the preprocessing (see section 3.1.1),

* the segmentation of the image into regions (see section 3.1.2),
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* the modification of the regions (see section 3.1.3), and

* the extraction of the region features that are searched for (see section 3.1.4).

The steps are not necessarily applied in that order. Especially the segmentation and the modification of
regions are often applied with changing sequence.

The following descriptions introduce several operators. Details about them can be found in the cor-
responding parts of the Reference Manual (just follow the links) or in the Solution Guide I. Practical
examples are provided in section 5 on page 39. Here, a short overview about the general proceeding is
given.

3.1.1 Preprocess Image or Region

A preprocessing is recommended if the conditions during the image acquisition are not ideal, e.g., the
image is noisy, cluttered, or the object is disturbed or overlapped by objects of small extent so that small
spots or thin lines prevent the actual object of interest from being described by a homogeneous region.

Often applied preprocessing steps comprise the elimination of noise using mean_image or bi-
nomial_filter and the suppression of small spots or thin lines with median_image. Fur-
ther operators common to preprocess the whole image comprise, e.g., gray_opening_shape and
gray_closing_shape. A smoothing of the image can be realized with smooth_image. If you want to
smooth the image but you want to preserve edges, you can apply anisotropic_diffusion instead.

For regions, holes can be filled up using £i11_up or a morphological operator. Morphological oper-
ators modify regions to suppress small areas, regions of a given orientation, or regions that are close
to other regions. For example, opening_circle and opening_rectanglel suppress noise, whereas
closing_circle and closing_rectanglel fill gaps.

When having an inhomogeneous background, a shading correction is suitable to compensate the influ-
ence of the background. There, a reference image of the background without the object to measure is
taken and subtracted from the images containing the object (using, e.g., the operator sub_image).

3.1.2 Segment the Image into Regions

After the preprocessing the image must be segmented into suitable regions that represent the objects of
interest. Several kinds of threshold operators are available that segment a gray-value image or a single
channel of a multichannel image according to its gray value distribution. Common threshold operators
are auto_threshold, bin_threshold, dyn_threshold, fast_threshold, and threshold.

When choosing a threshold manually, it may be helpful to get information about the gray value distri-
bution of the image. Suitable operators are, e.g., gray_histo, histo_to_thresh, and intensity.
Additionally, you can use the online Gray Histogram inspection in HDevelop with Display set to
>threshold’ to interactively search for a suitable threshold.

After segmenting the image with a threshold operator, the image parts of interest are available as one
region. To split this region into several regions, i.e., one region for every connected component, the
operator connection must be applied.
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For objects with a honeycomb structure, watershed operators are better suited than a threshold operator,
as they segment the image based on the topology instead of the distribution of the gray values. If you want
to obtain regions having the same intensity, apply regiongrowing. For both operators a preprocessing
using a low pass filter like binomial_filter is recommended.

3.1.3 Select and Modify Regions

After segmenting the image into a set of regions, regions having specific features can be selected using
operators like select_shape or select_gray. Common features are, e.g., a specific area range, a
certain shape, or a specific gray value. For the list of all features that can be used for the selection, see,
e.g., the entry in the Reference Manual for select_shape.

In many cases, a modification of the regions is necessary. For example, small gaps or small connec-
tions can be eliminated by a morphological operator like opening_circle or dilation_rectangle.
Furthermore, different regions can be combined by the set-theoretical operators shown in figure 3.1.
There,

* unionl or union2 merge regions,
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* intersection returns the intersection of regions,

» difference subtracts the overlapping part of two regions from the first region, and

* complement obtains the complement of a region.

If you need the intersection of regions with a rectangle, e.g., created by gen_rectanglel, you should
use clip_region. It works similar to intersection but is more efficient.

uniont, union2 intersection difference complement

clip_region

Figure 3.1: Common set-theoretical operations to combine regions.
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Another way of modifying a region is to transform it, in particular to approximate it by a specific shape
using the operator shape_trans. This approach is suited if the features of the approximating shape
describe the features you try to obtain. For example, if you search for the maximum width of an object,
you can approximate the shape by its smallest enclosing rectangle or circle and extract its width or radius.
A set of common shapes is illustrated in figure 3.2. The possible shapes comprise

e the convex hull (’ convex?),

* the smallest enclosing circle (’outer_circle’),

* the largest circle fitting into the region (’ inner_circle’),

* the smallest enclosing rectangle parallel to the coordinate axis (’rectanglel’),

* the smallest enclosing rectangle with arbitrary orientation (’rectangle2’),

* the largest rectangle parallel to the coordinate axis that fits completely into the region
(’inner_rectanglel’),

* the ellipse with the same moments as the input region (’ellipse’), and

* the point on the skeleton of the input region having the smallest distance to the center of gravity of
the input region (’ inner_center’).

convex hull outer_circle inner_circle rectangle1 rectangle2 inner_rectangle

Figure 3.2: Common shapes to approximate a region.

A skeleton describes the medial axis of an input region and can be obtained by the operator skeleton.
Furthermore, the regions can be processed by the operators sort_region, partition_dynamic, and
rank_region.

3.1.4 Extract Features

Having obtained the region that represents the object to measure, the features of the object, i.e., the actual
measurement results, can be extracted.

Several operators are provided to compute features like the area, position, orientation, or dimension of a
region. Some of them can be used as alternatives to the shape transformations described in the preceding
section. Common operators are, e.g.:
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* area_center computes the area and the position of the center of an arbitrarily shaped region,

* smallest_rectanglel and smallest_rectangle2 compute the smallest enclosing rectangle.
In particular, smallest_rectanglel computes the corner coordinates for the smallest surround-
ing rectangle being parallel to the image coordinate axes, and smallest_rectangle2 computes
the radii (half lengths), position, and orientation of the smallest enclosing rectangle with arbitrary
orientation.

e inner_rectanglel computes the corner coordinates for the largest rectangle parallel to the co-
ordinate axes that fits completely into the region,

e inner_circle determines the radius and position of the largest circle fitting into the region,
* diameter_region obtains the maximum distance between two boundary points of a region, and

* orientation_region is used to get the orientation of a region.

Note that orientation_region and smallest_rectangle2 both compute the orientation of the ob-
ject, but the results of both can differ, depending on the shape of the object (see section 4.1.2 on page
3D).

If you prefer to work with contour processing instead of region processing, and a pixel-precise measuring
is sufficient, you can also start with region processing and at any time convert the regions into contours
with gen_contour_region_x1d. The contours then can be used for measuring purposes as described
in the following section. A conversion may be necessary, e.g., if an object describes a simple shape but
has large deformations, so that the contour processing approach described in section 3.2.4 on page 23 is
better suited. For the advantages of contour processing see section 4.2 on page 34.

3.2 Contour Processing

Contour processing is suitable for high precision measuring, for objects that are not represented as ho-
mogeneous regions in the image but by clear gray value or color transitions (edges), or for object parts
that are not bordered by a closed contour. The first steps of a contour processing consist of

* the creation of contours (see section 3.2.1), and

« the selection of relevant contours (see section 3.2.2).

Then, the evaluation of the contours follows. For this, HALCON provides different approaches. If you
know the shape of the object parts you want to measure, a common approach is

* the segmentation of complex contours into contour segments of predefined shapes (section 3.2.3)
and

* the extraction of the parameters of shape primitives that approximate the contours or contour seg-
ments (section 3.2.4).
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If you have no knowledge about the object’s shape or the shapes cannot be approximated by a simple
shape like a line, circle, ellipse, or rectangle without loosing essential information, HALCON provides
operators similar to the ones introduced for the region processing, i.e., operators for

* the extraction of general contour features like the diameter, length, or orientation of contours of
unknown shape (section 3.2.5).

In some cases, contour processing is needed not for precision requirements but for one of its other
advantages, which are introduced in section 4.2 on page 34. If a pixel-precise measuring is sufficient and
the contour processing is needed only for a part of the measuring process, you can afterwards switch to
the faster region processing. To do so, you can transform the contours into regions using the operator
gen_region_contour_xld.

3.2.1 Create Contours

Contour processing starts with the creation of contours. The common way to obtain contours is to
extract edges. Edges are transitions between dark and light areas in an image and can be mathematically
determined by computing the image gradient, which can also be represented as edge amplitude and edge
direction. By selecting pixels with a high edge amplitude or a specific edge direction, contours between
areas can be extracted. This can be done in various ways and with varying precision.

3.2.1.1 Pixel-Precise Edges and Lines

If a pixel-precise edge extraction is sufficient, an edge filter can be applied (see also Solution Guide I,
chapter 6 on page 63). It leads to one or two edge images, for which the edge regions can be extracted by
selecting the pixels with a given minimum edge amplitude using a threshold operator. To get edges with
a thickness of one pixel, the obtained regions have to be thinned, e.g., by using the operator skeleton.
Common pixel-precise edge filters are the operator sobel_amp, which is fast, and edges_image, which
is not that fast but already includes a hysteresis threshold and a thinning and leads to more accurate
results than sobel_amp. edges_image and also its equivalent for color images, edges_color, can also
be applied with the parameter Filter set to >sobel_fast’. Then, it is fast as well, but this parameter
is recommended only for images with little noise or texture and sharp edges.

Besides edges, you can extract also lines that are built by thin structures on a contrasting background.
In contrast to edges or the XLD lines that are obtained by a line fitting as described in section 3.2.4
on page 23, they have a certain (not necessarily constant) width. A common filter for these lines is
bandpass_image, which is again applied in combination with a threshold and a thinning.

For edge filters, after applying the filter, threshold, and thinning, the result typically is trans-
formed into XLD contours. With this approach, a broad range of further processing methods is
available. For the transformation of the thinned edge regions into contours, e.g., the operator
gen_contours_skeleton_x1d is provided. Figure 3.3 (left) shows a pixel-precise edge obtained with
edges_image.
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3.2.1.2 Subpixel-Precise Edges and Lines

If a pixel-precise extraction is not sufficient, operators for the subpixel-precise edge and line extraction
can be applied (see Solution Guide I, chapter 7 on page 73). These immediately return XLD contours.
Common operators to extract subpixel-precise edges are edges_sub_pix for the general edge extrac-
tion, edges_color_sub_pix for extracting edges in color images, and zero_crossing_sub_pix for
extracting zero crossings in an image, or respectively, to extract edges in Laplace-filtered images. Com-
mon operators for the extraction of subpixel-precise lines, i.e., thin linear structures with a certain (not
necessarily constant) width, are 1ines_gauss for the general line extraction, lines_facet for extract-
ing lines using a facet model, and lines_color for extracting lines in color images. Figure 3.3 (right)
shows a subpixel-precise edge obtained with edges_sub_pix.

pixel precise edges subpixel precise edges

Figure 3.3: Edge extracted: (left) pixel-precise, (right) subpixel-precise.

3.2.1.3 Speed up the Contour Extraction

The subpixel-precise approaches are often slower than the pixel-precise approaches. To speed up the
subpixel-precise edge extraction, it is recommended to apply it only to a small region of interest (ROI).
To obtain a suitable ROI you can, e.g., determine the region enclosed by the contour with a threshold-
ing (e.g., using fast_threshold). The returned region then must be reduced to its boundary by the
operator boundary and possibly clipped by clip_region_rel. With a morphological operator, e.g.,
dilation_circle, the region is expanded by a small amount, the image is reduced to the returned re-
gion by reduce_domain, and the reduced image is used as an ROI. The ROI builds the search space for
the subpixel-precise edge extraction (see figure 3.4). One of the various HDevelop examples illustrating
this proceeding is described in section 5.3 on page 42.

3.2.1.4 Subpixel-Precise Thresholding

Another fast way to extract contours is provided by the subpixel-precise thresholding using the operator
threshold_sub_pix, which can be applied in real time to a whole image. It is a thresholding operator
similar to the ones used for the region processing (see section 3.1.2 on page 14), but in contrast to them
it does not result in a closed region but in subpixel-precise contours describing the border or parts of a
border of the region. Thus, in contrast to the threshold operators introduced for the region processing
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d) e) f)

Figure 3.4: Creation of ROI for subpixel-precise edge extraction: a) original image, b) pixel-precise edge
extraction, ¢) boundary for the edge region, d) dilation of the region, e) reduced domain (ROI),
f) subpixel-precise edge extraction within the ROI.

the returned contours need not be closed, multiple contours can be obtained for the same region, and
junctions between contours are possible (see image figure 3.5 on page 21). Like for the thresholding
operators used for a region processing, you can search for a suitable threshold using, e.g., the online
Gray Histogram inspection in HDevelop (with Display set to ’threshold’), or obtain information
about the gray value distribution of the image by the operators gray_histo, histo_to_thresh, and
intensity.

3.2.2 Get Relevant Contours

If the creation of the contours led to more contours than needed for the further processing, there are
means to reduce the set of extracted contours to a set of contours relevant for the specific measuring task.

3.2.2.1 Suppress Irrelevant Contours

You can, e.g., suppress irrelevant contours by selecting only those contours fulfilling specific constraints.
For example, the operator select_shape_x1d can be used to select closed contours with a specific
shape feature concerning, e.g., the contour’s convexity, circularity, or area. Almost 30 different shape
features are available, which are listed in the corresponding part of the Reference Manual. A similar
operator for the selection of specific contours is select_contours_x1d. It can be used to select open
and closed contours according to typical line features like length, curvature, or direction. The operator
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Figure 3.5: Contours obtained by threshold_sub_pix. The border of a region consists of different, not
necessarily closed contours. Junctions are possible.

select_x1d_point can be used in combination with mouse functions to interactively select contours.
One of the various examples how to select significant features is given in section 5.11 on page 63.

3.2.2.2 Combine Contours

When having several contours that approximate the same object part, the number of segments can further
be reduced by a contour merging. Suitable operators are provided for the case that the contours

¢ lie approximately on the same line (union_collinear_contours_x1d),

* on the same circle (union_cocircular_contours_x1d, see figure 3.6),

e are adjacent (union_adjacent_contours_x1ld), or

* are cotangential (union_cotangential_contours_x1d).

One of the examples applying a contour merging is described in section 5.9 on page 57.

For closed contours or polygons, you can also use set-theoretical operators to combine the enclosed
regions of different closed contours or polygons. This is similar to the approach described for the region
processing in section 3.1.3 on page 15. Available operators are

e intersection_closed_contours_xld and intersection_closed_polygons_x1d for the
calculation of the intersection of regions that are enclosed by closed contours or polygons,

e difference_closed_contours_x1d and difference_closed_polygons_x1d for the calcu-
lation of the difference between regions that are enclosed by closed contours or polygons,
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b)

d)

Figure 3.6: Get relevant contours: a) original image, b) subpixel-precise edges, c) selected contours with
minimum length, d) cocircular contours merged.

c)

e symm_difference_closed_contours_xld and symm_difference_closed_polygons_xld
for the calculation of the symmetric difference between regions that are enclosed by closed con-
tours or polygons, and

* union2_closed_contours_x1ld and union2_closed_polygons_x1d for merging regions that
are enclosed by closed contours or polygons.

3.2.2.3 Simplify Contours

Further, you can simplify contours by directly transforming them into shape primitives, which is similar
to the approach described for the region processing in section 3.1.3 on page 15, but now works on
contours instead of regions. With shape_trans_x1d you can transform a contour into

« the smallest enclosing circle,
« the ellipse having the same moments,
¢ the convex hull,

* or the smallest enclosing rectangle (either parallel to the coordinate axis or with arbitrary orienta-
tion) (see figure 3.7).



3.2 Contour Processing

B-23

Figure 3.7: Contours transformed into approximating shapes: a) original image, b) extracted contours after
suppression of irrelevant contours, c¢) contours transformed into ellipses with the same mo-
ments, d) contours transformed into their smallest enclosing circles, e) contours transformed
into their convex hulls, and f) contours transformed into their smallest enclosing rectangles
with arbitrary orientation.

3.2.3 Segment Contours

The obtained contours typically have more or less complex shapes. If a contour consists of elements of
known shape, e.g., straight lines or circular arcs, a segmentation of the contour into these less complex
contours helps to make the investigation of the object easier, as now each segment can be measured
individually. For the measuring, primitive shapes like lines or circles are fitted to the segments and
their parameters, e.g., the diameter of a circle or the length of a line, can be obtained (see next section).
Available shape primitives for a shape fitting comprise lines, circles, ellipses, and rectangles.

For the contour segmentation the operator segment_contours_x1d can be applied. Dependent on the
parameters you choose, a contour can be segmented into linear segments (see figure 3.8), linear and cir-
cular segments, or linear and elliptic segments. The information by which shape each individual segment
is approximated is stored in the attribute ’ cont_approx’. If you need only straight line segments, you
can alternatively use the operator gen_polygons_x1d instead. To get the individual line segments of
the polygon, apply the operator split_contours_x1d.

3.2.4 Extract Features of Contour Segments by Approximating them by
known Shapes

The common step after the selection and possibly a segmentation is to fit shape primitives to the contours
or contour segments to get their specific shape parameters. The available shape primitives are lines,
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Figure 3.8: Segment a contour: (left) original image with edges, (right) segmented contour.

circles, ellipses, and rectangles. The obtained features may be, e.g., the end points of the lines or the
centers and radii of the circles.

If you have applied a segmentation in a preceding step, for each segment the value of ’cont_approx’,
i.e., the shape of the segment, can be queried with the operator get_contour_global_attrib_x1d.
Depending on its value, the best-suited shape primitive can be fitted into the contour segment using the
corresponding fitting approach:

* For linear segments (’ cont_approx’ =-1), fit_line_contour_x1d gets the parameters of each
line segment, e.g., the coordinates for both end points.

* For circular arcs (’ cont_approx’ = 1), fit_circle_contour_x1d and

» for elliptic arcs (’cont_approx’ = 0), fit_ellipse_contour_xld are used to compute the
center positions, the radii, and the parts of the circles or ellipses that are covered by the contour
segments (determined by the angles of the start and end points).

* Rectangles consist either of a pure (unsegmented) contour or of linear contours that
have been merged, e.g., by union_adjacent_contours_xld. For them, the operator
fit_rectangle2_contour_x1d is provided.

Examples for the application of the fitting operators are described, e.g., in section 5.6 on page 51 for
lines, section 5.10 on page 60 for circles, and section 5.9 on page 57 for rectangles.

With the obtained parameters the corresponding contour can be generated for a visualiza-
tion or a further processing. Lines can be generated with gen_contour_polygon_x1d, cir-
cles with gen_circle_contour_x1d, ellipses with gen_ellipse_contour_x1ld, and rectangles
with gen_rectangle2_contour_xld. For the visualization, common visualization operators like
dev_display are used. Figure 3.9 shows an example for fitting circles into circular contours and dis-
playing their parameters.
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Figure 3.9: Fit circles to circular contours: a) original image, b) contours after suppression of irrelevant

contours c) circles fitted into the contours d) visualization

of radius R for each circle.

3.2.5 Extract Features of Contours Without Knowing Their Shapes

If the object to investigate cannot be described by a predefined shape primitive, HALCON provides
several operators that compute general features of contours. Similar to the operators used for the feature
extraction within a region processing (see section 3.1.4 on page 16), features like orientation or area can
be queried. Common operators used for 2D measuring with contours are:

e area_center_x1d: area and center of gravity for the region enclosed by the contour or polygon,

and the order of the points along the boundary.

e diameter_x1d: the coordinates of the two extreme points of the contour having the maximum

distance, and the distance between them.

e elliptic_axis_x1d: the two radii and the orientation of the
and aspect ratio as the contour.

e length_x1d: length of the contour or polygon.

e orientation_x1d: orientation of the contour.

ellipse having the same orientation

e smallest_circle_x1d: center position and radius of the smallest enclosing circle.
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* smallest_rectanglel_x1d: coordinates of the corners describing the smallest enclosing rect-
angle that is parallel to the coordinate axis.

* smallest_rectangle2_x1d: center position, orientation, and the two radii (half lengths) of the
smallest enclosing rectangle with arbitrary orientation.

Some of the operators only work on contours that have no self intersections. Self intersections are
not always obvious as they can occur due to internal calculations of an operator, e.g., if an open
contour is closed for the needed operation (see figure 3.10). To check if a contour intersects it-
self you can apply the operator test_self_intersection_x1d. If you face problems because of
self intersections, you can also use the corresponding point-based operators. The available oper-
ators are area_center_points_x1d, moments_points_x1d, orientation_points_x1d, ellip-
tic_axis_points_x1ld, eccentricity_points_x1d, and moments_any_points_x1d.

Figure 3.10: Self intersection: (left) curved contour, (right) self intersections occur because the contour is
closed for internal calculations of an operator.

3.3 Geometric Operations

HALCON provides a selection of operators for geometric operations to calculate the relation between
elements like points, lines, line segments, contours, or regions. Points can be determined by several point
operators, e.g., points_foerstner, or by the intersection of lines. Lines, line segments, contours,
and regions can be obtained as described in section 3.1 on page 13 and section 3.2 on page 17. The
relations between the individual elements can be calculated by several operators. Most of the operators
are constructed to calculate the distance relation between the elements. The operators for the distance
relations are summarized in the following list:

Point Line Line Segment | Contour
Point distance_pp | distance_pl | distance_ps | distance_pc
Line distance_pl | — distance_sl | distance_lc
Line Segment | distance_ps | distance_sl | distance_ss | distance_sc
Contour distance_pc | distance_lc | distance_sc | distance_cc
distance_cc_min
Region distance_pr | distance_lr | distance_sr | —
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Region

Point distance_pr

Line distance_lr

Line Segment | distance_sr

Contour -

Region distance_rr_min
distance_rr_min_dil

Further operators for geometric operations are provided, which can be used to calculate, e.g.,

* the angle between two lines: angle_11,

* the angle between a line and the vertical axis: angle_1x,

* apoint on an ellipse corresponding to a specific angle: get_points_ellipse,
¢ the intersection of two lines: intersection_11, and

* the projection of a point onto a line: projection_pl.
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Chapter 4

Tool Selection

Because many tools are available, it is not obvious which tool to use in which situation. Section 4.1
guides you from the feature you want to extract and the object’s appearance in the image to the ap-
propriate tool to use. In section 4.2, additionally the two most important tools, region processing and
contour processing, are compared. Practical guidance is provided in section 5 by a selection of HDevelop
example programs that solve common measuring tasks.

4.1 From the Feature to the Tool

If you have no special requirements like precision or speed, often several measuring approaches are
available to obtain the same feature as result. The graph in figure 4.1 leads you from a single feature you
want to measure and the appearance of the object in the image to the part of section 3 that describes the
basic tools suited best for your task. If you have specific requirements like precision or speed, you should
additionally consider the different characteristics of region processing and contour processing discussed
in section 4.2 on page 34.

In most applications, it is not sufficient to obtain a single feature from an image since many features
are needed to obtain the final feature that is searched for. Thus, dependent on the specific task and the
characteristics of the object the basic tools are combined in different ways. The decision which tool
to use does not only depend on the appearance of the object and the special requirements concerning
precision or speed, but also on the interdependencies of the several tasks of an application and therefore
also on the features you have already obtained during a preceding step of your program. Because there is
a huge amount of influences, this guide can not be all-embracing, but hopefully conveys to you a feeling
for the available tools.

Therefore, we shortly summarize which tools or approaches are common to obtain the different object
features. Most of the corresponding examples, which can be used as practical guidance, are provided in
section 5 on page 39.
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Measure the
dimension or area of
an object

Object represented by
regions of similar gray
value, color, or texture

Region Processing
(section 3.1 on page
13)

Objects represented by
clear-cut edges,
contours can be
decomposed into
simple shapes

Measure the
orientation, position,
or number of objects

Contour Processing
(section 3.2 on page
17)

Objects all have the
same, complex shape

see Solution Guide I,
chapter 9 on page 97

Objects are edges
perpendicular to a line
or an arc

see Solution Guide I,
chapter 5 on page 49,
or Solution Guide
III-A

Measure an angle or
distance

between objects or
object parts

l

Calculate the angle or
distance from their
orientations or
positions

between segments like
positions, edges, or
regions

Geometric Operations
(section 3.3 on page
26)

Figure 4.1: From the feature to measure to the corresponding basics section.

4.1.1 Area

The area of an object is in most cases obtained by the operator area_center, i.e., via a region processing

(see, e.g., the example in section 5.1 on page 39).

If a subpixel-precise measuring requires contour processing, you can use the corresponding operator

area_center_x1d or area_center_points_x1d (see example in section 6.2 on page 82) instead.
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Be aware that when computing the area of a region, possible holes in the region are considered, whereas
when computing the area of a contour, the whole area enclosed by the contour is obtained. In the latter
case, you therefore have to extract also the contours of the holes, get their areas, and subtract them from
the area enclosed by the outer contour.

The mentioned operators were introduced in section 3.1.4 on page 16 for regions and in section 3.2.5 on
page 25 for contours.

In addition, the operator area_holes calculates the area of the holes in the input regions.

4.1.2 Orientation and Angle

For the orientation of an arbitrary object, typically the operator orientation_region (see, e.g., the
example in section 5.1 on page 39) is used and can be replaced for contours by the corresponding operator
orientation_x1d (see example in section 5.4 on page 47).

The operators elliptic_axis and elliptic_axis_x1d compute the orientation and radii of the el-
lipse having the same moments as the input region or contour, respectively.

For very small symmetric objects, the operator elliptic_axis_gray is recommended (see example in
section 5.12 on page 60).

If you want to obtain the orientation and extents of the smallest enclosing rectangle of an object, you can
determine them via smallest_rectangle?2 for regions (see also example in section 5.12 on page 66)
and smallest_rectangle2_x1d for contours.

The mentioned operators were introduced in section 3.1.4 on page 16 for regions and in section 3.2.5 on
page 25 for contours.

Note that orientation_region and smallest_rectangle2 both determine the orientation of the
object but use different approaches. orientation_region is based on elliptic_axis and computes
the orientation of the ellipse that is equivalent to the object, whereas smallest_rectangle2 computes
the orientation of the smallest enclosing rectangle. Depending on the object’s shape, one of the operators
may be more suitable than the other. Figure 4.2 shows the character L’ for which the orientation is
determined by the equivalent ellipse and by the smallest enclosing rectangle.

Figure 4.2: Orientation of (left) the equivalent ellipse or (right) the smallest enclosing rectangle.
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Besides the different values for the orientation, the range of the returned values differs. orienta-
tion_region returns the orientation in a range of -180° to 180°, whereas for smallest_rectangle2
the orientation is returned in a range of -90° to 90°. Be aware, that the 360° range of orienta-
tion_region is reliable only for unambiguous objects. For symmetric objects, the returned orientation
may flip by 180°.

If you fit a primitive shape to a contour or contour segment as described in section 3.2.4 on page 23,
for elliptic and rectangular contours also the orientation of the contour is returned by the corresponding
fitting operator. An example for obtaining the orientations of rectangles is shown in section 5.9 on page
57.

If you have a rather complex, but rigid shape, which you like to find in different images, template
matching is recommended to get the orientation of the object in each image. For further information
about template matching, read the Solution Guide I, chapter 9 on page 97.

If the angle between two objects is needed, you can obtain the orientation of both objects as described
before and compute the difference between them. If the angle between two lines or a line and the vertical
axis is needed, the operators introduced in section 3.3 on page 26, angle_11 and angle_1x, are suited
(see example in section 5.8 on page 57).

4.1.3 Position

To get the position of an object, an extensive selection of possible approaches is available.

The center position of an arbitrary object can be obtained by region processing (see section 3.1.4
on page 16) using area_center (see, e.g., the example in section 5.1 on page 39) or by contour
processing (see section 3.2.5 on page 25) using the corresponding operator area_center_x1ld or
area_center_points_x1d (see example in section 6.2 on page 82).

For very small symmetric objects, the operator area_center_gray is recommended (see example in
section 5.12 on page 66).

If the objects can be split into primitive shapes like lines, circles, ellipses, or rectangles, and these
primitives are the objects of interest for the further investigation, fitting primitive shapes to the contours
(see section 3.2.4 on page 23) leads to the positions of their center points or, in case of a line fitting, their
end points. In section 5.9 on page 57, e.g., the fitting of rectangles to contours is described to obtain the
position and orientation of rectangular objects. The examples in section 5.10 on page 60 and section 5.11
on page 63 show the corresponding process for fitting circles to circular contour segments.

If you have a rather complex, but rigid shape, which you like to find in different images, template
matching is recommended to get the position of the object in each image. For further information about
template matching, read the Solution Guide I, chapter 9 on page 97.

How to measure the positions of edges and the distances between them along a line or an arc that is
approximately perpendicular to them is briefly described in the Solution Guide I, chapter 5 on page 49.
Details can be found in the Solution Guide III-A.

If the position of a corner point of a contour is searched for, either point operators can be used (see
section 3.3 on page 26), or lines, obtained by line fitting (see section 3.2.4 on page 23), are intersected
using intersection_11. Both approaches are used by the example in section 5.7 on page 55.
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The intersection of lines can be applied also to get, e.g., the junction points of a grid (see example in
section 5.6 on page 51). Additionally, contours or also regions can be intersected with other contours or
regions to get the positions of points of intersection.

4.1.4 Dimension and Distance

The dimension of objects can be obtained by a large variety of approaches, depending primarily on the
shape of the object.

For circular or elliptic contours or contour segments the radii and positions are usually obtained by fitting
circles or ellipses to the contours (see section 3.2.4 on page 23). Examples are shown in section 5.10 on
page 60 and section 5.11 on page 63.

If full circles and not only circular contour segments are given, you can also determine the radius and
position of the largest circle fitting into a region using inner_circle (see section 3.1.4 on page 16)
or the smallest circle enclosing a contour using smallest_circle or smallest_circle_x1d, respec-
tively (see section 3.2.5 on page 25). Note that, however, the results are much more influenced by small
distortions than the result obtained by circle or ellipse fitting (see section 4.2).

For rectangles, you can obtain the extents and positions either via rectangle fitting as introduced in
section 3.2.4 on page 23 (an example is described in section 5.9 on page 57), or you determine the
smallest enclosing rectangles via smallest_rectangle?2 for regions (see section 3.1.4 on page 16) or
smallest_rectangle2_x1d for contours (see section 3.2.5 on page 25). The example in section 5.12
on page 66 shows how to determine the smallest enclosing rectangle for the region of a ball grid array
(BGA). The obtained half lengths of the rectangle are used then to normalize the distances between the
balls in the grid. Note that similar to the approaches for circular or elliptic objects, the results for the
smallest enclosing rectangles are more influenced by outliers than the result of a rectangle fitting.

Many applications that aim to get the distance between objects or object parts extract suitable positions,
e.g., the intersection points of two intersecting lines, and use them to measure distances between them
and another point, line, line segment, contour, or region by a geometric operation (see section 3.3 on
page 26). The example in section 5.6 on page 51, e.g., intersects the lines of a grid to calculate the
positions of its junctions, which then could be used, e.g., to get the extent of the grid. Another example
(section 5.7 on page 55) intersects lines to get the positions of the corner points of a metal plate and
afterwards calculates the distance between them and the positions of the same points obtained by a point
operator (for point operators see section 3.3 on page 26). The maximum distance between a contour and
its approximating line (regression line) is determined in the example in section 5.3 on page 42.

How to measure the positions of edges and the distances between them along a line or an arc that is
approximately perpendicular to them is briefly described in the Solution Guide I, chapter 5 on page 49.
Details can be found in the Solution Guide III-A.

The width of an object can be obtained by different means, depending on the object. For example, the
width of thin lines like cables, rivers, or arteries are often obtained by lines_gauss as described in
section 5.5 on page 49, whereas the width of a strictly polygonal object is better obtained by calculating
the distance between individual lines or points via geometric operations, which are possibly applied after
checking the lines for parallelism (see example in section 5.4 on page 47). The width of an object may
be also obtained via region processing, e.g., by using the smallest enclosing rectangle or, if the object
consists of jagged lines, orient the object and its region parallel to the vertical axis and calculate the
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difference between the column coordinates of the region’s border in each row to get the mean, minimum,
and maximum width (see example in section 5.2 on page 41).

For objects with an arbitrary shape, region-based feature extraction, as described in section 3.1.4 on page
16, or the corresponding contour-based operators introduced in section 3.2.5 on page 25 can be used
to get some general features of their region or contour. The example in section 6.2 on page 82, e.g.,
uses the operator length_x1d to compute the length of a contour representing a scratch in an anodized
aluminum surface.

4.1.5 Number of Objects

To get the number of objects, the common method is to work with tuples and to count their elements. In
HDevelop, if a tuple contains iconic data, e.g., regions or contours, you can query the number of elements
using the operator count_obj. If the tuple contains control data, e.g., the numeric results obtained for
the rows or columns of a set of positions, you can query the number of elements via the corresponding
HDevelop operation (Ituplel) inside the operator assign. Note also that the indices of numerical tuples
do not correspond to the indices of the iconic tuples. Numerical tuples start with O and iconic tuples
start with 1. For more information about the HDevelop syntax related to tuples, see the HDevelop User’s
Guide, section 7.5.3 on page 276.

The next section goes deeper into the main differences between region processing and contour process-
ing.

4.2 Region Processing vs. Contour Processing

The basic tools needed for 2D measuring are region processing and contour processing. Both can be used
to get the area, orientation, position, dimension, or number of objects. This section helps you decide
which approach is suited best for your task. For this, the appearance of the object in the image is taken
into account. The following table summarizes the main differences between both tools. Afterwards, the
individual topics are explained in more detail.

Region Processing Contour Processing
a) | pixel-precise pixel- or subpixel-precise
b) | fast not as fast as region processing
¢) | works on closed contours works on open and closed contours
d) | outliers strongly influence the result of a outliers can be compensated

shape approximation
e) | gray-value behavior of object may not change | gray-value behavior of object may change
f) | not sensitive to bad contrast sensitive to bad contrast

a) The methods belonging to region processing can be applied only with pixel precision. Therefore, the
methods are rather fast and easy to apply. For contour processing both pixel- as well as subpixel-precise
methods are provided. The speed of an application varies depending on the used operators.

b) Region processing is not as precise, but in most cases significantly faster than contour processing. The
HDevelop program solution_guide\2d_measuring\measure_metal_part_extended.hdev ex-
tracts an object and its area, center position, and orientation using region processing on one hand and con-
tour processing on the other hand. For the region processing, the operators threshold, area_center
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and orientation_region are applied. The contour processing is preceded by the creation of an ROI
to speed up the edge extraction. For this, the operators threshold, boundary, and reduce_domain are
used. The actual contour processing then consists of the operators edges_sub_pix, area_center_x1d
and orientation_x1d. For the contour processing, the areas of the holes of the metal plate have to be
subtracted to get the actual area of the plate. Figure 4.3 shows the run time needed for both approaches.

The region processing is significantly faster.

Region Processing Time: 0.78 ms

Center Row: 241.04 Center Column: 373.95
Area: 10190 pixels Orientation: -0.43 rad

Contour Processing Time: 53.3 ms

Center Row: 244.2 Center Column: 379.9

Area: 10218.6 pixels Orientation: -0.43 rad

Figure 4.3: With region processing the extraction of area, center, and orientation is significantly faster than
with contour processing.

¢) Region processing only works for closed areas. For open contours, e.g., if only parts of the border
of an object are visible or only a segment of an object is subject to the further investigation, contour

processing is needed (see figure 4.4).

v*U*

select circular fit circle to open
segment contour segment

Figure 4.4: Open contours, including single segments of an object’s border, can only be handled by
contour processing.

d) Fitting a primitive shape to a region, e.g., its enclosing circle, is far more influenced by outliers of
the object’s contour than the corresponding contour processing. In many cases, for region processing
small gaps or thin protrusions can be eliminated by the right preprocessing steps, e.g., using an opening
or closing. But large gaps or protrusions are kept and therefore influence and maybe falsify the feature
extraction as illustrated in figure 4.5. There, the result of a shape approximation via region processing
deviates strongly from the best fitting circle that can be obtained by a contour processing.
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Region processing Contour processing
inner circle outer circle fit circle to
l l l segments

o O

Figure 4.5: A circle fitting via contour processing is better suited to compensate outliers of the object’s
border than a circle approximation via region processing.

e) With region processing, regions are extracted as regions of similar gray value, color, or texture. A
region can be defined, e.g., as a connected region of gray values that are brighter than a specified thresh-
old. Thus, for region processing the object to measure must consist of a region that fulfills the con-
straint within its entire area. In some cases, there are means to adapt to changing gray values, e.g., by a
gray-value scaling. Here, the image is scaled to another gray-value range so that, e.g., differences to a
reference region are minimized. For contour processing only the edges, i.e., the transitions between light
and dark, are needed to extract an object. As long as the discrete transition is visible, it does not matter
whether the gray-value or color behavior changes inside the object.

f) Region processing is more robust to bad contrast than a contour processing, because small gray value
differences can nevertheless be separated by a suitable threshold, whereas a reliable edge extraction
needs clear transitions between areas of different gray value or color.
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The following section provides you with a comprehensive collection of example applications that solve
different tasks and can be used as a guide for your applications.
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Chapter 5

Examples for Practical Guidance

The previous sections described theoretically how to use several tools provided by HALCON. Since
every measuring task is unique, different influences must be considered for each special case. The pure
theory may not be sufficient to get a feeling for choosing the right tool for a specific task. To give you also
practical guidance, the following sections describe a collection of examples solving common measuring
tasks.

5.1 Rotate Image and Region (2D Transformation)

For many measuring tasks, it is useful to align the object of interest parallel to the coordinate axis of the
image. If the object cannot be aligned already at the image acquisition, the image or the extracted regions
must be rotated by image processing. A rotation as well as a translation or a scaling can be realized by
an affine 2D transformation, which is easily applied with HALCON.

The HDevelop program solution_guide\2d_measuring\measure_screw.hdev measures different
dimension-related features of a screw. The image of the screw is acquired using a back light to get
a good contrast between fore- and background. For the approach described in section 5.2, piecewise
distance measuring is needed to obtain the minimum, maximum, and mean width of the screw. If the
screw is vertical, the measuring can be applied easily row by row. Otherwise, the calculations become
more complex. Thus, the first task of the program is to rotate the region of the screw so that it becomes
vertical.

The necessary steps for the rotation comprise

¢ the determination of the parameters for the rotation,
¢ the creation of a homogeneous transformation matrix, and

* the transformation of the region.
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Region (transformed)

Figure 5.1: Affine 2D transformation: (left) original image, (right) rotated region.

Step 1:  Determine parameters for the rotation

threshold (Image, Region, 0, 100)
orientation_region (Region, OrientationRegion)
area_center (Region, Area, RowCenter, ColumnCenter)

Before applying a 2D transformation, the parameters for the transformation must be determined. Here,
the region of the object is extracted using threshold and the orientation of the region is determined
via orientation_region. The orientation intended for the following measuring is 90°. As center for
the rotation we choose the center position of the region, which we obtain with area_center. Note that
because of the approximately symmetrical shape of the screw, the screw can be twisted by 180°, but for
the described task it is not important at which side of the screw we start to measure.

Step 2:  Create the homogeneous transformation matrix

vector_angle_to_rigid (RowCenter, ColumnCenter, OrientationRegion, \
RowCenter, ColumnCenter, rad(90), HomMat2DRotate)

Now, vector_angle_to_rigid is applied. The operator creates a homogeneous transformation matrix
for a simultaneous rotation and translation. Here, only a rotation is applied, i.e., the center point is
the same for the original and the transformed region and only the angle is changing from the original
orientation to the vertical direction. An additional translation is recommended, e.g., if similar objects
in several images have to be placed in the same position so that a direct comparison between them
is possible. Another need for a translation occurs if the object or parts of it moved out of the image
because of the rotation. Alternatively to vector_angle_to_rigid, you can also create a homogeneous
transformation matrix for the identical 2D transformation by hom_mat2d_identity and add a rotation
and a translation to it by hom_mat2d_rotate and hom_mat2d_translate, respectively. Furthermore,
if needed, also a scaling can be added to the homogeneous transformation matrix by hom_mat2d_scale,
but you have to consider carefully that a scaling significantly influences the absolute values obtained by



5.2 Get Width of Screw Thread

B-41

the measuring. To compensate this, you can afterwards transform the measurement results back to the
original dimension by applying the inverse transformation matrix to them.

Step 3:  Transform region

affine_trans_region (Region, RegionAffineTrans, HomMat2DRotate, 'false')

The actual transformation of the region is realized by the operator affine_trans_region (see fig-
ure 5.1). The rotated region is now used for the measuring task described in the next section.

5.2 Get Width of Screw Thread

The first measuring approach of the HDevelop program solution_guide\2d_measuring\
measure_screw.hdev measures the minimum, maximum, and mean width of a screw thread. For
this, we use the vertical region of the screw obtained in section 5.1 and measure the difference between
the column coordinates of the region’s border in each row.

Region (transformed) Width of object
per row (between

the white lines):

mean width: 238.679 pixels
minimum width: 232 pixels

maximum width: 245 pixels

Figure 5.2: Between the two white lines for each row, the distance is measured via a region processing.

The general steps for this task comprise

* the extraction of the width of the object in each row and

¢ the calculation of the mean, minimum, and maximum width.
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Step 1:  Get object width for each row

closing_circle (RegionAffineTrans, RegionToProcess, 4.5)

get_region_runs (RegionToProcess, RowRegionRuns, ColumnBegin, ColumnEnd)
NumberLines := |RowRegionRuns|

ColumnBeginSelected := ColumnBegin[90: (NumberLines-90)]
ColumnEndSelected := ColumnEnd[90: (NumberLines-90)]

Diameter := ColumnEndSelected-ColumnBeginSelected+1

The operator get_region_runs examines a region row by row. In particular, it returns three tuples,
one containing the row coordinates of the region and two containing the column coordinates where the
region begins and ends in the corresponding rows (seen from left to right). The difference between the
two tuples containing column coordinates results in a tuple containing the widths of the object for each
row. Note that this proceeding works only for regions having exactly one start and one end point per row.
Thus, before applying get_region_runs, small gaps that lead to more than one start and end point are
eliminated by a closing using closing_circle.

Step 2:  Calculate mean, minimum, and maximum width

meanDiameter := mean(Diameter)
minDiameter := min(Diameter)

The tuple containing the widths of the object in each row are used now to calculate the mean, minimum,
and maximum horizontal distance of the object (see figure 5.2).

In this approach, the column coordinates of the screw’s border, which are used to calculate the horizontal
distance in each row, are obtained by region processing. Alternatively, contour points can be obtained by
a contour processing and their coordinates can be used for the width calculation. How to obtain contour
points is, e.g., described in section 5.3 for the two thread edges EdgeContour0 and EdgeContourl.

5.3 Get Deviation of a Contour from a Straight Line

The second measuring approach in the HDevelop program solution_guide\2d_measuring\
measure_screw.hdev uses contour processing to measure the deviations of the thread edges from their
approximating straight lines, the so-called regression lines.

Individual points on the thread edges alternatively can be obtained by region processing, e.g., using the
operator get_region_points, but for the calculation of the regression lines, a contour processing is
necessary. The general steps applied here comprise

¢ the creation of an ROI,

* the extraction and alignment of contours,

* the determination of regression lines,

* the extraction of the contour points of the thread edges,

* the calculation of the horizontal distances between the thread edges and the regression lines, and
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Contours (transformed and clipped) Maximum distances
between contours

and regression lines:

max (contour/edge 0):
13.99 pixels

max (contour/edge 1) :

13.57 pixels

B
|

Figure 5.3: Measure the deviation of the contours from their regression lines: (left) contours of the thread
edges and their regression lines, (right) visualization of deviation per row in a zoom window.

e the visualization of the result in a zoom window.

Step 1:  Create ROI

boundary (Region, RegionBorder, 'inner_filled')
dilation_circle (RegionBorder, RegionDilation, 7.5)
reduce_domain (Image, RegionDilation, ImageReduced)

First, a region processing is used to create an ROI for the following contour processing. For this, we
reduce the original region of the screw to its border by the operator boundary and use the morpho-
logical operator dilation_circle to enlarge it. The domain is reduced to the enlarged region by
reduce_domain (see figure 5.4).

Step 2:  Extract and transform contours

sigma := 3

derivate_gauss (ImageReduced, DerivGauss, sigma, 'laplace')

zero_crossing_sub_pix (DerivGauss, Edges)

select_contours_x1d (Edges, SelectedEdges, 'contour_length', 3000, 99999, \
-0.5, 0.5)

The ROI is now used as search space for the contour processing that starts with a subpixel-precise
edge extraction. In many cases, the operator edges_sub_pix is the first choice when extracting edges.
Here, it has the disadvantage that it works on the first derivative so that the curves are flattened slightly.
Because we need the outer parts of the contour, a curve flattening must be avoided. Thus, we use
a Laplace filter, which leads to less smooth edges but matches the turning parts of the contour. The
Laplace filter is applied using the operator derivate_gauss with the parameter 1aplace. The operator
zero_crossing_subpix then returns the edge contours. From these, we select the contours with a
minimum size using select_contours_x1d.
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Figure 5.4: ROI for the subpixel-precise edge extraction.

The operator affine_trans_contour_x1d then transforms the contours using the same homogeneous
transformation matrix as used for the transformation of the region obtained in section 5.1 on page 39 (see
figure 5.5).

affine_trans_contour_xld (SelectedEdges, ContoursAffinTrans, HomMat2DRotate)

Figure 5.5: Extracted and transformed contours of the screw.

With smallest_rectanglel_x1d and clip_contours_x1d, the now vertical contour is clipped to get
that part of the screw’s border that contains the two separated thread edges on the left and right side of
the screw.
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smallest_rectanglel_xld (ContoursAffinTrans, Rowll, Columnll, Row21, \
Column21)

clip_contours_x1d (ContoursAffinTrans, ClippedContours, Row11+90, 0, \
Row21-90, Width)

Step 3:  Get regression lines

fit_line_contour_xld (ClippedContours, 'regression', -1, 0, 5, 2, RowBegin, \
ColBegin, RowEnd, ColEnd, Nr, Nc, Distl)

The operator fit_line_contour_x1d now uses the contours to compute the start (RowBegin, ColBe-
gin) and end (RowEnd, ColEnd) points for the regression lines (see figure 5.6). To get the points of the
regression lines, the parameter Algorithm must be set to *regression’.

Contours (transformed and clipped)

Figure 5.6: Clipped contours and the corresponding regression lines.

Until now, we handled both contours together in tuples. The tuple Edges contains the contours of the
two thread edges, and the tuples for the start and end points of the regression lines contain the points for
both regression lines. With the operator gen_contour_polygon_x1d we explicitly create the contours
of the individual regression lines. For this, we use the corresponding start and end points as input, i.e.,
for the first regression line (RegressContour0) we use the start and end points with the index 0, and for
the second regression line (RegressContour1) we use the elements with index 1.

gen_contour_polygon_xld (RegressContourO, [RowBegin[0], RowEnd[0]], \
[ColBegin[0], ColEnd[01]1)

gen_contour_polygon_x1ld (RegressContourl, [RowBegin[1], RowEnd[1]], \
[ColBegin[1], ColEnd[1]])
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Step 4:  Extract contour points of the thread edges

select_obj (ClippedContours, EdgeContourO, 1)
get_contour_x1d (EdgeContour0O, RowEdgeO, ColEdgeO)
select_obj (ClippedContours, EdgeContourl, 2)
get_contour_x1d (EdgeContourl, RowEdgel, ColEdgel)

To get the deviation between the thread contours and their corresponding regression lines, we addition-
ally need the contour points of the thread contours. The thread contours are stored both in the tuple
Edges. Since we want to access the individual contours more than once, the usage of the indices may
become a little bit confusing. To make the code clearer and also to apply further tuple operations to
each contour later on, we select the elements of the tuple individually and assign concise names to them:
EdgeContour0 and EdgeContourl. In HDevelop, the selection of iconic objects is not realized via the
operator assign but by the operator select_obj. Note that the index of iconic objects starts with 1
instead of 0. For the thread contours EdgeContourO and EdgeContourl, a tuple containing the rows
and columns of the contour points is obtained with get_contour_x1d.

Step 5:  Calculate the horizontal distances

distance_pc (RegressContourO, RowEdgeO, ColEdgeO, DistanceMinO, \

DistanceMax0)
minDistance0 := min(DistanceMinO)
maxDistance0 := max(DistanceMinO)
meanDistance0 := mean(DistanceMinO)

The obtained contour points are used to calculate the distances between each contour point of the thread
edge and the contour of the corresponding regression line. The operator distance_pc returns the min-
imum and maximum distances. The minimum distances between the contour points and the contour of
the regression line correspond to the horizontal distances in approximately each row (as long as the screw
is vertical). These in turn can be used to query the minimum, maximum, and mean horizontal distance
between both contours (see figure 5.3, left). The code only shows the proceeding for EdgeContour0
and RegressContourO.

Step 6:  Visualize the result in a zoom window

dev_display (EdgeContour0)

dev_display (RegressContour0)

get_contour_xld (RegressContourO, RowContour0, ColContourO)

for i := 800 to 950 by 1
projection_pl (RowEdgeO[i], ColEdgeO[i], RowContour0[0], ColContourO[0], \

RowContour0[1], ColContourO[1], RowProjO, ColProj0)
gen_contour_polygon_x1ld (Contour, [RowEdgeO[i], RowProjO], [ColEdgeO[i], \
ColProjo])

dev_display (Contour)

endfor

To visualize the individual horizontal distances between a thread contour and its regression line in
a zoom window (see figure 5.3, right), the endpoints of the regression line are made explicit by
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get_contour_points and with these, the points of the thread contour are projected onto the regres-
sion line using projection_pl. The lines between the points and their projections are created by
gen_contour_polygon_x1d and visualized by the standard visualization operator dev_display.

5.4 Get the Distance between Straight Parallel Contours

Different approaches are available to measure the distance between straight parallel contours. Here, we
introduce approaches that use

* contours obtained by line fitting together with a geometric operation,
* parallel polygon segments together with a geometric operation, or

* the smallest enclosing rectangle.

5.4.0.1 Using contours obtained by line fitting

A third measuring approach realized in the HDevelop program solution_guide\2d_measuring\
measure_screw.hdev measures the distance between the two parallel contours of the regression lines
RegressContour0 and RegressContourl, which were obtained in section 5.3.

Contours (transformed and clipped) Mean distance
between regression

lines:

237.2 pixels

Figure 5.7: Distance between two regression lines.

For this, we compute the distances between the end points of the regression lines using the operator
distance_pp (see section 3.3 on page 26). Before displaying the mean width of the object, we check if
the distance between the two points at the top of the screw correspond to the distance between the points
at the bottom, i.e., we check if the lines are parallel within a certain tolerance. The result of the distance

measurement is displayed in figure 5.7.
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distance_pp (RowBegin[1], ColBegin[1], RowEnd[0], ColEnd[0], Distancel)
distance_pp (RowBegin[0], ColBegin[0], RowEnd[1], ColEnd[1], Distance2)
if (abs(Distancel-Distance2)<1)
disp_message (WindowID, 'Mean distance', 'image', 10, 720, 'black', \
'false')
disp_message (WindowID, 'between regression', 'image', 60, 720, 'black', \
'false')
disp_message (WindowID, 'lines:', 'image', 110, 720, 'black', 'false')
disp_message (WindowID, ((Distancel+Distance2)/2)$'.4' + ' pixels', \
'image', 210, 720, 'black', 'false')
endif

5.4.0.2 Using polygons instead of lines

The HDevelop program solution_guide\2d_measuring\measure_metal_part_extended.hdev
demonstrates a similar approach. As before, a contour is extracted and segmented into linear and cir-
cular contour segments (the segments are stored in the tuple ContoursSplit). In contrast to the ap-
proach described before, instead of fitting lines, the linear segments are approximated by Polygons
using gen_polygons_x1d. From these polygons the approximately parallel lines Parallels can be
explicitly extracted by gen_parallels_x1d.

Distance BC: 63.15 pixels

Distance AD: 61.17 pixels

Orientation AB: 65 degrees

Orientation DC: 65.7 degrees

Figure 5.8: Distance between the endpoints of parallel polygon segments.

To get the end points and orientation of the corresponding line segments, we apply the operator
get_parallels_x1d for each pair of parallel lines. In HDevelop, the number of pairs, needed for
creating the for-loop, is obtained by the operator count_obj, which counts the number of objects of a
tuple containing iconic data. For control data, the operator assign would be used (see HDevelop User’s
Guide, section 7.5.3 on page 276). For a pair of parallel lines we now calculate the distances between the
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opposed end points with the geometric operation distance_pp. The result for the distance measurement
as well as the obtained orientations of the lines are displayed in figure 5.8.

gen_polygons_x1d (ContoursSplit, Polygons, 'ramer', 2)
gen_parallels_xld (Polygons, Parallels, 80, 75, 0.15, 'true')
count_obj (Parallels, NumberParallels)
for i := 1 to NumberParallels by 1
select_obj (Parallels, SelectedParallel, i)
get_parallels_x1ld (SelectedParallel, RowlParallels, CollParallels, \
LengthlParallels, PhilParallels, Row2Parallels, \
Col2Parallels, Length2Parallels, Phi2Parallels)
distance_pp (RowlParallels[0], CollParallels[0], Row2Parallels[1], \
Col2Parallels[1], Distance2)
distance_pp (RowlParallels[1], ColilParallels[1], Row2Parallels[0], \
Col2Parallels[0], Distancel)
endfor

5.4.0.3 Using the smallest enclosing rectangle

If you have a complex shape that is delimited by straight lines that are known to be parallel and you
want to know the distance between them, you can also obtain the width of the object by computing the
smallest enclosing rectangle for it. To do so, you do not even have to extract the individual segments,
but simply extract the region or contour of the object and then apply smallest_rectangle?2 to the
region or smallest_rectangle2_x1d to the contour. Depending on the dimension of your object, the
returned parameter Length1 or Length?2 then represents half of the distance between the parallel lines.
Figure 5.9 shows the smallest enclosing rectangle obtained in the HDevelop program solution_guide\
2d_measuring\measure_metal_part_extended.hdev. Furthermore, for contours that approximate
a rectangle, the fitting of rectangles to contours using fit_rectangle2_contour_xId is suitable (see sec-
tion 5.9 on page 57).

5.5 Get Width of Linear Structures

To get the width of thin linear structures, the operator 1ines_gauss can be used. Be aware that the linear
structures are called lines, but in contrast to the XLD lines obtained by a line fitting (see section 3.2.4
on page 23), they are built by edge pairs, and for each line attributes like the width can be stored and
queried.

Examples showing how to apply the operator are

* examples\hdevelop\Applications\Medicine\angio.dev (see figure 5.10) and

* examples\hdevelop\Filter\Lines\lines_gauss.dev.

The latter is briefly introduced in the Solution Guide I, section 7.3.2 on page 78. For detailed descriptions
of the parameter selection, follow the links to the corresponding sections in the Reference Manual.
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Lenght [ Width of smallest enclosing rectangle:

199.3 { 64.61 pixels

Figure 5.9: Length and width of the smallest enclosing rectangle of a region.

D= 7.55071

D="5.42468

D='b.89766

Figure 5.10: Linear structures obtained by lines_gauss in the HDevelop example angio.dev: (left) the
extracted lines, (right) visualization of the diameters of the selected lines.

Briefly, you can select whether bright or dark lines are detected and adjust parameters for the general line
extraction. Additionally, you can set parameters that control which attributes are stored with the obtained
lines. These attributes can then be queried with the operator get_contour_attrib_x1d. Depending
on the selected parameters in lines_gauss you can query the following parameters: the angle of the
direction perpendicular to the line (’ angle’), the magnitude of the second derivative (’response’), the
line widths to the left or to the right of the line (*width_left’, *width_right’), the asymmetry of a
line point (’asymmetry’), or the contrast of a line point (’ contrast’).
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5.6 Get Lines and Junctions of a Grid

The HDevelop program solution_guide\2d_measuring\measure_grid.hdev inspects a numeric
keypad. In particular, the positions of the junctions of the grid separating the keys are measured.

Figure 5.11: Lines and junction points representing the grid that separates the keys.

The general steps of the program comprise

* the extraction of the region between and around the keys,

the determination of the region’s skeleton and the extraction of the corresponding linear contours,

* the separation of the horizontal and vertical lines,

* the intersection of the horizontal lines with the vertical lines to get the junction points of a regular
grid, and

* the reduction of the point set to those points that represent a real existing junction.
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Additionally, the usability of region processing for the extraction of junction points is discussed.

Step 1:  Get region between and around the keys

mean_image (Image, ImageMean, 7, 7)

dyn_threshold (Image, ImageMean, RegionDynThresh, 4, 'dark')

connection (RegionDynThresh, ConnectedRegions)

select_shape (ConnectedRegions, SelectedRegions, ['max_diameter', \
'contlength']l, 'and', [200, 800], [99999, 99999])

closing_circle (SelectedRegions, RegionClosing, 1.5)

First, the region representing the space between and around the keys is segmented and further processed
via region processing. This includes the coarse segmentation of the image via a dynamic threshold
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(dyn_threshold), the selection of a connected region of a certain size (connection followed by se-
lect_shape), as well as the closing of small gaps by closing_circle. Thisis illustrated in figure 5.12,
a-d.

Step 2:  Get skeleton and the corresponding horizontal and vertical linear contours

skeleton (RegionClosing, Skeleton)

gen_contours_skeleton_x1ld (Skeleton, ContoursSkeleton, 1, 'filter')

segment_contours_xld (ContoursSkeleton, ContoursSplitSkeleton, 'lines', 5, \
2, 1)

select_contours_x1d (ContoursSplitSkeleton, SelectedContours, \
'contour_length', 30, 1000, -0.5, 0.5)

union_collinear_contours_xld (SelectedContours, UnionCollinearContours, 100, \

10, 20, rad(10), 'attr_keep')

Then, the region is reduced to its skeleton, which is then transformed to a contour
by gen_contours_skeleton_x1d. The contour is segmented into individual lines (seg-
ment_contours_x1ld), from which those are selected by select_contours_xld that have a
minimum contour length (see figure 5.12, e-f).  Additionally, collinear lines are merged by
union_collinear_contours_x1d (see figure 5.13, left).

- e

d) e) f)

Figure 5.12: Extraction of region: (a) original image, (b) image processed by mean_image, (c) extracted
region with gaps, (d) region after closing gaps by a morphological operator, (e) skeleton, (f)
selected contour segments.

Now, lines are fitted to each contour by fit_line_contour_x1d and the corresponding line contours
are generated by gen_contour_polygon_xld. For each contour the orientation is checked within a
tolerance of 0.05 rad in both directions and horizontal lines are stored in the tuple LinesHorizontal
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and vertical lines in the tuple LinesVertical. Both are first created by gen_empty_obj and then
successively filled using concat_obj.

count_obj (UnionCollinearContours, NumberContours)
gen_empty_obj (LinesHorizontal)
gen_empty_obj (LinesVertical)
for i := 1 to NumberContours by 1
select_obj (UnionCollinearContours, ObjectSelected, i)
fit_line_contour_x1ld (ObjectSelected, 'tukey', -1, 0, 5, 2, RowBegin, \
ColBegin, RowEnd, ColEnd, Nr, Nc, Dist)
gen_contour_polygon_x1d (Contour, [RowBegin, RowEnd], [ColBegin, \
ColEnd])
Phi := atan2(-Nr,Nc)
if (abs(Phi)<rad(5))
concat_obj (LinesVertical, Contour, LinesVertical)
endif
if (rad(85)<abs(Phi) and abs(Phi)<rad(95))
concat_obj (LinesHorizontal, Contour, LinesHorizontal)
endif
endfor

Step 3:  Get junction points

Now, inside a loop, each horizontal line is intersected (intersection_11) with each vertical line to get
the junction points of the regular grid. This grid is built by lines of infinite length, so that the intersection
leads to junction points also at the large keys (see figure 5.13, right).

RowJunction := []
ColJunction := []
RowRealJunction := []
ColRealJunction := []

count_obj (LinesHorizontal, NumberLH)
count_obj (LinesVertical, NumberLV)
for i := 1 to NumberLH by 1
select_obj (LinesHorizontal, HorizontallLine, i)
get_contour_xld (Horizontalline, RowHorizontal, ColHorizontal)
for j := 1 to NumberLV by 1
select_obj (LinesVertical, VerticalLine, j)
get_contour_x1d (VerticalLine, RowVertical, ColVertical)
intersection_11 (RowHorizontal[0], ColHorizontal[0], \
RowHorizontal[1], ColHorizontall[1], \
RowVertical[0], ColVerticall[O], RowVerticall[1], \
ColVertical[1], Row, Column, IsParallel)
distance_ps (Row, Column, RowHorizontal[0], ColHorizontal[O0], \
RowHorizontal[1], ColHorizontal[1], DistanceH, \
DistanceHMax)
distance_ps (Row, Column, RowVertical[0], ColVertical[O], \
RowVertical[1], ColVertical[1], DistanceV, \
DistanceVMax)
RowJunction := [RowJunction, Row]
ColJunction := [ColJunction, Column]

c
2
£~

o
2

[}
n
8
'—




B-54

Examples for Practical Guidance

Figure 5.13: Get junction points: (left) collinear horizontal and vertical contours obtained by line fitting,
(right) all junctions of the regular grid including junctions that do not represent a real existing
junction between keys.

Step 4: Reduce the point set

if ((DistanceH<=30) and (DistanceV<=30))

RowRealJunction := [RowRealJunction, Row]
ColRealJunction := [ColRealJunction, Column]
endif
endfor
endfor

To get only those points of the grid that represent a real existing junction, for each junction point the
distances to the two line segments used for its creation are computed by distance_ps. If both distances
are less than 30 pixels, the point is assumed to be a real junction point (see figure 5.14, left).

Step 5:  Junction points via region processing

Alternatively, junction points can also be obtained via region processing. Here, we apply junc-
tions_skeleton to the skeleton we obtained in a preceding step. Since the operator returns regions
instead of points, we apply get_region_points to get the center positions of each junction. Note
that in contrast to contour processing these junction positions are not based on a grid obtained by straight
lines but on the region extracted between the keys. Depending on the region, the resulting junction points
may be ambiguous and may not represent junctions of a regular grid (see figure 5.14, right).

junctions_skeleton (Skeleton, EndPoints, JuncPoints)
get_region_points (JuncPoints, RowJunctionRegionProcessing, \
ColumnJunctionRegionProcessing)
gen_cross_contour_xld (CrossCenter, RowJunctionRegionProcessing, \
ColumnJunctionRegionProcessing, 12, 0.785398)
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Result of corresponding

region processing

Figure 5.14: Get junction points: (left) lines fitted into linear contours and the junction points of the grid
separating the keys, (right), skeleton and irregular junction points obtained by region pro-
cessing.

5.7 Get Positions of Corner Points

Corner points are extracted in different ways.  The HDevelop program solution_guide\
2d_measuring\measure_metal_part_extended.hdev extracts the positions of the corners of a
metal plate in an image by two different approaches. The first approach applies a point operator and
the other one determines the corner points by intersecting lines.

Foerstner Points vs. intersection_I_I:

Distance between Foerstner points and

points obtained by intersection_II:

in P1: 1.12 pixels

in P2: 0.212 pixels

Figure 5.15: Fdrstner points (crosses parallel to coordinate axes) versus intersection points (inclined
crosses).

The general steps of the program comprise
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* the determination of corner points via the point operator of Forstner,
* the determination of corner points by the intersection of lines, and

* the comparison of both approaches.

Step 1:  Get Forstner points

points_foerstner (Image, 1, 2, 3, 200, 0.3, 'gauss', 'false', RowJunctions, \
ColJunctions, CoRRJunctions, CoRCJunctions, \
CoCCJunctions, RowArea, ColArea, CoRRArea, CoRCArea, \
CoCCArea)

The first approach is realized by a point operator. Here, the points (row and column coordinates stored
in the tuples RowJunctions and ColJunctions) are extracted by points_foerstner.

Step 2:  Get corner points by line intersection

edges_sub_pix (ImageReduced, Edges, 'lanser2', 0.5, 40, 90)
segment_contours_x1ld (Edges, ContoursSplit, 'lines_circles', 6, 4, 4)
sort_contours_x1d (ContoursSplit, SortedContours, 'upper_left', 'true', \
'column')
count_obj (SortedContours, NumSegments)
for i := 1 to NumSegments by 1
select_obj (SortedContours, SingleSegment, i)
get_contour_global_attrib_x1d (SingleSegment, 'cont_approx', Attrib)
fit_line_contour_xld (SingleSegment, 'tukey', -1, 0, 5, 2, RowBegin, \
ColBegin, RowEnd, ColEnd, Nr, Nc, Dist)
RowsBegin := [RowsBegin, RowBegin]
ColsBegin := [ColsBegin, ColBegin]
RowsEnd := [RowsEnd, RowEnd]
ColsEnd := [ColsEnd, ColEnd]
endfor

The second approach intersects lines to get the positions of the corners. The adjacent lines building
the corners are obtained by line fitting, i.e., edges are extracted using edges_sub_pix, the obtained
contours are segmented by segment_contours_x1d and sorted by sort_contours_x1d, and to each
linear segment a line is fitted via fit_line_contour_x1ld. The returned end points of the lines are
stored in the tuples RowsBegin, ColsBegin, RowsEnd, and ColsEnd

From these end points the intersection points of the lines (RowIntersect*, ColumnIntersectx*) are
calculated via intersection_11.

intersection_11 (RowsBegin[0], ColsBegin[0], RowsEnd[0], ColsEnd[0], \
RowsBegin[1], ColsBegin[1], RowsEnd[1], ColsEnd[1], \
RowIntersectl, ColumnIntersectl, IsParallell)

intersection_11 (RowsBegin[0], ColsBegin[0], RowsEnd[0], ColsEnd[0], \
RowsBegin[2], ColsBegin[2], RowsEnd[2], ColsEnd[2], \
RowIntersect2, ColumnIntersect2, IsParallel2)
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Step 3: Compare the two approaches

distance_pp (RowJunctions[1], ColJunctions[1], RowIntersectl, \
ColumnIntersectl, Distancel)

distance_pp (RowJunctions[0], ColJunctions[0], RowIntersect2, \
ColumnIntersect2, Distance?2)

To compare the results of both approaches, the distances between the points obtained by the line intersec-
tion and their corresponding Forstner points are computed by distance_pp and displayed in figure 5.15.

5.8 Get Angle between Adjacent Lines

With the end points of the adjacent lines obtained in section 5.7 we now can use the geometric operation
angle_11 to get the angle between the adjacent lines and thus check whether both angles are exactly or

only approximately right angled (see figure 5.16).

Angle in P1: 90.4 degrees Angle in P2; 90 degrees

Figure 5.16: Angle between lines: (left) angle in P1, (right) angle in P2.

angle_11 (RowsBegin[0], ColsBegin[0], RowsEnd[0], ColsEnd[0], RowsBegin[1], \
ColsBegin[1], RowsEnd[1], ColsEnd[1], Anglel)

angle_11 (RowsBegin[0], ColsBegin[0], RowsEnd[0], ColsEnd[0], RowsBegin[2], \
ColsBegin[2], RowsEnd[2], ColsEnd[2], Angle2)

5.9 Get Positions, Orientations, and Extents of Rectangles

The HDevelop program solution_guide\2d_measuring\measure_chip.hdev extracts the rectan-
gular shapes of the die and the frame of a chip. The relations between the two positions and orientations

are needed, e.g., for a correct die bonding.

c
2
£~
o
2
[}
(]
8
l—




B-58 Examples for Practical Guidance

ween orientations: 0.33 deg

Figure 5.17: From left to right: selected contours, merged contours of the individual rectangles, results
obtained by rectangle fitting.

The general steps of the program comprise

¢ the creation of an ROI for the die,

« the extraction of the contours of the die,

the fitting of a rectangle to the contours of the die,
¢ the creation of an ROI and the extraction of the contours of the frame,
* the fitting of a rectangle to the contours of the frame, and

* the comparison of the position and orientation of both rectangles.

Step 1:  Create ROI for the die

fast_threshold (Image, Region, 120, 255, 20)

opening_rectanglel (Region, RegionOpening, 4, 4)

connection (RegionOpening, ConnectedRegions)

f£ill_up (ConnectedRegions, RegionFillUp)

select_shape (RegionFillUp, SelectedRegions, ['rectangularity', 'area'l, \
'and', [0.8, 700], [1, 99999])

smallest_rectangle2 (SelectedRegions, Row, Column, Phi, Lengthl, Length2)

gen_rectangle2 (Rectangle, Row, Column, Phi, Lengthl, Length2)

The program starts with region processing. It coarsely determines the region of the die using
fast_threshold. The operator opening_rectanglel suppresses the small wires. After separating
the individual connected parts of the region with connection, we fill up the remaining holes (fi11_up)
and select a region of rectangular shape and a certain size (select_shape). The region is approximated
by its smallest enclosing rectangle (smallest_rectangle2 and gen_rectangle2), which leads to a
pixel-precise approximation for the position, orientation, and extent of the rectangle.

Because we need subpixel precision here, region processing is not sufficient. Thus, the region of the
rectangle is reduced to its slightly enlarged boundary (boundary followed by dilation_rectanglel)
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and the reduced image (obtained by reduce_domain) is used as RO, i.e., it builds the search space for
the following contour processing (see figure 5.18, left).

boundary (Rectangle, RegionBorder, 'inner_filled')
dilation_rectanglel (RegionBorder, RegionDilation, 4, 4)
reduce_domain (Image, RegionDilation, ImageReduced)

Step 2:  Extract contours of the die

edges_sub_pix (ImageReduced, Edges, 'canny', 1.5, 30, 40)
segment_contours_x1ld (Edges, ContoursSplit, 'lines', 5, 2, 2)
select_contours_x1d (ContoursSplit, SelectedContoursl, 'contour_length', 10, \
99999, -0.5, 0.5)
union_adjacent_contours_xld (SelectedContoursl, UnionContoursl, 30, 1, \
'attr_keep')

Inside the ROI, the subpixel-precise edges of the die’s border are extracted by the opera-
tor edges_sub_pix. The edges are segmented into linear contours using the operator seg-
ment_contours_x1d with the parameter Mode set to ’1ines’. The contours having a minimum length
are selected by select_contours_x1d. The contours that belong to the border are now adjacent within
a certain tolerance. To merge the contours that are neighboring within a range of 30 pixels, the operator
union_adjacent_contours_x1d is applied.

Step 3:  Fit rectangle to the contours of the die

fit_rectangle2_contour_xld (UnionContoursl, 'tukey', -1, 0, 0, 3, 2, Rowl, \
Columnl, Phil, Lengthll, Lengthl2, PointOrder1l)

gen_rectangle2_contour_x1d (Rectanglel, Rowl, Columnl, Phil, Lengthil, \
Length12)

The operator fit_rectangle2_contour_x1ld now uses the obtained contour to get the position, orien-
tation, and extent of the best-fitting rectangle of the die. The corresponding rectangle is then created by
gen_rectangle2_contour_xld.

Step 4: Create ROI and extract contours of the frame

threshold_sub_pix (ImageReducedl, Borderl, 70)

A similar procedure is applied for the border of the frame. The extraction of the ROI (see figure 5.18,
right) is slightly different because the appearance of both objects in the image differs. Furthermore, the
operator threshold_sub_pix instead of edges_sub_pix extracts the contours. The ROI in this case
is needed to reduce the number of contours to investigate rather than to reduce the runtime of the contour
extraction.

Step 5:  Fit rectangle to the contours of the frame

Again, the adjacent contours are merged, the parameters of the best-fitting rectangle are obtained for the
merged contour, and the corresponding rectangle is created and displayed.
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Figure 5.18: ROls for the rectangle fitting: (left) ROI for the die, (right) ROI for the frame.

Step 6: Compare the position and orientation of both rectangles

distance_pp (Rowl, Columnl, Row2, Column2, Distance)
DifferenceOrientation := Phil-Phi2

With the parameters of the rectangles for both shapes, the distance between their center positions (dis—
tance_pp) and the difference between their orientations (Phil and Phi2 were obtained automatically
by the rectangle fitting) are calculated. Figure 5.17 shows the obtained contours and results.

An example that fits rectangles to contours and additionally gets the distances of the contour’s points
from the fitted rectangle using the operator dist_rectangle2_contour_points_x1d is examples\
hdevelop\XLD\Features\fit_rectangle2_contour_xld.dev.

5.10 Get Radii of Circles and Circular Arcs

The HDevelop program solution_guide\2d_measuring\measure_circles.hdev extracts the radii
of circular shapes that are punched out of a metal plate. The image of the plate is acquired using a back
light to get a good contrast between fore- and background. Region processing, in particular the extraction
of the smallest enclosing circle for a region, would be possible for some of the shapes (after suppressing
gaps or protrusions with a morphological operator), but for others it is unsuitable since circles have to be
fitted only to parts of their contour (see section 4.2 on page 34, c). Thus, region processing is used only
to create an ROI for the following contour processing.

The general steps of the program comprise

¢ the creation of an ROI,
* the extraction of circular contour segments, and

* the fitting of circles to the circular contour segments.
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Figure 5.19: Circle fitting: black contours overlaid by the white fitted circles and display of their radii.

Step 1:  Create ROI

fast_threshold (Image, Region, 200, 255, 20)

connection (Region, ConnectedRegions)

select_shape (ConnectedRegions, SelectedRegions, 'area', 'and', 70, 50000)
boundary (SelectedRegions, RegionBorder, 'inner_filled')

dilation_circle (RegionBorder, RegionDilation, 3.5)

unionl (RegionDilation, RegionUnion)

reduce_domain (Image, RegionUnion, ImageReduced)
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To extract the bright regions of the circular shapes a fast_threshold is applied. Connected regions
are separated by connection and regions with a minimum size are selected for the further processing
using select_shape (see figure 5.20, left). The regions are restricted to their borders by the operator
boundary. These borders are enlarged a bit by a dilation (dilation_circle). The dilated regions
are merged (union1) so that the image can be reduced to a region that contains all parts needed for the
further tasks (reduce_domain). The reduced image is used as an ROL, i.e., it builds the search space for

the subpixel-precise edge extraction.
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Step 2:  Extract circular contour segments

edges_sub_pix (ImageReduced, Edges, 'canny', 1.5, 10, 40)
segment_contours_x1ld (Edges, ContoursSplit, 'lines_circles', 5, 2, 2)
select_contours_x1d (ContoursSplit, SelectedContours, 'contour_length', 25, \
99999, -0.5, 0.5)
count_obj (SelectedContours, NumberContours)
gen_empty_obj (Circles)
for i := 1 to NumberContours by 1
select_obj (SelectedContours, ObjectSelected, i)
get_contour_global_attrib_x1d (ObjectSelected, 'cont_approx', Attrib)
if (Attrib=1)
concat_obj (Circles, ObjectSelected, Circles)
endif
endfor
union_cocircular_contours_xld (Circles, UnionContours, rad(60), rad(10), \
rad(30), 100, 50, 10, 'true', 1)

The edges obtained by edges_sub_pix are segmented into linear and circular segments by seg-
ment_contours_x1ld. Because more contours exist than needed for the circle extraction, only
the contours having a minimum contour length are selected by select_contours_xld. For
these, it is checked if they are circular, i.e., the value for ’cont_approx’ is queried by
get_contour_global_attrib_x1d and if it is 1 the contour is stored in the tuple Circles. Now,
all circular contours that lie approximately on the same circle (i.e., they are cocircular) are merged by
union_cocircular_contours_x1ld (see figure 5.20, right). These contours are now used for the circle
fitting.

Figure 5.20: Circle fitting: (left) original image overlaid by the extracted regions, (right) circular contours
selected for the circle fitting.
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Step 3:  Fit circles to the circular contour segments

count_obj (UnionContours, NumberCircles)
for i := 1 to NumberCircles by 1
select_obj (UnionContours, ObjectSelected, i)
fit_circle_contour_x1ld (ObjectSelected, 'algebraic', -1, 0, 0, 3, 2, \
Row, Column, Radius, StartPhi, EndPhi, \
PointOrder)
gen_circle_contour_x1ld (ContCircle, Row, Column, Radius, 0, rad(360), \
'positive', 1.5)
dev_display (ContCircle)
endfor

For the circle fitting, the operator fit_circle_contour_x1d is applied to each contour. It returns,
amongst others, the center and radius of the circle that fits best to the contour. The corresponding circle
is generated with the operator gen_circle_contour_x1d, which then can be displayed or processed
further. Figure 5.19 shows the extracted contours overlaid by their best-fitting circles as well as informa-
tion about their radii.

5.11 Get Deviation of a Contour from a Circle

The HDevelop program solution_guide\2d_measuring\measure_pump.hdev shows a second ex-
ample for the extraction of circles in an image. Here, not only the radius of a best-fitting circle must be
found for a contour, but also the deviation of the contour from the circle.

The general steps of the program comprise

¢ the creation of an ROI,
* the extraction of circular contour segments,
* the fitting of circles into the circular contour segments, and

* the calculation of the average distance between a circular contour segment and the corresponding
fitted circle.

Step 1:  Create ROI

fast_threshold (Image, Region, 0, 70, 150)

connection (Region, ConnectedRegions)

select_shape (ConnectedRegions, SelectedRegions, ['outer_radius', \
'anisometry', 'area']l, 'and', [5, 1, 100], [50, 1.8, 999991)

shape_trans (SelectedRegions, RegionTrans, 'outer_circle')

dilation_circle (RegionTrans, RegionDilation, 5.5)

unionl (RegionDilation, RegionUnion)

reduce_domain (Image, RegionUnion, ImageReduced)
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Circle radius and average distance hetween circle and contour: R1: 19.
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R2: 18.4
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Figure 5.21: Circles are fitted into the circular contours and for each circle the radius and the deviation of
the contour from the circle are displayed.

The approach, like others before, starts with the creation of a suitable ROI. To do so, fast_threshold
is applied, the connected regions are separated by connection, shapes with a certain outer radius,
anisometry, and area are selected using select_shape, and the regions are transformed into their outer
circles by shape_trans. These circles are enlarged by dilation_circle, the regions are merged into
a single region by unionl, and the image is reduced to the obtained region (reduce_domain). The
reduced image builds the search space for the contour processing.

Step 2:  Extract circular contour segments

threshold_sub_pix (ImageReduced, Border, 80)

select_shape_x1d (Border, SelectedXLD, ['contlength', 'outer_radius'l, \
'and', [70, 151, [99999, 99999])

segment_contours_x1d (SelectedXLD, ContoursSplit, 'lines_circles', 4, 2, 2)

select_shape_x1d (ContoursSplit, SelectedXLD3, ['outer_radius', \
'contlength'], 'and', [15, 30], [45, 99999])

union_cocircular_contours_xld (SelectedXLD3, UnionContours2, 0.5, 0.1, 0.2, \

2, 10, 10, 'true', 1)

sort_contours_x1d (UnionContours2, SortedContours, 'upper_left', 'true', \

'column')

Contours are created using the operator threshold_sub_pix. To select the relevant contours from the
obtained set of contours, the operator select_shape_x1d is applied, searching for contours of a specific
length and with a certain outer radius. The relevant contours are then segmented into lines and circles
with segment_contours_x1d. From the segments, again contours with a specific contour length and
outer radius are selected. Cocircular contours are merged by union_cocircular_contours_x1d (see
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figure 5.22) and finally the contours are sorted by sort_contours_x1d.

®, o

Figure 5.22: ROI for circle fitting: (left) original image of a pump, (right) ROl and extracted circular con-
tours.

Step 3:  Fit circles to the circular contour segments

count_obj (SortedContours, NumSegments)
for i := 1 to NumSegments by 1
select_obj (SortedContours, SingleSegment, i)
NumCircles := NumCircles + 1
fit_circle_contour_xld (SingleSegment, 'atukey', -1, 2, 0, 5, 2, Row, \
Column, Radius, StartPhi, EndPhi, PointOrder)
gen_circle_contour_xld (ContCircle, Row, Column, Radius, 0, rad(360), \
'positive', 1)

Since the final contours are all circular, the best fitting circle is calculated for each contour by
fit_circle_contour_x1d. If also linear contours were contained in the set of contours, you would
have to extract the circular segments first, like in the example in section 5.10 on page 60. The best fitting
circles are now generated by gen_circle_contour_x1d.

Step 4:  Calculate the deviation of the circular contour segments from the fitted circles

dist_ellipse_contour_xld (SingleSegment, 'algebraic', -1, 0, Row, \
Column, O, Radius, Radius, MinDist, MaxDist, \
AvgDist, SigmaDist)
endfor

To get the deviation of the contour from the generated ellipses (or circles in this case), the operator
dist_ellipse_contour_x1d is applied. Be aware that only the deviation between the fitted circle and
the contour segment used for the fitting is calculated. The quality of the fitting in relation to the real
circle also depends on the coverage of the circle by the contour segment. For the circle with the index
6 in figure 5.21, e.g., less than half of the circle was covered by the contour segment (see figure 5.22,
right). Thus, despite the good result for the deviation between contour segment and fitted circle, the
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result is less satisfying in an optical inspection than for the other circles that have a larger deviation but
a bigger coverage.

5.12 Inspect Ball Grid Array (BGA)

Another application with circular objects is the inspection of a ball grid array (BGA). A BGA con-
sists of very small objects, which have an approximately symmetrical gray value distribution, and for
which the transition area between fore- and background can be rather large compared to the region of
the object. Because the standard region or contour-based approaches work with hard transitions (see
figure 5.23), for symmetric objects with a large transition area it is recommended to extract object fea-
tures with an approach that considers the gray value features instead. Available operators comprise
area_center_gray, which is used to check the gray value volume and center position of each ball, and
elliptic_axis_gray, which returns the length of the axes and the orientation of the ellipse having the
same orientation and aspect ratio as the input region.

hard transition after
region segmentation

255
0
255
smooth transition when
weighting with gray values
0 255
0

Figure 5.23: Weighting with gray values leads to smooth transitions, opposite to the hard transition of a
standard region segmentation.

The HDevelop program solution_guide\2d_measuring\inspect_bga.hdev shows how the balls
of a BGA can be checked for deformations and their correct positions in the grid. The latter is realized
by comparing them with the balls of a reference BGA.

The general steps of the program comprise

* the extraction of the balls of the reference BGA and the determination of their positions,
* the sorting of the balls of the reference BGA,
* the extraction of the balls in a second BGA and their sorting according to the reference BGA, and

* the inspection of the second BGA, as well as a comparison between the positions of both BGAs.
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White cross: ball failed to be segmented Ellipse: center positions deviate

Figure 5.24: Irregularities of a BGA: (left) missing ball marked by a cross, (right) balls with center positions
that deviate from the reference positions marked by ellipses.

Step 1:  Extract balls in the reference BGA and determine their positions

fast_threshold (Image, Region, 95, 255, 3)

connection (Region, ConnectedRegions)

select_shape (ConnectedRegions, SelectedRegions, ['area','anisometry'l, \
'and', [20,1.0], [100,1.71)

dilation_rectanglel (SelectedRegions, RegionDilation, 3, 3)

area_center_gray (RegionDilation, Image, Volume, Row, Column)

The program starts with the extraction of the balls from the reference image via a region processing. Of-
ten, an additional gray value scaling is recommended, which adapts the gray value distribution according
to two thresholds that depend on the fore- and background of the balls. Here, it is not necessary as the
gray value distribution for all balls is rather constant. The obtained regions are slightly enlarged and
inside each region the operator area_center_gray computes the gray value volume, i.e., the sum of
the gray values of all pixels of the region, and the position of the region’s center of gravity.

Step 2:  Sort the balls of the reference BGA

The obtained center positions of the balls (Row, Column) are returned in an arbitrary order, i.e., the index
of a variable does not contain information about the position of the corresponding ball in the grid. To
compare the center positions of corresponding balls in different BGAs, a comparable sequence of the
balls is needed, i.e., we have to spatially sort the balls. In a first step, we determine their positions in
the grid separately for the rows and columns. To do so, we normalize the BGA as follows: We apply
gen_region_points to create a region described by the center points of the balls and use its enclosing
rectangle (obtained by smallest_rectangle2, see figure 5.25, left) to define a transformation matrix.
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gen_region_points (RegionBGACenters, Row, Column)
smallest_rectangle2 (RegionBGACenters, RowBGARect, ColumnBGARect, \
PhiBGARect, LengthlBGARect, Length2BGARect)

BallsPerRow := 14
BallsPerCol := 14
BallDistCol := 2xLength1BGARect/(BallsPerCol-1)
BallDistRow := 2xLength2BGARect/(BallsPerRow-1)

hom_mat2d_identity (HomMat2DIdentity)
hom_mat2d_rotate (HomMat2DIdentity, -PhiBGARect, RowBGARect, ColumnBGARect, \
HomMat2DRotate)
hom_mat2d_translate (HomMat2DRotate, -RowBGARect+Length2BGARect, \
-ColumnBGARect+Length1BGARect, HomMat2DTranslate)
hom_mat2d_scale (HomMat2DTranslate, 1/BallDistRow, 1/BallDistCol, 0, O, \

HomMat2DScale)
affine_trans_point_2d (HomMat2DScale, Row, Column, RowNormalized, \
ColNormalized)
BGARowIndex := round(RowNormalized)
BGAColIndex := round(ColNormalized)

With it, we transform the balls so that the grid becomes horizontal, the center position of the ball in the
upper left corner is placed in the origin of the coordinate system, and the distance between the individual
balls becomes 1. The rounded values for the transformed ball positions then describe the indices of the
ball’s positions separately for the rows and columns of a regular grid. Figure 5.25, right, shows the
normalized grid, which is scaled again for visualization purposes.
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Figure 5.25: Normalization of the grid for the reference BGA: (left) smallest rectangle enclosing the region
that is built by the center points of the balls, (right) transformed and normalized grid (scaled
for visualization purposes).

Instead of separate lists for the rows and columns, we want to obtain a single sorted list of indices, which
is ordered consecutively from left to right and from top to bottom. Therefore, we create a tuple that
has the capacity for all grid points of the BGA (BallMatrix), i.e., its size is defined by the maximum
numbers of balls per row and column. Because the actual balls of the BGA are not placed all over this
grid, we first assign the start value -1 to all instances. Now, with the help of the indices that we have
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obtained separately for the rows and columns of the extracted balls (BGARowIndex, BGAColIndex), we
sort the balls by assigning new values to the corresponding instances of BallMatrix. After the sorting,
the value of BallMatrix with the index of a point coordinate in the sorted grid returns either the index
of the corresponding point coordinate in the unsorted grid (see figure 5.26), or the value -1 if the grid
position is not occupied by a ball.

NumBalls := |Rowl|
BallMatrix := gen_tuple_const(BallsPerRow*BallsPerCol,-1)
for i := 0 to NumBalls-1 by 1
BallMatrix [BGARowIndex [i] *BallsPerCol+BGAColIndex[i]] := i
endfor

Sorting of the indices of the point positions

N e S

0114 0ol1/2 Link from point index of sorted
rid to corresponding point

327 — (3|45 ? ponaing P
index of unsorted grid:

5 8|6 67|8] eg., MatrixBalls[2]=4

unsorted grid sorted grid

Figure 5.26: Sorting of the point indices.

Step 3:  Extract balls in a second BGA and sort them according to the reference

elliptic_axis_gray (RegionDilation, Image, RaCheck, RbCheck, PhiCheck)
AnisometryCheck := RaCheck/RbCheck

Now, a second image is processed, which contains the BGA we want to check for irregularities. Again,
the regions of the balls are extracted and slightly enlarged via a region processing. The operators
area_center_gray and elliptic_axis_gray are applied to get the features of the regions under
consideration of their gray values. The latter operator returns the radii and orientation of the ellipse hav-
ing the same moments as the region. The center points obtained by area_center_gray are transformed
(see figure 5.27) and sorted like the center points of the reference image. Except for the additional ap-
plication of elliptic_axis_gray and an anisometry check, which are both needed to investigate the
balls in a later step, the processing is the same as for the reference BGA.
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Figure 5.27: Transformed and normalized grid of the BGA to be checked (scaled for visualization pur-
poses).

Step 4: Inspect the second BGA and compare it to the reference BGA

j =0
for i := 0 to BallsPerRow*BallsPerCol-1 by 1
if (BallMatrix[i] >= 0 and BallMatrixCheck[i] >= 0)
Rows1[j] := Row[BallMatrix[i]]
Cols1i[j] Column[BallMatrix[i]]
Rows2[j] RowCheck [BallMatrixCheck[i]]
Cols2[j] := ColumnCheck[BallMatrixCheck[i]]
Phi2[j] := PhiCheck[BallMatrixCheck[i]]
Ra2[j] RaCheck [BallMatrixCheck[i]]
Rb2[j] := RbCheck[BallMatrixCheck[i]]
Anisometry2[j] := AnisometryCheck[BallMatrixCheck[i]]
Volume2[j] := VolumeCheck[BallMatrixCheck[i]]
j = j+1
endif
endfor

Then, the BGA of the second image is evaluated further. Until now, we have only links from the point
indices in the sorted grid to the point indices in the unsorted grid. Now, we create tuples that contain
the actual data of the existing balls in the specified order. In particular, tuples for the row and column
coordinates of the balls in the reference BGA (Rows1, Cols1) and in the BGA to be checked (Rows2,
Cols?2), as well as for the ellipse radii (Ra2, Rb2), anisometry values (Anisometry2), and the gray value
volumes (Volume?2) of the second BGA are created. These tuples are reduced sets of data as they contain
only the data for the grid positions that are occupied by balls in both BGAs, i.e., the size of the tuples
is related to the actual number of extracted balls in the second image and not to the number of possible
grid positions.

To compare the center positions of the balls of the second BGA with the center positions of the balls
of the reference BGA, we superimpose both (reduced) sets of positions, i.e., we transform the balls
of the reference BGA so that they have the same position, orientation, and scale as the corresponding
balls of the BGA to be checked. For the superimposition, the operator vector_to_rigid determines
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the affine 2D transformation by the point correspondences between both sets of coordinates. With the
obtained transformation matrix the reduced set of positions for the reference BGA (Rows1, Colsl) is
transformed into RowTrans and ColumnTrans. To check also for missing balls in the second BGA,
we further transform the set of unsorted reference positions originally obtained by area_center_gray
(Row, Column), i.e., the set that still contains all positions of the regular grid, including the positions that
regularly do not contain balls (marked by the value -1 in Bal1Matrix) and the positions of the balls that
are only detected in the reference BGA.

vector_to_rigid (Rowsl, Colsl, Rows2, Cols2, HomMat2D)
affine_trans_point_2d (HomMat2D, Rowsl, Colsl, RowTrans, ColumnTrans)
affine_trans_point_2d (HomMat2D, Row, Column, RowTransFull, ColumnTransFull)

Then, the distance between the sorted points of the BGA to be checked (Rows2, Cols2) and the sorted
and transformed points of the reference BGA (RowTrans, ColumnTrans) is calculated by distance_pp.

distance_pp (Rows2, Cols2, RowTrans, ColumnTrans, Distance)

Now, the complete grid is investigated again. For each position of the regular grid, the existence of
a corresponding ball in both BGAs is checked. If the grid position contains a ball in both sets (both
indices are larger than -1), the sorted and reduced sets of data can be used for the comparison. First,
the distance between the corresponding center positions is queried. If it is larger than 0.05 pixels, the
ellipse for the ball is stored in the tuple Deviation. If it is smaller than 0.05 pixels, further features are
checked, in particular the anisometry, i.e., the deformation of the circle (ellipse for deformed ball stored
in Deformation), and the range of the gray value volume (ellipse for outlier stored in Volume).

j =0
for i := 0 to BallsPerRow*BallsPerCol-1 by 1
if (BallMatrix[i] >= O and BallMatrixCheck[i] >= 0)
gen_ellipse (Ellipse, Rows2[jl, Cols2[jl, Phi2[jl, Ra2[jl, Rb2[j1)
if (Distance[j] > 0.05)
concat_obj (EllipseDeviation, Ellipse, EllipseDeviation)
else
if (Anisometry2[j]l > 1.2)
concat_obj (EllipseDeformation, Ellipse, EllipseDeformation)
else
if (Volume2[j] < 5500 or Volume2[j] > 10000)
concat_obj (EllipseVolume, Ellipse, EllipseVolume)

else
concat_obj (EllipseCorrect, Ellipse, EllipseCorrect)
endif
endif
endif
j o= j+1

If a ball exists in the reference BGA but not in the BGA to be checked, a cross at the ball’s position is
created (gen_cross_contour_x1d) and stored in the tuple Missing. The different results can then be
visualized. In figure 5.24, e.g., the missing balls (left) and the balls with deviating center positions (right)
are displayed by a cross or ellipse, respectively.
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else
if (BallMatrix[i] >= 0)
gen_cross_contour_x1ld (Cross, RowTransFull[BallMatrix[il], \
ColumnTransFull [BallMatrix[i]], 10, \
0.785398)
concat_obj (Missing, Cross, Missing)
endif
endif
endfor

The operators considering the gray value features are more precise than the corresponding operators for
regions or contours. Nevertheless, since their calculation is rather complex, they are only recommended
for very small symmetric objects.

5.13 Extract Contours from Color Images

Some features may only be detected when working with color images instead of gray value images, since
they have the same gray value but a different color.

Figure 5.28: A soccer field: (left) the different parts cannot be distinguished in the gray value image, (right)
the edges separating the different parts are successfully extracted in the color image.

When extracting edges or lines from color images, three operators are available. With
edges_color_sub_pix you can extract subpixel-precise edges directly from your color image. A
pixel-precise approach is provided by edges_color. For thin linear structures like those described
in section 5.5 on page 49, but in a color image, 1ines_color is the suitable operator. It works similar
to the approach described for gray value images but with a more limited number of attributes that can be
stored with the lines. HDevelop examples for the contour extraction using color are:

* examples\hdevelop\Filter\Edges\edges_color_sub_pix.dev for the subpixel-precise
edge extraction using color,

¢ examples\hdevelop\Filter\Edges\edges_color.dev for the pixel-precise edge extraction
using color (see also description in the Solution Guide I, section 6.3.2 on page 68), and
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* examples\hdevelop\Filter\Lines\lines_color.dev for the extraction of thin linear struc-
tures using color (see also the description in the Solution Guide I, section 13.3.4 on page 183),

Figure 5.28 shows some results of the second example in the list. A soccer field contains red and green
parts in the color image. In the gray value image (left) the red and green parts cannot be distinguished.
In the color image (right), the separating edges are successfully extracted using edges_color.

After the extraction of the edges, measurements can be applied as described in the previous sections.
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Chapter 6

Miscellaneous

The previous sections mainly handled the actual measuring approaches that are common for measuring
tasks in machine vision. Several tasks need further processing that is applied in addition to the actual
measuring tools:

* If you need to compare parts of similar objects with each other, section 6.1 proposes an approach
for the unambiguous identification of the corresponding object parts.

* In many applications, the dimensions of the measured objects must be determined in world coor-
dinates, e.g., in um. Section 6.2 shortly shows how to measure in world coordinates. There, the
applied camera calibration additionally compensates perspective distortions in the image. More
detailed information about measuring in world coordinates can be found in the Solution Guide
I-C.

* The application of a simple affine 2D transformation, which is needed for various reasons to trans-
late, rotate, or scale an image, a region, or a contour, is shortly described in section 5.1 on page
39.

* When working with a line scan camera, we recommend to read the Solution Guide II-A, section 6.6
on page 46.

6.1 Identify Corresponding Object Parts

In many applications, similar objects must be measured and the results must be compared to the results
obtained for a reference image or reference data stored in a Computer Aided Design (CAD) model.
In the latter case, you can import ARC/INFO or DXF files via read_contour_xld_arc_info or
read_contour_x1d_dxf, respectively. If you wish to create an image containing the CAD model you
can create an artificial image by gen_image_const and paint the contour of the CAD model into it using
paint_x1d. To identify errors of an object, e.g. a specific drill hole that is missing, the corresponding
parts of the measured object and the reference object must be clearly identified. The HDevelop program
solution_guide\2d_measuring\measure_metal_part_id.hdev measures the drill holes of metal
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parts. The first image is used as reference image. The program detects missing drill holes as well as drill
holes that deviate more than 2 pixels in their center position or radius from the corresponding drill holes
of the part in the reference image.

Deviation (>2 pixels) for center
or radius of circle with index 2
Missing: circle with incex 3

&0, . % (O

Figure 6.1: Compare parts of two similar objects: (left) reference object with indices of the parts, (right)
object to inspect, deviations marked.

The general steps of the program comprise

* the alignment (here, the rotation into a defined orientation) of the object,

* the measurements in the image coordinate system,

* the creation of an object coordinate system,

* the transformation of the measurement results into the object coordinate system,
* the storage of the reference data, and

* the comparison of the results for other images to the reference data.

Step 1:  Extract and rotate contours to get a horizontal object

threshold (Image, Region, 90, 255)
dilation_rectanglel (Region, RegionDilation, 10, 10)
reduce_domain (Image, RegionDilation, ImageReduced)

For each image, an ROI for the following contour processing is created. To do so, the region of the
object is obtained with threshold, the region is enlarged with dilation_rectanglel, and the image
is reduced to this region by reduce_domain. Inside the ROI, threshold_sub_pix is applied to extract
the contours of the metal part’s boundary.

threshold_sub_pix (ImageReduced, Edges, 75)

The metal parts can be arbitrarily positioned and oriented in the image. Thus, we rotate their con-
tours, so that every metal part is horizontal when being inspected. To realize the rotation, for each im-
age the orientation and center position of the object’s region are obtained by orientation_region
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and area_center. These are used to create a transformation matrix (vector_angle_to_rigid)
and the transformation matrix is used for the affine 2D transformation that rotates the contours
(affine_trans_contour_x1d).

orientation_region (Region, OrientationRegion)

area_center (Region, Area, RowCenter, ColumnCenter)

vector_angle_to_rigid (RowCenter, ColumnCenter, OrientationRegion, \
RowCenter, ColumnCenter, O, HomMat2DRotate)

affine_trans_contour_xld (Edges, ContoursAffinTrans, HomMat2DRotate)

Step 2:  Measure

segment_contours_xld (ContoursAffinTrans, ContoursSplit, \
'lines_circles', 6, 4, 4)
sort_contours_x1d (ContoursSplit, SortedContours, 'upper_left', 'true', \
'column')

The rotated contours of each metal part are segmented into lines and circles, which are sorted according
to their spatial position. The sorting of the segments is important to have the circles of the images to
measure and the circles of the reference image in the same sequence. The sorted contours are now used
to find the best-fitting lines and circles for the segments (see also, e.g., section 5.10 on page 60).

for i := 1 to NumberSegments by 1
select_obj (SortedContours, ObjectSelected, i)
get_contour_global_attrib_x1d (ObjectSelected, 'cont_approx', \
Attrib)
if (Attrib=1)
fit_circle_contour_x1ld (ObjectSelected, 'algebraic', -1, 0, 0, \
3, 2, Row, Column, Radius, StartPhi, \
EndPhi, PointOrder)
gen_circle_contour_xld (ContCircle, Row, Column, Radius, \
StartPhi, EndPhi, PointOrder, 1.5)
RowsE := [RowsE, Row]
ColsE := [ColsE, Column]
RadiiE := [RadiiE, Radius]
dev_display (ContCircle)
else
fit_line_contour_x1ld (ObjectSelected, 'tukey', -1, 0, 5, 2, \
RowBegin, ColBegin, RowEnd, ColEnd, Nr, \

Nc, Dist) %

gen_contour_polygon_x1ld (Line, [RowBegin, RowEnd], [ColBegin, \ 2

ColEnd]) =

concat_obj (Lines, Line, Lines) 3

endif s
endfor

The circle data is the actual feature we want to obtain for each image and which we want to compare to
the results of the reference image.
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Step 3:  Create object coordinate system

select_contours_xld (Lines, LinesVertical, 'direction', rad(88), \
rad(92), 0, 0)

count_obj (LinesVertical, NumberLV)

select_contours_xld (Lines, LinesHorizontal, 'direction', rad(-2), \
rad(2), 0, 0)

count_obj (LinesHorizontal, NumberLH)

The lines are now used to create an object coordinate system with the lower left corner of the horizontal
metal part as origin. The axes are built by the vertical line on the left border and the horizontal line at
the lower border of the metal part. To determine the coordinates of the origin in the image coordinate
system, both lines are intersected similar to the approach used in section 5.6 on page 51. To do so, first
all horizontal and vertical lines are separated by selecting the lines with a specific direction.

Whereas the example in section 5.6 on page 51 intersected all vertical lines with all horizontal lines, here
only the two lines needed as coordinate axes for the object coordinate system are intersected. Thus, we
first determine the row and column coordinates of the endpoints belonging to the vertical line with the
lowest column coordinate.

ColVmin := 0

RowHmax := O

for i := 1 to NumberLV by 1
select_obj (LinesVertical, SelectedV, i)
get_contour_x1d (SelectedV, RowV, ColV)

if (i=1)
ColVmin := ColV[0]
RowAl := RowV[O0]
ColAl := ColV[0]
RowA2 := RowV[1]
ColA2 := ColV[1]
else

if (ColV[0]<ColVmin)
ColVmin := ColV[0]

RowAl := RowV[0]
ColAl := ColV[0]
RowA2 := RowV[1]
ColA2 := ColV[1]
endif
endif
endfor

Then, we determine the row and column coordinates of the horizontal line with the highest row coordi-
nate (in the image coordinate system).
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for j := 1 to NumberLH by 1
select_obj (LinesHorizontal, SelectedH, j)
get_contour_x1d (SelectedH, RowH, ColH)
if (RowH[0]>RowHmax)
RowHmax := RowH[O]
RowB1 := RowH[O]

ColB1 := ColH[0]

RowB2 := RowH[1]

ColB2 := ColH[1]
endif

endfor

The intersection is done via the operator intersection_11 and results in the point coordinates RowO
and Col0, i.e., the origin of the object coordinate system.

intersection_11 (RowA1, ColAl, RowA2, ColA2, RowB1, ColBi1, RowB2, ColB2, \
Row0, Col0, IsParallel)

Step 4: Transform results into the object coordinate system

hom_mat2d_identity (HomMat2DIdentityResults)
hom_mat2d_slant (HomMat2DIdentityResults, rad(180), 'x', 0, 0, \
HomMat2DSlantResults)
hom_mat2d_translate (HomMat2DSlantResults, RowO, -ColO, \
HomMat2DTranslateResults)
affine_trans_pixel (HomMat2DTranslateResults, RowsE, ColsE, RowsELocal, \
ColsELocal)

To transform the already obtained center points of the fitted circles from the image coordinate system into
the object coordinate system, we create a transformation matrix. Because the coordinates of the image
coordinate system are seen from left to right and from top to bottom, and we want the local coordinate
system seen from left to right but from bottom to top, we horizontally mirror the coordinate system by
adding a slant of 180° to the transformation matrix using the operator hom_mat2d_slant. Because the
local coordinate system is parallel to the image coordinate system, no rotation is necessary, but we add a
translation by hom_mat2d_translate so that RowO and Col0 describe the new origin. The final affine
2D transformation is now applied to the positions of the circle centers, so that the actual results of the
measurement are available in the local coordinate system. The transformation of the results is done via
affine_trans_pixel.

Step 5:  Store the results for the first image as reference

RowsELocalRef := RowsELocal
ColsELocalRef := ColsELocal
RadiiERef := RadiiE
NumberRowsERef := |RowsELocall|

For the first image, we store the results so that we have them still available as reference when measuring
the metal parts of the other images. The circles of the reference image are shown in figure 6.2.
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Figure 6.2: Circles fitted to the rotated contours of the reference image.

Step 6: Compare the results for other images to the reference image

(1

ID_Deviation :=
ID_Missing := []
NumberRowsE := |RowsE|
if (NumberRowsE=NumberRowsERef)
distance_pp (RowsELocalRef, ColsELocalRef, RowsELocal, \
ColsELocal, DistanceEllipseCenters)
DiffRadius := abs(RadiiE - RadiiERef)
for i := 0 to |DistanceEllipseCenters|-1 by 1
if (DistanceEllipseCenters[i]>2 or DiffRadius[i]>2)
ID_Deviation := [ID_Deviation, (i+1)]
endif
endfor
endif

For the comparison of the reference image with the image to measure, we first check whether the number
of obtained circles is equal. If so, we check for small deviations of the positions or radii between the
corresponding circles. To check the deviation, the distance between the center points of the circles are
determined by distance_pp and the difference between the circle radii is computed. If at least one of
them is bigger than 2 pixels, the deviating circles are marked in the image.

If the number of circles in both images are not equal, the sorted circles are compared with each other as
shown in the following code. In particular, each result of the image to measure is compared to the result
of the reference image having the same index (this is the reason for sorting the segments at the beginning
of the contour processing). If the position and the radius allow us to conclude that the circle is the same
in both images, i.e., the deviation for both is less than 10 pixels, it is checked for deviations that are
larger than 2 pixels. If the deviations of position and radius are larger than 10 pixels, we assume that the
circle is not the same. Then, we compare the same circle of the image to measure with the circle of the
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reference image having the next higher index. This procedure continues until either the corresponding
circle is found or all remaining circles of the reference image were checked. Figure 6.3 shows the result
for one of the images to measure.

if (NumberRowsE<NumberRowsERef)
j :=0
for i := 0 to NumberRowsE-1 by 1
ok :=0
while (ok=0)
distance_pp (RowsELocalRef[j], ColsELocalRef[j], \
RowsELocal[i], ColsELocal[i], Distance)
DiffRadius := abs(RadiiE[i] - RadiiERef[j])
if ((Distance<10) and (DiffRadius<10))
if (Distance>2 or DiffRadius>2)
ID_Deviation := [ID_Deviation, (j+1)]
endif
ok :=1
else
ID_Missing := [ID_Missing, (j+1)]
endif
if (j=NumberRowsERef-1)
ok :=1
endif
j o= j+1
endwhile
endfor
endif

Deviation (>2 pixels) for cirecle with index 2
Missing: circle with index 3

Figure 6.3: Comparison of the circle data to the circle data of a reference image: in image 2, the circle with
index 2 deviates more than 2 pixels in its size or position, the circle with index 3 is missing.
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6.2 Measure in World Coordinates

In many applications, the dimensions of the measured objects must be determined in world coordinates,
e.g., in um. A second reason for measuring in world coordinates is to compensate radial and perspective
distortions. For measuring in world coordinates, a camera calibration must be applied. It results in the
exterior camera parameters, i.e., data describing the relation of the camera to the plane in which the 2D
measurements are realized. With the obtained data, two kinds of transformations can be applied:

* You can either measure the features of interest in the distorted image and afterwards transform
them into the world plane, or

* you use the data to first transform the image and then apply your measurings in the transformed
image.

Which approach to choose depends on the basic tools you use for the measuring. If you obtain your
measurement results by contour processing, it is recommended to first measure and then transform the
resulting points or contours into world coordinates. To do so, after the camera calibration you apply
the operators image_points_to_world_plane or contour_to_world_plane_x1d, respectively. For
detailed information about how to transform image into world coordinates or vice versa we recommend
to read the Solution Guide III-C, section 3.3 on page 57.

If you measure via region processing, the transformation of results can become rather complex, so it is
recommended to first transform, i.e., rectify, the image and then measure in the transformed image. For
detailed information about rectifying images, we recommend to read the Solution Guide III-C, section 3.4
on page 62.

In the following, we briefly show how to apply a camera calibration, rectify an image that has perspective
distortions because of an oblique view, and apply measurements in the rectified image. In particular, the
HDevelop example solution_guide\2d_measuring\measure_perspective_scratch.hdev mea-
sures the lengths of scratches on a planar anodized aluminum surface.

. L=0.4219 cm

‘ e LR

Figure 6.4: Image to measure: (left) original image with perspective distortions, (right) transformed image
and the results of the measurement (L=length).

The general steps of the program comprise
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¢ the calibration of the camera,
¢ the transformation of the image, and

¢ the measurements in the transformed image.

Step 1:  Calibrate the camera

The example starts with the camera calibration (see Solution Guide III-C, section 3.2 on page 40 for
details). For this, multiple images are needed, each containing a calibration plate that is placed in a
different position and orientation. In one of the calibration images, in this case in the first one, the
calibration plate must be placed in the measuring plane, i.e., it must be parallel (with a known distance)
to the anodized aluminum plate we want to investigate.

To calibrate the camera, information about the used calibration plate and initial values for the in-
ternal camera parameters must be known. The information on the used standard calibration plate,
i.e., the positions of the marks inside the calibration plate coordinate system, is stored in the file
’caltab_30mm.descr’. This and other information is added to a so-called calibration data model.

CaltabName := 'caltab_30mm.descr'

StartCamPar := [0.012,0,0.0000055,0.0000055,Width/2,Height/2,Width,Height]
create_calib_data ('calibration_object', 1, 1, CalibDataID)
set_calib_data_cam_param (CalibDataID, O, 'area_scan_division', StartCamPar)
set_calib_data_calib_object (CalibDataID, O, CaltabName)

In the program, the images containing calibration plates are read. For each image in the loop,
find_caltab searches for the region of the calibration plate in the image and find_marks_and_pose
determines the marks, calculates their 2D positions in the image, and estimates the pose of
the calibration plate.  The information is then stored in the calibration data model using
set_calib_data_observ_points.

for i := 1 to NumImages by 1
read_image (Image, 'scratch/scratch_calib_'+i$'02d')
find_caltab (Image, Caltab, CaltabName, 3, 112, 5)
find_marks_and_pose (Image, Caltab, CaltabName, StartCamPar, 128, 10, \
18, 0.9, 15, 100, RCoord, CCoord, StartPose)
set_calib_data_observ_points (CalibDataID, O, O, i, RCoord, CCoord, \
'all', StartPose)
endfor

With the obtained data of the calibration plates, the operator calibrate_cameras determines the inter-
nal and external camera parameters, which are then queried using get_calib_data.

calibrate_cameras (CalibDataID, Error)
get_calib_data (CalibDatalD, 'camera', 0, 'params', CamParam)
get_calib_data (CalibDatalD, 'calib_obj_pose', [0,1], 'pose', PoseCalib)

Step 2:  Transform the image

insert (PoseCalib, PoseCalib[5] -90, 5, PoseCalibRot)
set_origin_pose (PoseCalibRot, -0.04, -0.03, 0.00075, Pose)
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The pose of the measuring plane, i.e., the external camera parameters obtained for the image in which
the calibration plate lies in the measuring plane, is now stored in the variable PoseCalib. Since the
calibration plate was rotated by 90° (the black triangular mark normally has to be placed in the upper left
corner), we add a rotation to the corresponding parameter of the pose using insert. Note that poses can
be defined by different sequences of translations and rotations (see Solution Guide III-C, section 2.1.5
on page 25). If you are not sure about the sequence used for the pose you want to change, you can
also convert the pose to a homogeneous transformation matrix with pose_to_hom_mat3d, explicitly
add a local rotation to the axis you want to change using hom_mat_3d_rotate_local, and convert the
resulting homogeneous transformation matrix back to a pose using hom_mat3d_to_pose.

Additionally, we apply the operator set_origin_pose to the pose to add a translation to the z-
coordinate to compensate for the distance between the calibration pattern and the measuring plane, which
is described by the known thickness of the calibration plate. The translations in x- and y- direction are
applied mainly so that the rectified image optimally fits the displaying window.

From the corrected pose, the operator pose_to_hom_mat3d creates a homogeneous transformation ma-
trix. This is used by gen_image_to_world_plane_map to generate a projection map that describes the
mapping between the image plane and the plane z=0 of a world coordinate system. This map can be used
now to transform the images with the operator map_image so that the measuring plane is rectified with
a scaling described by PixelDist. Here, we transform two images, one containing the calibration plate
that is placed in the measuring plane (see figure 6.5), and the other containing the scratches we want to
investigate (see figure 6.4). The first one is transformed mainly for visualization purposes, whereas the
latter is the actual image we wanted to obtain. This image (ModelImageMapped) is used now for the
actual measurement.

PixelDist := 0.00013
pose_to_hom_mat3d (Pose, HomMat3D)
gen_image_to_world_plane_map (Map, CamParam, Pose, Width, Height, Width, \
Height, PixelDist, 'bilinear')
Imagefiles := ['scratch/scratch_calib_01', 'scratch/scratch_perspective']
for i :=1 to 2 by 1
read_image (Image, Imagefiles[i-1])
map_image (Image, Map, ModelImageMapped)
endfor

Step 3: Measure in the transformed image

fast_threshold (ModelImageMapped, Region, 0, 80, 20)

£ill_up (Region, RegionFillUp)

erosion_rectanglel (RegionFillUp, RegionErosion, 5, 5)

reduce_domain (ModelImageMapped, RegionErosion, ImageReduced)

fast_threshold (ImageReduced, Regionl, 55, 100, 20)

dilation_circle (Regionl, RegionDilationl, 2.0)

erosion_circle (RegionDilationl, RegionErosionl, 1.0)

connection (RegionErosionl, ConnectedRegions)

select_shape (ConnectedRegions, SelectedRegions, ['area', 'ra'l, 'and', [40, \
151, [2000, 10001)

The measurement starts with the extraction of the aluminum plate and the following code searches
for scratches having a minimum size and extent. For this, a classical region processing is applied
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Figure 6.5: Image with the calibration plate in the measuring plane: (left) perspectively distorted image,
(right) image after transformation.

as described in section 3.1 on page 13. In particular, the region of the aluminum plate is extracted
using fast_threshold, fill_up fills the remaining holes in the region, and an erosion (ero-
sion_rectanglel) suppresses the edges of the border for the later extraction of the scratches. Inside
this region, the scratches are extracted by fast_threshold and processed by some morphological op-
erators (dilation_circle and erosion_circle). The obtained region is separated into connected
components by connection and components with a specific size and extent are selected as scratches.

In a loop, the individual scratches are reduced to their medial axis by skeleton. The skeletons are con-
verted into contours by gen_contours_skeleton_x1d and for each contour, the length (length_x1d)
and center position (area_center_points_x1d) are obtained like introduced in section 3.2.5 on page
25. The results are visualized in figure 6.4.

count_obj (SelectedRegions, NumScratches)
for i := 1 to NumScratches by 1
select_obj (SelectedRegions, ObjectSelected, i)
skeleton (ObjectSelected, Skeleton)
gen_contours_skeleton_x1d (Skeleton, Contours, 1, 'filter')
length_x1d (Contours, ContLength)
area_center_points_x1ld (Contours, Area, Row, Column)
endfor
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Index

2D measuring
first example, 39
overview, 7
2D measuring in color image, 72
2D measuring tools, 13
overview, 29
2D measuring with blob analysis, 13
2D measuring with contour processing, 17
2D measuring with geometric operations, 26
2D measuring with template, 75

align image or region for 2D measuring, 39
blob analysis vs. contour processing, 34

combine XLD contours, 21
compute mean of values, 42
compute parallel XLD contours, 48
count objects, 34

create XLLD contours, 18

edge extraction (pixel-precise), 18

edge extraction (subpixel-precise), 19
extract features for blob analysis, 16

extract features of XLD contours, 25

extract subpixel edges without smoothing, 43

fit XD contours to polygons, 48
fit XLD contours to regression line, 45

measure 2D area, 30

measure 2D area with gray-value moments, 66

measure 2D dimensions, 33

measure 2D distance, 33

measure 2D distance between point and con-
tour, 46

measure 2D distance of parallel XLD contours,
47

measure 2D orientation, 31

measure 2D orientation of rectangle, 57

measure 2D orientation with gray-value mo-
ments, 66

measure 2D position, 32

measure 2D position of corner points, 55

measure 2D position of grid junctions, 51

measure 2D position of rectangle, 57

measure 2D position with gray-value moments,
66

measure 2D radius of circle, 60

measure 2D size of rectangle, 57

measure 2D width (pixel-precise), 41

measure 2D width of lines, 49

measure angle between 2D lines, 57

measure angle between 2D objects, 31

measure deviation from straight 2D line, 42

measure deviation of XLD contour from 2D cir-
cle, 63

measuring and comparison 2D, 7

perform fitting of XLD contours, 23
preprocess image, 14

process regions, 15

process XLD contours, 20

rectify image for 2D measuring, 82

segment image(s) for blob analysis, 14
segment XLD contours, 23

simplify XLD contours, 22

subpixel thresholding, 19

suppress XLD contours, 20

transform results of 2D measuring into 3D
(world) coordinates, 82

use region of interest for edge extraction
(subpixel-precise), 43

XLD contour coordinates, 46
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