
Building Vision for BusinessMVTec Software GmbH

Solution Guide II-C
2D Data Codes

Finding and decoding 2D data codes, Version 10.0.4

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without prior written permission of the publisher.

Edition 1 April 2006 (HALCON 7.1.1)
Edition 1a December 2006 (HALCON 7.1.2)
Edition 2 June 2007 (HALCON 8.0)
Edition 2a April 2008 (HALCON 8.0.2)
Edition 3 December 2008 (HALCON 9.0)
Edition 3a March 2010 (HALCON 9.0.2)
Edition 4 October 2010 (HALCON 10.0)

Copyright © 2006-2013 by MVTec Software GmbH, München, Germany MVTec Software GmbH

Protected by the following patents: US 7,062,093, US 7,239,929, US 7,751,625, US 7,953,290, US
7,953,291, US 8,260,059, US 8,379,014. Further patents pending.

Microsoft, Windows, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Win-
dows 7, Microsoft .NET, Visual C++, Visual Basic, and ActiveX are either trademarks or registered
trademarks of Microsoft Corporation.

All other nationally and internationally recognized trademarks and tradenames are hereby recognized.

More information about HALCON can be found at: http://www.halcon.com/

About This Manual

2D data codes are used in various application areas and get more and more important. This Solution
Guide guides you to the handling of 2D data codes using the operators of HALCON.

In section 1 on page 7 we introduce you to 2D data codes in general, including a description of the
different symbol types supported by HALCON, namely PDF417, Data Matrix ECC 200, and QR Code.
A first example in section 2 on page 9 shows the main steps needed to read a standard 2D data code. To
read non-standard 2D data codes as well or to enhance the run time, section 3 on page 11 describes the
different ways to change the 2D data code model, which is used to guide the search process of the 2D
data code reader.

Although the 2D data code reader of HALCON is rather powerful, there are some symbol representations
that cannot be decoded for various reasons. Some problems can be solved by using image preprocessing
methods. Section 4 on page 27 shows a selection of these problems and describes the corresponding
preprocessing steps. A deeper insight into the handling of problems is given in section 5 on page 33.
There, an approach for debugging the search process is provided. This can be used on the one hand to
locate specific defects of symbols that are not decoded, and on the other hand to get information about
successfully decoded symbols, so that the run time can be enhanced by a better model adaptation. Some
problems strictly have to be avoided already during the image acquisition. Besides their introduction, the
requirements and limitations concerning the appearance of the symbols are summarized for the individual
symbol types.

The HDevelop example programs that are presented in this Solution Guide can be found in the specified
subdirectories of the directory %HALCONROOT%.

Contents

1 Introduction to 2D Data Codes 7

2 A First Example 9

3 Model Adaptation 11
3.1 Global Parameter Settings . 12
3.2 Training . 14

3.2.1 Train the Model . 14
3.2.2 Inspect the Changes . 15

3.3 Specific Parameter Settings . 16
3.3.1 Shape and Size of the Symbols . 17
3.3.2 Appearance of the Modules . 18
3.3.3 Model Control Parameters . 22

3.4 Miscellaneous . 23
3.4.1 Speeding up find_data_code_2d . 23
3.4.2 Store the 2D Data Code Model . 24

4 Preprocessing Difficult Images 27
4.1 Slanted Symbol (Perspective Distortion) . 27
4.2 Large Module Gaps . 29
4.3 Noise . 30

5 Problem Handling 33
5.1 Data Access for Debugging . 33

5.1.1 General Information About Data Access . 34
5.1.2 Parameters to Access for Successfully Decoded Symbols 36
5.1.3 Parameters to Access for Symbols that are not Decoded 39

5.2 Selected Problems and Tips to Avoid Them . 44
5.2.1 Geometric Distortions . 45
5.2.2 Radiometric Distortions . 46

5.3 Requirements and Limitations . 46
5.3.1 Main Rules to Follow . 47
5.3.2 Valid Parameter Ranges . 48

6 Check for Print Quality 51
6.1 The ISO/IEC 15416 Standard . 51

6.1.1 Grades . 52
6.1.2 Acquire Raw Data . 57

6.2 The AIM DPM-1-2006 Standard . 57
6.2.1 Acquire Raw Data . 58
6.2.2 How to Apply the AIM DPM-1-2006 Standard 59
6.2.3 How to Adapt the Example Programs To Your Image Acquisition Device 59
6.2.4 Reflectance Calibration . 61
6.2.5 Inspecting Print Quality . 62

Index 65

Introduction to 2D Data Codes C-7

Chapter 1

Introduction to 2D Data Codes

HALCON provides means to read 2D data codes of type Portable Data Format 417 (PDF417), Data
Matrix ECC 200, and QR Code. 2D data codes, which are also called 2D bar codes or 2D symbologies,
are used in various areas. Similar to 1D bar codes, they encode characters and numbers in graphical
symbols that are constructed by dark and light bars or dots that are called modules. 1D bar codes use
black bars and the spaces in between as modules. As the individual bars or spaces have a constant width
along their height, you can read a 1D bar code in a single scanning line along the symbol’s width. In
contrast to 1D bar codes, for the symbols of 2D data codes changes occur along both directions. Thus,
the same information can be encoded in smaller symbols. The actual size of a symbol, i.e., the number
of modules in both directions, mainly depends on the length of the encoded message and the level of the
applied error correction. The latter is needed in order to completely decode a symbol even when it has
small defects, e.g., if some of the modules are not visible. There are different types of 2D data codes.
Two common types are the so-called stacked codes and matrix codes.

Of the stacked codes, HALCON supports the PDF417 (see figure 1.1). Its symbol is built up by sev-
eral 1D bar codes, which are arranged in rows and columns. Each 1D bar code encodes an individual
’codeword’. According to the name of the symbol type, each codeword consists of four dark as well
as four light bars (spaces) and is built up by 17 modules. It always starts with a dark and ends with a
light bar. The number of rows and columns of a PDF417 symbol is variable in a range of 3 to 90 rows
and 1 to 30 columns. Start and stop patterns frame the symbol on the left and right border. The first
and the last columns of codewords are called left and right row indicators. These codewords provide
important information for the decoding, like the number of rows and columns, the error correction level
etc. Around the symbol’s border, a homogeneous frame is placed, which is called quiet zone. For small
symbols, a variant of PDF417 exists, where no right row indicator exists and the stop pattern is reduced
to a one module wide bar. It is called compact or truncated PDF417. HALCON operators can read both
conventional and truncated PDF417.

Matrix codes use graphical patterns. They consist of three components: a so-called finder element or
finder pattern, which is needed to find the symbol and its orientation in an image, the data patterns,
which consist of binary modules grouped relative to the finder pattern, and a quiet zone, similar to the
one needed for PDF417 symbols. Matrix codes supported by HALCON are Data Matrix ECC 200 and
QR Code (see figure 1.2). For both matrix code types, the foreground and background modules typically
are square or rectangular, but also circular foreground modules occur. The modules are ordered in rows

In
tr

od
uc

tio
n

C-8 Introduction to 2D Data Codes

Composition of a PDF417 codeword:

built up by 17 modules

2 columns and 8 rowsStart pattern Stop pattern

4 dark and 4 light bars,

Data encoded in

Left row indicator Right row indicator

Figure 1.1: Stacked code of type PDF417.

and columns. The number of rows and columns define the size of a symbol, which for a QR Code is
directly linked to its version number (the higher the version number, the bigger the symbol). The finder
element of a Data Matrix ECC 200 consists of an L-shape, and alternating dark and light modules on the
opposite borders. The finder element of a QR Code consists of three squares, which are called ’position
detection patterns’.

Figure 1.2: Types of matrix codes (finder patterns are marked in gray): (left) Data Matrix ECC 200 and
(right) QR Code.

Whereas stacked codes can also be read row by row by a 1D bar code reader, matrix codes can only
be decoded by inspecting images, i.e., a camera is needed. The HALCON operators for reading 2D
data codes assume images as the source for matrix codes as well as for stacked codes. A basic goal
of HALCON is that all 2D data code operators are applied as easily as possible. Every 2D data code
operator can be applied to all supported symbol types; only the assigned parameters vary. Additionally,
finding, reading, and decoding of a symbol can be done with a single operator call. The following
chapters show when and how to apply the different 2D data code operators and give suggestions how to
handle common problems, e.g., when facing irregular symbols or images of bad quality.

A First Example C-9

Chapter 2

A First Example

This section shows basic steps for the 2D data code reading. To follow the example actively, start
the HDevelop program solution_guide\2d_data_codes\2d_data_codes_first_example.hdev,
which reads symbols of type ’Data Matrix ECC 200’ in different images; the steps described below
start after the initialization of the application (press Run once to reach this point).

Step 1: Specify the 2D data code model

create_data_code_2d_model ('Data Matrix ECC 200', [], [], DataCodeHandle)

First, the operator create_data_code_2d_model specifies the SymbolType that is to be read. Sup-
ported types are ’PDF417’, ’Data Matrix ECC 200’, and ’QR Code’. Here, ’Data Matrix ECC

200’ is chosen. As a result, the operator returns a handle to access the created 2D data code model.

Step 2: Find, read, and decode the symbol

find_data_code_2d (Image, SymbolXLDs, DataCodeHandle, [], [], \

ResultHandles, DecodedDataStrings)

Now, the images are read and for each image the operator find_data_code_2d searches for symbols
of the specified type and, if found, reads and decodes them. The input to the operator is the image
and the data code handle. If you work with images that contain more than one symbol per image you
additionally must add the general parameter ’stop_after_result_num’ with the number of expected
symbols. In this example, the number of symbols per image is 1, which is the default value. Because no
additional parameters are set in this example, two empty tuples [] are passed in the operator call. The
operator find_data_code_2d returns the XLD contour representing the border of the found symbol, a
result handle for further investigations concerning the search process, as well as a string containing the
encoded message(s). In the program, the string is visualized by the procedure disp_message and the
XLD contour is visualized by the operator dev_display (see figure 2.1).

Fi
rs

tE
xa

m
pl

e

C-10 A First Example

dev_display (Image)

if (|DecodedDataStrings| # 0)

disp_message (WindowHandle, DecodedDataStrings, 'window', 12, 12, \

'black', 'true')
else

disp_message (WindowHandle, 'No data code found!', 'window', 12, 12, \

'red', 'true')
endif

dev_set_color ('yellow')
dev_display (SymbolXLDs)

Figure 2.1: Visualization of the result: surrounding XLD contour of the symbol and decoded string.

If the string exceeds 1024 characters, only 1020 characters followed by ’...’ are displayed. In this case,
the whole encrypted data can be accessed as ASCII code, i.e., as a tuple of numbers representing the
individual characters, by the operator get_data_code_2d_results, which will be discussed in detail
in section 5.1.2 on page 37.

Step 3: Clear the 2D data code model

clear_data_code_2d_model (DataCodeHandle)

The operators create_data_code_2d_model and find_data_code_2d allocate memory. To reset the
2D data code model and explicitly free the model memory, the operator clear_data_code_2d_model
is called.

When running the program, the applied operators assume default values for the parameters used by the
specified 2D data code model. As these default values are chosen according to a certain standard, not all
symbols can be found and decoded. The next chapter describes how the parameters can be adapted to
better suit a specific application.

Model Adaptation C-11

Chapter 3

Model Adaptation

To be able to find a symbol in an image, the operator find_data_code_2d needs a
set of parameters. In our first HDevelop program solution_guide\2d_data_codes\

2d_data_codes_first_example.hdev we did not explicitly set any parameters besides the
SymbolType we were looking for. Thus, for all parameters needed for the chosen type, default values
were used. These work for symbols fulfilling the following requirements:

• The code must be printed dark on light,

• the contrast value must be bigger than 30,

• the sizes of symbol and modules are in a certain range (which depends on the selected symbol
type),

• there is no or only a small gap between neighboring modules of matrix codes (for PDF417 no gap
is allowed),

• for QR Codes, additionally all three position detection patterns must be visible.

In many cases, you face symbols that do not fulfill all the requirements and therefore are not found.
In this case, and also if you want to enhance the run time of your application, you have to modify the
parameters in order to adapt he 2D data code model to your specific set of images. HALCON provides
three different methods to modify the parameters. They are described in detail in the following sections.
Additionally, tips concerning the run time and the storing of the 2D data code model are given. In
particular, the next sections show how to

• adjust the model to read a wider range of symbols (see section 3.1),

• train the model automatically with a set of representative images (see section 3.2),

• optimize the model by setting specific parameters manually (see section 3.3),

• enhance the run time and save the modified model into a file (see section 3.4).

M
od

el
A

da
pt

at
io

n

C-12 Model Adaptation

3.1 Global Parameter Settings

There are three predefined sets of parameters for the 2D data code model. The first one is used in the
already mentioned standard mode, which is chosen by default when no other parameter settings are
applied. It uses a restricted range of values for each parameter, is rather fast, and works fine for many,
but not all, 2D data codes. The second one is used in the enhanced mode. There, a large range of values
common for each parameter is checked. Therefore, it is not as fast as the standard mode, but now almost
all readable symbols can be read. In particular, using this mode

• the symbols may also appear light on dark,

• the contrast can be lower (≥10),

• the size of the modules can be smaller,

• a bigger gap between neighboring modules is allowed for matrix codes,

• for Data Matrix ECC 200 the symbol may be slanted up to 0.5235 (30 degrees)

• and the size of the individual modules may vary in a specific range,

• for a QR Code only two position detection patterns must be visible.

The third mode is the maximum recognition mode. There, additionally to the enhancements of the
enhanced mode, the size of the modules may be smaller and for Data Matrix ECC 200 the finder pattern
may be distorted or even missing. But note that this mode should be used only in very rare cases as it is
even slower and needs significantly more memory space than the enhanced mode. Additionally, it should
be used only with additional parameter adjustments, especially concerning the size of the symbol. In the
following, the focus is on the standard mode and the enhanced mode.

All modes can be set using the operator set_data_code_2d_param, although for the standard mode this
is only necessary to reset a 2D data code model after using another 2D data code model. The HDevelop
program solution_guide\2d_data_codes\2d_data_codes_global_settings.hdev is similar to
the first example, but now you can switch between standard and enhanced mode by (un)commenting the
corresponding lines.

enhanced := 1

* enhanced := 0

if (enhanced=1)

set_data_code_2d_param (DataCodeHandle, 'default_parameters', \

'enhanced_recognition')
else

set_data_code_2d_param (DataCodeHandle, 'default_parameters', \

'standard_recognition')
endif

Now, when running the program in enhanced mode, the symbols that were not found in standard mode
are correctly decoded. Switching from standard mode to enhanced mode is the easiest way to find sym-
bols that do not fulfill the requirements of the standard mode. However, because for each parameter

3.1 Global Parameter Settings C-13

more alternatives have to be checked the time needed for the search process increases, especially when
no code is found at all. The following code lines are used to measure the time needed to run the op-
erator find_data_code_2d in standard mode and in enhanced mode. Thus, you can compare the run
time needed for reading with both global parameter sets. The result is displayed by a procedure called
write_message. For example, in figure 3.1 the run time needed in enhanced mode is approximately
twice the time needed in standard mode.

dev_update_var ('off')
count_seconds (T1)

find_data_code_2d (Image, SymbolXLDs, DataCodeHandle, [], [], \

ResultHandles, DecodedDataStrings)

count_seconds (T2)

dev_update_var ('on')
disp_message (WindowHandle, 'Time = ' + (1000 * (T2-T1))$'.1f' + 'ms', \

'window', 30, -1, 'black', 'true')

Figure 3.1: Run time required on an Intel Pentium 4 platform (2.4 GHz CPU): 13.6ms in standard mode
and 26.5ms in enhanced mode.

To decrease the run time, you have to adapt the parameters to your specific images. Thus, it is strongly !
recommended to use the standard mode and additionally adjust the parameters either by applying
an automatic training (see next section) or by setting specific parameters manually (see section 3.3).
But note that if your symbols cannot be decoded in enhanced mode, apart from a few exceptions a
further adaptation of the model will not work either. In such a case, you should enhance the quality of
your images. This can be done either during the image acquisition (pay attention, e.g., to the lighting
conditions, see section 5.2 on page 44), which is recommended, or by a preprocessing (see section 4 on
page 27).

M
od

el
A

da
pt

at
io

n

C-14 Model Adaptation

3.2 Training

If you have a set of symbols you want to find, read, and decode, in most cases the individual symbols have
similar attributes. This similarity can be used to train your 2D data code model, i.e., you use a subset
of your symbols to automatically obtain an individual set of parameters suited best for your specific
application. After the training, you use this parameter set to find the symbols in your remaining images.
By this means, you can find the symbols also if they do not fulfill the requirements of the standard mode.
But opposite to using the enhanced mode or even the maximum recognition mode, in most cases more
restricted parameter values are checked and therefore the search process becomes faster.

3.2.1 Train the Model

In the HDevelop program solution_guide\2d_data_codes\2d_data_codes_training.hdev, the
2D data code model created by create_data_code_2d_model is trained with two different images.
For training, the operator find_data_code_2d, i.e., the same operator as for reading a 2D data code, is
applied. This time, the additional parameter ’train’ is assigned. Its value determines the group of pa-
rameters that will be affected by the training. Here, we choose ’all’, i.e., all available model parameters
are trained. If you want to train only specific groups like ’symbol_size’, ’module_size’, or ’con-
trast’, you can combine them using tuples. Inside a tuple, you can also choose the value ’all’ and ex-
clude specific groups from the training by using their name with a preceding ’~’. A complete list of valid
values for the parameter ’train’ is provided in the description of the operator find_data_code_2d
in the Reference Manual. If you work with images that contain more than one symbol, you can use
all symbols for training by setting the additional parameter ’stop_after_result_num’ to the correct
number of expected symbols. If you want to use only specific symbols, you can reduce the domain to
a region of interest (ROI) containing only the specific symbols. For a short introduction to ROIs see
section 3.4.1. Extensive descriptions can be found in the Solution Guide I, chapter 3 on page 19.

The operator find_data_code_2d is applied to each training image individually. The training of the
first image restricts the model to the parameter values needed to find, read, and decode the symbol of
that specific image. All following training images are used to extend the restricted model again, so that
the resulting model suits the whole set of images. If all symbols have the same size, no gaps between the
modules, foreground and background modules of the same size, no distinct texture in the background,
and a similar contrast, one image is sufficient for the training. But for most applications, several training
images are recommended. For a satisfying training result, you should use your most different images.
Here, we choose two images with different contrast values (see figure 3.2).

create_data_code_2d_model ('ECC200', [], [], DataCodeHandle)

* -> dark image

read_image (Image, 'datacode/ecc200/ecc200_cpu_007')
find_data_code_2d (Image, SymbolXLDs, DataCodeHandle, 'train', 'all', \

ResultHandles, DecodedDataStrings)

* -> light image

read_image (Image, 'datacode/ecc200/ecc200_cpu_008')
find_data_code_2d (Image, SymbolXLDs, DataCodeHandle, 'train', 'all', \

ResultHandles, DecodedDataStrings)

The training leads to a new 2D data code model, which is now used to find, read, and decode the symbols
in the remaining images. To do this, the operator find_data_code_2d is applied again, this time

3.2 Training C-15

Figure 3.2: Images with different contrast values for training the 2D data code model.

without the parameter ’train’. At the end of the program the operator clear_data_code_2d_model
is called to reset the model and free the allocated memory.

for i := 7 to 16 by 1

read_image (Image, 'datacode/ecc200/ecc200_cpu_0' + (round(i)$'.2'))
find_data_code_2d (Image, SymbolXLDs, DataCodeHandle, [], [], \

ResultHandles, DecodedDataStrings)

endfor

clear_data_code_2d_model (DataCodeHandle)

3.2.2 Inspect the Changes

In the program solution_guide\2d_data_codes\2d_data_codes_training.hdev, the training is
framed by additional code lines, which are not necessary for the training or the following reading of
the symbols, but help to understand how the training changes the 2D data code model. Before the
training, the operator query_data_code_2d_params gets a list of parameters valid for symbols of the
type specified in the 2D data code handle. In this case all model parameters that can be set for symbols
of type ’Data Matrix ECC 200’ are queried. The current values of these parameters are obtained by
the operator get_data_code_2d_param.

query_data_code_2d_params (DataCodeHandle, 'get_model_params', \

GenParamNames)

get_data_code_2d_param (DataCodeHandle, GenParamNames, ModelBeforeTraining)

After the training, the parameter values are checked again and the changes between the untrained and the
trained model, stored in the variable ’ModelAdaptation’, are displayed (see figure 3.3).

M
od

el
A

da
pt

at
io

n

C-16 Model Adaptation

get_data_code_2d_param (DataCodeHandle, GenParamNames, ModelAfterTraining)

ModelAdaptation := GenParamNames + ': ' + ModelBeforeTraining + ' -> ' \

+ ModelAfterTraining

dev_inspect_ctrl (ModelAdaptation)

Figure 3.3: Displaying changes of parameter values.

In some cases, e.g., when you want to read additional symbols that are not similar to the symbols used
for the training, you have to adapt selected parameters manually. The next section shows how to apply
individual modifications and goes deeper into specific groups of parameters available for the 2D data
code operators provided by HALCON.

3.3 Specific Parameter Settings

The third and most complex way to modify a 2D data code model is to change spe-
cific parameters manually. The HDevelop program solution_guide\2d_data_codes\

2d_data_codes_manual_settings.hdev shows how to modify parameters and introduces
several operators that provide a deeper insight into a specific 2D data code model. The operator
query_data_code_2d_params, as already mentioned in section 3.2.2, queries lists of parameters valid
for a specific symbol type. Here, again the list of the available model parameters GenParamNames is
queried (for further lists see section 5.1.1 on page 34). Their current values, in this case the default
values of the standard mode, are obtained using the operator get_data_code_2d_param.

query_data_code_2d_params (DataCodeHandle, 'get_model_params', \

GenParamNames)

get_data_code_2d_param (DataCodeHandle, GenParamNames, GenParamValues)

The modification of a model can be done either within the operator create_data_code_2d_model or
by the operator set_data_code_2d_param, as already introduced in section 3.1. The latter operator

3.3 Specific Parameter Settings C-17

can be called several times and therefore is used if several tuples of parameters that cannot be combined
in the same operator call have to be modified. Instead of setting all parameters at once by specifying a
global parameter set, we now modify the individual parameters separately. The following sections go
deeper into the specific groups of model parameters, particularly concerning

• the shape and size of the symbols (see section 3.3.1),

• the appearance of the modules, e.g., their contrast or size (see section 3.3.2),

• the general behavior of the 2D data code model, i.e., the strictness of the symbol search and the
storing of intermediate results (see section 3.3.3).

For the first two groups a concise overview to the value ranges specific to each individual symbol type is
provided in section 5.3.2 on page 48. The complete list of parameter names is provided in the description
of the operator set_data_code_2d_param in the Reference Manual.

3.3.1 Shape and Size of the Symbols

One group of parameters used for a 2D data code model is related to the size, e.g., the number of rows
and columns, but also the shape or type of a symbol.

3.3.1.1 Symbol Shape (only Data Matrix ECC 200)

For Data Matrix ECC 200, the parameter ’symbol_shape’ specifies the shape of the symbol. If it is set
to ’rectangle’, the number of rows and columns differs. If it is set to ’square’, the number of rows
and columns is equal. If the value ’any’ is passed, both shapes are searched for. Since HALCON 7.1.1,
the parameter ’symbol_shape’ still can be queried but now the search algorithm is the same for both
shapes. Thus, for the symbol search it is of no importance for the parameter settings anymore.

3.3.1.2 Symbol Size

Parameters related to the symbol size set the minimum and maximum number of rows and columns al-
lowed for a searched symbol. For matrix codes (Data Matrix ECC 200 and QR Code), rows and columns
correspond to modules, whereas for the stacked code (PDF417), they correspond to codewords (exclud-
ing the codewords of the start and stop patterns as well as those of the left and right row indicators). QR
Codes are always square and therefore have the same number for rows and columns. For them, instead
of setting the number explicitly, it can also be set implicitly by specifying the version number. For Data
Matrix ECC 200 and PDF417 the number of rows and columns may differ.

In the example program, the shape and size of the symbol are the first attributes to be modified. The
variable window shows the default values of the parameters queried by get_data_code_2d_param

before applying the modification. By default, the Data Matrix ECC 200 symbol may have any shape
and its size can lie between 8 to 144 rows and 10 to 144 columns (see figure 3.4). The parameter
’symbol_size’ assumes a square symbol and therefore expects a single value for the number of rows
and columns. So, by setting it to 18, we speed up the search process by restricting the model to square
shaped symbols with 18 rows and 18 columns.

M
od

el
A

da
pt

at
io

n

C-18 Model Adaptation

set_data_code_2d_param (DataCodeHandle, 'symbol_size', 18)

24x24

18x18

12x12

Available range for the symbol size of Data Matrix ECC 200: 10x10 − 144x144 (square), 8x18 − 16x48 (rectangular)

Figure 3.4: Examples for symbol sizes of Data Matrix ECC 200.

3.3.1.3 Model Type (only QR Code)

Two types of QR Code are differentiated: the old Model 1 and the new Model 2 (see figure 3.5). For
both model types the smallest symbol consists of 21 rows and columns and is specified as Version 1. The
largest symbol consists of 73 rows and columns (Version 14) for Model 1 and 177 rows and columns
(Version 40) for Model 2. In addition to the position detection patterns, symbols of Version 2 or larger
contain extension patterns for Model 1 and alignment patterns for Model 2. When working with QR
Codes, the model should be restricted to the correct model by setting ’model_type’ to 1 or 2. If the
parameter is set to ’any’, both types are searched for.

Extension Patterns (except Version 1) Alignment Pattern (except Version 1)

21x21 − 73x73 (Version 1−14)

QR Code: Model 1 QR Code: Model 2

Fourth Corner is Fixed

21x21 − 177x177 (Version 1−40)

Figure 3.5: QR Codes: (left) Model 1, (right) Model 2.

3.3.2 Appearance of the Modules

The modules of 2D data code symbols can differ significantly in their general appearance. In the pro-
gram, the settings for some of the main attributes are modified.

3.3 Specific Parameter Settings C-19

3.3.2.1 Polarity

The parameter ’polarity’ determines if the foreground modules are darker or brighter than the back-
ground (see figure 3.6) or if both polarities are checked. By default, the value ’dark_on_light’ is set.
If it is set to ’any’, both polarities are checked. In the program we change it to ’light_on_dark’ to
adapt it to our specific symbols.

set_data_code_2d_param (DataCodeHandle, 'polarity', 'light_on_dark')

Figure 3.6: Symbols of different polarity: (left) dark on light and (right) light on dark.

3.3.2.2 Mirrored

Especially when reading symbols on transparent surfaces, it may occur that the symbol’s representation
is mirrored (see figure 3.7). By default, the parameter ’mirrored’ is set to ’any’, i.e., mirrored and
non-mirrored symbols are searched for. If you have only mirrored symbols you can restrict the search by
setting the parameter to ’yes’. Here, all of our symbols are not mirrored, so we restrict the search by
setting the parameter to ’no’.

set_data_code_2d_param (DataCodeHandle, 'mirrored', 'no')

Figure 3.7: Alignment of rows and columns: (left) non-mirrored and (right) mirrored symbol.

M
od

el
A

da
pt

at
io

n

C-20 Model Adaptation

Minimum Contrast

The contrast corresponds to the difference between the gray values of the foreground and the background
of a symbol, but also depends on the gradient of the edges. For blurred images, the contrast must be lower
than the gray value difference. In standard mode, the minimum contrast is set to 30. Here, the contrast in
some of our images is rather low. Therefore, we set the parameter ’contrast_min’ to the default value
of the enhanced mode, i.e., a value of 10. See figure 3.8 for symbols of different contrast.

set_data_code_2d_param (DataCodeHandle, 'contrast_min', 10)

Figure 3.8: Symbols of different contrast: (left) 10 and (right) 34.

3.3.2.3 Module Size

Parameters related to the module size restrict the size of a module in pixels to speed up the search
process. This is useful if the modules of all symbols are of similar size. For both matrix codes, the
size is described by the width and height of a module, whereas for PDF417 codes, it is described by the
module width and the module aspect ratio, which is the module height divided by the module width (see
figure 3.9). The default values for the different ranges depend on the chosen symbol type. For symbols
of type ’Data Matrix ECC 200’, the default range in standard mode is 6 to 20 pixels. Because we
have rather small modules in our images, we restrict the range to 4 to 7 pixels.

set_data_code_2d_param (DataCodeHandle, ['module_size_min', \

'module_size_max'], [4,7])

Note that for modules that are smaller than two pixels, i.e., if ’module_size_min’ is set to 1, the
parameter ’small_modules_robustness’ must be set to ’high’ to enable a successful reading. But
then, the run time and the needed memory increases significantly.

3.3.2.4 Module Gap (only Matrix Codes)

In contrast to PDF417 codes, the modules of a matrix code are not necessarily connected. If a gap
between the modules exists, you can specify the range of its size for both x- and y-direction, ’small’
(≤ 10% of the module size) or ’big’ (≤ 50% of the module size). In standard mode no or only a small

3.3 Specific Parameter Settings C-21

Module Aspect =
Module Height

Module Width

Module Height

Module Width

Figure 3.9: Module aspect ratio for PDF417.

gap is allowed. In the example program, we have no gaps in all directions of our symbols, so we restrict
the parameter ’module_gap’ to ’no’. Figure 3.10 illustrates the different gap sizes.

set_data_code_2d_param (DataCodeHandle, 'module_gap', 'no')

a) b) c)

Figure 3.10: Size of module gaps: a) no gaps, b) small gaps, c) big gaps.

3.3.2.5 Maximum Slant (only Data Matrix ECC 200)

For Data Matrix ECC 200, the L-shaped finder pattern is assumed to be right-angled, but a certain slant
of the symbol can be coped with (see figure 3.11). In standard mode the maximum slant angle is 0.1745
(10 degrees) and in enhanced mode the angle can be up to 0.5235 (30 degrees). Here, we keep the default
value of the standard mode.

3.3.2.6 Module Grid (only Data Matrix ECC 200)

The parameter ’module_grid’ determines which algorithm is used for the calculation of the module
positions of a Data Matrix ECC 200 symbol. If it is set to ’fixed’, the modules of the symbol have to be
arranged in a regular grid with similar distance between the modules. If it is set to ’variable’, the grid
is aligned to the alternating side of the finder pattern and the size of the modules may vary in a specific
range, in particular they now may deviate up to a modules size from the regular grid. With ’any’, both
approaches are tested one after the other. Note that ’module_grid’ is set to ’fixed’ automatically

M
od

el
A

da
pt

at
io

n

C-22 Model Adaptation

slant_max

Figure 3.11: Slant angle.

for the case that the parameter ’finder_pattern_tolerance’ is set to ’high’, which is needed for
symbols with distorted or even missing finder patterns, and which is set automatically when selecting the
predefined parameter set ’maximum_recognition’ for ECC 200 symbols (see section 3.1 on page 12).

3.3.2.7 Number of Position Detection Patterns (only QR Code)

When working with QR Codes, you can set the parameter ’position_pattern_min’ for the number
of position detection patterns that are at least required to be present to 3 or 2. 3 is the default value of the
standard mode and means that all position detection patterns have to be visible. 2 is used in enhanced
mode. There, one of the patterns may be missing.

3.3.3 Model Control Parameters

Besides the shape, size, and appearance of the symbol, you can specify the parameters ’persistence’
and ’strict_model’, which control the general behavior of a 2D data code model.

3.3.3.1 Persistence

The parameter ’persistence’ determines how intermediate results, obtained while searching for sym-
bols by the operator find_data_code_2d, are stored in the 2D data code model. By default, they are
stored only temporarily (’persistence’ set to 0) in order to reduce the allocated memory. Setting the
parameter ’persistence’ to 1, the results are stored persistently. Due to the high memory require-
ments, we recommend to do this only if some of the intermediate results are to be visualized or used for
debugging purposes, e.g., when a symbol can not be read. Further information about debugging is given
in section 5.1 on page 33.

3.3.3.2 Strictness

Sometimes, symbols can be read but nevertheless do not fit the model restrictions on the size of the
symbols. The parameter ’strict_model’ controls if the operator find_data_code_2d rejects such
symbols or returns them as a result independent of their size and the size specified in the model. For the

3.4 Miscellaneous C-23

first case, which is the default, the parameter is set to ’yes’. This is reasonable if only symbols of a
certain size are to be found and other symbols, which may be contained in the image as well, should be
ignored. If you set the parameter ’strict_model’ to ’no’, it may occur that also symbols that do not
strictly fulfill the restrictions are found.

3.4 Miscellaneous

3.4.1 Speeding up find_data_code_2d

You can speed up the run time of the operator find_data_code_2d in two ways. One way is to restrict
the search space, the other way is to restrict the value ranges of the parameters used by the 2D data code
model. In the following, both approaches are described in more detail.

3.4.1.1 Region of Interest

The standard HALCON approach to speed up the processing is to restrict the search space. For this, you
define a region of interest (ROI) where the symbol is searched in. If, e.g., all of your images have the
symbol placed in the upper left corner, you define a region that covers the upper left corner in a way
that it contains the symbols in all images. An ROI can be created, e.g., by generating a rectangle with
the operator gen_rectangle1. After reading an image, you reduce the image domain to this specific
rectangular region using the operator reduce_domain. Instead of the original image you then use the
reduced one in the operator find_data_code_2d. Further information about ROIs can be found in the
Solution Guide I, chapter 3 on page 19.

3.4.1.2 Restricted Model

In section 3.1 on page 12 it was already mentioned that adjusting the model parameters significantly
affects the run time of the operator find_data_code_2d. So, the second way to speed it up is to restrict
all parameters to the minimum range of values needed for your specific symbol representations. To
understand the importance of restricting the ranges of values for specific parameters, we have a closer
look at the functionality of the symbol search.

The search takes place in several passes, starting at the highest pyramid level, i.e., the level where sym-
bols with the maximum module size are still visible. The minimum module size determines the lowest
pyramid level to investigate (see figure 3.12). Reducing the range of values for the module size, we
reduce the number of passes needed for the symbol search and thus enhance the run time.

In each pyramid level specific parameters are checked. If, e.g., the ’polarity’ is set to ’any’, in a
first pass ’dark_on_light’ symbols are searched for. If none are found, a second pass searches for
’light_on_dark’ symbols. Therefore, restricting the polarity significantly increases the speed.

Each pass consists of two phases, the search phase and the evaluation phase. The search phase is used to
look for finder patterns and generate symbol candidates for every detected finder pattern. The evaluation
phase is used to investigate the candidates in a lower pyramid level and, if possible, to read them. The
operator find_data_code_2d terminates when the required number of symbols was successfully de-
coded, or when the last pass was performed. This explains why the symbol search is rather fast when the

M
od

el
A

da
pt

at
io

n

C-24 Model Adaptation

Figure 3.12: Pyramid levels.

right parameter values are checked first and takes much longer when a wide range of parameter values
has to be checked, but the requested number of symbols is not found.

In summary, if run time matters to your application, you should pay special attention to the model
parameters for the following attributes:

• polarity,

• minimum module size,

• number of symbol rows (for PDF417, especially for strongly cluttered or textured images),

• module gaps (for matrix codes with very small modules),

• the minimum number of position detection patterns (for QR codes).

If these parameters are not set correctly or with a range that is unnecessarily wide, the search process
slows down, especially when the requested number of symbols cannot be found. The actual values
of the found symbols can be queried with the operator get_data_code_2d_results as described in
section 5.1.2 on page 36.

3.4.2 Store the 2D Data Code Model

After changing the parameter setting by an automatic training or by a manual parameter setting, the new
model can be stored in a file using the operator write_data_code_2d_model. The HDevelop pro-
gram solution_guide\2d_data_codes\write_2d_data_code_model.hdev shows the main steps
for storing a trained 2D data code model. First, like in the previous example programs, a 2D data code
handle for symbols of the type ’Data Matrix ECC 200’ is created. Then, the model is trained by
applying the operator find_data_code_2d to selected images using the parameter ’train’. This step
changes the 2D data code model, which then is stored into the default file ’2d_data_code_model.dcm’

3.4 Miscellaneous C-25

using the operator write_data_code_2d_model. Finally, the model is deleted to free the allocated
memory.

create_data_code_2d_model ('ECC200', [], [], DataCodeHandle)

find_data_code_2d (Image, SymbolXLDs, DataCodeHandle, 'train', 'all', \

ResultHandles, DecodedDataStrings)

write_data_code_2d_model (DataCodeHandle, '2d_data_code_model.dcm')
clear_data_code_2d_model (DataCodeHandle)

Using the saved file, you can restore the saved model in a later session. In the HDevelop
program solution_guide\2d_data_codes\read_2d_data_code_model.hdev, instead of call-
ing the operator create_data_code_2d_model at the beginning of the program, the operator
read_data_code_2d_model is used to create a 2D data code handle, which loads the parameter settings
described in the file ’2d_data_code_model.dcm’.

read_data_code_2d_model ('2d_data_code_model.dcm', DataCodeHandle)

for i := 7 to 16 by 1

read_image (Image, 'datacode/ecc200/ecc200_cpu_0' + (round(i)$'.2'))
find_data_code_2d (Image, SymbolXLDs, DataCodeHandle, [], [], \

ResultHandles, DecodedDataStrings)

endfor

clear_data_code_2d_model (DataCodeHandle) M
od

el
A

da
pt

at
io

n

C-26 Model Adaptation

Preprocessing Difficult Images C-27

Chapter 4

Preprocessing Difficult Images

The different methods for changing the model parameters follow two complementary goals. The global
parameter settings of the enhanced mode extend the ranges for the parameter values of the 2D data code
model so that almost any symbol can be read. An automatic training or a manual parameter setting on the
other hand restricts the ranges to enhance the run time for the images of a specific application. Therefore,
if a symbol cannot be read in enhanced mode it is most likely not readable with other parameter settings
as well (the few exceptional parameters that may be out of the range specified for the enhanced mode
are listed in section 5.3.2 on page 49). Reasons for a failure of the 2D data code reader comprise various
irreparable distortions of the symbol, which will be introduced in section 5.2 on page 44, and several
problems that occur because of the bad quality of the symbol’s appearance. Both problems should be
avoided already when acquiring the image. But if you nevertheless have to work with images of bad
quality, at least the following problems have a chance to be solved by preprocessing the image before
applying the operator find_data_code_2d:

• The symbol cannot be read because it is slanted beyond the allowed slant angle (for troubleshooting
see section 4.1),

• the gaps between the modules of a matrix code are larger than the biggest allowed module gap (for
troubleshooting see section 4.2),

• there is too much noise in the image so that foreground and background of the symbol cannot be
clearly distinguished anymore (for troubleshooting see section 4.3).

4.1 Slanted Symbol (Perspective Distortion)

In section 3.3 on page 21 it was mentioned that small slant angles are allowed for the L-shaped finder
element of a Data Matrix ECC 200 code. PDF417 and QR Code can also be read with slight perspective
or radial distortions. Large slant angles may lead to problems for all symbols, independent of the symbol
type. If a symbol is strongly skewed because of radial or perspective distortions, a PDF417 or a QR Code
cannot be decoded and a Data Matrix ECC 200 is not even detected as a valid symbol. To nevertheless
decode those symbols, you have to rectify the image before applying the operator find_data_code_2d.

P
re

pr
oc

es
si

ng

C-28 Preprocessing Difficult Images

If you have a set of images with slanted symbols we recommend a calibrated rectification. Comprehen-
sive information can be found in the Solution Guide III-C, section 3.4 on page 62. For single symbols or
a set of symbols lying in the same plane, the HDevelop program solution_guide\2d_data_codes\

2d_data_codes_rectify_symbol.hdev provides a fast solution for an uncalibrated rectification of a
perspective distortion, which requires a little manual effort.

After reading an image with a slanted symbol, we use the online zooming tool of HDevelop to obtain
the coordinates of all four corners of the symbol. Then, we define the coordinates of the four corners of
the rectified symbol we want to obtain as result of the rectification. The shape of the rectified symbol
depends on the ratio of rows and columns for the specified symbol type. As the symbol in our image
is a Data Matrix ECC 200 with an equal number of rows and columns, we choose a square shape and
define its corner coordinates. The operator hom_vector_to_proj_hom_mat2d uses the coordinates of
the slanted symbol and the coordinates of the rectified symbol to compute a transformation matrix, which
is then used by the operator projective_trans_image to transform the slanted symbol into a square
symbol with the defined extent. If you have a set of symbols lying in the same plane, the transformation
matrix only has to be computed once since it can be used to rectify the other symbols as well.

hom_vector_to_proj_hom_mat2d ([130, 225, 290, 63], [101, 96, 289, 269], [1, \

1, 1, 1], [70, 270, 270, 70], [100, 100, 300, \

300], [1, 1, 1, 1], 'normalized_dlt', \

HomMat2D)

projective_trans_image (Image_slanted, Image_rectified, HomMat2D, \

'bilinear', 'false', 'false')

The rectified symbol can be found, read, and decoded as described in section 2 on page 9 and section 3
on page 11. Figure 4.1 shows the slanted symbol before and after the rectification and decoding.

Figure 4.1: Uncalibrated rectification of an individual image with small manual effort: (left) symbol with
perspective distortion, (right) decoded symbol after rectification.

4.2 Large Module Gaps C-29

4.2 Large Module Gaps

For matrix codes, gaps between modules are allowed in a certain range. The HDevelop program solu-

tion_guide\2d_data_codes\2d_data_codes_minimize_module_gaps.hdev shows how to read
a Data Matrix ECC 200 with very large gaps. First, we try to adapt the parameters for the 2D data
code model as described in section 3 on page 20, i.e., we adapt the parameter ’module_gap_min’ to
the biggest allowed module gap ’big’ before trying to read the code. The adaptation can be done ei-
ther with the operator set_data_code_2d_param or as shown in the following code lines within the
operator create_data_code_2d_model.

create_data_code_2d_model ('Data Matrix ECC 200', ['module_gap_min', \

'module_gap_max'], ['no', 'big'], \

DataCodeHandle)

Because the gaps in our image are larger than the biggest allowed module gap, i.e., bigger than 50% of
the module size, the reading of the symbol fails. Getting no result by adapting the parameters of the
model, we have to adapt the image to suit the model. Here, we use gray value morphology, in particular
a gray value erosion with a rectangular structuring element, to enlarge the foreground modules and thus
minimize the size of the gaps. Figure 4.2 shows the symbol before and after the gray value morphology.
After the preprocessing, the symbol is found, read, and decoded.

gray_erosion_shape (Image, ImageMin, 15, 15, 'rectangle')

Figure 4.2: Preprocessing symbols with large module gaps: (left) original symbol with large gaps between
the modules and (right) decoded symbol after gray value morphology.

Note that this procedure mainly works for matrix codes, i.e., Data Matrix ECC 200 and QR Code. For
them, the distance between the modules only have to become smaller, whereas for PDF417 no gaps are

P
re

pr
oc

es
si

ng

C-30 Preprocessing Difficult Images

allowed at all and the exact closing of the gaps is rather challenging, especially with gaps of slightly
different size.

4.3 Noise

For the detection of 2D data code symbols, background and foreground should be clearly distinguish-
able, i.e., the modules should consist of homogeneous or at least low-textured regions. If you cannot read
a symbol because there is too much texture or noise in the image you can try to preprocess the image
with gray value morphology, a median filter, or a combination of both. The HDevelop program solu-

tion_guide\2d_data_codes\2d_data_codes_minimize_noise.hdev reads a symbol with several
parts distorted by noise. Especially the quiet zone in the lower part of the symbol is distorted by a noisy
streak. We apply both preprocessing steps separately. For the gray value morphology, the operator
gray_opening_shape with a rectangular structuring element is used. It partly closes the gaps and,
what is more important here, reduces noise (see figure 4.3).

gray_opening_shape (Image, ImageOpening, 7, 7, 'rectangle')

Figure 4.3: Preprocessing a noisy image: (left) noise at the symbol’s lower border, (right) decoded after
gray value morphology.

The median filter smoothes edges and also reduces noise (see figure 4.4).

median_image (Image, ImageMedian, 'circle', 3, 'continued')

For both procedures, because of the noise reduction, the difference between the symbol and the disturbing
streak in the quiet zone becomes more obvious and the reading is successful. So, in this case both
preprocessing steps lead to a successful 2D data code reading.

4.3 Noise C-31

Figure 4.4: Preprocessing a noisy image: (left) noise at the symbol’s lower border, (right) decoded after
median filtering.

P
re

pr
oc

es
si

ng

C-32 Preprocessing Difficult Images

Problem Handling C-33

Chapter 5

Problem Handling

The previous section proposed a selection of preprocessing steps for common problems when working
with 2D data codes. Now, we will go deeper into the handling of problems.

• In section 5.1 we introduce you to the debugging of the operator find_data_code_2d, which on
the one hand helps to enhance the run time of successfully decoded symbols and on the other hand
is used for locating problems with symbols that are not decoded. To identify a problem often leads
to ideas how an undecoded symbol can be preprocessed.

• Some situations exist where a preprocessing yields no success. These situations and tips how to
avoid them are presented in section 5.2.

• In section 5.3, the requirements and limitations for the 2D data code reader are summarized con-
cisely.

5.1 Data Access for Debugging

During the search process of the operator find_data_code_2d, various results besides the de-
coded data string and the XLD contour of the successfully decoded symbol are available. These
results provide hints how the search process can be enhanced with respect to run time, or why
a symbol is not found or decoded. The HDevelop program solution_guide\2d_data_codes\

2d_data_codes_data_access.hdev shows how to access results for various reasons. The following
sections describe the single steps of the program in detail. In particular, they introduce you to

• data access in general, as well as a selection of results useful for all debugging purposes (see
section 5.1.1),

• a selection of results that are useful when facing symbols that are decoded successfully but slowly
(see section 5.1.2),

• a selection of results that may give you a hint why a symbol is not decoded (see section 5.1.3).

The program concentrates on symbols of type Data Matrix ECC 200. Some characteristics of PDF417
and QR Codes that deviate from the presented results are introduced in section 5.1.3 on page 42.

P
ro

bl
em

H
an

dl
in

g

C-34 Problem Handling

5.1.1 General Information About Data Access

The results obtained from the operator find_data_code_2d are divided into iconic and alphanu-
meric results. Iconic results, i.e., objects like images or regions, can be queried with the opera-
tor get_data_code_2d_objects. The input parameters for the operator are the DataCodeHan-

dle, a CandidateHandle, and the ObjectName. Alphanumeric results are obtained by the operator
get_data_code_2d_results. Here, the input parameters are the DataCodeHandle, the Candidate-
Handle, and the ResultNames. The candidate handle needed for both iconic as well as for alphanumeric
results specifies either an individual candidate for a symbol or a group of several candidates, for which
the results or objects are queried. In a single operator call, you can combine a group of candidates with
an individual result or an individual candidate with a tuple of results. A list of all predefined groups of
candidates as well as all available object and result names for each SymbolType can be found in the
Reference Manual at the descriptions of the individual operators.

In the HDevelop program solution_guide\2d_data_codes\2d_data_codes_data_access.hdev,
we first specify the general settings, i.e., we create a 2D data code model for symbols of type ’Data

Matrix ECC 200’ and set the default parameters to the enhanced mode so that all undamaged symbols
can be decoded. By default, some of the results are stored only temporarily in the 2D data code model.
Therefore, we set the model parameter ’persistence’ to 1 to keep all intermediate results in memory
(see section 3.3.3 on page 22).

create_data_code_2d_model ('Data Matrix ECC 200', 'default_parameters', \

'enhanced_recognition', DataCodeHandle)

set_data_code_2d_param (DataCodeHandle, 'persistence', 1)

The lists of the available alphanumeric result names and iconic object names are obtained
by the operator query_data_code_2d_params with the parameters ’get_result_params’ and
’get_result_objects’ (see also section 3.2.2 on page 15).

query_data_code_2d_params (DataCodeHandle, 'get_result_params', \

GenParamNames)

dev_inspect_ctrl (GenParamNames)

query_data_code_2d_params (DataCodeHandle, 'get_result_objects', \

GenObjectNames)

dev_inspect_ctrl (GenObjectNames)

After reading an image, we apply the operator find_data_code_2d, which now stores all of its inter-
mediate results, so that we can investigate them further.

For the group of alphanumeric results, we differentiate between general results and results associated
with a specific symbol candidate or a group of candidates. General results are used, e.g., to get infor-
mation about the number of candidates related to each individual group of candidates. In the program,
we set the CandidateHandle to ’general’ and pass a tuple containing all available general Result-
Names. In detail, we want to access the number of all successfully decoded symbols (’result_num’),
the number of all investigated candidates (’candidate_num’), the number of candidates that were iden-
tified as symbols but could not be read (’undecoded_num’), the number of candidates that could not be
identified as valid candidates (’aborted_num’), the lowest and highest pyramid level that is searched
for symbols (’min_search_level’ and ’max_search_level’), and the number of passes that were

5.1 Data Access for Debugging C-35

completed (’pass_num’). The last three values provide us with information about the performance
of the search process. All result values that are stored in the variable ’GenResult’ are shown in the
variable window of HDevelop. For better inspection, we display them in a new window (see figure 5.1).

GenResultNames := ['result_num', 'candidate_num', 'undecoded_num', \

'aborted_num', 'min_search_level', \

'max_search_level', 'pass_num']
GenResultValues := []

get_data_code_2d_results (DataCodeHandle, 'general', GenResultNames, \

GenResultValues)

GenResult := GenResultNames + ': ' + GenResultValues

dev_inspect_ctrl (GenResult)

candidatenum := GenResultValues[1]

undecodednum := GenResultValues[2]

abortednum := GenResultValues[3]

Figure 5.1: Display of general results.

If candidates are found the program queries and displays two iconic results of the search process, the
search image, and the process image. The search image is the pyramid image in which a candidate is
found, whereas the process image is the pyramid image in which it is investigated more closely. A visual
inspection of search image and process image often leads to ideas why a symbol is not found or decoded,
or why the decoding process takes too much time.

get_data_code_2d_objects (SearchImage, DataCodeHandle, 0, \

'search_image')
dev_display (SearchImage)

disp_message (WindowHandle, 'Search image', 'window', -1, -1, \

'black', 'true')
get_data_code_2d_objects (ProcessImage, DataCodeHandle, 0, \

'process_image')
dev_display (ProcessImage)

disp_message (WindowHandle, 'Process image', 'window', -1, -1, \

'black', 'true')

Figure 5.2 shows the search image and the process image of the image we already tried to read in

P
ro

bl
em

H
an

dl
in

g

C-36 Problem Handling

section 4.3 on page 30. The reason why the noisy streak in the quiet zone cannot be distinguished from
the symbol becomes more obvious in the low-resolution search image than in the high-resolution original
image.

Figure 5.2: Pyramid images: (left) search image and (right) process image.

Using the information on the number of candidates in each candidate group, we now discuss two different
situations. On the one hand, we investigate successfully decoded symbols to get information about
their current parameter values so we can enhance the run time (see section 5.1.2). On the other hand,
we investigate symbols which are not decoded to find out why they are not decoded and if specific
preprocessing steps are suitable (see section 5.1.3).

5.1.2 Parameters to Access for Successfully Decoded Symbols

The main reason for the debugging of successfully decoded symbols is to enhance the run time of the
search process, i.e., to reduce the number of the needed passes. For that, you have to restrict the ranges
for the parameter values of the 2D data code model to a minimum (see section 3.2 on page 14 and
section 3.3 on page 16). To determine a reasonable range for a specific application it is helpful to query
the current parameter values of the symbols using the operator get_data_code_2d_results. The
success of the model adaptation can be controlled by comparing the number of completed passes queried
in section 5.1.1 on page 35 before and after the adaptation.

In the HDevelop program solution_guide\2d_data_codes\2d_data_codes_data_access.hdev,
we query a tuple of results which provide us with information about the symbol’s appearance and ad-
ditional information concerning the successful search process (see figure 5.3). The latter comprises the
actual pass in which the symbol was generated and processed (’pass’), a status message (’status’),
and the decoded data string (’decoded_string’). Status messages provide you with the information
whether a symbol was decoded successfully or why and at which point of the evaluation process the
search was aborted for a specific candidate. Here, we query the results for successfully decoded sym-
bols, so the status message in the tuple ’VariousResults’ is always ’successfully decoded’.

5.1 Data Access for Debugging C-37

ResultVariousNames := ['polarity', 'module_height', \

'module_width', 'module_gap', \

'mirrored', 'contrast', 'slant', \

'pass', 'status', 'decoded_string']
ResultVariousValues := []

get_data_code_2d_results (DataCodeHandle, ResultHandles[j], \

ResultVariousNames, \

ResultVariousValues)

VariousResults := ResultVariousNames + ': ' + \

ResultVariousValues

dev_inspect_ctrl (VariousResults)

Figure 5.3: Display of various individual results.

The ’DecodedDataStrings’ returned by the operator find_data_code_2d and the ’de-

coded_string’ contained in the tuple ’VariousResults’ are restricted to 1024 characters. When
working with rather large codes, you can query an unrestricted tuple containing all individual numbers
and characters of the decoded data as ASCII code by passing the result name ’decoded_data’ to the
operator get_data_code_2d_results. In the program, the resulting tuple ’ResultASCIICode’ is dis-
played in a window (see figure 5.4).

get_data_code_2d_results (DataCodeHandle, ResultHandles[j], \

'decoded_data', ResultASCIICode)

dev_inspect_ctrl (ResultASCIICode)

To control the classification of the modules that are determined in the search process the program queries
two different arrays of regions, in particular the iconic representations of the foreground and background
modules (’module_1_rois’ and ’module_0_rois’). The returned tuples of regions (’Foreground’
and ’Background’) are displayed in figure 5.5.

P
ro

bl
em

H
an

dl
in

g

C-38 Problem Handling

Figure 5.4: Display of the decoded data (’MVTec’) as ASCII code.

dev_set_color ('red')
get_data_code_2d_objects (Foreground, DataCodeHandle, \

ResultHandles[j], 'module_1_rois')
dev_display (Foreground)

dev_set_color ('yellow')
get_data_code_2d_objects (Background, DataCodeHandle, \

ResultHandles[j], 'module_0_rois')
dev_display (Background)

Figure 5.5: Visualization of the individual modules of a successfully decoded symbol.

5.1 Data Access for Debugging C-39

5.1.3 Parameters to Access for Symbols that are not Decoded

For symbols that are not decoded, we differentiate further between symbols that are found but not de-
coded and symbols for which no candidate is classified as a valid symbol. If the minimum size of the
modules is not set often the modules themselves are determined as candidates. To reduce the number of
candidates and thus make the investigations more concise, we adapt the model to the minimum module
size before applying the 2D data code reader to the problematic images (of index ’i’).

if (i=3)

set_data_code_2d_param (DataCodeHandle, 'module_size_min', 24)

endif

if (i=4)

set_data_code_2d_param (DataCodeHandle, 'module_size_min', 10)

endif

if (i=5)

set_data_code_2d_param (DataCodeHandle, 'module_size_min', 2)

endif

Another method to reduce the number of the candidates, especially if the image contains other objects
with right angles, is to reduce the domain of the image to an ROI containing the complete symbol
(including its quiet zone). For the creation of ROIs see section 3.4.1 on page 23.

To access all individual symbol candidates that are found but not decoded, we create the handle ’Han-

dlesUndecoded’ by passing the candidate handle ’all_undecoded’ and the result name ’handle’

to the operator get_data_code_2d_results.

get_data_code_2d_results (DataCodeHandle, 'all_undecoded', \

'handle', HandlesUndecoded)

Then, we query the XLD contour and the corresponding status message for the undecoded symbol
candidates. These provide important information about the reason why a candidate was not found or
decoded. For successfully decoded symbols we received the XLD contour explicitly by the operator
find_data_code_2d. For symbols that are not decoded, we have to query the XLD contours using the
operator get_data_code_2d_objects with the result name ’candidate_xld’.

for j := 0 to |HandlesUndecoded|-1 by 1

dev_display (Image)

get_data_code_2d_results (DataCodeHandle, \

HandlesUndecoded[j], 'status', \

StatusValue)

disp_message (WindowHandle, StatusValue, 'window', -1, -1, \

'black', 'true')
get_data_code_2d_objects (DataCodeObject, DataCodeHandle, \

HandlesUndecoded[j], \

'candidate_xld')
dev_display (DataCodeObject)

Additionally, we visualize the regions of the modules, this time to check, e.g., if a great amount of
modules is missing or if the modules deviate from the regular grid. Perhaps the modules are too

P
ro

bl
em

H
an

dl
in

g

C-40 Problem Handling

small or the quiet zone is distorted by streaks. In these cases, the obtained grid may be translated
relative to the symbol. The problem with small modules can be solved by adjusting the parameter
’small_modules_robustness’. Other problems often can be solved by preprocessing the image as
described in section 4 on page 27.

dev_set_color ('red')
get_data_code_2d_objects (Foreground, DataCodeHandle, \

HandlesUndecoded[j], \

'module_1_rois')
dev_display (Foreground)

dev_set_color ('yellow')
get_data_code_2d_objects (Background, DataCodeHandle, \

HandlesUndecoded[j], \

'module_0_rois')
dev_display (Background)

Besides the iconic results, alphanumeric information about the modules can be obtained. During the
search process, the modules are read row by row. The value 0 defines a certain background module and
the value 100 defines a certain foreground module. Often, modules have a value somewhere in between.
An automatically chosen threshold divides the foreground from the background modules. By inspecting
the values, or more precisely their deviations from 0 or 100, you can evaluate the quality of the module
classification.

get_data_code_2d_results (DataCodeHandle, \

HandlesUndecoded[j], \

'bin_module_data', \

ResultBinModules)

dev_inspect_ctrl (ResultBinModules)

endfor

Figure 5.6 shows a part of a symbol with very small modules. Because the modules are smaller than
the specified minimum module size the computed grid cannot be fitted correctly to the symbol and each
computed region contains parts of several modules, i.e., the individual regions contain dark and light
parts at the same time.

The binary values of all regions that are stored in the tuple ’ResultBinModules’ (see figure 5.7)
confirm the visual impression, since for most of the regions the values strongly deviate from 0 or
100. Hence, the decision whether a region belongs to foreground or background is not reliable. As
noted before, the problems caused by a small module size can be solved by adapting the parameter
’small_modules_robustness’.

For candidates that are not detected as valid symbols, no module regions can be obtained. Therefore, after
creating a handle for ’all_aborted’ candidates called ’HandlesAborted’, the debug information is
reduced to the status message and the XLD contour for each candidate.

5.1 Data Access for Debugging C-41

Figure 5.6: Regions of the approximated grid contain parts of multiple modules, which leads to an unreli-
able classification.

Figure 5.7: Display of the binary values for each module.

get_data_code_2d_results (DataCodeHandle, 'all_aborted', \

'handle', HandlesAborted)

for j := 0 to |HandlesAborted|-1 by 1

dev_display (Image)

get_data_code_2d_objects (DataCodeObject, \

DataCodeHandle, \

HandlesAborted[j], \

'candidate_xld')
dev_set_color ('yellow')
dev_display (DataCodeObject)

get_data_code_2d_results (DataCodeHandle, \

HandlesAborted[j], 'status', \

StatusValue)

disp_message (WindowHandle, StatusValue, 'window', -1, \

-1, 'black', 'true')
endfor

P
ro

bl
em

H
an

dl
in

g

C-42 Problem Handling

For example, in figure 5.8 the status message tells us that the X-border of the finder element cannot be
adjusted. By looking at the corresponding XLD contour, it becomes obvious that it cannot be adjusted
because of the disturbing streak in the quiet zone near the X-border. To differentiate clearly between
streak and symbol, we have to remove the noise as described in section 4.3 on page 30.

Figure 5.8: A border of the finder pattern cannot be adjusted because of the streak in the quiet zone.

Sometimes no candidate can be found at all. If this happens check visually if some of the problems
introduced in section 4 on page 27 occur. Perhaps the gaps between the modules are so large that no
connection between the individual modules is recognizable for the 2D data code reader, or the symbol is
so noisy that the modules cannot be separated from each other. In these cases, you should try to solve
the problems by applying the proposed preprocessing steps. Sometimes the symbols are damaged and
cannot be read at all. Some of these situations and tips how to avoid them already at the image acquisition
are introduced in section 5.2 on page 44.

In the program, we concentrated on a selection of important results common for Data Matrix ECC 200. If
you work with PDF417 or QR Codes, some results will differ. An example for rather different debugging
results concerns slanted symbols. For the Data Matrix ECC 200 symbol that we already presented in
section 4.1 on page 27 the 2D data code reader searches for a rectangular finder pattern. Because the
symbol is slanted the right angles are lost and the status messages state problems related to the border
of the symbol or the finder pattern (see figure 5.9). Since no valid finder pattern is identified all symbol
candidates are aborted.

For the PDF417 code in figure 5.10 no rectangular finder pattern is searched for. Therefore, several
symbol candidates are found and adjusted in relation to the start or stop pattern of the symbol. Because

5.1 Data Access for Debugging C-43

Figure 5.9: The alternating border of a rectangular finder pattern cannot be reconstructed.

these are degenerated and do not correspond to the outline of the actual symbol no data modules are
found and the symbol is not decoded.

Figure 5.10: The symbol candidate is related to the stop pattern and does not fit the actual symbol outline.

The results for the QR Code in figure 5.11 are similar. Again, several symbol candidates are found,
because the finder pattern, i.e., at least two of the three position detection patterns, are found. However,
as the candidates are adjusted in relation to those two position detection patterns, the candidate does
not fit the slanted symbol. Here, at least some of the modules are detected and visualize the square of

P
ro

bl
em

H
an

dl
in

g

C-44 Problem Handling

the incorrect symbol candidate. Since inside the candidate the modules are in the wrong place the error
correction fails.

Figure 5.11: The symbol candidate is related to two position detection patterns and does not fit the actual
symbol outline.

Additionally, further results are available, e.g., the actual error correction level for PDF417 and QR
Codes, queried by get_data_code_2d_results with the parameter ’error_correction_level’.
For PDF417, a value between 0 and 8 can be obtained. 0 means that errors are only detected but not
corrected. The values 1 to 8 describe an increasing error correction capacity. For QR Codes, the in-
creasing levels ’L’, ’M’, ’Q’, and ’H’ are available. As mentioned before, the complete list of results
specific for each SymbolType can be found in the Reference Manual at the description of the operators
get_data_code_2d_results and get_data_code_2d_objects.

5.2 Selected Problems and Tips to Avoid Them

The 2D data code reader of HALCON is a rather powerful tool, which can be used to read also partly
distorted symbols. But sometimes a symbol is distorted so much that it cannot be decoded even after
preprocessing the image. Some distortions are because of damaged symbols, e.g., symbols that are
not printed correctly or for which a great amount of modules is missing for various reasons. Other
distortions occur during the image acquisition. These can be avoided by the right acquisition conditions.
In the following, we introduce you to examples for distortions that result either from

• a bad geometry, i.e., the modules of the symbol are not placed on a regular grid (see section 5.2.1),

• or a bad radiometry, i.e., due to bad lighting conditions the individual modules cannot be classified
correctly (see section 5.2.2).

5.2 Selected Problems and Tips to Avoid Them C-45

We recommend to avoid both situations by flattening the symbols to a level surface and using diffuse
light at the image acquisition.

5.2.1 Geometric Distortions

The modules of an ideal symbol are placed on a regular grid. For matrix codes the grid must be reg-
ular along the whole symbol, whereas for PDF417 a regular grid is necessary only within the individ-
ual columns. While searching for a symbol, the operator find_data_code_2d searches for the finder
pattern (or start and stop pattern for PDF417) of the specified symbol. If found, it approximates a
grid for the modules, which is adjusted in relation to the finder pattern. Some errors, i.e., small de-
viations of the modules from the grid (up to a displacement of half a modules size, for Data Matrix
ECC 200 up to a whole modules size when ’module_grid’ is set to ’variable’), can be coped with.
For stronger deviations the 2D data code reading fails. The HDevelop program solution_guide\

2d_data_codes\2d_data_codes_arbitrary_distortions.hdev reads symbols with various dis-
tortions. In Figure 5.12, e.g., six symbols are printed on paper. The paper is crumpled, so that arbitrary
distortions occur to the symbols and for four of them the modules deviate so much from the regular grid,
that they cannot be decoded.

Figure 5.12: Four symbols cannot be read because of arbitrary geometric distortions.

In contrast to the regular distortion in section 4.1 on page 27, which can be removed by a rectification,
here the distortions are arbitrary and irregular. Therefore, no preprocessing step can be proposed. You
have to prevent such a situation already when acquiring the images by attending that the symbols are
as flat as possible. If your symbols are printed on a flexible surface like paper, you can, e.g., flatten
them with a glass plate. But then, you have to be very careful and consider the right lighting conditions.
Otherwise you may get problems because of reflections as described in the next section.

P
ro

bl
em

H
an

dl
in

g

C-46 Problem Handling

5.2.2 Radiometric Distortions

Besides the right geometry of the symbol’s grid, the contrast and a uniform appearance
of the symbol’s modules, especially with regard to their polarity, are essential for the
decoding of 2D data codes. The HDevelop program solution_guide\2d_data_codes\

2d_data_codes_arbitrary_distortions.hdev searches for the symbols of two more images.
These contain symbols printed on a reflecting surface. Figure 5.13 shows an image where the reflec-
tions are so strong that for some parts of the symbols the contrast approaches 0, i.e., the information
about the modules of these parts is not available anymore. Thus, the symbols cannot be reconstructed by
preprocessing and the 2D data code reading fails.

Figure 5.13: Two symbols cannot be read because parts of the symbols are not visible because of reflec-
tions.

Figure 5.14 illustrates another problem that occurs because of bad lighting conditions. Here, because of
reflections the polarity changes within two of the symbols. This leads to problems, since in most cases a
change of the appearance of the modules inside a symbol cannot be coped with.

For both cases, no preprocessing is reasonable to improve the image in a way that makes the symbols
readable again. Therefore, it is especially important to avoid strong reflections by using diffuse light at
the image acquisition.

5.3 Requirements and Limitations

For a successful 2D data code reading, a symbol’s representation must fulfill certain requirements. Some
of them were already stated in the preceding sections. Generally, the value ranges specified for the
individual parameters should not be exceeded. Most of the limits are soft, i.e., sometimes symbols can
be read although their parameter values do not completely lie in the specified ranges. But since this
cannot be ensured you should try to adhere to the rules summarized in section 5.3.1. A concise list of the

5.3 Requirements and Limitations C-47

Figure 5.14: Two symbols cannot be read because of a changed module appearance (polarity).

value ranges allowed for the parameter groups related to the size and appearance of the symbols is given
in section 5.3.2.

5.3.1 Main Rules to Follow

All symbol types:

• The symbol (including the quiet zone) must be contained completely in the image.

• The modules must fit a regular grid and therefore should have approximately the same size. For
matrix codes, the grid has to be regular along the whole symbol, whereas for PDF417 codes it
has to be regular only within the individual columns. Some errors up to a displacement of half a
modules size (for Data Matrix ECC 200 up to a whole modules size when ’module_grid’ is set
to ’variable’) can be coped with, whereas errors at the finder pattern are worse than errors at
the data modules.

• The appearance of the modules of a symbol should be uniform. Especially the polarity must not
change within a symbol.

• Although a minimum contrast of 1 is allowed, for a stable result the symbols should have a mini-
mum contrast of 10 between foreground and background.

PDF417:

• For a stable result, the minimum width of the modules should not fall below 3 pixels.

• At the border of the symbol, there should be a quiet zone of at least 2 module’s width in each
direction.

P
ro

bl
em

H
an

dl
in

g

C-48 Problem Handling

• Gaps between the modules are not allowed.

Data Matrix ECC 200:

• For a stable result, the minimum size of the modules should not fall below 4 pixels.

• At the border of the symbol, there should be a quiet zone of at least 1 module’s width in each
direction.

• Gaps between the modules are allowed, but should not exceed 50% of the module’s size.

• Although theoretically allowed, a slant angle of maximum 0.5235 (30 degrees) should not be
exceeded.

QR Code:

• For a stable result, the minimum size of the modules should not fall below 4 pixels.

• At the border of the symbol, there should be a quiet zone of at least 4 module’s width in each
direction.

• Gaps between the modules are allowed, but should not exceed 50% of the module’s size.

• At least two of three position detection patterns have to be visible.

5.3.2 Valid Parameter Ranges

The following list concisely summarizes the value ranges valid for the parameter groups related to the
size and appearance of the individual symbol types. A complete list of parameter names that belong to
each group can be found at the description of the operator set_data_code_2d_param in the Reference
Manual.

5.3 Requirements and Limitations C-49

Symbol Type PDF417 Data Matrix ECC 200 QR Code
Symbol Size
- Columns 1 - 30 codewords 10 - 144 modules, even 21 - 177 modules
- Rows 3 - 90 modules 8 - 144 modules, even 21 - 177 modules
Symbol Shape — rectangle, square, any —
Model Type — — 1, 2, any
Version — — 1 - 40
Polarity dark_on_light, dark_on_light, dark_on_light,

light_on_dark, light_on_dark, light_on_dark,
any any any

Mirrored yes, no, any yes, no, any yes, no, any
Minimum Contrast 1 - 100 1 - 100 1 - 100
Module Size — 2 - 200 2 - 200
Module Aspect Ratio 0.5 - 20 — —
Module Gaps no gaps no, small, big no, small, big
Maximum Slant — 0 - 0.7 —
Module Grid — fixed, variable, any —
Minimum Position Patterns — — 2, 3
Small Module Robustness low, high low, high low, high
Finder Pattern Tolerance — low, high, any —

Note that for most parameters the range of values valid for a symbol corresponds to the range of values
checked by the 2D data code reader when using the global parameter settings in enhanced mode (see
section 3.1 on page 12). Exceptions to that rule are

• the minimum contrast for all symbol types (allowed range: 1 - 100, default in enhanced mode:
10),

• the maximum module size for matrix codes (allowed range: 2 - 200, default in enhanced mode:
100),

• the module aspect ratio for PFD417 (allowed range: 0.5 - 20, default in enhanced mode for the
minimum module aspect: 1.0, default in enhanced mode for the maximum module aspect: 10),

• the maximum slant for Data Matrix ECC200 (allowed range: 0 - 0.7, default in enhanced mode:
0.5235),

• the small modules robustness (allowed range: low, high, default in enhanced mode: low),

• the finder pattern tolerance for ECC 200 symbols (allowed range: low, high, any, default in en-
hanced mode: low).

For a stable result, it is recommended not to exceed the value ranges specified for the enhanced parameter
set.

P
ro

bl
em

H
an

dl
in

g

C-50 Problem Handling

Check for Print Quality C-51

Chapter 6

Check for Print Quality

In some cases, the print quality of a symbol is asked for. There are various standards available that are
related to the quality verification of 2D data codes. Their focus differs depending, e.g., on the way the
symbol is applied to a surface. HALCON supports the quality standard ISO/IEC 15415 as well as the
AIM DPM-1-2006 for printed 2D data code symbols. As the AIM DPM-1-2006 is an extension to the
ISO/IEC 15415 standard, the last one will be explained first to get a basic understanding of how the
quality inspection works. The print quality grading using the AIM DPM-1-2006 standard is different in
its usage as it requires interactive image acquisition. Therefore, the new standard is best explained at the
end of this chapter, using the program itself.

With get_data_code_2d_results and the parameter ’quality_isoiec15415’ you can query a set
of values that numerically describe the quality grade for different features of a successfully read symbol
in a descending order from 4 (highest quality) to 0 (lowest quality). As a tuple of values is returned,
the print quality has to be queried for each symbol candidate individually. The calculation of the quality
is applied after reading the symbol with find_data_code_2d and does not affect the run time of the
actual reading process. Note that with HALCON you can read many 2D data code symbols even if !
their quality according to the standard is low.

For symbols of type Data Matrix ECC 200 or QR Code, the print quality grades eight differ-
ent features. To query the quality grades, you have to apply find_data_code_2d and then
call get_data_code_2d_results (with the parameter ’quality_isoiec15415’) to get the qual-
ity grades for the features ’Overall Quality’, ’Contrast’, ’Modulation’, ’Fixed Pattern

Damage’, ’Decode’, ’Axial Non-Uniformity’, ’Grid Non-Uniformity’, and ’Unused Error

Correction’.

6.1 The ISO/IEC 15416 Standard

For symbols of type PDF417, you can query the quality grades for the seven features ’Overall

Quality’, ’Start/Stop Pattern’, ’Codeword Yield’, ’Unused Error Correction’, ’Modu-
lation’, ’Decodability’, and ’Defects’. The quality grades also comply to the standard ISO/IEC
15415 but involve also techniques that are common for 1D bar codes and which are described in detail

P
ro

bl
em

H
an

dl
in

g

C-52 Check for Print Quality

in the standard ISO/IEC 15416. Basically, a set of scan lines measures the reflectance profiles along the
symbol and the individual profiles are evaluated for the quality grades of the different features.

6.1.1 Grades

The individual features that are evaluated for their quality grade are shortly introduced in the following
sections. Additionally, they are demonstrated in the HDevelop example \examples\hdevelop\Tools\
Datacode\ecc200_print_quality.dev. For detailed information, we recommend to read the spec-
ifications for the standards ISO/IEC 15415 and for symbols of type PDF417 also the standard ISO/IEC
15416.

6.1.1.1 Overall Quality (all Symbol Types)

The overall quality is calculated for all symbol types that are supported by HALCON and is always
the first element in the tuple of quality grades returned by get_data_code_2d_results. The overall
quality is the lowest quality grade obtained for the complete set of features that are evaluated for the
selected type of 2D data code. If, e.g., for one of the features the value 0 is returned, the overall quality
is graded with the value 0 even if all other features have the value 4.

6.1.1.2 Contrast (Data Matrix ECC 200 and QR Code)

The quality grade for the contrast of a symbol of type Data Matrix ECC 200 or QR Code tests whether
the two reflectance states in the symbol, namely dark and light, are sufficiently distinct. The quality grade
is obtained by calculating the range between the minimum and maximum pixel intensities (maximum
amplitudes) in the 2D data code domain. A strong contrast leads to a good quality grade.

Figure 6.1 shows two symbols with different quality grades for their contrast. The symbol with black and
white modules has a high value, whereas the symbol with black and gray modules has a lower contrast
and therefore also a lower quality grade.

6.1.1.3 Modulation (all Symbol Types)

The modulation is evaluated for symbols of type Data Matrix ECC 200 or QR Code as well as for
symbols of type PDF417. It measures the uniformity of the amplitudes of the modules inside the symbol.
That is, not only the difference between the minimum and maximum pixel intensities of the symbol is
evaluated but the relation between the minimum local contrast for adjacent elements and the contrast
of the complete symbol. Large amplitudes along the whole symbol result in a good quality grade. If
the modulation is insufficient, the probability that modules are not correctly identified as dark or light
modules increases.

Figure 6.2 shows three symbols with different modulations. The first one consists only of black and white
modules. It is clear which modules belong to the dark modules and which belong to the light modules,
so the modulation is graded with the value 4. For the other symbols, the contrast for a local part of the
symbol changes so that one part of the symbol consists of black and white modules and another part
consists of gray and white modules. In the second symbol the gray values of the black and gray modules

6.1 The ISO/IEC 15416 Standard C-53

Figure 6.1: Quality grades for the contrast: (left) 4 and (right) 2.

differ only slightly and thus, the gray modules still have a good chance to be identified correctly and
the quality is graded with value 2. For the third symbol, the gray modules have a gray value that is
somewhere in between black and white, i.e., their amplitude is rather low (see also figure 6.3). A reliable
identification of the modules is difficult and the quality of the modulation is graded with the value 0.

a) b) c)

Figure 6.2: Quality grades for the modulation: (a) 4, (b) 2, and (c) 0.

6.1.1.4 Fixed Pattern Damage (Data Matrix ECC 200 and QR Code)

The fixed pattern damage describes how reliable a symbol can be located and identified in the image. To
locate and identify a symbol in an image, the finder pattern as well as the quiet zone of the symbol are
needed. If one of these elements is damaged, the quality grade decreases dependent on the amount of the
damage.

Figure 6.4 shows three symbols of type Data Matrix ECC 200. The first symbol has a damaged quiet
zone, the second one is damaged at the L-shaped part of the finder pattern, and the third one is damaged

P
ro

bl
em

H
an

dl
in

g

C-54 Check for Print Quality

Threshold

Figure 6.3: Amplitudes for black, white, and gray modules. The gray modules have a lower amplitude and
with a slightly different threshold they would be incorrectly classified.

at the alternating part of the finder pattern. For all three kinds of damage, the amount of the damage is
big enough to lead to a quality grade of value 0.

a) b) c)

Figure 6.4: Quality grades with value 0 for fixed pattern damage: (a) damaged quiet zone, (b) damage at
the L-shape of the finder pattern, and (c) damage at the alternating side of the finder pattern.

6.1.1.5 Decode (Data Matrix ECC 200 and QR Code)

The quality grade for the decode feature describes whether a symbol can be successfully read with
HALCON or not. As only two possibilities exist (either the 2D data code can be read or not), opposite to
the other features that are evaluated, no four grades are available. If the data code reading was successful,
the value is 4. If not, the value theoretically would be 0, but in that case no quality grades can be obtained
at all, because the quality grades can only be queried for successfully read symbols.

6.1.1.6 Axial Non-Uniformity (Data Matrix ECC 200 and QR Code)

The axial non-uniformity describes the aspect ratio of the symbol, i.e., the squareness of the modules or,
respectively, of the grid that is built by the centers of the modules. Normally, the distance between the
module’s center positions is the same in horizontal and vertical direction. If a symbol is scaled only in
one direction, i.e., only in its width or height, the quality grade decreases.

6.1 The ISO/IEC 15416 Standard C-55

Figure 6.5 shows a symbol of type Data Matrix ECC 200 that is scaled only in vertical direction. The
first symbol is not scaled, so that the value for the quality grade is 4. The other two symbols are scaled
for different amounts, so that dependent on the scale, the value is 2 and 0.

b) c)a)

Figure 6.5: Quality grades for axial non-uniformity: (a) 4, (b) 2, and (c) 0.

6.1.1.7 Grid Non-Uniformity (Data Matrix ECC 200 and QR Code)

The quality grade for the grid non-uniformity quantifies the deviation of the modules from their ideal
grid. Figure 6.6 shows three symbols of type Data Matrix ECC 200. For the first one, the modules are
arranged in a regular, rectangular grid and the value for the quality grade is 4. For the other two symbols,
the grid structure is not rectangular anymore, i.e., the individual modules deviate from the ideal grid that
is assumed for a 2D data code symbol. Dependent on the amount of the deviation, the values for the
quality grade decrease to 2 and 0.

a) c)b)

Figure 6.6: Quality grades for grid non-uniformity: (a) 4, (b) 2, and (c) 0.

Note that a bad value might also be caused by problems with the finder pattern, in which case the ideal
grid may not be positioned correctly.

P
ro

bl
em

H
an

dl
in

g

C-56 Check for Print Quality

6.1.1.8 Unused Error Correction (all Symbol Types)

The quality grade for unused error correction quantifies the reserve in error correction that is still avail-
able after reading the data code. A perfect data code requires no error correction at all, resulting in a
quality grade of value 4 (see figure 6.7, a). The more defective a data code becomes, the more the in-
herent error correction needs to be applied to still be able to read the data code. Figure 6.7 shows two
symbols (b and c) for which degradations occur inside the data patterns. Dependent on the amount of the
degradations, the values for the quality grade decrease to 2 and 0.

a) b) c)

Figure 6.7: Quality grades for unused error correction: (a) 4, (b) 2, and (c) 0.

6.1.1.9 Start/Stop Pattern (PDF417)

The quality grade for the start/stop pattern of a symbol of type PDF417 evaluates the quality of the
reflectance profile as well as the correctness of the sequence of the light and dark bars for the start and
stop patterns.

6.1.1.10 Codeword Yield (PDF417)

The quality grade for the codeword yield evaluates how many of the attempts to read the individual
codewords were successful.

6.1.1.11 Decodability (PDF417)

The quality grade for the decodability describes to which amount the light and dark bars are metrically
correct, i.e., it measures the deviations between the actual widths of the bars from the theoretical widths
that can be derived from the size of the symbol and the known number of bars (17) per codeword.

6.1.1.12 Defects (PDF417)

The quality grade for defects describes the amount of radiometric degradations inside the individual
modules or the quiet zone, i.e., dark spots inside the light modules, the light parts of the finder pattern,

6.2 The AIM DPM-1-2006 Standard C-57

or the quiet zone, and light spots inside the dark modules or the dark parts of the finder pattern (see
figure 6.8).

Threshold

Figure 6.8: Small defect in a black bar.

6.1.2 Acquire Raw Data

When investigating the reason for quality defects, it can be useful to query the data that was used to
calculate the values for the print quality elements. For this, you call the operator get_bar_code_result
with the parameter value ’quality_isoiec_15415_values’. The operator then returns a tuple with
the following raw values:

ECC200, QR Codes: ’Contrast’, ’Axial Non-Uniformity’, ’Unused Error Correction’;

PDF417: ’Codeword Yield’, ’Unused Error Correction’;

The parameter ’quality_aimdpm_1_2006’ always returns a tuple with a value for each grade. It
therefore displays ’N/A’ if a grade is not on the above list and no raw value is consequently available.

6.2 The AIM DPM-1-2006 Standard

Another possibility of evaluating the print quality of ECC 200 and QR data codes is using HALCON’s
data code quality inspection following the AIM DPM-1-2006 standard, an extension to ISO/IEC 15415.
It returns a tuple representing the nine print quality elements

• ’Overall Quality’,

• ’Cell Contrast’,

• ’Cell Modulation’,

• ’Fixed Pattern Damage’,

P
ro

bl
em

H
an

dl
in

g

C-58 Check for Print Quality

• ’Decode’,

• ’Axial Non-Uniformity’,

• ’Grid Non-Uniformity’,

• ’Unused Error Correction’,

• and ’Mean Light’.

The first eight grades have the same meaning as the ISO/IEC 15415 grades with two exceptions: ’Con-
trast’ and ’Modulation’ are renamed ’Cell Contrast’ and ’Cell Modulation’, respectively,
to reflect differences in the methods specified with both standards for estimating those values.

The last element, ’Mean Light’, is not a grade but an estimation for the quality of the processed image
computed as the mean gray-scale value of the centers of the bright data code modules, a value between
0.0 and 1.0, corresponding to 0% to 100% of the maximum gray-scale value (255 for byte images). The
mean light is estimated to reach reproducible results, which can be achieved because

• the mean light condition guarantees a unified image quality among different systems and

• the calibration compares the ’light’ used to evaluate a known calibration object and the ’light’ used
to evaluate a physical data code in the quality inspection process. Codes with a contrast that is too
large or too weak are rejected.

Note that the AIM DPM-1-2006 standard recommends special lighting environments. These include dif-
fuse on-axis illumination (90), diffuse off-axis illumination (D) and directional illumination (30Q, 30T,
30S). For more information about the lighting environments refer to the comments within the HDevelop
example program hdevelop\Identification\Data-Code\calibration_aimdpm_1_2006.hdev

or the more detailed description in the document AIM DPM-1-2006 with the title ’Directed Part Mark
(DPM) Quality Guideline’.

6.2.1 Acquire Raw Data

When investigating the reason for quality defects, it can be useful to query the data that was used to
calculate the values for the print quality elements. For this, you call the operator get_bar_code_result
with the parameter value ’quality_aimdpm_1_2006_values’. The operator then returns a tuple with
the following raw values:

ECC200, QR Codes: ’Contrast’, ’Axial Non-Uniformity’, ’Unused Error Correction’;

PDF417: ’Codeword Yield’, ’Unused Error Correction’;

The parameter ’quality_aimdpm_1_2006’ always returns a tuple with a value for each grade. It
therefore displays ’N/A’ if a grade is not on the above list and no raw value is consequently available.

6.2 The AIM DPM-1-2006 Standard C-59

6.2.2 How to Apply the AIM DPM-1-2006 Standard

The AIM DPM-1-2006 requires interactive image acquisition. Much of the functionality cannot be
provided within an operator. Instead, HALCON provides two example applications:

• hdevelop\Identification\Data-Code\calibration_aimdpm_1_2006.hdev performs the
so-called reflectance calibration and stores the calibration results (see section 6.2.4 on page 61).

• hdevelop\Identification\Data-Code\print_quality_aimdpm_1_2006.hdev performs
the print quality inspection based on the calibration results (see section 6.2.5 on page 62).

Figure 6.9 shows an overview of the complete progress of reflectance calibration and print quality in-
spection.

6.2.3 How to Adapt the Example Programs To Your Image Acquisition
Device

Note that both example programs contain parts that must be adapted to your image acquisition device /
image acquisition interface. In the programs, they are marked with a special comment (how to search for
specific text within HDevelop programs is explained in the HDevelop User’s Guide in section 5.2.2 on
page 60).

* PLEASE ADAPT THESE VARIABLES TO YOUR APPLICATION

First, you can decide whether you just want to see what the program does first, and therefore set Of-
fline = true, or whether you want to perform the actual calibration or print quality inspection and set
Offline = false. If you decide to use the online mode, proceed to set your parameters. First, adapt
the name of the used image acquisition interface in the variable InterfaceName.

The AIM DPM-1-2006 standard evaluates the ’light’ used for calibration and print quality inspection
based on the so-called system response. This system response is influenced by the parameters

• exposure, which controls how much light reaches the camera chip, and

• gain, which controls how the incoming light is transferred to gray values on the chip.

In the example programs, you must adapt the corresponding operator calls to your image acquisition
device / interface. In particular, replace the parameter names ’gain_master’ and ’exposure’ with
the ones used by your image acquisition interface. In the program, starting values are set first:

set_framegrabber_param (AcqHandle, 'gain_master', 0)

set_framegrabber_param (AcqHandle, 'exposure', 40.0)

Then, adapt the procedure adjust_system_response to your image acquisition device / interface. The
procedure first queries the available ranges of values:

P
ro

bl
em

H
an

dl
in

g

C-60 Check for Print Quality

Acquire image

values from file

Read calibration

Acquire image

Position code symbol

under the camera

Adjust aperture &

focus

Acquire image

Detect symbol and

evaluate light

elements

Acquire image

of the data code

Detection & grading

 70 − 86%

Mean Light

each of the 9 features.

Get grades (1−4) for

 70 − 86%

Mean Light No

Yes

Adjust

system

response

Compute calibration

parameters (SRcal)

Write results to file

Reflectance Calibration ONLINE Print Quality InspectionOFFLINE

Set black level

by covering lens

Position camera &

calibration plate

Adjust aperture &

focus

Adjust

system

response

No

Yes

No

Yes

Grade = 0

Correlation

between calibration

system response values

(SRcal) and print quality

responsesystem

values > 5%

Figure 6.9: Flow chart of the reflectance calibration and the print quality inspection. The sections that are
highlighted with gray require user interaction.

6.2 The AIM DPM-1-2006 Standard C-61

get_framegrabber_param (AcqHandle, 'exposure_range', ExposureRange)

get_framegrabber_param (AcqHandle, 'gain_master_range', GainRange)

and the current values:

get_framegrabber_param (AcqHandle, 'gain_master', GainValue)

get_framegrabber_param (AcqHandle, 'exposure', ExposureValue)

Depending on the value of the parameter IncreaseLight, the procedure then increases
(IncreaseLight = 1) or decreases (IncreaseLight = -1) the system response. Again, you must
replace the parameter names used in the calls to set_framegrabber_param with the ones of your im-
age acquisition interface. If your interface does not provide parameters for exposure and gain, you might
try to adapt the complete code of the procedure or ask your distributor.

After adapting the procedure, we recommend to make it external by unchecking the box Local in the
procedure box as described in the HDevelop User’s Guide in the section 5.4.5.1 on page 134 and then sav-
ing the program. Now, if you want to perform data code quality inspection with your adapted procedure
and the program hdevelop\Identification\Data-Code\print_quality_aimdpm_1_2006.hdev,
just delete the existing adjust_system_response procedure and the program will automatically use
the external procedure with the same name.

6.2.4 Reflectance Calibration

To calibrate your system, use the example program hdevelop\Identification\Data-Code\

calibration_aimdpm_1_2006.hdev. The step described there is called reflectance calibration. To
perform this calibration you need a calibrated conformance standard test card (e.g., a NIST-traceable
EAN/UPC calibrated conformance test card). Currently, there are only cards available with printed 1D
bar code symbols, so they are also used for the reflectance calibration of 2D data code symbols. At first
you have to setup your system. The example program contains all the code necessary for the reflectance
calibration. However, it is also an example that can be run as it is and for this purpose, it uses a stored
sequence of images. Thus, you must first adapt the example to your application.

* Set the value of code type to the code type printed on the

* calibration plate.

CodeType := 'EAN-13'
* Set the value of the reference aperture of the laser (see

* calibration plate). If no reference aperture is denoted, set

* the X Dimension value to 1.

RefAperture := 1

* Set the value of X Dimension printed on the calibration plate.

* If no X Dimension is denoted, set the X Dimension value to 1

XDimension := 1

* Set initial value of bar code handle to invalid value -1.

The program guides you through the necessary steps. First, it asks you to cover the lens for setting
the black level. If your image interface does not provide black-level compensation, please ask your
distributor.

P
ro

bl
em

H
an

dl
in

g

C-62 Check for Print Quality

min_max_gray (Image, Image, 0, Min, Max, Range)

set_framegrabber_param (AcqHandle, 'black_level_compensation', int(Max))

Then, position the code horizontally in the center of the image and adjust focus and aperture (F-number)
so that the code is imaged with a good contrast.

Now, the interactive part of the calibration is finished.

During the calibration, the code symbol on the calibration plate is detected, its bright code elements are
segmented and, using the gray values in the center of each element, the value of mean light is calculated
from the maximum gray value.

If the gray value does not lie in a range between 70% and 86%, the system response is adjusted by calling
the procedure adjust_system_response. If the mean light value lies over 86%, then the symbol is
too bright and the system response values are adapted to reduce the brightness. The contrary happens if
the mean light value lies below 70%. This procedure repeats until the mean light is within the requested
range or the system response values cannot be adjusted any more. Then, the calibration values are
returned and written to a file.

write_calib_results (A, MLCal, Rcal, SRexp, SRgain, ResultFileName, \

ResultValueNames)

6.2.5 Inspecting Print Quality

The program hdevelop\Identification\Data-Code\print_quality_aimdpm_1_2006.hdev is
used to demonstrate the print quality inspection. It starts by reading the calibration values from file.

read_reflectance_calib_file (ReflectanceCalibFile, \

ReflectanceCalibResultsValues)

In the next step you are asked to position the code symbol parallel to the axis of the image plane and
in the center of the field of view under the camera and to adjust the aperture and the focus. The code
is detected in the current image and graded according to the AIM DPM-1-2006 grades as listed above.
Furthermore, the program returns raw values for some quality grades to investigate the reason for quality
defects. Again, the mean light value is checked and the system response is adjusted if the value does not
lie between 70% and 86%.

elseif (MeanLight < 0.7)

IncreaseLight := 1

elseif (MeanLight > 0.86)

IncreaseLight := -1

endif

adjust_system_response (AcqHandle, IncreaseLight, AdjustParams, \

MAXSTEPS, EXPSTEP, AdjustmentImpossible, \

AdjustParams)

Once the mean light value lies within the specifications, the system response values of the calibration and
of the print quality inspection are compared. If the correlation between those values is higher than 5%,

6.2 The AIM DPM-1-2006 Standard C-63

a grade is returned for each print quality value. Otherwise, the grade 0 is returned, indicating that either
the print quality of the code is too low or your setup is not suitable for the code that is to be inspected.

if (Rtarget > 0.05)

Grade := 1

disp_message (WindowHandle, \

'The quality grades of the 2d data code symbol:', \

'window', 10, 10, 'black', 'true')
get_data_code_2d_results (DataCodeHandle, ResultHandles[0], \

'quality_aimdpm_1_2006_labels', QALabels)

else

Grade := 0

P
ro

bl
em

H
an

dl
in

g

C-64 Check for Print Quality

Index C-65

Index

axial non-uniformity (data code), 54

check print quality of data code, 51
contrast (data code), 52

data code maximum slant, 21
data code minimum contrast, 20
data code model, 11
data code types, 7
decode feature (data code), 54

fixed pattern damage (data code), 53

global data code model parameters, 12
grid non-uniformity (data code), 55

inspect data code(s), 34
inspect results for speed up (data code), 36
inspect results for troubleshooting (data code),

39

model parameter ranges (data code), 48
model type (data code), 18
modulation (data code), 52
module gap (data code), 20
module grid (data code), 21
module mirrored (data code), 19
module polarity (data code), 19
module size (data code), 20

optimize model of data code, 11
overall (data code), 52

position detection (data code), 22

re-use data code model, 24
read difficult data codes, 27
read with geometric distortions (data code), 45
read with large module gaps (data code), 29
read with noise (data code), 30

read with radiometric distortions (data code), 46
read with slant or perspective distortion (data

code), 27
requirements (data code), 46
result persistence (data code), 22
result strictness (data code), 22

specific data code model parameters, 16
speed up data code reader, 23
start stop pattern (data code), 56
symbol shape (data code), 17
symbol size (data code), 17

train model of 2D data code, 14
troubleshooting (data code), 33

In
de

x

C-66 Index

	1 Introduction to 2D Data Codes
	2 A First Example
	3 Model Adaptation
	3.1 Global Parameter Settings
	3.2 Training
	3.2.1 Train the Model
	3.2.2 Inspect the Changes

	3.3 Specific Parameter Settings
	3.3.1 Shape and Size of the Symbols
	3.3.2 Appearance of the Modules
	3.3.3 Model Control Parameters

	3.4 Miscellaneous
	3.4.1 Speeding up find_data_code_2d
	3.4.2 Store the 2D Data Code Model

	4 Preprocessing Difficult Images
	4.1 Slanted Symbol (Perspective Distortion)
	4.2 Large Module Gaps
	4.3 Noise

	5 Problem Handling
	5.1 Data Access for Debugging
	5.1.1 General Information About Data Access
	5.1.2 Parameters to Access for Successfully Decoded Symbols
	5.1.3 Parameters to Access for Symbols that are not Decoded

	5.2 Selected Problems and Tips to Avoid Them
	5.2.1 Geometric Distortions
	5.2.2 Radiometric Distortions

	5.3 Requirements and Limitations
	5.3.1 Main Rules to Follow
	5.3.2 Valid Parameter Ranges

	6 Check for Print Quality
	6.1 The ISO/IEC 15416 Standard
	6.1.1 Grades
	6.1.2 Acquire Raw Data

	6.2 The AIM DPM-1-2006 Standard
	6.2.1 Acquire Raw Data
	6.2.2 How to Apply the AIM DPM-1-2006 Standard
	6.2.3 How to Adapt the Example Programs To Your Image Acquisition Device
	6.2.4 Reflectance Calibration
	6.2.5 Inspecting Print Quality

	Index

