
Building Vision for BusinessMVTec Software GmbH

Solution Guide I
Basics

How to use HALCON’s machine vision methods, Version 10.0.4

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without prior written permission of the publisher.

Edition 1 June 2007 (HALCON 8.0)
Edition 1a October 2007 (HALCON 8.0.1)
Edition 1b April 2008 (HALCON 8.0.2)
Edition 2 December 2008 (HALCON 9.0)
Edition 2a June 2009 (HALCON 9.0.1)
Edition 2b March 2010 (HALCON 9.0.2)
Edition 3 October 2010 (HALCON 10.0)
Edition 3a April 2011 (HALCON 10.0.1)
Edition 3b November 2011 (HALCON 10.0.2)

Copyright © 2007-2013 by MVTec Software GmbH, München, Germany MVTec Software GmbH

Protected by the following patents: US 7,062,093, US 7,239,929, US 7,751,625, US 7,953,290, US
7,953,291, US 8,260,059, US 8,379,014. Further patents pending.

Microsoft, Windows, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Win-
dows 7, Microsoft .NET, Visual C++, Visual Basic, and ActiveX are either trademarks or registered
trademarks of Microsoft Corporation.

All other nationally and internationally recognized trademarks and tradenames are hereby recognized.

More information about HALCON can be found at: http://www.halcon.com/

Contents

1 Guide to HALCON Methods 5

2 Image Acquisition 13

3 Region Of Interest 19

4 Blob Analysis 31

5 1D Measuring 49

6 Edge Extraction (Pixel-Precise) 63

7 Edge Extraction (Subpixel-Precise) 73

8 Contour Processing 83

9 Matching 97

10 3D Matching 127

11 Variation Model 143

12 Classification 155

13 Color Processing 173

14 Texture Analysis 189

15 Bar Code 211

16 Data Code 233

17 OCR 245

18 Stereo Vision 277

19 Visualization 289

Index 301

Guide to HALCON Methods 5

Chapter 1

Guide to HALCON Methods

This manual introduces you to important machine vision methods. To guide you from your specific
application to the sections of the documentation to read, this section lists common application areas and
the methods used for them.

Generally, a lot of applications use the following methods:

• Image Acquisition on page 13 for accessing images via an image acquisition device or via file.

• Visualization on page 289 for the visualization of, e.g., artificially created images or results of an
image processing task.

• Region of interest on page 19 for reducing the search space for a following image processing task.

• Morphology (Reference Manual, chapter “Morphology”), e.g., for the elimination of small gaps
or protrusions from regions or from structures in gray value images.

Other methods are more specific and thus are suited for specific application areas. Additionally, some
application areas are part of another application area. To make the relations more obvious, for the
following application areas the corresponding methods and related application areas are listed:

• Color Inspection (page 6)

• Completeness Check (page 6)

• Identification (page 6)

• Measuring and Comparison 2D (page 7)

• Measuring and Comparison 3D (page 7)

• Object Recognition 2D (page 8)

• Object Recognition 3D (page 8)

G
ui

de
to

M
et

ho
ds

6 Guide to HALCON Methods

• Position Recognition 2D (page 8)

• Position Recognition 3D (page 9)

• Print Inspection (page 9)

• Quality Inspection (page 10)

• Robot Vision (page 10)

• Security System (page 10)

• Surface Inspection (page 11)

• Texture Inspection (page 11)

1.1 Color Inspection

For color inspection, see the descriptions for Color Processing on page 173.

1.2 Completeness Check

Completeness checks can be realized by different means. Common approaches are:

• Object and position recognition 2D/3D (see page 8 ff), which is suitable, e.g., when inspecting
objects on an assembly line.

• Variation Model on page 143, which compares images containing similar objects and returns the
difference between them considering a certain tolerance at the object’s border.

1.3 Identification

Dependent on the symbols or objects you have to identify, the following methods are suitable:

• Identify symbols or characters

– Bar Code on page 211

– Data Code on page 233

– OCR on page 245

• Identify general objects

– Object and position recognition 2D/3D (see page 8 ff)

1.4 Measuring and Comparison 2D 7

1.4 Measuring and Comparison 2D

For measuring 2D features in images, several approaches are available. In the Solution Guide III-B, sec-
tion 4.1 on page 29, a graph leads you from the specific features you want to measure and the appearance
of the objects in the image to the suitable measuring approach. Generally, the following approaches are
common:

• Blob Analysis on page 31 for objects that consist of regions of similar gray value, color, or texture.

• Contour Processing on page 83 for objects that are represented by clear-cut edges. The contours
can be obtained by different means:

– Edge Filtering on page 63 if pixel precision is sufficient.
– Edge and Line Extraction on page 73 if subpixel precision is needed.

• Matching on page 97 for objects that can be represented by a template. Matching comprises
different approaches. For detailed information about matching see the Solution Guide II-B.

• 1D Measuring on page 49 if you want to obtain the positions, distances, or angles of edges that
are measured along a line or an arc. More detailed information can be found in the Solution Guide
III-A.

1.5 Measuring and Comparison 3D

For measuring in 3D, the following approaches are available:

• The approaches used for measuring and comparison 2D (see page 7) in combination with a camera
calibration (see Solution Guide III-C, section 3.2 on page 40) for measuring objects that are viewed
by a single camera and that lie in a single plane.

• Pose estimation (Solution Guide III-C, chapter 4 on page 75) for the estimation of the poses of 3D
objects that are viewed by a single camera and for which knowledge about their 3D model (e.g.,
known points, known circular or rectangular shape) is available.

3D reconstruction is an important subcategory of 3D measuring and comprises the following methods:

• Stereo for measuring in images obtained by a binocular or multi-view stereo system on page 277.
Further information can be found in the Solution Guide III-C, chapter 5 on page 105.

• Laser triangulation using the sheet-of-light technique (Solution Guide III-C, chapter 6 on page
139) for measuring height profiles of an object by triangulating the camera view with a projected
light line.

• Depth from focus (Solution Guide III-C, chapter 7 on page 157) for getting depth information
from a sequence of images of the same object but with different focus positions.

• Photometric Stereo (Reference Manual, chapter “3D Reconstruction . Photometric Stereo”) for
getting information about an object’s shape because of its shading behavior (e.g., by the operator
phot_stereo).

G
ui

de
to

M
et

ho
ds

8 Guide to HALCON Methods

1.6 Object Recognition 2D

For finding specific objects in images, various methods are available. Common approaches comprise:

• Blob Analysis on page 31 for objects that are represented by regions of similar gray value, color,
or texture.

• Contour Processing on page 83 for objects that are represented by clear-cut edges. The contours
can be obtained by different means:

– Edge Filtering on page 63 if pixel precision is sufficient.

– Edge and Line Extraction on page 73 if subpixel precision is needed.

• Matching on page 97 for objects that can be represented by a template. Matching comprises
different approaches. For detailed information about matching see the Solution Guide II-B.

• Classification on page 155 for the recognition of objects by a classification using, e.g., Gaussian
mixture models, neural nets, or support vector machines. For more detailed information about
classification see the Solution Guide II-D.

• Color Processing on page 173 for the recognition of objects that can be separated from the back-
ground by their color.

• Texture Analysis on page 189 for the recognition of objects that can be separated from the back-
ground by their specific texture.

• Movement detection (see section 1.13 on page 10) for the recognition of moving objects.

1.7 Object Recognition 3D

For the recognition of 3D objects that are described by a 3D Computer Aided Design (CAD) model, see
the descriptions for 3D Matching on page 127. For the recognition of planar objects that can be oriented
arbitrarily in the 3D space, see the descriptions for perspective, deformable matching and descriptor-
based matching in the chapter about Matching on page 97 for the uncalibrated case and in the Solution
Guide III-C, chapter 4 on page 75 for the calibrated case.

1.8 Position Recognition 2D

In parts, the approaches for measuring 2D features are suitable to get the position of objects. In the
Solution Guide III-B, section 4.1 on page 29, a graph leads you from several specific features, amongst
others the object position, and the appearance of the objects in the image to the suitable approach. For
position recognition, in particular the following approaches are common:

• Blob Analysis on page 31 for objects that consist of regions of similar gray value, color, or texture.

1.9 Position Recognition 3D 9

• Contour Processing on page 83 for objects that are represented by clear-cut edges. The contours
can be obtained by different means:

– Edge Filtering on page 63 if pixel precision is sufficient.

– Edge and Line Extraction on page 73 if subpixel precision is needed.

• Matching on page 97 for objects that can be represented by a template. Matching comprises
different approaches. For detailed information about matching see the Solution Guide II-B.

• 1D Measuring on page 49 if you want to obtain the positions of edges that are measured along a
line or an arc. More detailed information can be found in the Solution Guide III-A.

1.9 Position Recognition 3D

For the position recognition of 3D objects, the following approaches are available:

• The approaches used for measuring and comparison 2D (see page 7) in combination with a camera
calibration (see Solution Guide III-C, section 3.2 on page 40) for measuring objects that are viewed
by a single camera, and which lie in a single plane.

• Pose estimation (Solution Guide III-C, chapter 4 on page 75) for the estimation of the poses of 3D
objects that are viewed by a single camera and for which knowledge about their 3D model (e.g.,
known points, known circular or rectangular shape) is available.

• Stereo for measuring positions in images obtained by a binocular stereo system on page 277 or a
multi-view stereo system. Further information can be found in the Solution Guide III-C, chapter 5
on page 105.

• 3D matching on page 127 for objects that are searched for based on a 3D Computer Aided Design
(CAD) model.

1.10 Print Inspection

For print inspection, the suitable method depends on the type of print you need to inspect:

• Optical character verification (Reference Manual, chapter “Inspection . OCV”) for the verification
of characters.

• Data Code on page 233 for inspecting the quality of a printed 2D data code symbol. Further
information can be found in the Solution Guide II-C, section 6 on page 51.

• Variation Model on page 143, which compares images containing similar objects and returns the
difference between them considering a certain tolerance at the object’s border.

• Component-based matching (part of Matching on page 97), if the print is built by several compo-
nents which may vary in their relation to each other (orientation and distance) within a specified
tolerance.

G
ui

de
to

M
et

ho
ds

10 Guide to HALCON Methods

1.11 Quality Inspection

How to inspect the quality of an object depends on the features describing the quality. The following
application areas and the methods used by them can be applied for quality inspection:

• Surface inspection (see page 11) if, e.g., scratches in an object’s surface have to be detected.

• Completeness check (see page 6) if you need to check an object for missing parts.

• Measuring and comparison 2D/3D (see page 7 ff) if an object has to fulfill certain requirements
related to its area, position, orientation, dimension, or number of parts.

Additionally, Classification on page 155 can be used to check the color or texture of objects. For more
detailed information about classification see the Solution Guide II-D.

1.12 Robot Vision

For robot vision, you can combine the approaches for object and position recognition 2D/3D (see page 8
ff) with the hand-eye calibration described in the Solution Guide III-C, chapter 8 on page 173.

1.13 Security System

For a sequence analysis or movement detection you can use, e.g., one of the following approaches:

• Blob Analysis on page 31, e.g., by using the operator dyn_threshold to obtain the difference
between two images and thus detect moving objects. The approach is fast, but detects objects only
as long as they are moving.

• Background estimator (Reference Manual, chapter “Tools . Background Estimator”) for the recog-
nition of moving objects even if they stop temporarily. It adapts to global changes concerning, e.g.,
illumination.

• Optical flow (Reference Manual, chapter “Filters . Match”) for the recognition of moving ob-
jects even if they stop temporarily. Because of complex calculations, it is slower than the other
approaches, but additionally returns the velocity for each object.

• Kalman filter (Reference Manual, chapter “Tools . Kalman Filter”) can be applied after the recog-
nition of moving objects to predict the future positions of objects.

For the recognition of, e.g., irises or faces, Classification on page 155 may be suitable. For more detailed
information about classification see the Solution Guide II-D.

Examples solving different tasks relevant for security systems can be found via the Open Example dialog
inside HDevelop for the category Industry/Surveillance and Security.

1.14 Surface Inspection 11

1.14 Surface Inspection

For surface inspection, several approaches are available:

• Via comparison with a reference image

– Variation Model on page 143, which compares images containing similar objects and returns
the difference between them. This is suited especially if you need to detect irregularities that
are placed inside the object area, whereas small irregularities at the object’s border can be
tolerated.

• Via comparison with a reference pattern or color

– Texture Analysis on page 189
– Color Processing on page 173
– Classification on page 155 (for more detailed information about classification see the Solu-

tion Guide II-D)

• Via defect description for uniformly structured surfaces

– Blob Analysis on page 31 for objects that consist of regions of similar gray value, color, or
texture.

– Contour Processing on page 83 for objects that are represented by clear-cut edges. The
contours can be obtained by an Edge Filtering on page 63 if pixel precision is sufficient, or
by an Edge and Line Extraction on page 73 if subpixel precision is needed.

If a single image is not suited to cover the object to inspect, several approaches exist to combine images
after their acquisition:

• Calibrated mosaicking (Solution Guide III-C, chapter 9 on page 187) for a high-precision mo-
saicking of a discrete number of overlapping images obtained by two ore more cameras.

• Uncalibrated mosaicking (Solution Guide III-C, chapter 10 on page 199) for a less precise mo-
saicking of a discrete number of overlapping images obtained as an image sequence.

• Combination of lines obtained by a line scan camera to so-called pages (Solution Guide II-A,
section 6.6 on page 46) for inspecting continuous material on an assembly line.

1.15 Texture Inspection

Common approaches for texture inspection are:

• Fast Fourier Transformation (see section 14.6 on page 202)

• Classification on page 155 (for more detailed information about classification see the Solution
Guide II-D)

• Texture Analysis on page 189

G
ui

de
to

M
et

ho
ds

12 Guide to HALCON Methods

Image Acquisition 13

Chapter 2

Image Acquisition

Obviously, the acquisition of images is a task that must be solved in all machine vision applica-
tions. Unfortunately, this task mainly consists of interacting with special, non-standardized hard-
ware in the form of the image acquisition device, e.g., a frame grabber board or an IEEE 1394
camera. To let you concentrate on the actual machine vision problem, HALCON provides you
with interfaces performing this interaction for a large number of image acquisition devices (see
http://www.mvtec.com/halcon/framegrabber for the latest information).

Within your HALCON application, the task of image acquisition is thus reduced to a few lines of code,
i.e., a few operator calls. What’s more, this simplicity is not achieved at the cost of limiting the avail-
able functionality: Using HALCON, you can acquire images from various configurations of acquisition
devices and cameras in different timing modes.

Besides acquiring images from cameras, HALCON also allows you to input images that were stored in
files (supported formats: BMP, TIFF, GIF, JPEG, PNG, PNM, PCX, XWD). Of course, you can also
store acquired images in files.

2.1 Basic Concept

Acquiring images with HALCON basically consists of three steps. Reading images from files is even
simpler: It consists of a single call to the operator read_image.

2.1.1 Open Image Acquisition Device

If you want to acquire images from a frame grabber board or an image acquisition device like an IEEE
1394 camera, the first step is to connect to this device. HALCON relieves you of all device-specific
details; all you need to do is to call the operator open_framegrabber, specifying the name of the
corresponding image acquisition interface.

There is also a "virtual" image acquisition interface called File. As its name suggests, this "frame
grabber" reads images from files, and also from so-called image sequence files. The latter are HALCON-
specific files, typically with the extension .seq; they contain a list of image file names, separated by new

Im
ag

e
A

cq
ui

si
tio

n

14 Image Acquisition

Close Image Acquisition
Device

Acquire Image(s)

Open Image Acquisition
Device

lines (you can create it easily using a text editor). If you connect to such a sequence, subsequent calls to
grab_image return the images in the sequence specified in the file. Alternatively, you can also read all
images from a specific directory. Then, you do not have to create a sequence file, but simply specify the
directory name instead of the sequence file as value for the parameter ’CameraType’. Now, subsequent
calls to grab_image return the images found in the specified image directory. Both approaches are
useful if you want to test your application with a sequence of image files and later switch to a real image
acquisition device.

2.1.2 Acquire Image(s)

Having connected to the device, you acquire images by simply calling grab_image.

To load an image from disk, you use read_image. Images are searched for in the current directory and
in the directories specified in the environment variable HALCONIMAGES.

2.1.3 Close Image Acquisition Device

At the end of the application, you close the connection to the image acquisition device to free its resources
with the operator close_framegrabber.

2.1.4 A First Example

As already remarked, acquiring images from file corresponds to a single operator call:

read_image (Image, 'particle')

The following code processes images read from an image sequence file:

2.2 Extended Concept 15

SequenceName := 'datacode/ecc200/ecc200_cpu_light.seq'
open_framegrabber ('File', 1, 1, 0, 0, 0, 0, 'default', -1, 'default', -1, \

'default', SequenceName, 'default', -1, -1, FGHandle)

while (1)

grab_image (Image, FGHandle)

... process image ...

endwhile

2.2 Extended Concept

In real applications, it is typically not enough to tell the camera to acquire an image; instead, it may
be important that images are acquired at the correct moment or rate, and that the camera and the im-
age acquisition interface are configured suitably. Therefore, HALCON allows to further parameterize
the acquisition process. In HDevelop, an assistant is provided via the menu item Assistants > Im-

age Acquisition that assists you when selecting your image source, adjusting the parameters, and
generating suitable code.

Close Image Acquisition
Device

Acquire Image(s)

Set Parameters

Open Image Acquisition
Device

2.2.1 Open Image Acquisition Device

When connecting to your image acquisition device with open_framegrabber, the main parameter is
the name of the corresponding HALCON image acquisition interface. As a result, you obtain a so-
called handle, with which you can access the device later, e.g., to acquire images with grab_image or
grab_image_async.

With other parameters of open_framegrabber you can describe the configuration of image acquisition
device(s) and camera(s), which is necessary when using more complex configurations, e.g., multiple
cameras connected to different ports on different frame grabber boards. Further parameters allow you to
specify the desired image format (size, resolution, pixel type, color space). For most of these parameters

Im
ag

e
A

cq
ui

si
tio

n

16 Image Acquisition

there are default values that are used if you specify the values ’default’ (string parameters) or -1
(numeric parameters).

With the operator info_framegrabber you can query information like the version number of the inter-
face or the available boards, port numbers, and camera types.

Detailed information about the parameters of open_framegrabber can be found in the Solution Guide
II-A (configuring the connection: section 3 on page 11; configuring the acquired image: section 4 on
page 19).

2.2.2 Set Parameters

As described above, you already set parameters when connecting to the image acquisition device with
open_framegrabber. These parameters (configuration of image_acquisition device(s) / camera(s) and
image size etc.) are the so-called general parameters, because they are common to almost all image ac-
quisition interfaces. However, image acquisition devices differ widely regarding the provided function-
ality, leading to many more special parameters. These parameters can be customized with the operator
set_framegrabber_param.

With the operator get_framegrabber_param you can query the current values of the common and
special parameters.

Detailed information about setting parameters can be found in the Solution Guide II-A in section 4 on
page 19.

2.2.3 Acquire Image(s)

Actually, in a typical machine vision application you will not use the operator grab_image to acquire
images, but grab_image_async. The difference between these two operators is the following: If you
acquire and process images in a loop, grab_image always requests the acquisition of a new image and
then blocks the program until the acquisition has finished. Then, the image is processed, and afterwards,
the program waits for the next image. When using grab_image_async, in contrast, images are acquired
and processed in parallel: While an image is processed, the next image is already being acquired. This,
of course, leads to a significant speedup of the applications.

HALCON offers many more modes of acquiring images, e.g., triggering the acquisition by external sig-
nals or acquiring images simultaneously from multiple cameras. Detailed information about the various
modes of acquiring images can be found in the Solution Guide II-A in section 5 on page 23.

2.3 Programming Examples

Example programs for all provided image acquisition interfaces can be found in the directory %HAL-

CONEXAMPLES%\hdevelop\Image\Acquisition. Further examples are described in the Solution
Guide II-A.

2.4 Selecting Operators 17

2.4 Selecting Operators

2.4.1 Open Image Acquisition Device

Standard:

open_framegrabber

Advanced:

info_framegrabber

2.4.2 Set Parameters

Standard:

set_framegrabber_param, get_framegrabber_param

2.4.3 Acquire Image(s)

Standard:

read_image, grab_image, grab_image_async

2.4.4 Close Image Acquisition Device

Standard:

close_framegrabber

2.5 Tips & Tricks

2.5.1 Direct Access to External Images in Memory

You can also pass externally created images, i.e., the raw image matrix in the computer’s
memory, to HALCON using the operators gen_image1, gen_image3, gen_image1_extern or
gen_image3_extern. For an example see the Solution Guide II-A, section 6.2 on page 38.

Im
ag

e
A

cq
ui

si
tio

n

18 Image Acquisition

2.5.2 Unsupported Image Acquisition Devices

If you want to use an image acquisition device that is currently not supported by HALCON, i.e., for
which no HALCON image acquisition interface exists, you can create your own interface; how to do this
is described in detail in the Image Acquisition Interface Programmer’s Manual.

Region Of Interest 19

Chapter 3

Region Of Interest

The concept of regions of interest (ROIs) is essential for machine vision in general and for HALCON in
particular. The aim is to focus the processing on a specific part of the image. This approach combines
region information with the image matrix: Only the image part corresponding to the region remains
relevant, which reduces the number of pixels to be processed.

The advantages of using ROIs are manifold. First of all, it is a very good method to speed up a process
because fewer pixels need to be processed. Furthermore, it focuses processing, e.g., a gray value feature
is usually calculated only for a part of the image. Finally, ROIs are used to define templates, e.g., for
matching. HALCON allows to make full use of the concept of ROIs because it enables using arbitrary
shapes for the regions. This means that you are not limited to standard shapes like rectangles or polygons,
but can really use any form - the best one to solve a given problem.

3.1 Basic Concept

Making use of ROIs is split into two simple parts: creating regions and combining them with the image.

Create ROI

Create Region

3.1.1 Create Region

HALCON provides many ways to create regions, which can then be used as ROIs. The traditional way
is to generate standard shapes like circles, ellipses, rectangles, or polygons. In addition, regions can
be derived by converting them from other data types like XLD, by segmenting an image, or by user
interaction.

R
eg

io
n

O
fI

nt
er

es
t

20 Region Of Interest

3.1.2 Create ROI

By combining a region with an image, the region assumes the role of an ROI, i.e., it defines which part
of the image must be processed. In HALCON, the ROI is also called the domain of the image. This
term comes from mathematics where an image can be treated as a function that maps coordinates to
gray values. An ROI reduces the domain of this function from the complete image to the relevant part.
Therefore, the operator to combine regions and images is called reduce_domain. This simple operator
fulfills the desired task in almost all applications.

3.1.3 A First Example

As an example for the basic concept, the following program shows all important steps to make use of an
ROI. The image is acquired from file. Inside the image, only a circular part around the center should be
processed. To achieve this, a circular region is generated with gen_circle. This region is combined
with the image using reduce_domain. This has the effect that only the pixels of the ROI are processed
when calling an operator. If, e.g., the operator edges_sub_pix is applied to this image, the subpixel
accurate contours are extracted only inside the circle. To make this visible, some visualization operators
are added to the end of the example program.

read_image (Image, 'mreut')
gen_circle (ROI, 256, 256, 200)

reduce_domain (Image, ROI, ImageReduced)

edges_sub_pix (ImageReduced, Edges, 'lanser2', 0.5, 20, 40)

dev_display (Image)

dev_display (ROI)

dev_display (Edges)

Figure 3.1: Processing the image only within the circular ROI.

3.2 Extended Concept 21

3.2 Extended Concept

When we take a closer look at ROIs, extra steps become important if an application needs to be more
flexible.

Visualize Results

Create ROI

Align ROIs Or Images

Process Regions

Create Region

Draw Region

Segment Image(s)

3.2.1 Segment Image(s)

Very typical for HALCON is the creation of ROIs by a segmentation step. Instead of having a predefined
ROI, the parts of the image that are relevant for further processing are extracted from the image using im-
age processing methods. This approach is possible because ROIs are nothing else but normal HALCON
regions, and therefore share all their advantages like efficient processing and arbitrary shapes (see Quick
Guide in section 2.1.2.2 on page 17 for more information on HALCON regions). The segmentation of
regions used for ROIs follows the same approach as standard blob analysis. For more details, please
refer to the description of this step on page 32.

3.2.2 Draw Region

The standard way to specify ROIs is to draw the shape interactively using the mouse. To make this easy,
HALCON provides special operators for standard shapes and free-form shapes. All operators for this
kind of action start with the prefix draw_. The drawing is performed by making use of the left mouse
button (drawing, picking, and dragging) and finished by clicking the right mouse button. For each such

R
eg

io
n

O
fI

nt
er

es
t

22 Region Of Interest

draw-operator HALCON provides operators to generate regions by using the returned parameters (see
the description of the step Create Region on page 19). Operators for mouse interaction can be found in
the reference manual in the chapter “Graphics . Drawing”. More information on user interaction can be
also found in the chapter Visualization on page 289.

3.2.3 Create Region

The standard way is to generate regions based on the coordinates and dimensions returned by a
user interaction or by coordinate values stored in a file. In this case, operators like gen_circle,
gen_rectangle2, or gen_region_polygon_filled are used. More advanced are special shapes used
to guide a preprocessing step to save execution time. Typical examples for this are grids of lines or dots
or checker boards. With these shapes, the images can be covered in a systematic way and checked for
specific object occurrences. If you want to segment, e.g., blobs of a given minimum size it is sufficient to
use in a first step a search grid that is finer than the minimum object size to locate fragments. In a second
step these fragments are dilated (dilation_rectangle1) and the segmentation method is called once
again, now within this enlarged area. If the objects cover only a relatively small area of the image this
approach can speed up the process significantly.

3.2.4 Process Regions

Sometimes the shape of a given ROI, either generated from the program or defined by the user, does
not fulfill the requirements. Here, HALCON provides many operators to modify the shape to adapt it
accordingly. Often used operators are, e.g., fill_up to fill holes inside the region, shape_trans to
apply a general transformation like the convex hull or the smallest rectangle, or morphological operators
like erosion_circle to make the region smaller or closing_circle to fill gaps. For more details,
please refer to the description of this step on page 35.

3.2.5 Align ROIs Or Images

Sometimes the coordinates of an ROI depend on the position of another object in the image. If the object
moves, the ROI must be moved (aligned) accordingly. This is achieved by first locating the object using
template matching. Based on the determined position and the orientation, the coordinates of the ROIs
are then transformed.

How to perform alignment using shape-based matching is described in the Solution Guide II-B in sec-
tion 2.4.3.2 on page 42.

3.2.6 Create ROI

This step combines the region and the image to make use of the region as the domain of the image.
The standard method that is recommended to be used is reduce_domain. It has the advantage of being
safe and having a simple semantics. rectangle1_domain is a shortcut for generating rectangular ROIs
(instead of calling gen_rectangle1 and reduce_domain in sequence). For advanced applications
change_domain can be used as a slightly faster version than reduce_domain. This operator does not

3.3 Programming Examples 23

perform an intersection with the existing domain and does not check if the region is outside the image -
which will cause a system crash when applying an operator to the data afterwards if the region lies partly
outside the image. If the programmer ensures that the input region is well defined, this is a way to save
(a little) execution time.

3.2.7 Visualize Results

Finally, you might want to display the ROIs or the reduced images. With the operator get_domain, the
region currently used by the image can be accessed and displayed (and processed) like any other region.
When displaying an image, e.g., with disp_image, only the defined pixels are displayed. Pixels in the
graphics window outside the domain of the image will not be modified.

For detailed information see the description of this method on page 289.

3.3 Programming Examples

This section gives a brief introduction to programming ROIs in HALCON. Two examples show the
principles of region generation, combining these with images, and then processing the data.

3.3.1 Processing inside a User Defined Region

Example: solution_guide/basics/critical_points.hdev

Figure 3.2 shows an image with marks that are used for a camera calibration in a 3D application. Here,
we assume that the marks must be extracted in a given part of the image only.

a) b)

Figure 3.2: (a) Original image with drawn ROI; (b) reduced image with extracted points.

To achieve this, the user draws a region of interest with the mouse. The corresponding operator is
draw_region. It has the window handle returned by dev_open_window as input and returns a region

R
eg

io
n

O
fI

nt
er

es
t

24 Region Of Interest

when the right mouse button is pressed. The operator reduce_domain combines this region with the
image.

draw_region (Region, WindowHandle)

reduce_domain (Image, Region, ImageReduced)

When calling the point extraction operator critical_points_sub_pix on this reduced image, only
points inside the ROI are found. The final part of the program shows how to display these points overlaid
on the image.

critical_points_sub_pix (ImageReduced, 'facet', 1.5, 8, RowMin, ColumnMin, \

RowMax, ColumnMax, RowSaddle, ColSaddle)

dev_clear_window ()

dev_display (ImageReduced)

dev_set_color ('yellow')
for i := 0 to |RowSaddle|-1 by 1

gen_cross_contour_xld (Cross, RowSaddle[i], ColSaddle[i], 25, 0.785398)

dev_display (Cross)

endfor

3.3.2 Interactive Partial Filtering of an Image

Example: solution_guide/basics/median_interactive.hdev

The task is to filter an image with a median filter only at the points where the user clicks with the mouse
into the image, i.e., in the graphics window displaying the image.

Figure 3.3: Partially filtered image.

3.3 Programming Examples 25

To do this, a loop is used inside which the mouse position is continuously requested with
get_mposition. Because this operator throws an exception if the mouse is outside the graphics window
the call is protected with dev_set_check.

Button := 0

while (Button # 4)

Row := -1

Column := -1

dev_set_check ('~give_error')
get_mposition (WindowHandle, Row, Column, Button)

dev_set_check ('give_error')

If the mouse is over the window, a circular region is displayed, which shows where the filter would be
applied.

if (Row >= 0 and Column >= 0)

gen_circle (Circle, Row, Column, 20)

boundary (Circle, RegionBorder, 'inner')
dev_display (RegionBorder)

If the left mouse button is pressed, median_image must be applied in the local neighborhood of the
current mouse position. This is done by generating a circle with gen_circle and then calling re-

duce_domain.

if (Button = 1)

reduce_domain (Image, Circle, ImageReduced)

Now, the filter is called with this reduced image and the result is painted back into the input image for
possible repetitive filtering. The loop will be terminated when the right mouse button is clicked.

median_image (ImageReduced, ImageMedian, 'circle', 5, \

'mirrored')
overpaint_gray (Image, ImageMedian)

endif

3.3.3 Inspecting the Contours of a Tool

Example: hdevelop/Applications/Measuring-2D/circles.hdev

The task of this example is to inspect the contours of the tool depicted in figure 3.4.

Because the subpixel-precise contour extraction is time-consuming, in a first step an ROI is created via
a standard blob analysis (see Blob Analysis on page 31): With a threshold operator the object to be
measured is extracted. This region is converted to its boundary, omitting the pixels at the image border.

fast_threshold (Image, Region, 0, 120, 7)

boundary (Region, RegionBorder, 'inner')
clip_region_rel (RegionBorder, RegionClipped, 5, 5, 5, 5)

R
eg

io
n

O
fI

nt
er

es
t

26 Region Of Interest

Figure 3.4: Fitting circles to the contours of the tool.

The result is a small region close to the edge of the object. The boundary of the region, i.e., the edge,
is dilated to serve as the ROI for the edge extraction. Now, the subpixel-precise edge extractor is called
and the contour is segmented into straight lines and circular arcs.

dilation_circle (RegionClipped, RegionDilation, 2.5)

reduce_domain (Image, RegionDilation, ImageReduced)

edges_sub_pix (ImageReduced, Edges, 'lanser2', 0.5, 40, 60)

segment_contours_xld (Edges, ContoursSplit, 'lines_circles', 5, 4, 3)

For the segments that represent arcs, the corresponding circle parameters are determined. For inspection
purposes, circles with the same parameters are generated and overlaid on the image (see also Contour
Processing on page 83).

get_contour_global_attrib_xld (ObjectSelected, 'cont_approx', Attrib)

if (Attrib > 0)

fit_circle_contour_xld (ObjectSelected, 'ahuber', -1, 2, 0, 3, 2, \

Row, Column, Radius, StartPhi, EndPhi, \

PointOrder)

gen_circle_contour_xld (ContCircle, Row, Column, Radius, 0, \

rad(360), 'positive', 1.0)

dev_display (ContCircle)

endif

3.4 Selecting Operators

3.4.1 Segment Image(s)

Please refer to the detailed operator list for the step Segment Image(s) on page 44.

3.4 Selecting Operators 27

3.4.2 Draw Region

Standard:

draw_circle, draw_rectangle1, draw_rectangle2, draw_region

Advanced:

draw_circle_mod, draw_rectangle1_mod, draw_rectangle2_mod, draw_xld, draw_xld_mod

3.4.3 Create Region

Standard:

gen_circle, gen_ellipse, gen_rectangle2, gen_region_polygon_filled

Advanced:

gen_checker_region, gen_grid_region

More operators to generate regions can be found in the reference manual in chapter “Regions . Creation”.

3.4.4 Process Regions

Please refer to the detailed operator list for the step Process Regions on page 44.

3.4.5 Align ROIs Or Images

Operators for aligning ROIs or images are described in the Solution Guide II-B.

3.4.6 Create ROI

Standard:

reduce_domain, rectangle1_domain

Advanced:

change_domain, full_domain, add_channels

3.4.7 Visualize Results

Please refer to the operator list for the method Visualization (see section 19.4 on page 297).

R
eg

io
n

O
fI

nt
er

es
t

28 Region Of Interest

3.5 Relation to Other Methods

One class of operators does not follow the standard rules for ROI handling: the operators of the measure
tool (see the description of this method on page 49). Here, the ROI is defined during the creation of
a tool (gen_measure_arc and gen_measure_rectangle2) by specifying the coordinates as numeric
values. The domain defined for the image will be ignored in this case.

3.6 Tips & Tricks

3.6.1 Reuse ROI

If an ROI is used multiple times it is useful to save the region to file and load it at the beginning of the
application. Storing to file is done using write_region, loading with read_region.

3.6.2 Effect of ROI Shape on Speed Up

ROIs are a perfect way to save execution time: The smaller the ROI, the faster the application. This can
be used as a general rule. If we consider this in more detail, we also need to think about the shape of
ROIs. Because ROIs are based on the HALCON regions they use runlength encoding (see Quick Guide in
section 2.1.2.2 on page 17. for more information on HALCON regions). This type of encoding is perfect
if the runs are long. Therefore, a horizontal line can be both stored and processed more efficiently than a
vertical line. This holds as well for the processing time of ROIs. Obviously this type of overhead is very
small and can only be of importance with very fast operators like threshold.

3.7 Advanced Topics

3.7.1 Filter masks and ROIs

If a filter is applied with a reduced domain, the result along the ROI boundary might be surprising
because gray values lying outside the boundary are used as input for the filter process. To understand
this, you must consider the definition of domains in this context: A domain defines for a filter for which
input pixels output pixels must be calculated. But pixels outside the domain (which lie within the image
matrix) can be used for processing. If this behavior is not desired, the operator expand_domain_gray
can be used to propagate the border gray values outward. The result looks as if the boundary is copied
multiple times with larger and larger distances.

3.7.2 Binary Images

In some applications, it might be necessary to use ROIs that are available as binary images. To con-
vert these to HALCON regions, you must use gen_image1 to convert them into a HALCON image,
followed by threshold to generate the region. The conversion back can easily be achieved using re-

gion_to_bin followed by get_image_pointer1. It is also possible to import binary image files using
read_region.

3.7 Advanced Topics 29

3.7.3 Problems caused by Gray Values outside of the Image Domain

Operators that have an image as output (e.g., most filter operators) only return pixels that correspond to
the pixels of the input domain.

For performance reasons, pixels that lie outside of the image domain become ’undefined’. This
means that they are either assigned a random gray value or a gray value of 0 if the system parame-
ter init_new_image is set to true (= default). In certain cases these ’undefined’ pixels might lead to
problems which can, however, easily be handled.

Expanding the resulting image to the full domain with full_domain, will lead to artifacts appearing
outside of the former image domain. Another cause of problems are undefined values outside of the
domain if more than one filter is used in sequence as the filters consider the undefined values close to the
domain border as well. This means that with every following filter the error increases, starting from the
border to the middle. The following paragraphs present four strategies for solving those problems.

Errors caused by undefined pixels can easily be prevented by, e.g., choosing a domain that is considerably
larger than the image part that is actually needed and reducing the image domain (e.g., with the operators
erosion_rectangle1 and reduce_domain) by half of the filter width before applying the next filter.
In doing so, those parts of the image containing incorrect values are cut off and therefore will not increase
the error for the next filter operation.

Another option is to choose the domain exactly the size of the interesting part within the image and
then calling the operator expand_domain_gray before applying a filter. This operator copies the pixels
inside of the border to the outside of the border and therefore avoids errors caused by pixels that are
undefined outside of the domain. Subsequently, the domain can again be reduced to it’s original size.
This process should be repeated for every following filter operation. Note, however, that this option
increases the runtime significantly.

If runtime is not an issue, the operator full_domain can be called before applying the first filter to the
image. That way the whole image is defined as domain and undefined pixels can be avoided completely.

Another possibility of achieving an image without undefined pixels is by calling the operator
crop_domain before applying a filter. The operator crop_domain crops the image to the size of the
domain which means that the domain then covers a complete smaller image. Note, however, that for
the cropped image the coordinate system has changed in relation to the original image which will influ-
ence all following applications depending on the image coordinate system (e.g., calculating the center of
gravity).

R
eg

io
n

O
fI

nt
er

es
t

30 Region Of Interest

Blob Analysis 31

Chapter 4

Blob Analysis

The idea of blob analysis is quite easy: In an image the pixels of the relevant objects (also called fore-
ground) can be identified by their gray value. For example, figure 4.1 shows tissue particles in a liquid.
These particles are bright and the liquid (background) is dark. By selecting bright pixels (thresholding)
the particles can be detected easily. In many applications this simple condition of dark and bright pixels
no longer holds, but the same results can be achieved with extra pre-processing or alternative methods
for pixel selection / grouping.

a) b)

Figure 4.1: Basic idea of blob analysis: (a) original image, (b) extracted blobs with calculated center
points.

The advantage of blob analysis is the extreme flexibility that comes from the huge number of operators
that HALCON offers in this context. Furthermore, these methods typically have a very high performance.

B
lo

b
A

na
ly

si
s

32 Blob Analysis

Methods known from blob analysis can also be combined with many other vision tasks, e.g., as a pre-
processing step for a flexible generation of regions of interest.

4.1 Basic Concept

Blob analysis mainly consists of three parts:

Extract Features

Segment Image(s)

Acquire Image(s)

4.1.1 Acquire Image(s)

First, an image is acquired.

For detailed information see the description of this method on page 13.

4.1.2 Segment Image(s)

Having acquired the image, the task is to select the foreground pixels. This is also called segmentation.
The result of this process typically is referred to as blobs (binary large objects). In HALCON, the data
type is called a region.

4.1.3 Extract Features

In the final step, features like the area (i.e., the number of pixels), the center of gravity, or the orientation
are calculated.

4.1.4 A First Example

An example for this basic concept is the following program, which belongs to the example explained
above. Here, the image is acquired from file. All pixels that are brighter than 120 are selected using
threshold. Then, an extra step is introduced which is not so obvious: The operator connection
separates the set of all bright pixels into so called connected components. The effect of this step is that
we now have multiple regions instead of the single region that is returned by threshold. The last step

4.2 Extended Concept 33

of this program is the calculation of some features. Here, the operator area_center determines the size
(number of pixels) and the center of gravity. Please note that area_center returns multiple values for
all three feature parameters (one value for each connected component).

read_image (Image, 'particle')
threshold (Image, BrightPixels, 120, 255)

connection (BrightPixels, Particles)

area_center (Particles, Area, Row, Column)

4.2 Extended Concept

In many cases the segmentation of blobs will be more advanced than in the above example. Reasons for
this are, e.g., clutter or inhomogeneous illumination. Furthermore, postprocessing like transforming the
features to real world units or visualization of results are often required.

4.2.1 Use Region Of Interest

Blob analysis can be sped up by using a region of interest. The more the region in which the blobs are
searched can be restricted, the faster and more robust the search will be.

For detailed information see the description of this method on page 19.

4.2.2 Align ROIs Or Images

In some applications, the regions of interest must be aligned relative to another object. Alternatively, the
image itself can be aligned, e.g., by rotating or cropping it.

How to perform alignment using shape-based matching is described in the Solution Guide II-B in sec-
tion 2.4.3.2 on page 42.

4.2.3 Rectify Image(s)

Similarly to alignment, it may be necessary to rectify the image, e.g., to remove lens distortions or to
transform the image into a reference point of view.

Detailed information about rectifying images can be found in the Solution Guide III-C in section 3.4 on
page 62.

4.2.4 Preprocess Image(s) (Filtering)

The next important part is the pre-processing of the image. Here, operators like mean_image or
gauss_image can be used to eliminate noise. A fast but less perfect alternative to gauss_image is
binomial_filter. The operator median_image is useful for suppressing small spots or thin lines.
The operator anisotrope_diff is useful for edge-preserving smoothing, and finally fill_interlace

is used to eliminate defects caused by interlaced cameras.

B
lo

b
A

na
ly

si
s

34 Blob Analysis

Visualize Results

Transform Results Into
World Coordinates

Extract Features

Process Regions

Segment Image(s)

Extract Segmentation
Parameters

Preprocess Image(s)
(Filtering)

Rectify Image(s)

Align ROIs Or Images

Use Region Of Interest

Acquire Image(s)

4.2.5 Extract Segmentation Parameters

Instead of using fixed threshold values, they can be extracted dynamically for each image. One example
for this is a gray value histogram that has multiple peaks, one for each object class. Here, you can use
the operators gray_histo_abs and histo_to_thresh.

As an advanced alternative, you can use the operator intensity in combination with a reference image
that contains only background: During setup, you determine the mean gray value of a background region.

4.2 Extended Concept 35

During the inspection, you again determine this mean gray value. If it has changed, you adapt the
threshold accordingly.

4.2.6 Segment Image(s)

For the segmentation various methods can be used. The most simple method is threshold, where one
or more gray value ranges that belong to the foreground objects are specified. Another very common
method is dyn_threshold. Here, a second image is passed as a reference. With this approach, a local
threshold instead of a global threshold is used. These local threshold values are stored in the reference
image. The reference image can either be static by taking a picture of the empty background or can be
determined dynamically with smoothing filters like mean_image.

4.2.7 Process Regions

Once blob regions are segmented, it is often necessary to modify them, e.g., by suppressing small areas,
regions of a given orientation, or regions that are close to other regions. In this context, the morpho-
logical operators opening_circle and opening_rectangle1 are often used to suppress noise and
closing_circle and closing_rectangle1 to fill gaps.

Blobs with a specific feature can be selected with select_shape, select_shape_std, and se-

lect_shape_proto.

4.2.8 Extract Features

To finalize the image processing, features of the blobs are extracted. The type of features needed depends
on the application. A full list can be found in the Reference Manual in the chapters “Regions . Features”
and “Image . Features”.

4.2.9 Transform Results Into World Coordinates

Features like the area or the center of gravity often must be converted to world coordinates. This can be
achieved with the HALCON camera calibration.

How to transform results into world coordinates is described in detail in the Solution Guide III-C in
section 3.3 on page 57.

4.2.10 Visualize Results

Finally, you might want to display the images, the blob (regions), and the features.

For detailed information see the description of this method on page 289.

B
lo

b
A

na
ly

si
s

36 Blob Analysis

4.3 Programming Examples

This section gives a brief introduction to using HALCON for blob analysis.

4.3.1 Crystals

Example: solution_guide/basics/crystal.hdev

Figure 4.2a shows an image taken in the upper atmosphere with collected samples of crystals. The task
is to analyze the objects to determine the frequency of specific shapes. One of the important objects are
the hexagonally shaped crystals.

a) b)

c)

Figure 4.2: Extracting hexagonal crystals: (a) original image with arrows marking the crystals to be ex-
tracted, (b) result of the initial segmentation, (c) finally selected blobs.

First, the image is read from file with read_image. The segmentation of objects is performed with a
local threshold because of the relatively low contrast of the crystals combined with a non-homogeneous
background. The background is determined with the average filter mean_image. The filter mask size is
selected such that it has about three times the width of the dark areas. dyn_threshold now compares
the smoothed with the original gray values, selecting those pixels that are darker by a contrast of 8 gray
values. connection separates the objects into connected components. Figure 4.2b shows the result of
this initial segmentation.

read_image (Image, 'crystal')
mean_image (Image, ImageMean, 21, 21)

dyn_threshold (Image, ImageMean, RegionDynThresh, 8, 'dark')
connection (RegionDynThresh, ConnectedRegions)

4.3 Programming Examples 37

In the following processing step, the task now is to select only the hexagonally shaped crystals. For
this, they are first transformed into their convex hull. This is like putting a rubber band around each
region. From these regions, those that are big (select_shape) and have a given gray value distribution
(select_gray) are selected. The parameters for the selection are determined so that only the relevant
crystals remain (see figure 4.2c).

shape_trans (ConnectedRegions, ConvexRegions, 'convex')
select_shape (ConvexRegions, LargeRegions, 'area', 'and', 600, 2000)

select_gray (LargeRegions, Image, Crystals, 'entropy', 'and', 1, 5.6)

4.3.2 Atoms

Example: solution_guide/basics/atoms.hdev

Specialized microscopes are able to determine the rough location of single atoms. This is useful, e.g., to
analyse the grid change of crystals at a p-n-junction. A segmentation that works perfectly well on images
like these is the watershed method. Here, each dark basin is returned as a single region. Because at the
outer part of the image atoms are only partially visible, the first task is to extract only those that are not
close to the image border. Finally, the irregularity is extracted. This is done by looking for those atoms
that have an abnormal (squeezed) shape (see figure 4.3).

gauss_image (Image, ImageGauss, 5)

watersheds (ImageGauss, Basins, Watersheds)

select_shape (Basins, SelectedRegions1, 'column1', 'and', 2, Width-1)

select_shape (SelectedRegions1, SelectedRegions2, 'row1', 'and', 2, \

Height-1)

select_shape (SelectedRegions2, SelectedRegions3, 'column2', 'and', 1, \

Width-3)

select_shape (SelectedRegions3, Inner, 'row2', 'and', 1, Height-3)

select_shape (Inner, Irregular, 'compactness', 'and', 1.45, 3)

Figure 4.3: Inspecting atom structure.

B
lo

b
A

na
ly

si
s

38 Blob Analysis

4.3.3 Analyzing Particles

Example: hdevelop/Applications/Measuring-2D/particle.hdev

The task of this example is to analyze particles in a liquid. The main difficulty in this application is the
presence of two types of objects: big bright objects and small objects with low contrast. In addition, the
presence of noise complicates the segmentation.

a) b)

Figure 4.4: Extracting the small particles: (a) original image, (b) result.

The program segments the two classes of objects separately using two different methods: global and local
thresholding. With additional post-processing, the small particles can be extracted in a robust manner.

threshold (Image, Large, 110, 255)

dilation_circle (Large, LargeDilation, 7.5)

complement (LargeDilation, NotLarge)

reduce_domain (Image, NotLarge, ParticlesRed)

mean_image (ParticlesRed, Mean, 31, 31)

dyn_threshold (ParticlesRed, Mean, SmallRaw, 3, 'light')
opening_circle (SmallRaw, Small, 2.5)

connection (Small, SmallConnection)

4.3.4 Extracting Forest Features from Color Infrared Image

Example: hdevelop/Applications/Object-Recognition-2D/forest.hdev

4.3 Programming Examples 39

a) b) c)

Figure 4.5: (a) Original image; (b) extracted trees and meadows; (c) extracted roads.

The task of this example is to detect different object classes in the color infrared image depicted in
figure 4.5: trees (coniferous and deciduous), meadows, and roads.

The image data is a color infrared image, which allows to extract roads very easily because of their
specific color. For that, the multi-channel image is split into its three channels and each channel is
investigated individually. Further information about decomposing multi-channel images can be found in
Color Processing on page 173.

read_image (Forest, 'forest_air1')
decompose3 (Forest, Red, Green, Blue)

threshold (Blue, BlueBright, 80, 255)

connection (BlueBright, BlueBrightConnection)

select_shape (BlueBrightConnection, Path, 'area', 'and', 100, 100000000)

Beech trees are segmented in the red channel based on their intensity and minimum size.

threshold (Red, RedBright, 120, 255)

connection (RedBright, RedBrightConnection)

select_shape (RedBrightConnection, RedBrightBig, 'area', 'and', 1500, \

10000000)

closing_circle (RedBrightBig, RedBrightClosing, 7.5)

opening_circle (RedBrightClosing, RedBrightOpening, 9.5)

connection (RedBrightOpening, RedBrightOpeningConnection)

select_shape (RedBrightOpeningConnection, BeechBig, 'area', 'and', 1000, \

100000000)

select_gray (BeechBig, Blue, Beech, 'mean', 'and', 0, 59)

Meadows have similar spectral properties, but are slightly brighter.

B
lo

b
A

na
ly

si
s

40 Blob Analysis

union1 (Beech, BeechUnion)

complement (BeechUnion, NotBeech)

difference (NotBeech, Path, NotBeechNotPath)

reduce_domain (Red, NotBeechNotPath, NotBeechNotPathRed)

threshold (NotBeechNotPathRed, BrightRest, 150, 255)

connection (BrightRest, BrightRestConnection)

select_shape (BrightRestConnection, Meadow, 'area', 'and', 500, 1000000)

The coniferous trees are extracted using the watershed approach with an additional thresholding inside
the basins to get rid of the shadow areas.

union2 (Path, RedBrightClosing, BeechPath)

smooth_image (Red, RedGauss, 'gauss', 4.0)

invert_image (RedGauss, Invert)

watersheds (Invert, SpruceRed, Watersheds)

select_shape (SpruceRed, SpruceRedLarge, 'area', 'and', 100, 5000)

select_gray (SpruceRedLarge, Red, SpruceRedInitial, 'max', 'and', 100, 200)

gen_empty_obj (LocalThresh)

count_obj (SpruceRedInitial, NumSpruce)

for i := 1 to NumSpruce by 1

select_obj (SpruceRedInitial, SingleSpruce, i)

min_max_gray (SingleSpruce, Red, 50, Min, Max, Range)

reduce_domain (Red, SingleSpruce, SingleSpruceRed)

threshold (SingleSpruceRed, SingleSpruceBright, Min, 255)

connection (SingleSpruceBright, SingleSpruceBrightCon)

select_shape_std (SingleSpruceBrightCon, MaxAreaSpruce, 'max_area', 70)

concat_obj (MaxAreaSpruce, LocalThresh, LocalThresh)

endfor

opening_circle (LocalThresh, FinalSpruce, 1.5)

4.3.5 Checking a Boundary for Fins

Example: hdevelop/Applications/Measuring-2D/fin.hdev

The task of this example is to check the outer boundary of a plastic part. In this case, some objects show
fins that are not allowed for faultless pieces (see figure 4.6).

The program first extracts the plastic part and then forms the complement to extract the background
region (in which the fin appears as an indentation).

bin_threshold (Fin, Dark)

difference (Fin, Dark, Background)

This indentation in the background region is then closed using a morphological operator.

closing_circle (Background, ClosedBackground, 250)

Significant differences between the closed region and the original region are production errors.

4.3 Programming Examples 41

Figure 4.6: Boundary with extracted fin.

difference (ClosedBackground, Background, RegionDifference)

opening_rectangle1 (RegionDifference, FinRegion, 5, 5)

4.3.6 Bonding Balls

Example: hdevelop/Applications/Completeness-Check/ball.hdev

The task of this example is to inspect the diameter of the ball bonds depicted in figure 4.7.

Figure 4.7: Measuring the diameter of ball bonds.

The extraction of the ball bonds is a two step approach: First, the die is located by segmenting bright
areas and transforming them into their smallest surrounding rectangle.

B
lo

b
A

na
ly

si
s

42 Blob Analysis

threshold (Bond, Bright, 100, 255)

shape_trans (Bright, Die, 'rectangle2')

Now, the processing is focused to the region inside the die using reduce_domain. In this ROI, the
program checks for dark areas that correspond to wire material.

reduce_domain (Bond, Die, DieGrey)

threshold (DieGrey, Wires, 0, 50)

fill_up_shape (Wires, WiresFilled, 'area', 1, 100)

After removing irrelevant structures and arranging the bonds in a predefined order, the desired features
are extracted.

opening_circle (WiresFilled, Balls, 15.5)

connection (Balls, SingleBalls)

select_shape (SingleBalls, IntermediateBalls, 'circularity', 'and', 0.85, \

1.0)

sort_region (IntermediateBalls, FinalBalls, 'first_point', 'true', 'column')
smallest_circle (FinalBalls, Row, Column, Radius)

4.3.7 Surface Scratches

Example: solution_guide/basics/surface_scratch.hdev

This example detects scratches on a metal surface (see figure 4.8).

c)

a) b)

Figure 4.8: Detecting scratches on a metal surface: (a) original image, (b) extracted scratches still partly
fractioned, (c) final result with merged scratches.

4.4 Selecting Operators 43

The main difficulties for the segmentation are the inhomogenous background and the fact that the
scratches are thin structures. Both problems can be solved using a local threshold, i.e., the operators
mean_image and dyn_threshold. After connection, the small objects that are mainly noise are re-
moved (see figure 4.8b).

mean_image (Image, ImageMean, 7, 7)

dyn_threshold (Image, ImageMean, DarkPixels, 5, 'dark')
connection (DarkPixels, ConnectedRegions)

select_shape (ConnectedRegions, SelectedRegions, 'area', 'and', 10, 1000)

The scratches are part of the selection, but if we look closely we see that they are partially fractioned. To
solve this problem we combine all fractions again into one big region. By applying dilation_circle,
neighboring parts with a given maximum distance are now combined. To finally get the correct shape of
the scratches - which are now too wide because of the dilation - skeleton is used to thin the shape to a
width of one pixel.

union1 (SelectedRegions, RegionUnion)

dilation_circle (RegionUnion, RegionDilation, 3.5)

skeleton (RegionDilation, Skeleton)

connection (Skeleton, Errors)

The last step is to distinguish between small dots and scratches on the surface. This is achieved with
select_shape, using the size as feature. Figure 4.8c depicts the result.

select_shape (Errors, Scratches, 'area', 'and', 50, 10000)

select_shape (Errors, Dots, 'area', 'and', 1, 50)

4.4 Selecting Operators

4.4.1 Acquire Image(s)

Please refer to the operator list for the method Image Acquisition (see section 2.4 on page 17).

4.4.2 Use Region Of Interest

Please refer to the operator list for the method Region Of Interest (see section 3.4 on page 26).

4.4.3 Align ROIs Or Images

Operators for rectifying images are described in the Solution Guide II-B.

4.4.4 Rectify Image(s)

Operators for rectifying images are described in the Solution Guide III-C.

B
lo

b
A

na
ly

si
s

44 Blob Analysis

4.4.5 Preprocess Image(s) (Filtering)

Standard:

mean_image, gauss_image, binomial_filter, median_image

Advanced:

smooth_image, anisotrope_diff, fill_interlace, rank_image

4.4.6 Extract Segmentation Parameters

Standard:

gray_histo_abs, histo_to_thresh

Advanced:

intensity

4.4.7 Segment Image(s)

Standard:

threshold, fast_threshold, bin_threshold, dyn_threshold, histo_to_thresh,
gray_histo

Advanced:

watersheds, watersheds_threshold, regiongrowing, regiongrowing_mean, var_threshold

4.4.8 Process Regions

Standard:

connection, select_shape, opening_circle, closing_circle, opening_rectangle1,
closing_rectangle1, difference, intersection, union1, shape_trans, fill_up

Advanced:

select_shape_proto, select_gray, clip_region, sort_region, skeleton,
partition_dynamic, rank_region

Morphological operators can be found in the Reference Manual in the chapter “Morphology”.

4.5 Relation to Other Methods 45

4.4.9 Extract Features

Standard:

area_center, smallest_rectangle1, smallest_rectangle2, compactness, eccentricity,
elliptic_axis, area_center_gray, intensity, min_max_gray

Advanced:

diameter_region, inner_rectangle1, inner_circle, gray_histo_abs, entropy_gray

4.4.10 Transform Results Into World Coordinates

Standard:

image_points_to_world_plane

Advanced:

gen_contour_region_xld, contour_to_world_plane_xld

More operators for transforming results into world coordinates are described in the Solution Guide III-C.

4.4.11 Visualize Results

Please refer to the operator list for the method Visualization (see section 19.4 on page 297).

4.5 Relation to Other Methods

4.5.1 Methods that are Useful for Blob Analysis

Color Processing (see description on page 173)
Color processing can be considered as an advanced way of blob analysis that uses three color channels
instead of one gray value channel. HALCON provides operators for color space transformation, feature
extraction, and pixel classification, which can be used in combination with blob analysis.

Texture Analysis (see description on page 189)
Texture analysis is a method for finding regular or irregular structures, e.g., on the surface of an object
and it is therefore useful if texture is a feature of the object to be inspected and simple blob analysis is
not sufficient. For texture analysis not only the single gray values but also a larger pixel neighborhood is
used. HALCON provides filters that emphasize or suppress specific textures. The result of these filters
can then be segmented.

B
lo

b
A

na
ly

si
s

46 Blob Analysis

4.5.2 Methods that are Using Blob Analysis

OCR (see description on page 245)
Blob analysis is typically used as a preprocessing step for OCR to segment the characters.

4.5.3 Alternatives to Blob Analysis

Edge Extraction (Subpixel-Precise) (see description on page 73)
In blob analysis a region is described by the gray values of its pixels. As an alternative, a region could
be described by the change of the gray values at their borders. This approach is called edge detection.

Classification (see description on page 155)
To select specific gray values, thresholds must be determined. In most cases, fixed values are used or the
current value is determined by a feature operator. In some cases it is useful if the system determines the
ranges automatically. This can be achieved by using a classifier. In addition, a classifier can also be used
to automatically distinguish between good and bad objects based on the extracted features and samples
for both classes.

4.6 Tips & Tricks

4.6.1 Connected Components

By default, most HALCON segmentation operators like threshold return one region even if you see
multiple not connected areas on the screen. To transform this region into separated objects (i.e., con-
nected components in the HALCON nomenclature) one has to call connection.

4.6.2 Speed Up

Many online applications require maximum speed. Because of its flexibility, HALCON offers many
ways to achieve this goal. Here the most common methods are listed.

• Regions of interest are the standard method to increase the speed by processing only those areas
where objects need to be inspected. This can be done using pre-defined regions but also by an
online generation of the regions of interest that depend on other objects found in the image.

• If an object has a specific minimum size, the operator fast_threshold is a fast alternative to
threshold. This kind of fast operator can also directly be generated by using operators like
gen_grid_region and reduce_domain before calling the thresholding operator.

• By default, HALCON performs some data consistency checks. These can be switched off using
set_check.

• By default, HALCON initializes new images. Using set_system with the parameter
"init_new_image", this behavior can be changed.

4.7 Advanced Topics 47

4.7 Advanced Topics

4.7.1 Line Scan Cameras

In general, line scan cameras are treated like normal area sensors. In some cases, however, not single
images but an “infinite” sequence of images showing objects, e.g., on a conveyor belt, must be processed.
In this case the end of one image is the beginning of the next one. This means that objects that partially
lie in both images must be combined into one object. For this purpose HALCON provides the operator
merge_regions_line_scan. This operator is called after the segmentation of one image, and combines
the current objects with those of previous images. For more information see the Solution Guide II-A.

4.7.2 High Accuracy

Sometimes high accuracy is required. This is difficult with blob analysis because objects are only ex-
tracted with integer pixel coordinates. Note, however, that many features that can be calculated for
regions, e.g., the center of gravity, will be subpixel-precise. One way to get higher accuracy is to use a
higher resolution. This has the effect that the higher number of pixels for each region results in better
statistics to estimate features like the center of gravity (area_center). As an alternative, gray value fea-
tures (like area_center_gray) can be used if the object fulfills specific gray value requirements. Here,
the higher accuracy comes from the fact that for each pixel 255 values instead of one value (foreground
or background) is used. If a very high accuracy is required, you should use the subpixel-precise edge and
line extraction on page 73.

B
lo

b
A

na
ly

si
s

48 Blob Analysis

1D Measuring 49

Chapter 5

1D Measuring

The idea of 1D measuring (also called 1D metrology or caliper) is very intuitive: Along a predefined
region of interest, edges are located that are mainly perpendicular to the orientation of the region of
interest. Here, edges are defined as transitions from dark to bright or from bright to dark.

Based on the extracted edges, you can measure the dimensions of parts. For example, you can measure
the width of a part by placing a region of interest over it and locating the edges on its left and the right
side. The effect of this can be seen in figure 5.1a, whereas figure 5.1b shows the corresponding gray
value profile.

a) b)

Figure 5.1: (a) Measuring a fuse wire; (b) gray value profile along the region of measurement with ex-
tracted edges.

In addition to these simple rectangular regions of interest, circular arcs can be used to measure, e.g., the
widths of the cogs on a cog wheel.

The advantage of the measure approach is its ease of use combined with a short execution time and a
very high accuracy. With only a few operators, high-performing applications can be realized.

1D
M

ea
su

ri
ng

50 1D Measuring

Alternatively, you can use HDevelop’s Measure Assistant, which allows you to perform measurements
with just a few mouse clicks. How to measure with this assistant is described in detail in the HDevelop
User’s Guide, section 6.4 on page 248.

5.1 Basic Concept

Measuring consists of four main steps:

Destroy Measure Object

Measure

Create Measure Object

Acquire Image(s)

5.1.1 Acquire Image(s)

First, an image is acquired.

For detailed information see the description of this method on page 13.

5.1.2 Create Measure Object

Having acquired the image, you specify where to measure, i.e., you describe the position, orientation,
etc. of the line or arc along which you want to measure. Together with some other parameters, this
information is stored in the so-called measure object.

You access the measure object by using a so-called handle. Similarly to a file handle, this handle is
needed when working with the tool. Each time the measure tool is executed, this handle is passed as a
parameter.

In object-oriented languages like C++ it is possible to use the measure class instead of the low-level
approach with handles. Here, creation and destruction are realized with the standard object-oriented
methods.

5.2 Extended Concept 51

5.1.3 Measure

Then, you can apply the measuring by specifying the measure object and some other vision parameters
like, e.g., the minimum contrast. You can find detailed information about this step in the Solution Guide
III-A in chapter 3 on page 17.

5.1.4 Destroy Measure Object

When you no longer need the measure object, you destroy it by passing the handle to close_measure.

5.2 Extended Concept

In many cases, a measuring application will be more complex than described above. Reasons for this are,
e.g., clutter or inhomogeneous illumination. Furthermore, post-processing like transforming the features
to real-world units, or visualization of results may be required.

5.2.1 Radiometrically Calibrate Image(s)

To allow high-accuracy measurements, the camera should have a linear response function, i.e., the gray
values in the images should depend linearly on the incoming energy. Since some cameras do not have
a linear response function, HALCON provides the so-called radiometric calibration (gray value calibra-
tion): With the operator radiometric_self_calibration you can determine the inverse response
function of the camera (offline) and then apply this function to the images using lut_trans before
performing the measuring.

5.2.2 Align ROIs Or Images

In some applications, the line or arc along which you want to measure, must be aligned relative to another
object.

How to perform alignment using shape-based matching is described in the Solution Guide II-B in sec-
tion 2.4.3.2 on page 42.

5.2.3 Rectify Image(s)

Similarly to alignment, it may be necessary to rectify the image, e.g., to remove lens distortion.

Detailed information about rectifying images can be found in the Solution Guide III-C in section 3.4 on
page 62.

1D
M

ea
su

ri
ng

52 1D Measuring

Destroy Measure Object

Visualize Results

Transform Results Into
World Coordinates

Measure

Create Measure Object

Rectify Image(s)

Align ROIs Or Images

Radiometrically Calibrate
Image(s)

Acquire Image(s)

5.2.4 Create Measure Object

You can teach the measurement line or arc interactively with operators like draw_rectangle2 or read
its parameters from file (read_string). As an alternative, its coordinates can be generated based on
the results of other vision tools like Blob Analysis (see the description of this method on page 31). In
particular, the measurement line or arc may need to be aligned to a certain object as described above.

If the measurement is always performed along the same line or arc, you can create the measure object
offline and then use it multiple times before destroying it. However, if you want to align the measurement,
the position and orientation of the line or arc will differ for each image. In this case, you must create a
new measure object for each image. An exception to this rule is if only the position changes but not the
orientation. Then, you can keep the measure object and adapt its position via translate_measure.

Please refer to the Solution Guide III-A, chapter 2 on page 11, for more information.

5.3 Programming Examples 53

5.2.5 Transform Results Into World Coordinates

If you have calibrated your vision system, you can easily transform the results of measuring into world
coordinates with image_points_to_world_plane. How to do this is described in the Solution Guide
III-A in section 3.5 on page 26.

This is described in detail in the Solution Guide III-C in section 3.3 on page 57.

5.2.6 Visualize Results

The best way to visualize edge positions is to create (short) XLD line segments with operators like
gen_contour_polygon_xld.

For detailed information see the description of this method on page 289.

5.3 Programming Examples

The following examples gives a brief introduction to using the 1D measuring tool of HALCON. The
longest parts are pre- and postprocessing; the measurement itself consists only of two operator calls.
Further examples are described in the Solution Guide III-A.

5.3.1 Inspecting a Fuse

Example: solution_guide/basics/fuse.hdev

Preprocessing consists of the generation of the measurement line. In the example program, this step is
accomplished by assigning the measure object’s parameters to variables.

read_image (Fuse, 'fuse')
Row := 297

Column := 545

Length1 := 80

Length2 := 10

Angle := rad(90)

gen_measure_rectangle2 (Row, Column, Angle, Length1, Length2, Width, Height, \

'bilinear', MeasureHandle)

Now the actual measurement is performed by applying the measure object to the image. The parameters
are chosen such that edges around dark areas are grouped to so called pairs, returning the position of the
edges together with the width and the distance of the pairs.

measure_pairs (Fuse, MeasureHandle, 1, 1, 'negative', 'all', RowEdgeFirst, \

ColumnEdgeFirst, AmplitudeFirst, RowEdgeSecond, \

ColumnEdgeSecond, AmplitudeSecond, IntraDistance, \

InterDistance)

1D
M

ea
su

ri
ng

54 1D Measuring

Figure 5.2: Measuring the width of the fuse wire.

The last part of the program displays the results by generating a region with the parameters of the mea-
surement line and converting the edge positions to short XLD contours (see figure 5.2).

for i := 0 to |RowEdgeFirst|-1 by 1

gen_contour_polygon_xld (EdgeFirst, \

[-sin(Angle+rad(90))*Length2+RowEdgeFirst[i], \

-sin(Angle-rad(90))*Length2+RowEdgeFirst[i]], \

[cos(Angle+rad(90))*Length2+ColumnEdgeFirst[i], \

cos(Angle-rad(90))*Length2+ColumnEdgeFirst[i]])

gen_contour_polygon_xld (EdgeSecond, \

[-sin(Angle+rad(90))*Length2+RowEdgeSecond[i], \

-sin(Angle-rad(90))*Length2+RowEdgeSecond[i]], \

[cos(Angle+rad(90))*Length2+ColumnEdgeSecond[i], \

cos(Angle-rad(90))*Length2+ColumnEdgeSecond[i]])

write_string (WindowID, 'width: '+IntraDistance[i]+' pix')
endfor

5.3.2 Inspect Cast Part

Example: hdevelop/Applications/Measuring-2D/measure_arc.hdev

The task of this example is to inspect the distance between elongated holes of a cast part after chamfering
(see figure 5.3). Note that to achieve best accuracy it would be recommended to use backlight combined
with a telecentric lens instead of the depicted setup.

This task can be solved easily by using the measure tool with a circular measurement ROI. The center
of the ROI is placed into the center of the cast part; its radius is set to the distance of the elongated holes
from the center.

5.3 Programming Examples 55

Figure 5.3: Measuring the distance between the holes.

Row := 275

Column := 335

Radius := 107

AngleStart := -rad(55)

AngleExtent := rad(170)

gen_measure_arc (Row, Column, Radius, AngleStart, AngleExtent, 10, Width, \

Height, 'nearest_neighbor', MeasureHandle)

Now, the distance between the holes can be measured with a single operator call:

measure_pos (Zeiss1, MeasureHandle, 1, 10, 'all', 'all', RowEdge, \

ColumnEdge, Amplitude, Distance)

5.3.3 Inspecting an IC Using Fuzzy Measuring

Example: hdevelop/Applications/Measuring-2D/fuzzy_measure_pin.hdev

The task of this example is to inspect the lead width and the lead distance of the IC depicted in figure 5.4.

The illumination conditions in this example are quite difficult. This has the effect that four edges are
visible for each lead. Fuzzy rules are used to restrict the measurement to the correct (outer) leads.

gen_measure_rectangle2 (Row1, Col1, Phi1, Length1, Length2, Width, Height, \

'nearest_neighbor', MeasureHandle1)

create_funct_1d_pairs ([0.0, 0.3], [1.0,0.0], FuzzyAbsSizeDiffFunction)

set_fuzzy_measure_norm_pair (MeasureHandle1, 11.0, 'size_abs_diff', \

FuzzyAbsSizeDiffFunction)

fuzzy_measure_pairs (Image, MeasureHandle1, 1, 30, 0.5, 'positive', \

RowEdgeFirst1, ColumnEdgeFirst1, AmplitudeFirst1, \

RowEdgeSecond1, ColumnEdgeSecond1, AmplitudeSecond1, \

RowEdgeMiddle1, ColumnEdgeMiddle1, FuzzyScore1, \

IntraDistance1, InterDistance1)

1D
M

ea
su

ri
ng

56 1D Measuring

Figure 5.4: Measuring the width and distance of the leads.

5.3.4 Measuring Leads of a Moving IC

Example: hdevelop/Applications/Measuring-2D/pm_measure_board.hdev

The task of this example is to measure the positions of the leads of a chip (see figure 5.5). Because the
chip can appear at varying positions and angles, the regions of interest used for the measurement must
be aligned.

a) b)

Figure 5.5: (a) Model image with measurement ROIs; (b) measuring the leads in the aligned ROIs.

In this case, the alignment is achieved by searching for the print on the chip using shape-based matching
(see Matching on page 97).

5.3 Programming Examples 57

gen_rectangle1 (Rectangle, Row1, Column1, Row2, Column2)

reduce_domain (Image, Rectangle, ImageReduced)

create_shape_model (ImageReduced, 4, 0, rad(360), rad(1), 'none', \

'use_polarity', 30, 10, ModelID)

After the print has been found, the positions of the measurement ROIs are transformed relative to the
position of the print.

find_shape_model (ImageCheck, ModelID, 0, rad(360), 0.7, 1, 0.5, \

'least_squares', 4, 0.7, RowCheck, ColumnCheck, \

AngleCheck, Score)

hom_mat2d_identity (HomMat2DIdentity)

hom_mat2d_translate (HomMat2DIdentity, RowCheck, ColumnCheck, \

HomMat2DTranslate)

hom_mat2d_rotate (HomMat2DTranslate, AngleCheck, RowCheck, ColumnCheck, \

HomMat2DRotate)

affine_trans_pixel (HomMat2DRotate, Rect1Row, Rect1Col, Rect1RowCheck, \

Rect1ColCheck)

Then, the measure tools are created and the measurement is applied.

gen_measure_rectangle2 (Rect1RowCheck, Rect1ColCheck, AngleCheck, \

RectLength1, RectLength2, Width, Height, \

'bilinear', MeasureHandle1)

measure_pairs (ImageCheck, MeasureHandle1, 2, 90, 'positive', 'all', \

RowEdgeFirst1, ColumnEdgeFirst1, AmplitudeFirst1, \

RowEdgeSecond1, ColumnEdgeSecond1, AmplitudeSecond1, \

IntraDistance1, InterDistance1)

5.3.5 Inspect IC

Example: hdevelop/Applications/Measuring-2D/measure_pin.hdev

The task of this example is to inspect major dimensions of an IC (see figure 5.6).

In the first step the extent of each lead and the distance between the leads is measured. For this, a
rectangle that contains the leads is defined (see figure 5.6a), which is used to generate the measure object.
This is used to extract pairs of straight edges that lie perpendicular to the major axis of the rectangle.

gen_measure_rectangle2 (Row, Column, Phi, Length1, Length2, Width, Height, \

'nearest_neighbor', MeasureHandle)

measure_pairs (Image, MeasureHandle, 1.5, 30, 'negative', 'all', \

RowEdgeFirst, ColumnEdgeFirst, AmplitudeFirst, \

RowEdgeSecond, ColumnEdgeSecond, AmplitudeSecond, PinWidth, \

PinDistance)

From the extracted pairs of straight edges, the number of leads, their average width, and the average
distance between them is derived.

1D
M

ea
su

ri
ng

58 1D Measuring

a) b)

Figure 5.6: Measuring the dimensions of leads: (a) width of the leads and distance between them; (b)
length of the leads.

numPins := |PinWidth|

avgPinWidth := sum(PinWidth)/|PinWidth|

avgPinDistance := sum(PinDistance)/|PinDistance|

The second part shows the power of the measure tool: The length of the leads is determined. This is
possible although each lead has a width of only a few pixels. For this, a new measure object is generated
based on a rectangle that contains the leads on two opposite sides of the IC (see figure 5.6b). The distance
between the first and the second found edge is the length of the upper leads, and the distance between
the third and the fourth edge is the length of the lower leads.

gen_measure_rectangle2 (Row, Column, Phi, Length1, Length2, Width, Height, \

'nearest_neighbor', MeasureHandle)

measure_pos (Image, MeasureHandle, 1.5, 30, 'all', 'all', RowEdge, \

ColumnEdge, Amplitude, Distance)

5.4 Selecting Operators

5.4.1 Acquire Image(s)

Please refer to the operator list for the method Image Acquisition (see section 2.4 on page 17).

5.4 Selecting Operators 59

5.4.2 Radiometrically Calibrate Image(s)

Standard:

radiometric_self_calibration, lut_trans

5.4.3 Align ROIs Or Images

Operators for aligning ROIs or images are described in the Solution Guide II-B.

5.4.4 Rectify Image(s)

Operators for rectifying images are described in the Solution Guide III-C.

5.4.5 Create Measure Object

Standard:

gen_measure_rectangle2, gen_measure_arc, translate_measure

5.4.6 Measure

Standard:

measure_pos, measure_pairs

Advanced:

set_fuzzy_measure, fuzzy_measure_pos, fuzzy_measure_pairs, fuzzy_measure_pairing

5.4.7 Transform Results Into World Coordinates

Standard:

image_points_to_world_plane

Advanced:

gen_contour_region_xld, contour_to_world_plane_xld

More operators for transforming results into world coordinates are described in the Solution Guide III-C.

1D
M

ea
su

ri
ng

60 1D Measuring

5.4.8 Visualize Results

Advanced:

gen_contour_polygon_xld

Please refer to the operator list for the method Visualization (see section 19.4 on page 297).

5.4.9 Destroy Measure Object

Standard:

close_measure

5.5 Relation to Other Methods

5.5.1 Alternatives to 1D Measuring

Edge Extraction (Subpixel-Precise) (see description on page 73)
A very flexible way to measure parameters of edges is to extract the edge contour with edges_sub_pix.
The advantage of this approach is that it can handle free-form shapes. Furthermore, it allows to determine
attributes like the edge direction for each edge point.

5.6 Tips & Tricks

5.6.1 Suppress Clutter or Noise

In many applications there is clutter or noise that must be suppressed. The measure operators offer
multiple approaches to achieve this. The best one is to increase the threshold for the edge extraction to
eliminate faint edges. In addition, the value for the smoothing parameter can be increased to smooth
irrelevant edges away.

When grouping edges to pairs, noise edges can lead to an incorrect grouping if they are in the vicinity of
the “real” edge and have the same polarity. In such a case you can suppress the noise edges by selecting
only the strongest edges of a sequence of consecutive rising and falling edges.

5.6.2 Reuse Measure Object

Because the creation of a measure object needs some time, we recommend to reuse them if possible.
If no alignment is needed, the measure object can, for example, be created offline and reused for each
image. If the alignment involves only a translation, translate_measure can be used to correct the
position.

5.7 Advanced Topics 61

5.6.3 Use an Absolute Gray Value Threshold

As an alternative to edge extraction, the measurements can be performed based on an absolute gray value
threshold by using the operator measure_thresh. Here, all positions where the gray value crosses the
given threshold are selected.

5.7 Advanced Topics

5.7.1 Fuzzy Measuring

In case there are extra edges that do not belong to the measurement, HALCON offers an extended
version of measuring: fuzzy measuring. This tool allows to define so-called fuzzy rules, which describe
the features of good edges. Possible features are, e.g., the position, the distance, the gray values, or the
amplitude of edges. These functions are created with create_funct_1d_pairs and passed to the tool
with set_fuzzy_measure. Based on these rules, the tool will select the most appropriate edges.

The advantage of this approach is the flexibility to deal with extra edges even if a very low min-
imum threshold or smoothing is used. An example for this approach is the example program
fuzzy_measure_pin.hdev on page 55.

Please refer to the Solution Guide III-A, chapter 4 on page 33, for more information.

5.7.2 Evaluation of Gray Values

To have full control over the evaluation of the gray values along the measurement line or arc, you can use
measure_projection. The operator returns the projected gray values as an array of numbers, which
can then be further processed with HALCON operators for tuple or function processing (see the chapters
“Tuple” and “Tools . Function” in the Reference Manual). Please refer to the Solution Guide III-A,
section 3.4 on page 22, for more information.

1D
M

ea
su

ri
ng

62 1D Measuring

Edge Extraction (Pixel-Precise) 63

Chapter 6

Edge Extraction (Pixel-Precise)

The traditional way of finding edges, i.e., dark / light transitions in an image, is to apply an edge filter.
These filters have the effect to find pixels at the border between light and dark areas. In mathematical
terms this means that these filters determine the image gradient. This image gradient is typically returned
as the edge amplitude and/or the edge direction. By selecting all pixels with a high edge amplitude,
contours between areas can be extracted.

HALCON offers all standard edge filters like the Sobel, Roberts, Robinson, or Frei filters. Besides
these, post-processing operators like hysteresis thresholding or non-maximum suppression are provided.
In addition, state-of-the-art filters that determine the edge amplitude and edge direction accurately are
provided. This enables you to apply the filters in a flexible manner.

b)

a)

c)

Figure 6.1: Result of applying an edge filter: (a) amplitude, (b) direction, (c) extracted edges.

Please note that in addition to this classical approach, HALCON provides advanced operators for

E
dg

e
E

xt
ra

ct
io

n
I

64 Edge Extraction (Pixel-Precise)

subpixel-precise edge and line extraction (see the description of this method on page 73) and for succes-
sive post-processing and feature extraction.

6.1 Basic Concept

Using edge filters typically consists of three basic steps:

Process Edges

Extract Edges

Filter Image

Use Region Of Interest

Acquire Image(s)

6.1.1 Acquire Image(s)

First, an image is acquired.

For detailed information see the description of this method on page 13.

6.1.2 Filter Image

On the input image, an edge filter is applied. This operation results in one or two images. The basic
result is the edge amplitude, which is typically stored as a byte image, with the gray value of each pixel
representing the local edge amplitude. Optionally, the direction of the edges is returned. These values
are stored in a so-called direction image, with the values 0...179 representing the angle in degrees divided
by two.

6.1.3 Extract Edges

The result of applying the edge filter is an image containing the edge amplitudes. From this image,
the edges are extracted by selecting the pixels with a given minimum edge amplitude using a threshold
operator. The resulting edges are typically broader than one pixel and therefore have to be thinned. For
this step, various methods are available.

6.2 Extended Concept 65

6.1.4 Process Edges

Having extracted the edges, they can be further processed: You can convert the edge regions into another
data structure for a potential further processing and for extracting features. Besides, you can extract the
regions enclosed by the edges.

6.1.5 A First Example

The following program shows an example for the basic concept of edge filters. As an edge filter, so-
bel_amp is applied with the mode ’thin_sum_abs’ to get thin edges together with a 3x3 filter mask.
Then, the operator threshold is used to extract all pixels with an edge amplitude higher than 20. The
resulting region contains some areas where the edge is wider than one pixel. Therefore, the operator
skeleton is applied to thin all edges completely. The result is depicted in figure 6.1c on page 63.

read_image (Image, 'fuse')
sobel_amp (Image, EdgeAmplitude, 'thin_sum_abs', 3)

threshold (EdgeAmplitude, Region, 20, 255)

skeleton (Region, Skeleton)

6.2 Extended Concept

Visualize Results

Process Edges

Extract Edges

Filter Image

Use Region Of Interest

Acquire Image(s)

E
dg

e
E

xt
ra

ct
io

n
I

66 Edge Extraction (Pixel-Precise)

6.2.1 Use Region Of Interest

Edge extraction can be sped up by using a region of interest. The more the region in which edge filterinjg
is performed can be restricted, the faster and more robust the extraction will be.

For detailed information see the description of this method on page 19.

6.2.2 Filter Image

HALCON offers a wide range of edge filters. One of the most popular filters is the Sobel filter. This
is the best of the old-fashioned filters. It combines speed with a reasonable quality. The corresponding
operators are called sobel_amp and sobel_dir.

In contrast, edges_image provides the state of the art of edge filters. This operator is actually more
than just a filter. It includes a thinning of the edges using a non-maximum suppression and a hysteresis
threshold for the selection of significant edge points. It also returns the edge direction and the edge
amplitude very accurately, which is not the case with the Sobel filter. This operator is recommended if
higher quality is more important than a longer execution time. If the images are not noisy or blurred,
you can even combine accuracy and speed by using the mode ’sobel_fast’ inside edges_image. The
corresponding operator to find edges in multi-channel images, e.g., a color image, is edges_color.

6.2.3 Extract Edges

The easiest way to extract the edges from the edge amplitude image is to apply threshold to select
pixels with a high edge amplitude. The result of this step is a region that contains all edge points. With
skeleton, these edges can be thinned to a width of one pixel. As an advanced version for threshold,
hysteresis_threshold can be used to eliminate insignificant edges. A further advanced option is to
call the operator nonmax_suppression_dir before skeleton, which in difficult cases may result in
more accurate edges. Note that in order to use this operator you must have computed the edge direction
image.

In contrast, the advanced filter edges_image already includes the non-maximum suppression and the
hysteresis threshold. Therefore, in this case a simple threshold suffices to extract edges that are one
pixel wide.

If only the edge points as a region are needed, the operator inspect_shape_model can be used. Here,
all steps including edge filtering, non-maximum suppression, and hysteresis thresholding are performed
in one step with high efficiency.

6.2.4 Process Edges

If you want to extract the coordinates of edge segments, split_skeleton_lines is the right choice.
This operator must be called for each connected component (result of connection) and returns all the
control points of the line segments. As an alternative, a Hough transform can be used to obtain the
line segments. Here, the operators hough_lines_dir and hough_lines are available. You can also
convert the edge region into XLD contours by using, e.g., the operator gen_contours_skeleton_xld.

6.3 Programming Examples 67

The advantage of this approach is the extended set of operators offered for XLD contour processing on
page 83, e.g., for contour segmentation, feature extraction, or approximation.

You can extract the regions enclosed by the edges easily using background_seg. If regions merge
because of gaps in the edges, the operators close_edges or close_edges_length can be used in
advance to close the gaps before regions are extracted. As an alternative, morphological operators like
opening_circle can be applied to the output regions of background_seg. In general, all operators
described for the method Process Regions on page 35 can be applied here as well.

6.2.5 Visualize Results

Finally, you might want to display the images, the edges (regions), and the line segments.

For detailed information see the description of this method on page 289.

6.3 Programming Examples

This section gives a brief introduction to using HALCON for edge filtering and edge extraction.

6.3.1 Aerial Image Interpretation

Example: solution_guide/basics/edge_segments.hdev

Figure 6.2 shows an image taken from an aeroplane. The task is to extract the edges of roads and
buildings as a basis for the image interpretation.

a) b)

Figure 6.2: (a) Extracting edges and (b) approximating them by segments.

The extraction of edges is very simple and reliable when using the operator edges_image. This operator
returns both the edge amplitude and the edge direction. Here, the parameters are selected such that a non-
maximum suppression (parameter value ’nms’) and a hysteresis threshold (threshold values 20 and 40)
are performed. The non-maximum suppression has the effect that only pixels in the center of the edge are

E
dg

e
E

xt
ra

ct
io

n
I

68 Edge Extraction (Pixel-Precise)

returned, together with the corresponding values for the amplitude and the direction. All other pixels are
set to zero. Therefore, a threshold with the minimum amplitude of 1 is sufficient here. As a preparation
for the next step, the edge contour regions are split up into their connected components.

read_image (Image, 'mreut')
edges_image (Image, ImaAmp, ImaDir, 'lanser2', 0.5, 'nms', 20, 40)

threshold (ImaAmp, Region, 1, 255)

connection (Region, ConnectedRegions)

The rest of the example program converts the region data into numeric values. To be more pre-
cise: the edges are approximated by individual line segments. This is performed by calling
split_skeleton_lines for each connected component. The result of this call are four tuples that
contain the start and the end coordinates of the line segments. For display purposes, each of these line
segments is converted into an XLD contour.

count_obj (ConnectedRegions, Number)

gen_empty_obj (XLDContours)

for i := 1 to Number by 1

select_obj (ConnectedRegions, SingleEdgeObject, i)

split_skeleton_lines (SingleEdgeObject, 2, BeginRow, BeginCol, EndRow, \

EndCol)

for k := 0 to |BeginRow|-1 by 1

gen_contour_polygon_xld (Contour, [BeginRow[k],EndRow[k]], \

[BeginCol[k],EndCol[k]])

concat_obj (XLDContours, Contour, XLDContours)

endfor

endfor

dev_display (XLDContours)

6.3.2 Segmenting a Color Image

Example: hdevelop/Filters/Edges/edges_color.hdev

The task of this example is to segment the color image depicted in figure 6.3.

The example demonstrates the possibilities of a multi-channel edge filter. First, the gray value image is
derived from the color information to show that some object borders can no longer be seen. For example,
the (green) soccer field cannot be distinguished from the surrounding (red) track.

read_image (Image, 'olympic_stadium')
rgb1_to_gray (Image, GrayImage)

The color edge filter is applied and the edge amplitude is displayed. If you compare this to the filter
result of the gray image the difference can be easily seen.

edges_color (Image, ImaAmp, ImaDir, 'canny', 1, 'none', -1, -1)

edges_image (GrayImage, ImaAmpGray, ImaDirGray, 'canny', 1, 'none', -1, -1)

6.4 Selecting Operators 69

c)

b)

a)

Figure 6.3: (a) Original image; (b) extracted color edges, overlaid on the color image; (c) extracted gray
value edges, overlaid on the gray value image.

Finally, the edge segments are extracted for both the color and the gray image and overlaid on the original
image.

edges_color (Image, ImaAmpHyst, ImaDirHyst, 'canny', 1, 'nms', 20, 40)

threshold (ImaAmpHyst, RegionColor, 1, 255)

skeleton (RegionColor, EdgesColor)

dev_display (Image)

dev_display (EdgesColor)

stop ()

edges_image (GrayImage, ImaAmpGrayHyst, ImaDirGrayHyst, 'canny', 1, 'nms', \

20, 40)

threshold (ImaAmpGrayHyst, RegionGray, 1, 255)

skeleton (RegionGray, EdgesGray)

dev_display (GrayImage)

dev_display (EdgesGray)

6.4 Selecting Operators

6.4.1 Acquire Image(s)

Please refer to the operator list for the method Image Acquisition (see section 2.4 on page 17).

6.4.2 Use Region Of Interest

Please refer to the operator list for the method Region Of Interest (see section 3.4 on page 26).

E
dg

e
E

xt
ra

ct
io

n
I

70 Edge Extraction (Pixel-Precise)

6.4.3 Filter Image

Standard:

sobel_amp, sobel_dir, edges_image

Advanced:

derivate_gauss, edges_color

6.4.4 Extract Edges

Standard:

threshold, skeleton, inspect_shape_model

Advanced:

hysteresis_threshold, nonmax_suppression_dir

6.4.5 Process Edges

Standard:

background_seg, close_edges, close_edges_length, opening_circle,
split_skeleton_lines, hough_lines_dir, hough_lines, gen_contours_skeleton_xld

6.4.6 Visualize Results

Please refer to the operator list for the method Visualization (see section 19.4 on page 297).

6.5 Relation to Other Methods

6.5.1 Alternatives to Edge Extraction (Pixel-Precise)

Blob Analysis (see description on page 31)
As an alternative to edge extraction, blob analysis can be used. This approach provides many methods
from simple thresholding to region growing and watershed methods.

6.6 Tips & Tricks 71

6.6 Tips & Tricks

6.6.1 Speed Up

Many online applications require maximum speed. Because of its flexibility, HALCON offers many
ways to achieve this goal. Here the most common ones are listed.

• Regions of interest are the standard way to reduce the processing to only those areas where objects
must be inspected. This can be achieved using pre-defined regions but also by an online generation
of the regions of interest that depends on other objects found in the image.

• If high speed is important, the operators sobel_amp and inspect_shape_model are the preferred
choice.

• By default, HALCON initializes new images. Using set_system(’init_new_image’,

’false’), this behavior can be changed to save execution time.

E
dg

e
E

xt
ra

ct
io

n
I

72 Edge Extraction (Pixel-Precise)

Edge Extraction (Subpixel-Precise) 73

Chapter 7

Edge Extraction (Subpixel-Precise)

In addition to the traditional way of applying an edge filter to get the edge amplitude and thus the edges
(see the method Edge Extraction (Pixel-Precise) on page 63), HALCON provides one-step operators that
return subpixel-precise XLD contours. Besides this, not only edges but also lines can be extracted. This
approach can also be applied to color images.

The advantage of this approach is its ease of use, because only a single operator call is needed. Fur-
thermore, the accuracy and stability of the found contours is extremely high. Finally, HALCON offers
a wide set of operators for the post-processing of the extracted contours, which includes, e.g., contour
segmentation and fitting of circles, ellipses, and lines.

b)a)

Figure 7.1: Result of contour extraction: (a) edge contours, (b) line contours.

This chapter covers only the extraction of contours. For information about processing them see the
method Contour Processing on page 83.

7.1 Basic Concept

Extracting contours can easily be performed in a single step. Normally, no other operation is required.

E
dg

e
E

xt
ra

ct
io

n
II

74 Edge Extraction (Subpixel-Precise)

Process XLD Contours

Extract Edges Or Lines

Use Region Of Interest

Acquire Image(s)

7.1.1 Acquire Image(s)

First, an image is acquired as input for the process.

For detailed information see the description of this method on page 13.

7.1.2 Extract Edges Or Lines

HALCON offers various operators for the subpixel-accurate extraction of contours. The standard oper-
ator is based on the first derivative. It takes the image as input and returns the XLD contours. When
using the second derivatives, first a Laplace operator must be executed before the contours along the
zero crossings can be extracted. Besides the gray-value-based methods, HALCON provides the latest
technology for the extraction of color edges.

Besides the extraction of edges, HALCON provides operators for the extraction of lines. In other systems
lines are also called ridges. In contrast to edges, a line consists of two gray value transitions. Thus, a line
can be considered as two parallel edges.

7.1.3 A First Example

The following program explains the basic concept of edge extraction. The only operator needed to extract
edge contours is edges_sub_pix. It has the image as input and returns the XLD contours. Here, the
filter ’lanser2’ is selected with a medium-sized smoothing mask. The low value for the parameter
Low ensures that contours are tracked even along low-contrast parts. To show that the result consists of
multiple contours, the 12-color mode for visualization is selected. The result is depicted in figure 7.1b
on page 73.

read_image (Image, 'mreut4_3')
edges_sub_pix (Image, Edges, 'lanser2', 0.5, 8, 50)

dev_set_colored (12)

dev_clear_window ()

dev_display (Edges)

7.2 Extended Concept 75

7.2 Extended Concept

In addition to the extraction, optional steps can be performed.

Visualize Results

Transform Results Into
World Coordinates

Process XLD Contours

Determine Contour
Attributes

Extract Edges Or Lines

Use Region Of Interest

Radiometrically Calibrate
Image(s)

Acquire Image(s)

7.2.1 Radiometrically Calibrate Image(s)

To extract edges or lines with high accuracy, the camera should have a linear response function, i.e.,
the gray values in the images should depend linearly on the incoming energy. Since some cameras
do not have a linear response function, HALCON provides the so-called radiometric calibration (gray
value calibration): With the operator radiometric_self_calibration you can determine the inverse
response function of the camera (offline) and then apply this function to the images using lut_trans

before performing the edge and line extraction.

E
dg

e
E

xt
ra

ct
io

n
II

76 Edge Extraction (Subpixel-Precise)

7.2.2 Use Region Of Interest

Edge extraction can be sped up by using a region of interest. The more the region in which edges or lines
are extracted can be restricted, the faster and more robust the extraction will be.

For detailed information see the description of this method on page 19.

7.2.3 Extract Edges Or Lines

The most often used operator for edge contour extraction is edges_sub_pix. You can select various
filter methods by specifying the corresponding name with the parameter Filter. For standard appli-
cations, common values are, e.g., ’canny’ (based on a Gaussian convolution) or ’lanser2’. The
advantage of ’lanser2’ is the recursive implementation which has no increase in execution time when
using a large smoothing. As a fast version the parameter value ’sobel_fast’ can be used, which is
recommended as long as the image is not noisy or blurred.

The operator zero_crossing_sub_pix can be used in combination with a filter like derivate_gauss
with parameter value ’laplace’. The Laplace operator is mainly applied in the medical area.

To extract edges in multi-channel images, e.g., in a color image, HALCON provides the operator
edges_color_sub_pix . Similar to edges_sub_pix, the parameter value ’sobel_fast’ is recom-
mended for a fast edge extraction as long as the image is not noisy or blurred.

The most commonly used operator for line extraction is lines_gauss. Compared to lines_facet it
is more robust and provides more flexibility. The width of lines that should be extracted is specified by
the parameter Sigma: The wider the line, the larger the value must be chosen. For very wide lines we
recommend to zoom down the image (zoom_image_factor) in order to reduce the overall execution
time.

Like for edges, HALCON provides line extraction also for multi-channel images. The corresponding
operator is lines_color.

7.2.4 Determine Contour Attributes

The edge and line extraction operators not only provide the XLD contours but also so-called attributes.
Attributes are numerical values; they are associated either with each control point of the contour
(called contour attribute) or with each contour as a whole (global contour attribute). The operators
get_contour_attrib_xld and get_contour_global_attrib_xld enable you to access these val-
ues by specifying the attribute name.

The attribute values are returned as tuples of numbers. Typical attributes for edges are, e.g., the edge am-
plitude and direction. For lines a typical attribute is the line width. The available attributes can be queried
for a given contour with query_contour_attribs_xld and query_contour_global_attribs_xld.

7.2.5 Process XLD Contours

Typically, the task is not finished by just extracting the contours and accessing the attributes. HALCON
provides further processing like contour segmentation, feature extraction, or approximation.

For detailed information see the description of this method on page 83.

7.3 Programming Examples 77

7.2.6 Transform Results Into World Coordinates

In many applications the coordinates of contours should be transformed into another coordinate system,
e.g., into 3D world coordinates. After you have calibrated your vision system, you can easily perform
the transformation with the operator contour_to_world_plane_xld. With this approach you can also
eliminate lens distortions and perspective distortions.

This is described in detail in the Solution Guide III-C in section 3.3 on page 57.

7.2.7 Visualize Results

Finally, you might want to display the images and the contours.

For detailed information see the description of this method on page 289.

7.3 Programming Examples

This section gives a brief introduction to using HALCON for edge extraction.

7.3.1 Measuring the Diameter of Drilled Holes

Example: solution_guide/basics/rim_simple.hdev

Figure 7.2 shows an image of a car rim. The task is to measure the diameters of the drilled holes.

a) b) c)

Figure 7.2: (a) automatically determined ROIs; (b) extracted edges; (c) computed ellipses and diameters.

First, a segmentation step is performed to roughly find the borders of the holes. The actual edge extraction
is then performed only in these regions of interest (ROIs). This has two advantages: First, there are many
edges in the image that are of no interest for the measurement. By restricting the processing to ROIs you
can easily select the relevant objects. Secondly, the contour extraction is time-consuming. Thus, a
reduced domain is an efficient way to speed-up the process.

Locating the holes is quite easy: First, all dark pixels are selected. After selecting all those connected
components that are circular and have a certain size, only the holes remain. Finally, the regions of interest

E
dg

e
E

xt
ra

ct
io

n
II

78 Edge Extraction (Subpixel-Precise)

are obtained by accessing the borders of the holes and dilating them. The resulting ROIs are depicted in
figure 7.2a.

threshold (Image, Dark, 0, 128)

connection (Dark, DarkRegions)

select_shape (DarkRegions, Circles, ['circularity','area'], 'and', [0.85, \

50], [1.0,99999])

boundary (Circles, RegionBorder, 'inner')
dilation_circle (RegionBorder, RegionDilation, 6.5)

union1 (RegionDilation, ROIEdges)

Calling reduce_domain changes the domain of the image to the prepared region of interest. Now, the
edge extractor can be applied (see figure 7.2b).

reduce_domain (Image, ROIEdges, ImageROI)

edges_sub_pix (ImageROI, Edges, 'lanser2', 0.3, 10, 30)

The extracted contours are further processed to determine their diameter: With
fit_ellipse_contour_xld, ellipses are fitted to the contours. In other words, those ellipses
are determined that fit the extracted contours as closely as possible. The operator returns the param-
eters of the ellipses. With the operator gen_ellipse_contour_xld, the corresponding ellipses are
created and displayed (compare figure 7.2b and figure 7.2c). Another option is to use the operator
gen_circle_contour_xld.

fit_ellipse_contour_xld (Edges, 'ftukey', -1, 2, 0, 200, 3, 2, Row, Column, \

Phi, Ra, Rb, StartPhi, EndPhi, PointOrder)

NumHoles := |Ra|

gen_ellipse_contour_xld (ContEllipse, Row, Column, Phi, Ra, Rb, \

gen_tuple_const(NumHoles,0), \

gen_tuple_const(NumHoles,rad(360)), \

gen_tuple_const(NumHoles,'positive'), 1)

The diameters can easily be computed from the ellipse parameters and then be displayed in the image
using write_string (see figure 7.2c).

for i := 0 to NumHoles-1 by 1

write_string (WindowID, 'D1=' + 2*Ra[i])

write_string (WindowID, 'D2=' + 2*Rb[i])

endfor

7.3.2 Angiography

Example: hdevelop/Filters/Lines/lines_gauss.hdev

The task of this example is to extract the blood vessels in the X-ray image of the heart depicted in
figure 7.3. The vessels are emphasized by using a contrast medium. For the diagnosis it is important to
extract the width of the vessels to determine locally narrowed parts (stenoses).

7.3 Programming Examples 79

a) b)

Figure 7.3: (a) X-ray image of the heart; (b) extracted blood vessels.

The vessels are extracted using lines_gauss. The result of this operator are the centers of the vessels in
the form of XLD contours. Besides this, attributes are associated with the contour points, one of which
is the local line width. This width is requested and displayed as contours.

lines_gauss (Angio, Lines, 2.3, 0.0, 0.7, 'dark', 'true', 'parabolic', \

'true')
count_obj (Lines, Number)

for I := 1 to Number by 1

select_obj (Lines, Line, I)

get_contour_xld (Line, Row, Col)

get_contour_attrib_xld (Line, 'angle', Angle)

get_contour_attrib_xld (Line, 'width_left', WidthL)

get_contour_attrib_xld (Line, 'width_right', WidthR)

RowR := Row+cos(Angle)*WidthR*sqrt(0.75)

ColR := Col+sin(Angle)*WidthR*sqrt(0.75)

RowL := Row-cos(Angle)*WidthL*sqrt(0.75)

ColL := Col-sin(Angle)*WidthL*sqrt(0.75)

disp_polygon (WindowID, RowL, ColL)

disp_polygon (WindowID, RowR, ColR)

endfor

E
dg

e
E

xt
ra

ct
io

n
II

80 Edge Extraction (Subpixel-Precise)

7.4 Selecting Operators

7.4.1 Acquire Image(s)

Please refer to the operator list for the method Image Acquisition (see section 2.4 on page 17).

7.4.2 Radiometrically Calibrate Image(s)

Standard:

radiometric_self_calibration, lut_trans

7.4.3 Use Region Of Interest

Please refer to the operator list for the method Region Of Interest (see section 3.4 on page 26).

7.4.4 Extract Edges Or Lines

Standard:

edges_sub_pix, derivate_gauss, lines_gauss, lines_facet

Advanced:

zero_crossing_sub_pix, edges_color_sub_pix, lines_color

7.4.5 Determine Contour Attributes

Standard:

get_contour_attrib_xld, get_contour_global_attrib_xld,
query_contour_attribs_xld, query_contour_global_attribs_xld

7.4.6 Process XLD Contours

Please refer to the operator list for the method Contour Processing (see section 8.4 on page 93).

7.5 Relation to Other Methods 81

7.4.7 Transform Results Into World Coordinates

Standard:

contour_to_world_plane_xld

More operators for transforming results into world coordinates are described in the Solution Guide III-C.

7.4.8 Visualize Results

Please refer to the operator list for the method Visualization (see section 19.4 on page 297).

7.5 Relation to Other Methods

7.5.1 Alternatives to Edge Extraction (Subpixel-Precise)

Subpixel Thresholding
Besides the subpixel-accurate edge and line extractors, HALCON provides a subpixel-accurate thresh-
old operator called threshold_sub_pix. If the illumination conditions are stable, this can be a fast
alternative.

Subpixel Point Extraction
In addition to the contour-based subpixel-accurate data, HALCON offers subpixel-accurate point opera-
tors for various applications. In the reference manual, these operators can be found in the chapter “Filters
. Points”.

E
dg

e
E

xt
ra

ct
io

n
II

82 Edge Extraction (Subpixel-Precise)

Contour Processing 83

Chapter 8

Contour Processing

One of HALCON’s powerful tool sets are the subpixel-accurate contours. Contours belong to the data
type XLD (see Quick Guide in section 2.1.2.3 on page 18 for more information). These contours are typ-
ically the result of some kind of image processing and represent, e.g., the borders of objects. Figure 8.1a
shows such edges overlaid on the original image; Figure 8.1b zooms into the rectangular area marked in
Figure 8.1a and furthermore highlights the so-called control points of the contours with crosses. Here,
you can clearly see the highly accurate positioning of the control points.

HALCON provides operators to perform advanced types of measurements with these contours. For
example, the contours can be segmented into lines and circular or elliptic arcs (see Figure 8.1c). The
parameters of these segments, e.g., their angle, center, or radius, can then be determined and used, e.g.,
in the context of a measuring task.

a) b) c)

Figure 8.1: XLD contours: (a) edge contours, (b) zoom into rectangular area, (c) segmented lines and
elliptic arcs.

The advantage of contour processing is twofold: First, its high accuracy enables reliable measurements.
Secondly, the extensive and flexible set of operators provided for this data type enables you to solve
problems that cannot be solved with classical methods like 1D measuring. More detailed information
about contour processing can be found in the Solution Guide III-B.

C
on

to
ur

P
ro

ce
ss

in
g

84 Contour Processing

8.1 Basic Concept

The processing of contours consists of multiple steps that can be combined in a flexible way.

Extract Features

Perform Fitting

Process XLD Contours

Create XLD Contours

8.1.1 Create XLD Contours

The most common way to create XLD contours is to apply one of the subpixel-accurate extraction oper-
ators described for the method Extract Edges Or Lines on page 76. As an alternative, an edge filter with
some post-processing can be used. The resulting regions are then converted to XLD contours. Please
note that this approach is only pixel-accurate. For more information about this approach see the method
Edge Extraction (Pixel-Precise) on page 63.

8.1.2 Process XLD Contours

Typically, only certain contours of an object are used for an inspection task. One possibility to restrict
the extraction of contours to the desired ones is to use a well-fitting region of interest as, e.g., depicted
in figure 8.2a: The rectangular ROI just covers the upper part of the blades. When applying an edge
extractor, exactly one contour on each side of the objects is found.

In many cases, however, not only the desired contours are extracted. An example is depicted in fig-
ure 8.2b, where the ROI was chosen too large. Thus, the contours must be processed to obtain the
desired parts of the contours. In the example, the contours are segmented into parts and only parallel
segments with a certain length are selected (see the result in figure 8.2c).

Another reason for processing contours occurs if the extraction returns unwanted contours caused by
noise or texture or if there are gaps between contours because of a low contrast or contour intersections.

8.1.3 Perform Fitting

Having obtained contour segments that represent a line, a rectangle, or a circular or elliptic arc, you can
determine the corresponding parameters, e.g., the coordinates of the end points of a line or the center and

8.1 Basic Concept 85

b)

c)

a)

Figure 8.2: Selecting the desired contours: (a) exactly fitting ROI, (b) too many contours because of too
large ROI, (c) result of post-processing the contours from (b).

radius of a circle, by calling one of the fitting operators. Their goal is to approximate the input contour
as closely as possible to a line, rectangle, or a circular or elliptic arc. Because the used minimization
algorithms are very advanced and all contour points are used for the process, the parameters can be
calculated very reliably.

8.1.4 Extract Features

From both raw contours and processed contour parts features can be determined. Some of these consider
the contour as a linear object. Others treat a contour as the outer boundary of an object. Obviously,
the center of gravity makes sense only for a closed object, whereas the curvature is a feature of a linear
object.

8.1.5 A First Example

The following program is an example for the basic concept of contour processing. It shows how short
segments returned by the line extractor can be grouped to longer ones.

First, an image is acquired from file using read_image. The task is to extract the roads, which show up
as thin bright lines in the image. For this the operator lines_gauss is used. When we look at the result
of the contour extraction in figure 8.3a, we see that a lot of unwanted small segments are extracted. They
can be suppressed easily by calling select_contours_xld with a minimum contour length. A further
problem is that some roads are split into more than one segment. They can be combined with the operator
union_collinear_contours_xld. Looking at the result in figure 8.3b, we see that many fragments

C
on

to
ur

P
ro

ce
ss

in
g

86 Contour Processing

have been combined along straight road parts. In curves this method fails because the orientation of the
segments differs too much.

read_image (Image, 'mreut4_3')
lines_gauss (Image, Lines, 1.5, 2, 8, 'light', 'true', 'bar-shaped', 'true')
select_contours_xld (Lines, LongContours, 'contour_length', 15, 1000, 0, 0)

union_collinear_contours_xld (LongContours, UnionContours, 30, 2, 9, 0.7, \

'attr_keep')

a) b)

Figure 8.3: Processing XLD contours, (a) extracted contours, (b) processed contours.

8.2 Extended Concept

In addition to the standard contour processing, HALCON provides other tools that can be added. Typical
examples for these are camera calibration, geometric transformations, or type conversions. With these,
the contour methods can be integrated into the overall vision task.

8.2.1 Create XLD Contours

The standard method to create contours is to call a contour extraction operator. Contour extraction
for edges is performed with edges_sub_pix, edges_color_sub_pix, or zero_crossing_sub_pix.
Lines are extracted using lines_gauss, lines_facet, or lines_color. For subpixel blob analysis
the operator threshold_sub_pix can be used. These operators are described in more detail with the
method Edge Extraction (Subpixel-Precise) on page 73.

If pixel-accuracy is sufficient, you can use an edge filter (like sobel_amp or edges_image) or a line
filter (like bandpass_image) followed by thresholding and thinning. The resulting elongated regions
are then converted into XLD contours with the operator gen_contours_skeleton_xld. For more
information on this approach see the method Edge Extraction (Pixel-Precise) on page 63.

Contours can also be synthesized from different sources, e.g., CAD data, user interaction, or mea-
suring. Having obtained the coordinates of the control points from such a source, the operators

8.2 Extended Concept 87

Visualize Results

Convert And Access XLD
Contours

Extract Features

Transform Results Into
World Coordinates

Perform Fitting

Process XLD Contours

Create XLD Contours

gen_contour_polygon_xld and gen_contour_polygon_rounded_xld convert them to XLD con-
tours. You can also draw XLD contours interactively with the operators draw_xld and draw_xld_mod.

Finally, the border of regions can be converted into XLD contours. The corresponding operator is called
gen_contour_region_xld.

8.2.2 Process XLD Contours

The first method to segment contours is to call segment_contours_xld. This operator offers various
modes: Splitting into line segments, linear and circular segments, or linear and elliptic segments. The
individual contour segments can then be selected with select_obj and passed to one of the fitting
operators described with the step Perform Fitting on page 84. Whether a contour segment represents a
line, a circular, or an elliptic arc can be queried via the global contour attribute ’cont_approx’ using
the operator get_contour_global_attrib_xld.

If only line segments are needed, you can use the combination of gen_polygons_xld followed by
split_contours_xld. The behavior is similar to using segment_contours_xld. The main differ-
ence is the possible postprocessing: When applying gen_polygons_xld, a so-called XLD polygon is
generated. This is a different data type, which represents the initial step for grouping of segments to
parallel lines.

An important step during contour processing is the suppression of irrelevant contours. This can be ac-
complished with the operator select_shape_xld, which provides almost 30 different shape features.

C
on

to
ur

P
ro

ce
ss

in
g

88 Contour Processing

By specifying the desired minimum and maximum value and possibly combining multiple features, con-
tours can be selected very flexibly. As an alternative, you can use the operator select_contours_xld,
which offers typical features of linear structures. Finally, the operator select_xld_point can be used
in combination with mouse functions to interactively select contours.

If there are gaps within a contour, the pieces are treated as separate objects, which makes
further processing and feature extraction difficult. You can merge linear segments with the
operators union_collinear_contours_xld or union_straight_contours_xld. Addition-
ally, you can also merge adjacent contours (union_adjacent_contours_xld), contours that
lie on the same circle (union_cocircular_contours_xld), or contours that are cotangential
(union_cotangential_contours_xld). To handle contours with a complex shape you can first seg-
ment them into linear, circular, or elliptic segments (see above).

HALCON also provides an operator for general shape modifications: shape_trans_xld. With this
operator you can, e.g., transform the contour into its surrounding circle, convex hull, or surrounding
rectangle. Further, for closed contours or polygons, set theoretical operations can be applied to combine
contours. For example, with intersection_closed_contours_xld you can intersect the regions that
are enclosed by the closed contours, with difference_closed_contours_xld you can calculate the
difference between the enclosed regions, or with union2_closed_contours_xld you can merge the
enclosed regions.

8.2.3 Perform Fitting

With the operator fit_line_contour_xld you can determine the parameters of a line segment. The
operator provides different optimization methods, most of which are suppressing outliers. It returns the
coordinates of the start and the end point of the fitted line segment and the normal form of the line. To
visualize the results, you can use the operator gen_contour_polygon_xld.

To fit a rectangle into a contour, the operator fit_rectangle2_contour_xld can be used. It provides
various optimization methods as well. The returned parameters comprise mainly the center position, the
extent, and the orientation of the rectangle. To generate the obtained rectangle for a visualization, you
can use the operator gen_rectangle2_contour_xld.

For the fitting of circular and elliptic segments the operators fit_circle_contour_xld and
fit_ellipse_contour_xld are available. They also provide various optimization methods. For a
circular segment the center and the radius are returned together with the angle range of the visible part.
In addition, a second radius and the orientation of the main axis are returned for elliptic segments. To
visualize the results of both operators, you can use either the operator gen_ellipse_contour_xld or
the operator gen_circle_contour_xld.

8.2.4 Transform Results Into World Coordinates

As a post-processing step, it may be necessary to correct the contours, e.g., to remove lens distortions, or
to transform the contours into a 3D world coordinate system in order to extract dimensional features in
world units. Such a transformation is based on calibrating the camera. After the calibration, you simply
call the operator contour_to_world_plane_xld to transform the contours.

How to transform contours into world coordinates is described in detail in the Solution Guide III-C in
section 3.3 on page 57.

8.3 Programming Examples 89

8.2.5 Extract Features

HALCON offers various operators to access the feature values. Commonly used shape features are
calculated by area_center_xld, compactness_xld, convexity_xld, eccentricity_xld, di-

ameter_xld, and orientation_xld. The hulls of the contours can be determined with small-

est_circle_xld or smallest_rectangle2_xld. Features based on geometric moments are calcu-
lated, e.g., by moments_xld.

8.2.6 Convert And Access XLD Contours

Finally, it might be necessary to access the raw data of the contours or to convert contours into another
data type, e.g., into a region.

You can access the coordinates of the control points with the operator get_contour_xld. It returns
the row and column coordinates of all control points of a contour in two tuples of floating-point val-
ues. In case of a contour array (tuple), you must loop over all the contours and select each one using
select_obj.

To convert contours to regions, simply call the operator gen_region_contour_xld. The operator
paint_xld paints the contour with anti-aliasing into an image.

The operators for edge and line extraction not only return the XLD contours but also so-called
attributes. Attributes are numerical values; they are associated either with each control point
(called contour attribute) or with each contour as a whole (global contour attribute). The operators
get_contour_attrib_xld and get_contour_global_attrib_xld enable you to access these val-
ues by specifying the attribute name. More information on this topic can be found in the description of
the step Determine Contour Attributes on page 76.

8.2.7 Visualize Results

Finally, you might want to display the images and the contours.

For detailed information see the description of this method on page 289.

8.3 Programming Examples

This section gives a brief introduction to using HALCON for contour processing.

8.3.1 Measuring Lines and Arcs

Example: solution_guide/basics/measure_metal_part.hdev

The first example shows how to segment a contour into lines and (circular) arcs and how to determine
the corresponding parameters. Figure 8.4 shows the final result of the fitted primitives overlaid on the
input image.

C
on

to
ur

P
ro

ce
ss

in
g

90 Contour Processing

Figure 8.4: Fitted lines and circles.

As the initial step, the contours of the metal part are extracted using the operator edges_sub_pix. The
resulting contours are segmented into lines and circular arcs and sorted according to the position of their
upper left corner.

edges_sub_pix (Image, Edges, 'lanser2', 0.5, 40, 90)

segment_contours_xld (Edges, ContoursSplit, 'lines_circles', 6, 4, 4)

sort_contours_xld (ContoursSplit, SortedContours, 'upper_left', 'true', \

'column')

Then, lines and circles are fitted to the extracted segments. As already noted, the individual segments
must be accessed inside a loop. For this, first their total number is determined with count_obj. Inside
the loop, the individual segments are selected with the operator select_obj. Then, their type (line or
circular arc) is determined by accessing a global attribute with get_contour_global_attrib_xld.
Depending on the result, either a circle or a line is fitted. For display purposes, circles and lines are
created using the determined parameters. Furthermore, the length of the lines is computed with the
operator distance_pp.

8.3 Programming Examples 91

count_obj (SortedContours, NumSegments)

for i := 1 to NumSegments by 1

select_obj (SortedContours, SingleSegment, i)

get_contour_global_attrib_xld (SingleSegment, 'cont_approx', Attrib)

if (Attrib = 1)

fit_circle_contour_xld (SingleSegment, 'atukey', -1, 2, 0, 5, 2, \

Row, Column, Radius, StartPhi, EndPhi, \

PointOrder)

gen_ellipse_contour_xld (ContEllipse, Row, Column, 0, Radius, \

Radius, 0, rad(360), 'positive', 1.0)

else

fit_line_contour_xld (SingleSegment, 'tukey', -1, 0, 5, 2, RowBegin, \

ColBegin, RowEnd, ColEnd, Nr, Nc, Dist)

gen_contour_polygon_xld (Line, [RowBegin,RowEnd], [ColBegin,ColEnd])

distance_pp (RowBegin, ColBegin, RowEnd, ColEnd, Length)

endif

endfor

8.3.2 Close gaps in a contour

Example: solution_guide/basics/close_contour_gaps.hdev

The second example demonstrates how to close gaps in an object contour (see figure 8.5). The example
is based on synthetic data. Instead of using a real image, a light gray square on a dark gray background
is generated and a part of its boundary is blurred.

gen_rectangle1 (Rectangle, 30, 20, 100, 100)

region_to_bin (Rectangle, BinImage, 130, 100, 120, 130)

rectangle1_domain (BinImage, ImageReduced, 20, 48, 40, 52)

mean_image (ImageReduced, SmoothedImage, 15, 15)

paint_gray (SmoothedImage, BinImage, Image)

a) b)

Figure 8.5: Original edges and result of grouping process.

C
on

to
ur

P
ro

ce
ss

in
g

92 Contour Processing

The extraction of contours with edges_sub_pix thus results in an interrupted boundary (see figure 8.5a).
Note that the edge extraction is restricted to the inner part of the image, otherwise edges would be
extracted at the boundary of the image.

rectangle1_domain (BinImage, ImageReduced, 20, 48, 40, 52)

edges_sub_pix (ImageReduced, Edges, 'lanser2', 1.1, 22, 30)

A suitable operator for closing gaps in linear segments is union_collinear_contours_xld. Before
we can apply this operator, some pre-processing is necessary: First, the contours are split into linear
segments using segment_contours_xld. Then, regress_contours_xld is called to determine the
regression parameters for each segment. These parameters are stored with each contour and could be
accessed with get_regress_params_xld. Finally, union_collinear_contours_xld is called. Its
result is depicted in figure 8.5b on page 91.

segment_contours_xld (Edges, LineSegments, 'lines', 5, 4, 2)

regress_contours_xld (LineSegments, RegressContours, 'no', 1)

union_collinear_contours_xld (RegressContours, UnionContours, 10, 1, 2, 0.1, \

'attr_keep')

8.3.3 Extract Roads

Example: hdevelop/Applications/Object-Recognition-2D/roads.hdev

The task of this example is to extract the roads in the aerial image depicted in figure 8.6

a) b) c)

Figure 8.6: (a) Original image; (b) zoomed image part; (c) extracted roads.

The programs starts by first extracting lines on a reduced scale. These lines correspond very well to
roads.

8.4 Selecting Operators 93

threshold (Mreut43, Bright, 160, 255)

reduce_domain (Mreut43, Bright, Mreut43Bright)

lines_gauss (Mreut43Bright, RoadCenters, 1.2, 5, 14, 'light', 'true', \

'bar-shaped', 'true')

To eliminate wrong candidates, edges are extracted on a higher scale. For the road extraction it is
assumed that a road consists of two parallel edges with homogeneous gray values and a line segment in
between. Using some contour processing operators, this model is refined step by step.

edges_image (Part, PartAmp, PartDir, 'mderiche2', 0.3, 'nms', 20, 40)

threshold (PartAmp, EdgeRegion, 1, 255)

clip_region (EdgeRegion, ClippedEdges, 2, 2, PartWidth - 3, PartHeight - 3)

skeleton (ClippedEdges, EdgeSkeleton)

gen_contours_skeleton_xld (EdgeSkeleton, RoadEdges, 1, 'filter')
gen_polygons_xld (RoadEdges, RoadEdgePolygons, 'ramer', 2)

gen_parallels_xld (RoadEdgePolygons, ParallelRoadEdges, 10, 30, 0.15, \

'true')
mod_parallels_xld (ParallelRoadEdges, Part, ModParallelRoadEdges, \

ExtParallelRoadEdges, 0.3, 160, 220, 10)

combine_roads_xld (RoadEdgePolygons, ModParallelRoadEdges, \

ExtParallelRoadEdges, RoadCenterPolygons, RoadSides, \

rad(40), rad(20), 40, 40)

8.4 Selecting Operators

8.4.1 Create XLD Contours

Standard:

gen_contour_polygon_xld, gen_contour_region_xld, gen_ellipse_contour_xld,
gen_circle_contour_xld, gen_rectangle2_contour_xld, draw_xld, draw_xld_mod

Advanced:

gen_contour_polygon_rounded_xld

Further operators can be found in the following places: detailed operator list for the step Extract Edges
Or Lines on page 80, operator list for the method Edge Extraction (Pixel-Precise) (see section 6.4 on
page 69).

8.4.2 Process XLD Contours

Standard:

C
on

to
ur

P
ro

ce
ss

in
g

94 Contour Processing

segment_contours_xld, gen_polygons_xld, split_contours_xld, select_shape_xld,
select_contours_xld, select_xld_point, union_collinear_contours_xld,
union_straight_contours_xld, union_adjacent_contours_xld,
union_cocircular_contours_xld, union_cotangential_contours_xld, shape_trans_xld,
intersection_closed_contours_xld, intersection_closed_polygons_xld,
difference_closed_contours_xld, difference_closed_polygons_xld,
union2_closed_contours_xld, union2_closed_polygons_xld

Advanced:

union_collinear_contours_ext_xld, symm_difference_closed_contours_xld,
symm_difference_closed_polygons_xld

8.4.3 Perform Fitting

Standard:

fit_line_contour_xld, fit_circle_contour_xld, fit_ellipse_contour_xld,
fit_rectangle2_contour_xld

8.4.4 Transform Results Into World Coordinates

Standard:

contour_to_world_plane_xld, change_radial_distortion_contours_xld

More operators for transforming results into world coordinates are described in the Solution Guide III-C.

8.4.5 Extract Features

Standard:

area_center_xld, orientation_xld, smallest_circle_xld, smallest_rectangle1_xld,
smallest_rectangle2_xld, compactness_xld, convexity_xld, diameter_xld,
eccentricity_xld

A full list of operators can be found in the Reference Manual in the chapter “XLD . Features”.

8.4.6 Convert And Access XLD Contours

Standard:

get_contour_xld, gen_region_contour_xld

Advanced:

8.5 Relation to Other Methods 95

paint_xld

More information on operators for accessing XLD data can be found in the Reference Manual in the
chapter “XLD . Access”. Operators for determining contour attributes can be found in the detailed
operator list for the step Determine Contour Attributes on page 80.

8.4.7 Visualize Results

Please refer to the operator list for the method Visualization (see section 19.4 on page 297).

8.5 Relation to Other Methods

8.5.1 Alternatives to Contour Processing

Line Processing
A very basic alternative to contour processing are the operators for line processing. In this context,
lines are treated as tuples of start and end points. The extraction can, e.g., be performed with de-

tect_edge_segments. Of course, XLD polygons can also be converted into this type of lines. Op-
erators for processing this type of lines can be found in the Reference Manual in the chapter “Tools .
Lines”.

8.6 Advanced Topics

8.6.1 Line Scan Cameras

In general, line scan cameras are treated like normal area sensors. But in some cases, not single images
but an infinite sequence of images showing objects, e.g., on a conveyor belt, have to be processed. In
this case the end of one image is the beginning of the next one. This means that contours that partially
lie in both images must be combined into one contour. For this purpose HALCON provides the operator
merge_cont_line_scan_xld. This operator is called after the processing of one image and combines
the current contours with those of previous images. For more information see Solution Guide II-A.

C
on

to
ur

P
ro

ce
ss

in
g

96 Contour Processing

Matching 97

Chapter 9

Matching

The idea of matching is quite simple: In a training image a so-called template is presented. The system
derives a model from this template. This model is then used to locate objects that look “similar” to the
template in search images. Depending on the selected method, this approach is able to handle changes
in illumination, clutter, varying size, position, and rotation, or even relative movement of parts of the
template.

The advantage of matching is its ease of use combined with great robustness and flexibility. Matching
does not require any kind of segmentation of the desired objects. By some of the matching methods,
objects can be located even if they are overlapped by other objects. Furthermore, matching has only a
few parameters. Even these can be determined automatically in most cases. This makes this method
especially attractive for applications where the end user only has little skills in machine vision.

HALCON offers different methods for matching. The selection depends on the image data and the task
to be solved. How to use the individual matching approaches is described in detail in the Solution Guide
II-B.

Figure 9.1 summarizes the characteristics of the different matching approaches and helps you to select
the appropriate approach for your task.

• The gray-value-based matching is the classical method. It can be used if the gray values inside
the object do not vary and if there are no missing parts and no clutter. The method can handle
single instances of objects, which can appear rotated in the search image. Note that this matching
approach should be applied only in the very rare case that an illumination-variant matching is
needed.

• The correlation-based matching is based on gray values and a normalized cross correlation. In
contrast to the classical gray-value-based matching, linear illumination changes can be coped with.
The operators are used similar to the operators of shape-based matching. The advantage over
shape-based matching is that also texture can be handled. On the other hand, the object may only
be rotated but not scaled, and the approach is limited to gray-value images. Additionally, the
approach is sensitive to occlusion, clutter, and non-linear illumination changes.

• The shape-based matching represents the state of the art in machine vision. Instead of using the
gray values, features along contours are extracted and used both for the model generation and the

M
at

ch
in

g

98 Matching

Search for 2D models Gray value- Does not work with clutter, occlusion,
(orthogonal view) based illumination changes, scale, or multi-

Matching channel images.
Correlation- Invariant to defocus, slight shape

based deformations, and linear illumination
Matching changes. Works good for textured objects.

BUT does not work with clutter, occlusion,
non-linear illumination changes, scale, or
multi-cannel images.

Shape- Invariant to clutter, occlusion, non-linear
based illumination changes, scale, defocus, and

Matching slight shape deformations. Works with multi-
channel images. Can be applied for multiple
models simultaneously. BUT is difficult with
some textures.

Component- Parts of objects move relative to each
based other. Invariant to clutter, occlusion,

Matching non-linear illumination changes, and scale.
Works with multi-channel images. Can be
applied for multiple models simultaneously.
BUT is difficult with some textures and does
not work with defocus and shape deformations.

Local Returns also the deformations of the model instance.
deformable Invariant to clutter, occlusion, non-linear
Matching illumination changes, scale, and local

deformations. Works with multi-channel images.
Search for 2D models Perspective Invariant to clutter, occlusion, non-linear

(orthogonal or deformable illumination changes, scale, defocus, and
perspective view) Matching perspective shape deformations. Works with

multi-channel images. BUT is difficult with
some textures.

Descriptor- Invariant to clutter, occlusion, non-linear
based illumination changes, scale, and perspective

Matching shape deformations. BUT does not work without
texture, in particular distinctive points, and
does not work with defocus or multi-channel
images.

Search for 3D models 3D Matching see Solution Guide I, chapter 10 on page 127
Search for corresponding Point- see Solution Guide III-C, chapter 10 on page 199

points to combine based
overlapping images Matching

(uncalibrated mosaicking)

Figure 9.1: Guide to the different matching approaches.

matching. This has the effect that this method is invariant to changes in illumination and variations
of the object’s gray values. It can handle missing object parts, clutter, noise, defocused, and slightly

99

deformed models. Furthermore, multiple instances can be found and multiple models can be used
at the same time. The method allows the objects to be rotated and scaled and can be applied also
for multi-channel images.

• The component-based matching can be considered as a high-level shape-based matching: The
enhancement is that an object can consist of multiple parts that can move (rotate and translate)
relative to each other. A simple example of this is a pair of pliers. Logically this is considered as
one object, but physically it consists of two parts. The component-based matching allows handling
such a compound object in one search step. The advantage is an improved execution time and
increased robustness compared to handling the parts as distinct models. But in contrast to the
shape-based matching, it can not handle defocused images or sligthly deformed models.

• The local deformable matching is similar to the shape-based matching, but here significant defor-
mations can be handled and returned. In particular, besides the position and score, the matching
can return a rectified version of the significant part of the search image, a vector field that describes
the deformations, and the deformed contours of the found model instance.

• The perspective deformable matching is also similar to the shape-based matching, but here also
strong perspective deformations can be handled and instead of a 2D pose a 2D projective trans-
formation matrix (homography) is returned. In addition, a calibrated version of the perspective
deformable matching is available. There, instead of a 2D projective transformation matrix (ho-
mography) the 3D pose of the object is returned. Here, the focus is on the uncalibrated case. The
calibrated case is described in more detail in the Solution Guide II-B in section 3.6 on page 124.

• The descriptor-based matching has the same intention as the perspective deformable matching,
i.e., the 2D projective transformation matrix (homography) can be obtained for the uncalibrated
case and the 3D pose can be obtained for the calibrated case. The main difference is that points
instead of contours are used to create and find the model. Thus, it is especially suitable for highly
textured objects but is not suitable for low textured objects with rounded edges. Compared to the
perspective deformable matching, it is significantly faster for large search spaces but less accurate.
Here, the focus is on the uncalibrated case. The calibrated case is described in more detail in the
Solution Guide II-B in section 3.7 on page 136.

• The 3D matching consists of different methods that use 3D data as template for the matching.
They are introduced in more detail in 3D Matching on page 127. Note that if you search for planar
objects or object parts in the 3D space, the perspective deformable matching or the descriptor-based
matching are alternatives that are faster and more convenient to use.

• The point-based matching has the intention to combine two overlapping images. This is done by
first extracting significant points in both images. These points are the input for the actual matching
process. The result of the matching is a mapping from one image to the other, allowing translation,
rotation, scaling, and perspective distortions. This mapping is typically used to combine the two
images into a single, larger one. Of course, one image can also be treated as a template and the
other image as showing an instance of the object that should be found. The point-based matching
is able to handle perspective distortions without calibration, but needs an increased execution time,
which comes mainly from the extraction of the significant points.

M
at

ch
in

g

100 Matching

9.1 Basic Concept

Matching is divided into the following parts:

Destroy Model

Find Model

Create (Train) Model

Acquire Image(s)

9.1.1 Acquire Image(s)

Both for training and matching, first an image is acquired.

For detailed information see the description of this method on page 13.

9.1.2 Create (Train) Model

To create a matching model, first a region of interest that covers the template in the training image must
be specified. Only those parts of the image that are really significant and stable should be used for
training. The input for the training operator is the reduced image together with control parameters. The
handle of the model is the output of the training. The model will then be used for immediate search or
stored to file.

9.1.3 Find Model

Having created (or loaded) a model, it can now be used for locating objects in the image. Each method
offers specific methods to perform this task. If one or multiple objects are found, their poses (position,
rotation, and scaling) or 2D projective transformation matrices (homographies) together with a score are
returned. These values can already be the desired result or serve as input for the next step of the vision
process, e.g., for aligning regions of interest.

9.1.4 Destroy Model

When you no longer need the matching model you should destroy it. For example, for shape-based
matching you destroy it using clear_shape_model.

9.1 Basic Concept 101

9.1.5 A First Example

An example for this basic concept is the following program, which shows all necessary steps from model
generation to object finding using shape-based matching.

Figure 9.2: Finding all clips in the image.

A training image is acquired from file. A region is generated as region of interest, covering one of the
clips in the image. After combining the region with the image, it is used as input for the training operator
create_shape_model. To keep the example simple, the same image is used to test the matching by
searching for all clips with find_shape_model. For visualization purposes the model contours are
accessed, moved to the corresponding positions, and overlaid on the image. Finally, the model is cleared
to release the memory.

read_image (Image, 'clip')
gen_rectangle2 (ROI, 124, 181, 0.653, 129, 47)

reduce_domain (Image, ROI, ImageReduced)

create_shape_model (ImageReduced, 0, 0, rad(360), 0, 'no_pregeneration', \

'use_polarity', 40, 10, ModelID)

find_shape_model (Image, ModelID, 0, rad(360), 0.7, 13, 0.5, \

'interpolation', 0, 0.9, Row, Column, Angle, Score)

get_shape_model_contours (ModelContours, ModelID, 1)

for i := 0 to |Row|-1 by 1

vector_angle_to_rigid (0, 0, 0, Row[i], Column[i], Angle[i], HomMat2D)

affine_trans_contour_xld (ModelContours, ContoursAffinTrans, HomMat2D)

endfor

clear_shape_model (ModelID)

M
at

ch
in

g

102 Matching

9.2 Extended Concept

In many cases, matching will be more complex than in the example above. Reasons for this are, e.g.,
advanced training using a synthetic template, searching with multiple models at the same time, or using
the matching results as input for further processing like alignment.

Figure 9.3 shows the major steps. The first part is offline and consists of the training of the model, using
different input sources that depend on the application. The model can then be stored to be loaded again
for later use. For the matching itself, one or more models are used to search for objects in images. The
results are the poses, i.e., the position, rotation, and scale of the found objects, or the 2D projective
transformation matrices (homographies), which describe the relation between the 2D world coordinates
and the 2D image coordinates.

Image

Position, angle, scale, score

Matching Application parameters

Model(s) on file

Training parameters

CAD dataAveraged imageInteraction/image processing

Reduced reference image

Model generation

Offline

Online

Synthetic reference image

Figure 9.3: Overview of the matching process.

9.2.1 Radiometrically Calibrate Image(s)

To allow high-accuracy matching, the camera should have a linear response function, i.e., the gray values
in the images should depend linearly on the incoming energy. Since some cameras do not have a linear
response function, HALCON provides the so-called radiometric calibration (gray value calibration):
With the operator radiometric_self_calibration you can determine the inverse response function
of the camera (offline) and then apply this function to the images using lut_trans before performing
the matching.

9.2.2 Rectify Image(s)

As a preprocessing step, it may be necessary to rectify the image, e.g., to remove lens distortions or to
transform the image into a reference point of view. This will allow using matching even if the camera is

9.2 Extended Concept 103

Destroy Model

Visualize Results

Find Model

Create (Train) Model

Determine Training
Parameters

Use Region Of Interest

Rectify Image(s)

Radiometrically Calibrate
Image(s)

Acquire Image(s)

looking from the side onto the object plane or the surface is a cylinder.

Detailed information about rectifying images can be found in the Solution Guide III-C in section 3.4 on
page 62.

9.2.3 Use Region Of Interest

Regions of interest affect both the model creation and the search. Especially during the creation it is very
effective to make use of arbitrarily shaped ROIs and thus mask parts that do not belong to the template.
During the search, ROIs can be used to focus the process only on relevant parts, which reduces the
execution time. Two important notes on ROIs, which often cause confusion:

• The reference point of the template is defined by the center of gravity of the ROI used during
the creation, not by the center of gravity of the contours returned for the contour-based matching
approaches by inspect_shape_model.

M
at

ch
in

g

104 Matching

• During the search process, only the reference point of the model must fit into the search ROI, not
the complete shape. Therefore, sometimes very small ROIs consisting only of a few pixels can be
used.

For an overview on how to construct regions of interest and how to combine them with the image see
Region Of Interest on page 19.

For detailed information see the description of this method on page 19.

9.2.4 Determine Training Parameters

To make the use of the matching as easy as possible it is necessary to determine the training parameters
automatically. Because the shape-based matching is used most frequently, this section focuses on this
method. In addition, the component-based matching and the local and perspective deformable matching
use very similar parameters.

The operators create_scaled_shape_model, create_shape_model, and cre-

ate_aniso_shape_model allow to use the value ’auto’ for many parameters. This has the
effect that the values are determined automatically. The allowed ranges of orientations and scales are
typically known from the setup of the system. They can also be determined easily in HDevelop using
the assistant provided via the menu item Assistants > Matching. If ’no_pregeneration’ is used
for the parameter Optimization wide ranges can be used and restricted during the finding process.
The other training parameters (Contrast, MinContrast) can be determined also by using the assistant.
If an automatic method is needed, please contact your local distributor. Their support can provide
application-specific procedures to determine the parameters.

9.2.5 Create (Train) Model

Creating a model differs from method to method, but several rules hold for most of the methods.

• You can use both real and synthetic images for the training. Using real images is easier. However, if
no such image is available or if the real images are too noisy you can create a synthetic image, e.g.,
with the operators gen_contour_polygon_rounded_xld, gen_image_const, and paint_xld.

If the training image is too noisy, you can enhance it, e.g., by smoothing noisy areas or by averaging
multiple templates into a single one.

• To speed up the matching process, a so-called image pyramid is created, consisting of the original,
fullsized image and a set of downsampled images. The model is then created and searched on
the different pyramid levels. You can view the image pyramid and the corresponding models for
shape-based matching with the matching assistant in HDevelop.

• Each model (except for the point-based matching) is manipulated via a handle. This handle points
to the real data, which can consume a large amount of memory. Therefore, it is important to clear
the model when it is no longer needed.

Having the general rules in mind, we now show how the creation is performed for the different methods.

• To create a model for gray-value-based matching, typically the operator create_template_rot
is used. The model can then be stored to file with write_template.

9.2 Extended Concept 105

• To create a model for the correlation-based matching, the operator create_ncc_model is used.
The model can then be stored to file with write_ncc_model.

• To create a model for the shape-based matching, typically the operator cre-

ate_scaled_shape_model (or create_aniso_shape_model for anisotropic scaling) is
used. If no scaling is needed, you can use create_shape_model. The model can then be stored
to file with write_shape_model.

In contrast to some other matching methods, you can also directly use XLD contours as
shape models. Then, you do not have to generate a synthetical image, but simply cre-
ate the model with create_shape_model_xld, create_scaled_shape_model_xld,
or create_aniso_shape_model_xld instead of create_shape_model, cre-

ate_scaled_shape_model, or create_aniso_shape_model. If such a contour is stored
as a DXF file, you first have to derive the corresponding HALCON XLD contour from the
DXF file with read_contour_xld_dxf. Note that when using XLD Contours as model,
you should specify the polarity for the search images after a first successful match using
set_shape_model_metric.

• For the component-based matching, the model can be created in different ways: If the compo-
nents and their relations are known, you can use the operator create_component_model. If
the components are known, but not their relations, you can train the relations using the operator
train_model_components with a set of training images, and then create the model using cre-

ate_trained_component_model. Finally, if the components themselves are not known, you can
determine them with the operator gen_initial_components, which then serve as the input for
train_model_components.

The model can then be stored to file with write_component_model. The training components
can be saved with write_training_components.

• To create a model for the local deformable matching, the operator cre-

ate_local_deformable_model is used. The model can then be stored to file with
write_deformable_model.

Similar to shape-based matching, you can also directly use XLD contours as local deformable
models. Then, you do not have to generate a synthetical image, but simply create the model
with create_local_deformable_model_xld instead of create_local_deformable_model.
If such a contour is stored as a DXF file, you first have to derive the corresponding HALCON XLD
contour from the DXF file with read_contour_xld_dxf. Note that when using XLD Contours
as model, you should specify the polarity for the search images after a first successful match using
set_local_deformable_model_metric.

• To create a model for the uncalibrated perspective deformable matching, the operator cre-

ate_planar_uncalib_deformable_model is used. To create a model for the calibrated perspec-
tive deformable matching, the operator create_planar_calib_deformable_model is used. For
both, the model can be stored to file with write_deformable_model.

Similar to shape-based matching, you can also directly use XLD contours as per-
spective deformable models. Then, you do not have to generate a synthetical image,
but simply create the model with create_planar_uncalib_deformable_model_xld

or create_planar_calib_deformable_model_xld instead of cre-

ate_planar_uncalib_deformable_model or create_planar_calib_deformable_model.
If such a contour is stored as a DXF file, you first have to derive the corresponding HAL-

M
at

ch
in

g

106 Matching

CON XLD contour from the DXF file with read_contour_xld_dxf. Note that when
using XLD Contours as model, you should specify the polarity for the search images af-
ter a first successful match using set_planar_uncalib_deformable_model_metric or
set_planar_calib_deformable_model_metric.

• To create a model for the uncalibrated descriptor-based matching, the operator cre-

ate_uncalib_descriptor_model is used. To create a model for the calibrated descriptor-based
matching, the operator create_calib_descriptor_model is used. For both, the model can be
stored to file with write_descriptor_model.

• For the training of the point-based matching, no real model is generated. Here, only coordi-
nates must be determined, which will later be matched: For both the template and the search
image, subpixel locations of significant points are extracted. This is done using an operator like
points_foerstner. The returned positions, together with the image data, will then be input for
the matching.

9.2.6 Find Model

Finding an object with matching is an online process that has the image and one or multiple models as
input. Depending on the selected method, the search operators offer different ways of controlling the
search.

• You can search objects with gray-value-based matching using the operator best_match_rot.
This operator finds single instances of rotated objects. If the objects are not rotated, the opera-
tor fast_match_mg allows to find all points with a high score. These locations are returned as a
region and can be further processed, e.g., with blob analysis (see the description of this method on
page 31).

• To find objects using correlation-based matching, the operator find_ncc_model is applied. It
returns the position, rotation and score of the found instances of a model.

• The standard operator for shape-based matching is find_scaled_shape_model. It allows lo-
cating multiple instances of the same template with rotations and scaling. If multiple models are
needed, the operator find_scaled_shape_models is used. For both operators, there are variants
for anisotropic scaling and without scaling.

• For the component-based matching, find_component_model is used to locate multiple instances
of objects, which may be rotated and whose components may move with respect to each other.

• For the local deformable matching, instances of a model are found with
find_local_deformable_model. It returns the position and the score of the found in-
stances. Optionally, also a rectified image, a vector field that describes the deformations of the
found model instance, and the deformed contours of the found model instance can be returned.

• For the uncalibrated perspective deformable matching, instances of a model are found with
find_planar_uncalib_deformable_model. It returns the 2D projective transformation ma-
trix (homography) and the score of the found instances. For the calibrated perspective deformable
matching, instances of a model are found with find_planar_calib_deformable_model. It
returns the 3D pose and the score of the found instances.

9.3 Programming Examples 107

• For the uncalibrated descriptor-based matching, instances of a model are found with
find_uncalib_descriptor_model. It returns the 2D projective transformation matrix (homog-
raphy) and the score of the found instances. For the calibrated descriptor-based matching, instances
of a model are found with find_calib_descriptor_model. It returns the 3D pose and the score
of the found instances.

• The matching operator for the point-based matching is proj_match_points_ransac. The input
are the two images containing the template and the object to be located, together with the significant
points. The result of the matching process is a 2D mapping from the template image to the object
image. This mapping is the input for operators like gen_projective_mosaic, which can be used
to combine the two images.

9.2.7 Visualize Results

A typical visualization task is to display the model contours overlaid on the image at the found position.
An easy way to do this is to access the model contours by calling get_shape_model_contours (for the
shape-based matching). With vector_angle_to_rigid and disp_xld, the contours can be displayed.
Displaying the results of the component-based matching is more complex. The easiest way is to call
get_found_component_model, which returns regions, one for each component. These can directly be
displayed with disp_region. For the local or perspective deformable matching the model contours can
be accessed using get_deformable_model_contours. For local deformable matching additionally the
deformed contours of the found model instance can be displayed. They can be obtained automatically
during the matching with find_local_deformable_model. The points that define the model for a
descriptor-based matching can be queried with get_descriptor_model_points.

For detailed information see the description of this method on page 289.

9.3 Programming Examples

This section gives a brief introduction to using HALCON for template matching.

9.3.1 Creating a Model for the “Green Dot”

Example: solution_guide/basics/create_model_green_dot.hdev

This example shows how to use the shape-based matching with objects of varying size. Figure 9.4
depicts the training image, which contains the so-called “green dot”, a symbol used in Germany for
recycling packages. The template is not defined by a user interaction but by a segmentation step: Using
threshold all dark pixels are selected and the connected component with the appropriate size is chosen
(select_shape). This region is then filled and slightly dilated. Figure 9.4a depicts the result of the
segmentation.

M
at

ch
in

g

108 Matching

threshold (Image, Region, 0, 128)

connection (Region, ConnectedRegions)

select_shape (ConnectedRegions, SelectedRegions, 'area', 'and', 10000, \

20000)

fill_up (SelectedRegions, RegionFillUp)

dilation_circle (RegionFillUp, RegionDilation, 5.5)

b)a)

Figure 9.4: Creating a model for matching: (a) ROI for the template region; (b) model contours.

The extracted region is then combined with the image (reduce_domain) to be used as the domain, i.e., as
the region of interest. To check whether the value for the parameter Contrast has been chosen correctly,
inspect_shape_model is called. The training is finally applied using create_scaled_shape_model.
The resulting model contours are depicted in figure 9.4b.

reduce_domain (Image, RegionDilation, ImageReduced)

inspect_shape_model (ImageReduced, ModelImages, ModelRegions, 1, 40)

create_scaled_shape_model (ImageReduced, 5, rad(-45), rad(90), 0, 0.8, 1.0, \

0, ['none','no_pregeneration'], \

'ignore_global_polarity', 40, 10, ModelID)

To complete the program, the model is written to file (write_shape_model); then, the memory of the
model is released with clear_shape_model.

write_shape_model (ModelID, 'green-dot.shm')
clear_shape_model (ModelID)

9.3.2 Locating “Green Dots”

Example: solution_guide/basics/matching_green_dot.hdev

9.3 Programming Examples 109

In this example, we use the model created in the previous example to locate the so-called “green dots” in
a search image. As you can see in figure 9.5a, the search image contains three “green dots” in different
orientations and scales. Furthermore, some of them are partly occluded.

b)a)

Figure 9.5: Using matching to locate rotated and scaled objects: (a) search image; (b) matches.

First, the shape model is read from file.

read_shape_model ('green-dot.shm', ModelID)

Then, the search operator find_scaled_shape_model is executed. The result of the operator are the
positions, the orientations, and the scales of the “green dots”. To display the model contours overlaid
on the image, the contours are accessed with get_shape_model_contours. The for-loop is used to
handle the contours for each found location. This is done by generating an appropriate transformation
and then moving the contours to the correct position. Figure 9.5b depicts the result.

find_scaled_shape_model (ImageSearch, ModelID, rad(-45), rad(90), 0.8, 1.0, \

0.5, 0, 0.5, 'least_squares', 5, 0.8, Row, Column, \

Angle, Scale, Score)

get_shape_model_contours (ModelContours, ModelID, 1)

for I := 0 to |Score|-1 by 1

vector_angle_to_rigid (0, 0, 0, Row[I], Column[I], Angle[I], \

HomMat2DRotate)

hom_mat2d_scale (HomMat2DRotate, Scale[I], Scale[I], Row[I], Column[I], \

HomMat2DScale)

affine_trans_contour_xld (ModelContours, ModelTrans, HomMat2DScale)

dev_display (ModelTrans)

endfor

At the end of the program, the memory of the model is released with clear_shape_model.

clear_shape_model (ModelID)

M
at

ch
in

g

110 Matching

9.3.3 Distinguishing coins

Example: solution_guide/basics/matching_coins.hdev

The task of this example is to distinguish different types of Euro coins, depending on the country of
origin. The coins differ on one side, having a specific symbol for each country (see figure 9.6). Like the
examples described before, the task is solved by shape-based matching. For each country symbol, one
model is used.

Figure 9.6: Multiple coins that are distinguished.

The program consists of multiple procedures for the different tasks. The main program simply defines
the working environment and calls these procedures. The first part is the creation of four models for the
four different types of 20 cent coins. Inside a for-loop, the training procedure train_model is called
with the corresponding training images, and the model IDs are collected in a tuple.

Names := ['german','italian','greek','spanish']
Models := []

for i := 0 to 3 by 1

read_image (Image, 'coins/20cent_'+Names[i])
dev_display (Image)

train_model (Image, ModelID)

Models := [Models,ModelID]

endfor

9.3 Programming Examples 111

In the second part of the main program, the created models are used to recognize the origin of a coin.
After applying the matching with the procedure find_coin, the result is visualized with the procedure
display_model.

for i := 1 to 13 by 1

read_image (Image, 'coins/20cent_'+i$'.2'+'.png')
find_coin (Image, Models, Row, Column, Angle, Score, Model)

display_model (Image, Model, Row, Column, Angle, Names, WindowHandle)

endfor

For the training, ROIs are generated automatically using the result of the procedure locate_coin. This
procedure applies threshold to extract all bright pixels in the image. From the connected components,
the largest one is selected with select_shape_std. The selected region contains several holes, which
are filled with shape_trans using the parameter value ’convex’, thereby transforming the region to
its convex hull. Because only the inner part of the coins will be used as a template, a circle located in the
center of gravity with a fixed radius is generated.

threshold (Image, Region, 70, 255)

connection (Region, ConnectedRegions)

select_shape_std (ConnectedRegions, SelectedRegions, 'max_area', 0)

shape_trans (SelectedRegions, RegionTrans, 'convex')
area_center (RegionTrans, Area, Row, Column)

gen_circle (Coin, Row, Column, 120)

What remains to do in train_model is to determine the contrast parameter and then to create the model
using create_shape_model. Note that the value ’ignore_local_polarity’ is used for the param-
eter Metric because the dark/light transitions can change locally due to the varying illumination.

Contrast := 20

HysteresisContrast := [Contrast/2,Contrast+6,10]

reduce_domain (Image, Coin, ImageReduced)

create_shape_model (ImageReduced, 'auto', 0, rad(360), 'auto', 'none', \

'ignore_local_polarity', HysteresisContrast, 5, \

ModelID)

The procedure find_coin also first calls locate_coin to derive a region of interest that is as small as
possible. This will speedup the matching process significantly. A circle of radius 30 in the center of the
coin is used as the search ROI. Inside this region, find_shape_models is called to determine which
coin can be seen and to precisely determine its position and orientation.

locate_coin (Image, Coin)

area_center (Coin, Area, Row, Column)

gen_circle (Circle, Row, Column, 35)

reduce_domain (Image, Circle, ImageReduced)

find_shape_models (ImageReduced, Models, 0, rad(360), 0.6, 1, 0, \

'least_squares', 0, 0.9, Row, Column, Angle, Score, \

Model)

M
at

ch
in

g

112 Matching

The procedure display_model accesses the model edges and transforms them according to the found
position and orientation and displays them overlaid on the image. As additional feedback, the type of the
coin is displayed in the graphics window.

get_shape_model_contours (ModelContours, Model, 1)

vector_angle_to_rigid (0, 0, 0, Row, Column, Angle, HomMat2D)

affine_trans_contour_xld (ModelContours, ContoursAffinTrans, HomMat2D)

dev_display (Image)

dev_set_color ('green')
dev_set_line_width (2)

dev_display (ContoursAffinTrans)

set_tposition (WindowHandle, 24, 12)

write_string (WindowHandle, Names[Model])

Finally, the model is destroyed.

for i := 0 to 3 by 1

clear_shape_model (Models[i])

endfor

9.3.4 Locate Components on a PCB

Example: hdevelop/Matching/Component-Based/cbm_modules_simple.hdev

The task of this example is to locate multiple components on a printed circuit board in one step (see
figure 9.7). On a printed circuit board, typically multiple different objects are mounted, whose positions
can vary because of the tolerances in the mounting process. To locate all objects quickly and in a robust
manner, the component-based matching is used.

In the training step, each object is marked with a region of interest (figure 9.7a). The possible movement
and rotation of the objects is known from the manufacturing process and is passed as a parameter to the
training.

gen_rectangle2 (ComponentRegions, 318, 109, -1.62, 34, 19)

gen_rectangle2 (Rectangle2, 342, 238, -1.63, 32, 17)

gen_rectangle2 (Rectangle3, 355, 505, 1.41, 25, 17)

gen_rectangle2 (Rectangle4, 247, 448, 0, 14, 8)

gen_rectangle2 (Rectangle5, 237, 537, -1.57, 13, 10)

concat_obj (ComponentRegions, Rectangle2, ComponentRegions)

concat_obj (ComponentRegions, Rectangle3, ComponentRegions)

concat_obj (ComponentRegions, Rectangle4, ComponentRegions)

concat_obj (ComponentRegions, Rectangle5, ComponentRegions)

create_component_model (ModelImage, ComponentRegions, 20, 20, rad(25), 0, \

rad(360), 15, 40, 15, 10, 0.8, [4,3,3,3,3], 0, \

'none', 'use_polarity', 'true', ComponentModelID, \

RootRanking)

Now, the component-based matching is able to find all objects in one step (figure 9.7a), returning the
relative positions of each object.

9.3 Programming Examples 113

a)

b)

Figure 9.7: Component-based matching: (a) training objects; (b) objects, located in different images where
the relation of the objects with respect to each other varies.

find_component_model (SearchImage, ComponentModelID, RootRanking, 0, \

rad(360), 0.5, 0, 0.5, 'stop_search', \

'search_from_best', 'none', 0.8, 'interpolation', 0, \

0.8, ModelStart, ModelEnd, Score, RowComp, \

ColumnComp, AngleComp, ScoreComp, ModelComp)

9.3.5 Check the State of a Dip Switch

Example: hdevelop/Applications/Position-Recognition-2D/cbm_dip_switch.hdev

The task of this example is to check a dip switch, i.e., to determine the positions of the single switches
relative to the casing (see figure 9.8).

The task is solved using component-based matching. The dip switch consists of 14 components: 12 for
the switches and two for the printed text on the casing (see figure 9.8a). The training is performed using
training images that show all possible positions of the switches. From this, the system learns the possible
movements of the switches relative to the casing.

M
at

ch
in

g

114 Matching

a) b)

Figure 9.8: (a) Model image of the dip switch with ROIs for the components; (b) located dip switch with
state of the switches.

train_model_components (ModelImage, InitialComponents, TrainingImages, \

ModelComponents, 45, 45, 30, 0.95, -1, -1, rad(20), \

'speed', 'rigidity', 0.2, 0.5, ComponentTrainingID)

To make the recognition more robust, small tolerances are added to the trained movements.

modify_component_relations (ComponentTrainingID, 'all', 'all', 0, rad(4))

Now, the model can be created.

create_trained_component_model (ComponentTrainingID, 0, rad(360), 10, \

MinScoreComp, NumLevelsComp, 'auto', \

'none', 'use_polarity', 'false', \

ComponentModelID, RootRanking)

When searching for the dip switch, not only the casing but each single dip together with its relative
position is returned. Based on this information, the global status of the switch can easily be derived.

find_component_model (SearchImage, ComponentModelID, RootRanking, 0, \

rad(360), 0, 0, 0.5, 'stop_search', 'prune_branch', \

'none', MinScoreComp, 'least_squares', 0, 0.9, \

ModelStart, ModelEnd, Score, RowComp, ColumnComp, \

AngleComp, ScoreComp, ModelComp)

9.3.6 Locating a Pipe Wrench in Different States

Example: hdevelop/Applications/Position-Recognition-2D/cbm_pipe_wrench.hdev

9.3 Programming Examples 115

b)a)

Figure 9.9: (a) Model image with specified ROIs for the components; (b) located pipe wrench in another
state.

The task of this example is to locate a pipe wrench based on four predefined ROIs, two for each rigid
part (see figure 9.9). Again, the task is solved using component-based matching.

Showing the system multiple example images trains the relative movements of the parts.

read_image (ModelImage, 'pipe_wrench/pipe_wrench_model')
gen_rectangle2 (InitialComponentRegions, 298, 363, 1.17, 162, 34)

gen_rectangle2 (Rectangle2, 212, 233, 0.62, 167, 29)

gen_rectangle2 (Rectangle3, 63, 444, -0.26, 50, 27)

gen_rectangle2 (Rectangle4, 120, 473, 0, 33, 20)

concat_obj (InitialComponentRegions, Rectangle2, InitialComponentRegions)

concat_obj (InitialComponentRegions, Rectangle3, InitialComponentRegions)

concat_obj (InitialComponentRegions, Rectangle4, InitialComponentRegions)

gen_empty_obj (TrainingImages)

for i := 1 to 4 by 1

read_image (TrainingImage, 'pipe_wrench/pipe_wrench_training_'+i)
concat_obj (TrainingImages, TrainingImage, TrainingImages)

endfor

train_model_components (ModelImage, InitialComponentRegions, TrainingImages, \

ModelComponents, 22, 60, 30, 0.65, -1, -1, rad(60), \

'speed', 'rigidity', 0.2, 0.3, ComponentTrainingID)

The components and their relations are displayed as follows:

get_training_components (ModelComponents, ComponentTrainingID, \

'model_components', 'model_image', 'false', \

RowRef, ColumnRef, AngleRef, ScoreRef)

dev_display (ModelComponents)

get_component_relations (Relations, ComponentTrainingID, i, 'model_image', \

Row, Column, Phi, Length1, Length2, AngleStart, \

AngleExtent)

dev_display (Relations)

M
at

ch
in

g

116 Matching

Based on the training, the actual component model is created. Component relations are represented in a
tree structure.

create_trained_component_model (ComponentTrainingID, rad(-90), rad(180), 10, \

0.6, 4, 'auto', 'none', 'use_polarity', \

'false', ComponentModelID, RootRanking)

get_component_model_tree (Tree, Relations, ComponentModelID, RootRanking, \

'model_image', StartNode, EndNode, Row, Column, \

Phi, Length1, Length2, AngleStart, AngleExtent)

dev_display (ModelImage)

dev_display (Tree)

dev_display (Relations)

Finally, test images are used to locate the pipe wrench. For each image, the model contours are overlaid
and the shift and opening angle of the pipe wrench is visualized.

find_component_model (SearchImage, ComponentModelID, RootRanking, \

rad(-90), rad(180), 0, 0, 1, 'stop_search', \

'prune_branch', 'none', 0.6, 'least_squares', 0, \

0.7, ModelStart, ModelEnd, Score, RowComp, \

ColumnComp, AngleComp, ScoreComp, ModelComp)

dev_display (SearchImage)

NumFound := |ModelStart|

if (NumFound)

get_found_component_model (FoundComponents, ComponentModelID, \

ModelStart, ModelEnd, RowComp, \

ColumnComp, AngleComp, ScoreComp, \

ModelComp, 0, 'false', RowCompInst, \

ColumnCompInst, AngleCompInst, \

ScoreCompInst)

dev_display (FoundComponents)

visualize_pipe_wrench_match (AngleCompInst, WindowHandle, \

RowCompInst, ColumnCompInst, RowRef, \

ColumnRef)

endif

9.3.7 Creating a Mosaic Image

Example: hdevelop/Tools/Mosaicking/gen_projective_mosaic.hdev

The task of this example is to create an image of the elongated printed circuit board depicted in fig-
ure 9.10. Using standard image sizes, most of the image would be empty. The solution is to acquire
images from multiple viewpoints and then to create a mosaic image using a point-based matching.

Multiple overlapping images of a printed circuit board are the input for the program. In a first step,
significant points are extracted in each of these images. These points are the input for the point-based
matching. In each step, two successive images are matched. The result of this process is a mapping from
one image to the next.

9.3 Programming Examples 117

Figure 9.10: Creating a mosaic image from multiple overlapping images.

points_foerstner (ImageF, 1, 2, 3, 200, 0.3, 'gauss', 'false', \

RowJunctionsF, ColJunctionsF, CoRRJunctionsF, \

CoRCJunctionsF, CoCCJunctionsF, RowAreaF, ColAreaF, \

CoRRAreaF, CoRCAreaF, CoCCAreaF)

points_foerstner (ImageT, 1, 2, 3, 200, 0.3, 'gauss', 'false', \

RowJunctionsT, ColJunctionsT, CoRRJunctionsT, \

CoRCJunctionsT, CoCCJunctionsT, RowAreaT, ColAreaT, \

CoRRAreaT, CoRCAreaT, CoCCAreaT)

proj_match_points_ransac (ImageF, ImageT, RowJunctionsF, ColJunctionsF, \

RowJunctionsT, ColJunctionsT, 'ncc', 21, 0, \

0, 480, 640, 0, 0.5, 'gold_standard', 1, \

4364537, ProjMatrix, Points1, Points2)

ProjMatrices := [ProjMatrices,ProjMatrix]

These mappings are collected and finally used to construct a single high-resolution image of the complete
PCB.

gen_projective_mosaic (Images, MosaicImage, 2, From, To, ProjMatrices, \

'default', 'false', MosaicMatrices2D)

9.3.8 Locate Brochure Pages

Example: hdevelop/Applications/Object-Recognition-2D/detect_brochure_pages.hdev

M
at

ch
in

g

118 Matching

The task of this example is to locate different pages of a HALCON brochure as depicted in figure 9.11
using descriptor-based matching.

Figure 9.11: Different pages of a HALCON brochure are located via descriptor-based matching.

First, images that contain models of the different pages of the brochure are read, converted into gray
value images, and their domains are reduced to a rectangular ROI. From this ROI, the operator cre-
ate_uncalib_descriptor_model creates a descriptor-based model for each model image. That is,
the detector, which extracts the interest points of the model, is selected (harris_binomial) and param-
eters for the descriptor, which builds characteristic descriptions of the gray-value neighborhood of the
interest points, are set.

RowRoi := [10, 10, Height-10, Height-10]

ColRoi := [10, Width-10, Width-10, 10]

gen_rectangle1 (Rectangle, 10, 10, Height-10, Width-10)

for Index := 1 to NumModels by 1

read_image (Image, 'brochure/brochure_page_' + Index$'.2')
rgb1_to_gray (Image, ImageGray)

get_image_size (ImageGray, Width, Height)

reduce_domain (ImageGray, Rectangle, ImageReduced)

create_uncalib_descriptor_model (ImageReduced, 'harris_binomial', [], \

[], ['min_rot','max_rot','min_scale', \

'max_scale'], [-90,90,0.2,1.1], 42, \

ModelID)

The origin of each model is moved from the center of gravity of the model to the center of the rectangle
used to create the ROI. This is done with set_descriptor_model_origin so that the rectangle can be
easily projected correctly onto the model when visualizing the results of the search in a later step. The
adapted model is then stored in the tuple ModelIDs. The interest points extracted for each model are
queried with get_descriptor_model_points and the number of extracted points is stored in the tuple
NumPoints.

set_descriptor_model_origin (ModelID, -Height/2, -Width/2)

ModelIDs := [ModelIDs, ModelID]

get_descriptor_model_points (ModelID, 'model', 'all', Row_D, Col_D)

NumPoints := [NumPoints, |Row_D|]

endfor

9.3 Programming Examples 119

Now, the unknown images are read and transformed into gray value images. For each model, the operator
find_uncalib_descriptor_model searches for instances of the model in the image.

for Index1 := 1 to 12 by 1

OutputString := []

read_image (Image, 'brochure/brochure_' + Index1$'.2')
rgb1_to_gray (Image, ImageGray)

for Index2 := 0 to |ModelIDs|-1 by 1

find_uncalib_descriptor_model (ImageGray, ModelIDs[Index2], \

'threshold', 800, \

['min_score_descr', \

'guided_matching'], [0.003,'on'], \

0.25, 1, 'num_points', HomMat2D, \

Score)

If a valid 2D projective transformation matrix (homography) and a specific minimum score (that depends
on the number of the extracted interest points) was obtained by the search, the points of the model are
queried with get_descriptor_model_points and displayed by cross contours. Then, the rectangle
specified for the creation of the model and its corner points are transformed with the 2D projective trans-
formation matrix (projective_trans_region and projective_trans_pixel). The transformed
corner points are used to calculate the angle between two neigboring edges of the perspectively pro-
jected rectangle (angle_ll). In the model, the edges are right angled. In the perspective deformed
projection they should not deviate more than 20 degrees from the right angle. Thus, only if an angle
between 70 and 110 degrees is obtained, the found instance of the model is accepted and the result is
displayed.

if ((|HomMat2D|>0) and (Score > NumPoints[Index2]/4))

get_descriptor_model_points (ModelIDs[Index2], 'search', 0, Row, \

Col)

gen_cross_contour_xld (Cross, Row, Col, 6, 0.785398)

projective_trans_region (Rectangle, TransRegion, HomMat2D, \

'bilinear')
projective_trans_pixel (HomMat2D, RowRoi, ColRoi, RowTrans, \

ColTrans)

angle_ll (RowTrans[2], ColTrans[2], RowTrans[1], ColTrans[1], \

RowTrans[1], ColTrans[1], RowTrans[0], ColTrans[0], \

Angle)

if (Angle > 70 and Angle < 110)

area_center (TransRegion, Area, Row, Column)

disp_message (WindowHandle, 'Page '+(Index2+1), 'window', \

Row, Column, 'black', 'true')
endif

endif

endfor

endfor

At the end of the program the model is cleared from memory.

M
at

ch
in

g

120 Matching

for Index := 0 to |ModelIDs|-1 by 1

clear_descriptor_model (ModelIDs[Index])

endfor

9.3.9 Locate Road Signs

Example: hdevelop/Applications/Traffic-Monitoring/detect_road_signs.hdev

The task of this example is to locate road signs in images as depicted in figure 9.12. Available road signs
comprise the attention sign and the dead end road sign.

Figure 9.12: A dead end road sign is located via uncalibrated perspective deformable matching.

The example first reads a synthetical image that shows the model of an attention sign. The first channel
of the model is accessed (access_channel) and zoomed (zoom_image_factor). Before calling cre-

ate_planar_uncalib_deformable_model to create the perspective deformable model, it is checked
if the value ’3’ for the number of levels is suitable. For this, the operator inspect_shape_model is
applied and the result is checked visually. After the creation of the model, the model is stored in the tuple
Models.

read_image (ImageAttentionSign, 'road_signs/attention_road_sign')
access_channel (ImageAttentionSign, Image, Channel[0])

zoom_image_factor (Image, ImageZoomed, 0.1, 0.1, 'weighted')
inspect_shape_model (ImageZoomed, ModelImages, ModelRegions, 3, 20)

create_planar_uncalib_deformable_model (ImageZoomed, 3, 0.0, 0.0, 0.1, \

ScaleRMin[0], ScaleRMax[0], 0.05, \

1.0, 1.0, 0.5, 'none', \

'use_polarity', 'auto', 'auto', [], \

[], ModelID)

Models := ModelID

Then, the image containing a dead end road sign is read and the corresponding model is created. Here, the
model is not available as artificial model but is derived from an image showing a typical street scenario.
Thus, the processing of the image differs in parts from the proceeding used for the synthetical model.
Amongst others, the domain of the image is reduced to a rectangle containing the road sign . The model
obtained from the call to create_planar_uncalib_deformable_model is added to the tuple Models.

9.3 Programming Examples 121

read_image (ImageDeadEnd, 'road_signs/dead_end_road_sign')
access_channel (ImageDeadEnd, Image, Channel[1])

gray_closing_shape (Image, ImageClosing, 5, 5, 'octagon')
zoom_image_factor (ImageClosing, ImageZoomed, 0.4, 0.4, 'weighted')
gen_rectangle1 (Rectangle1, 28, 71, 67, 95)

reduce_domain (ImageZoomed, Rectangle1, ImageReduced)

create_planar_uncalib_deformable_model (ImageReduced, 3, 0.0, 0.0, 0.1, \

ScaleRMin[1], ScaleRMax[1], 0.05, \

ScaleRMin[1], ScaleRMax[1], 0.1, \

'none', 'use_polarity', 'auto', \

'auto', [], [], ModelID)

Models := [Models, ModelID]

To search for both models in unknown images, a rectangular ROI is created as search space. Within
this ROI, the procedure determine_area_of_interest automatically determines more specific re-
gions of interest (ROI) for the road signs using a blob analyis. Each model is searched in a specific
channel of the image as the attention sign can better be extracted in the blue channel and the dead
end road sign is better extracted in the red channel. The channels are specified at the beginning of the
program inside the tuple Channel. The individual model is then searched in the reduced image with
find_planar_uncalib_deformable_model.

gen_rectangle1 (Rectangle, 115, 0, 360, 640)

for Index := 1 to 16 by 1

read_image (Image, 'road_signs/street_'+Index$'.02')
determine_area_of_interest (Image, Rectangle, AreaOfInterest)

reduce_domain (Image, AreaOfInterest, ImageReduced)

for Index2 := 0 to |Models|-1 by 1

access_channel (ImageReduced, ImageChannel, Channel[Index2])

find_planar_uncalib_deformable_model (ImageChannel, Models[Index2], \

0, 0, ScaleRMin[Index2], \

ScaleRMax[Index2], \

ScaleCMin[Index2], \

ScaleCMax[Index2], 0.8, 1, 0, \

2, 0.4, [], [], HomMat2D, \

Score)

If a model could be found, i.e., if a 2D projective transformation matrix was returned, the 2D projective
transformation matrix is used to project the contour of the specific model onto the found instance of the
model inside the inspected image.

if (|HomMat2D|)

get_deformable_model_contours (ModelContours, Models[Index2], 1)

projective_trans_contour_xld (ModelContours, ContoursProjTrans, \

HomMat2D)

dev_display (ContoursProjTrans)

endif

endfor

endfor

At the end of the program the model is cleared from memory.

M
at

ch
in

g

122 Matching

for Index1 := 0 to 1 by 1

clear_deformable_model (Models[Index1])

endfor

9.4 Selecting Operators

9.4.1 Acquire Image(s)

Please refer to the operator list for the method Image Acquisition (see section 2.4 on page 17).

9.4.2 Radiometrically Calibrate Image(s)

Standard:

radiometric_self_calibration, lut_trans

9.4.3 Rectify Image(s)

Operators for rectifying images are described in the Solution Guide III-C.

9.4.4 Use Region Of Interest

Please refer to the operator list for the method Region Of Interest (see section 3.4 on page 26).

9.4.5 Determine Training Parameters

Standard:

Matching (Correlation-Based) determine_ncc_model_params, get_ncc_model_params

Matching (Shape-Based) determine_shape_model_params, get_shape_model_params,
inspect_shape_model

Matching (Local Deformable) determine_deformable_model_params,
get_deformable_model_params

Matching (Perspective Deformable) determine_deformable_model_params,
get_deformable_model_params

Matching (Descriptor-Based) get_descriptor_model_params

9.4 Selecting Operators 123

9.4.6 Create (Train) Model

Standard:

Matching (Component-Based) create_component_model, gen_initial_components,
train_model_components, create_trained_component_model

Matching (Correlation-Based) create_ncc_model

Matching (Shape-Based) create_shape_model, create_scaled_shape_model,
create_aniso_shape_model, create_shape_model_xld,
create_scaled_shape_model_xld, create_aniso_shape_model_xld

Matching (Gray-Value-Based) create_template_rot

Matching (Point-Based) points_foerstner, points_harris

Matching (Local Deformable) create_local_deformable_model,
create_local_deformable_model_xld

Matching (Perspective Deformable) create_planar_uncalib_deformable_model,
create_planar_calib_deformable_model,
create_planar_uncalib_deformable_model_xld,
create_planar_calib_deformable_model_xld

Matching (Descriptor-Based) create_uncalib_descriptor_model,
create_calib_descriptor_model

Advanced:

Matching (Correlation-Based) set_ncc_model_param

Matching (Shape-Based) set_shape_model_param

Matching (Perspective Deformable) set_deformable_model_param

9.4.7 Find Model

Standard:

M
at

ch
in

g

124 Matching

Matching (Component-Based) find_component_model

Matching (Correlation-Based) find_ncc_model

Matching (Shape-Based) find_shape_model, find_scaled_shape_model,
find_aniso_shape_model

Matching (Gray-Value-Based) best_match_mg

Matching (Point-Based) proj_match_points_ransac, gen_projective_mosaic

Matching (Local Deformable) find_local_deformable_model

Matching (Perspective Deformable) find_planar_uncalib_deformable_model,
find_planar_calib_deformable_model

Matching (Descriptor-Based) find_uncalib_descriptor_model,
find_calib_descriptor_model

Advanced:

Matching (Shape-Based) find_shape_models, find_scaled_shape_models,
find_aniso_shape_models

Matching (Gray-Value-Based) best_match_pre_mg, fast_match_mg

Matching (Point-Based) proj_match_points_ransac_guided,
projective_trans_image_size

9.4.8 Visualize Results

Please refer to the operator list for the method Visualization (see section 19.4 on page 297).

9.4.9 Destroy Model

Standard:

Matching (Component-Based) clear_component_model, clear_training_components

Matching (Correlation-Based) clear_ncc_model

Matching (Shape-Based) clear_shape_model

Matching (Gray-Value-Based) clear_template

Matching (Local Deformable) clear_deformable_model

Matching (Perspective Deformable) clear_deformable_model

Matching (Descriptor-Based) clear_descriptor_model

9.5 Relation to Other Methods 125

9.5 Relation to Other Methods

9.5.1 Methods that are Using Matching

1D Measuring (see description on page 49)
OCR (see description on page 245)
Variation Model (see description on page 143)
Bar Code (see description on page 211)
The pose or 2D projective transformation matrix (homography) returned by the matching operators can
be used as the input for a so-called alignment. This means that either the position of an ROI is trans-
formed relative to the movement of a specified object in the image, or the image itself is transformed so
that the pixels are moved to the desired position.
A detailed description of alignment can be found in the Solution Guide II-B in section 2.4.3.2 on page 42.
For an example of using alignment as a preprocessing for 1D Measuring on page 49 see the description of
pm_measure_board.hdev on page 56. Further examples can be found in the description of the method
Variation Model on page 143.

9.5.2 Alternatives to Matching

Blob Analysis (see description on page 31)
In some applications, the object to find can be extracted with classical segmentation methods. With
the operators area_center and orientation_region you can then determine its pose and use this
information, e.g., to align an ROI. With this approach, the execution time can be reduced significantly.
If the objects to be found appear only translated but not rotated or scaled, the morphological operators
erosion1 and opening can be used as binary matching methods. Unlike in other vision systems, in
HALCON these operators are extremely fast.

9.6 Tips & Tricks

9.6.1 Speed Up

Many online applications require maximum speed. Because of its flexibility, HALCON offers many
ways to achieve this goal. Below, the most common ones are listed (note that for most of them the focus
is on the shape-based matching and those matching methods that use similar parameters like component-
based matching and local or perspective deformable matching):

• Regions of interest are the standard way to increase the speed by processing only those areas where
objects need to be inspected. This can be achieved using pre-defined regions, but also by an online
generation of the regions of interest that depends on other objects in the image.

• If multiple objects are searched for, it is more efficient to use find_scaled_shape_models

(or find_aniso_shape_models) for the shape-based matching instead of using
find_scaled_shape_model (or find_aniso_shape_model) multiple times.

M
at

ch
in

g

126 Matching

• Increasing the values for the parameters MinContrast and Greediness will decrease the exe-
cution time. However, you must make sure that the relevant objects will still be found.

• Using a lower value for the parameter Contrast during the training typically results in a better
performance because more pyramid levels can be used. If the contrast is too low, irrelevant con-
tours will also be included into the model, which typically causes a lower recognition rate and a
decreased accuracy.

• Very small templates cannot be found as quickly as larger ones. The reason for this is the reduced
number of significant contours within an image, which makes it harder to distinguish the template
from other structures. Furthermore, with smaller templates fewer pyramid levels can be used.

9.7 Advanced Topics

9.7.1 High Accuracy

Sometimes very high accuracy is required. Here, some of the matching methods offer various interpola-
tion methods to achieve this goal. However, with a poor image quality even a better interpolation method
will not improve the accuracy any more - it will just become slower. Here, it is important to consider
both the image quality and a reasonable interpolation method.

9.7.2 Use Timeout

For shape-based matching and correlation-based matching, you can set a timeout with the opera-
tors set_shape_model_param and set_ncc_model_param, respectively. Then, the operators for
searching the template, e.g., find_shape_model or find_ncc_model, will return at the latest after
the specified time. This mechanism is demonstrated in the example hdevelop/Matching/Shape-

Based/set_shape_model_timeout.hdev.

3D Matching 127

Chapter 10

3D Matching

The aim of 3D matching is to find a specific 3D object in search data and determine its pose, i.e., the
position and orientation of the object in space. For that, HALCON provides different approaches:

• For the shape-based 3D matching, a 3D shape model is generated from a 3D computer aided de-
sign (CAD) model, which must be available in one of the supported formats that are listed in the
description of read_object_model_3d in the Reference Manual (e.g., DXF, PLY, or STL). The
3D shape model consists of 2D projections of the 3D object seen from different views. Analo-
gously to the shape-based matching of 2D structures described in the chapter Matching on page
97, the 3D shape model is used to recognize instances of the object in an image. But here, instead
of a 2D position, orientation, and scaling, the 3D pose of each instance is returned.

• For the surface-based 3D matching, a surface model is derived either from a CAD model
that is availabe in one of the supported formats that are listed in the description of
read_object_model_3d in the Reference Manual (e.g., DXF, PLY, or STL), or from a 3D ob-
ject model that is available in OM3 format. The latter can be obtained from images using a 3D
reconstruction approach, e.g., stereo vision on page 277. In contrast to shape-based 3D matching,
the object is not searched within an image, but within a 3D scene that is available as a 3D object
model. Like shape-based 3D matching, surface-based 3D matching returns the 3D pose of each
instance of the object that can be located.

If you need the 3D pose of a planar object or a planar object part, we recommend to use a calibrated
perspective matching approach instead of the 3D matching. Available approaches are the calibrated
perspective deformable matching and the calibrated descriptor-based matching. Both are significantly
faster and more convenient to use.

Note that for the shape-based 3D matching as well as for the calibrated perspective deformable matching
and the calibrated descriptor-based matching a camera calibration is necessary. For the surface-based
matching, the camera calibration is needed when acquiring the 3D object model(s) from images using a
3D reconstruction approach.

This section goes deeper into the 3D matching. For the calibrated perspective deformable matching and
the calibrated descriptor-based matching we refer to the Solution Guide II-B, section 3.6 on page 124

3D
M

at
ch

in
g

128 3D Matching

and section 3.7 on page 136. Note that the description here provides you with an overview on the 3D
matching approaches. Further details can be found in the Solution Guide III-C, section 4.2 on page 81
for shape-based 3D matching and section 4.3 on page 93 for surface-based 3D matching, and in the
Reference Manual.

Figure 10.1: Shape-based 3D matching: (left) original image containing a clamp, (right) 3D model of the
found clamp projected in the image and display of its pose.

10.1 Basic Concept

3D matching consists of the following basic steps:

10.1.1 Access 3D Object Model

Before creating the approach-specific 3D model, i.e., a 3D shape model or a surface model, the 3D object
model describing the object of interest must be accessed.

• For shape-based 3D matching the 3D object model is accessed with the operator
read_object_model_3d. Supported CAD formats are, e.g., DXF, PLY, or STL. The complete
list can be found in the description of the operator in the Reference Manual. The DXF format
(DXF version AC1009, AutoCad release 12) may consist of the DXF entities POLYLINE (Poly-
face meshes), 3DFACE, LINE, CIRCLE, ARC, ELLIPSE, SOLID, BLOCK, and INSERT.

• For surface-based 3D matching the 3D object model is accessed either from file using the operator
read_object_model_3d or by an online 3D reconstruction. If the 3D object model is accessed
from a file, besides the supported CAD formats also the OM3 format can be handled, which is a
HALCON-specific format that can be obtained, e.g., by an offline 3D reconstruction.

The description of read_object_model_3d in the Reference Manual provides additional tips on how
to obtain a suitable model.

10.1 Basic Concept 129

Destroy
Approach-Specific 3D

Model

Find Approach-Specific
3D Model

Acquire Search Data

Destroy 3D Object Model

Create Approach-Specific
3D Model

Access 3D Object Model

10.1.2 Create Approach-Specific 3D Model

Having access to the 3D object model, the approach-specific 3D model can be created, which prepares
the 3D object model for the specific 3D matching approach.

• For shape-based 3D matching, the operator create_shape_model_3d creates a 3D shape model.
It is generated by computing different views of the 3D object model within a user-specified pose
range. The views are obtained by placing virtual cameras around the object model and projecting
the 3D object model into the image plane of each camera position. The resulting 2D shape repre-
sentations of all views are stored in the 3D shape model. To avoid storage and runtime problems,
the specified pose range should be restricted as much as possible so that the number of 2D pro-
jections that have to be computed and stored in the 3D shape model is minimized. To create the
model views correctly, the camera parameters are needed. The camera parameters can be obtained
by a camera calibration. How to apply a camera calibration is described in detail in the Solution
Guide III-C, section 3.2 on page 40.

• For surface-based matching, the operator create_surface_model creates a surface model by
sampling the 3D object model with a certain distance, so that for an approximate matching, which
is the first of three steps the later search consists of, only a reduced set of 3D points must be
examined.

3D
M

at
ch

in
g

130 3D Matching

10.1.3 Destroy 3D Object Model

After creating the 3D shape model or the surface model, the 3D object model often is not needed anymore
and can be destroyed for memory reasons using the operator clear_object_model_3d. If the 3D object
model is still needed, e.g., for visualization purposes, this step must be moved, e.g., to the end of the
application.

10.1.4 Acquire Search Data

If a shape-based 3D matching is applied, search images are acquired. For detailed information see the
description of this method on page 13.

If a surface-based 3D matching is applied, the search space is not an image but a 3D scene that is
available as 3D object model, which can be obtained from images using a 3D reconstruction approach.
An overview on the available 3D reconstruction approaches is given in the Solution Guide III-C, chapter 1
on page 9.

10.1.5 Find Approach-Specific 3D Model

With the approach-specific 3D model that was created by create_shape_model_3d or cre-

ate_surface_model or that was read from file by read_shape_model_3d or read_surface_model
(see Re-use Approach-Specific 3D Model on page 133), the object can be searched for in the search data,
i.e., in images for shape-based 3D matching and in a 3D scene that is represented by a 3D object model
for surface-based matching.

For the search, the operator find_shape_model_3d or find_surface_model is applied. Several pa-
rameters can be set to control the search process. For detailed information, we recommend to read the
descriptions of the operators in the Reference Manual. Both operators return the pose of the matched
model instance and a score that describes the quality of the match.

10.1.6 Destroy Approach-Specific 3D Model

When the approach-specific 3D model is not needed anymore, it is destroyed with the operator
clear_shape_model_3d or clear_surface_model, respectively.

10.1.7 A First Example

An example for this basic concept is the following program. It applies a shape-based 3D matching to
locate clamps.

The DXF file containing the 3D model of the clamp shown in Figure 10.1 on page 128 is read with
read_object_model_3d.

read_object_model_3d ('clamp_sloped', 'mm', [], [], ObjectModel3DID, \

DxfStatus)

10.2 Extended Concept 131

For the creation of a 3D shape model, the camera parameters are needed. They can be determined by
a camera calibration as described in the Solution Guide III-C, section 3.2 on page 40. Here, they are
known and just assigned to the variable CamParam.

CamParam := [0.01221,-2791,7.3958e-6,7.4e-6,308.21,245.92,640,480]

The creation of the 3D shape model is applied using create_shape_model_3d. There, besides the
camera parameters the following further parameters are needed: the reference orientation and the pose
range in which the object is expected, i.e., the minimum and maximum longitude and latitude, as well
as the minimum and maximum distance between the camera and the center of the object’s bounding box
(which correspond to the radii of spheres that are built to compute the virtual camera positions). The
range for the camera roll angle is set to a full circle. Further information about these parameters can be
found in the Reference Manual and in the Solution Guide III-C, section 4.2 on page 81.

create_shape_model_3d (ObjectModel3DID, CamParam, RefRotX, RefRotY, \

RefRotZ, 'gba', LongitudeMin, LongitudeMax, \

LatitudeMin, LatitudeMax, 0, rad(360), DistMin, \

DistMax, 10, 'min_face_angle', MinFaceAngle, \

ShapeModel3DID)

After creating the 3D shape model, the 3D object model is not needed anymore and is destroyed by the
operator clear_object_model_3d.

clear_object_model_3d (ObjectModel3DID)

The search images are acquired and the actual matching is applied in each image using the operator
find_shape_model_3d.

read_image (Image, 'clamp_sloped/clamp_sloped_'+ImageNo$'02')
find_shape_model_3d (Image, ShapeModel3DID, 0.7, 0.9, 5, ['num_matches', \

'pose_refinement'], [2,'least_squares_very_high'], \

Pose, CovPose, Score)

At the end of the program, the 3D shape model is destroyed by the operator clear_shape_model_3d.

clear_shape_model_3d (ShapeModel3DID)

10.2 Extended Concept

Often, more than the essential steps are necessary. You can, e.g., store the approach-specific model into
a file and read it from another application to separate the creation of the model from the actual search
process. These and further advanced steps are described in the following sections.

3D
M

at
ch

in
g

132 3D Matching

Destroy
Approach-Specific 3D

Model

Visualize Results

Find Approach-Specific
3D Model

Use Region Of Interest

Acquire Search Data

Re-use Approach-Specific
3D Model

Inspect Approach-Specific
3D Model

Destroy 3D Object Model

Create Approach-Specific
3D Model

Inspect 3D Object Model

Access 3D Object Model

10.2.1 Inspect 3D Object Model

3D object models can be inspected using get_object_model_3d_params. Depending on the parameter
specified in GenParamNames, you can query different attributes of the 3D object model like the number
of points or the parameters of the bounding box. A procedure for the visualization of 3D object models

10.2 Extended Concept 133

(disp_object_model_3d) can be found, e.g., with the HDevelop example program hdevelop/3D-

Matching/Surface-Based/find_surface_model.hdev.

10.2.2 Inspect Approach-Specific 3D Model

Similar to the 3D object model, you can query also the parameters for the approach-specific 3D model:

• The 3D shape model that was created by create_shape_model_3d can be inspected using
get_shape_model_3d_params. Several parameters like the reference orientation of the 3D ob-
ject model, the camera parameters, or the pose range used for the creation of the 3D shape model
can be queried.

The contours of a specific view of the 3D shape model can be accessed with
get_shape_model_3d_contours. The contours can be used to visualize and rate the 3D shape
model and thus decide if certain parameters have to be adjusted within the search process using
find_shape_model_3d or if the creation of the 3D shape model has to be repeated with adjusted
parameters.

• The surface model that was created by create_surface_model can be inspected using
get_surface_model_params. Several parameters like the center of the model or the 3D points
of the sampled model versions needed for different steps of the search process can be queried.

10.2.3 Re-use Approach-Specific 3D Model

Because of the complex calculations, the creation of a 3D model can be rather time consuming. Thus,
if you need a 3D model more than once, it is recommended to store the approach-specific 3D model
into a file rather than to repeat the model creation. To store the model into file you use the operator
write_shape_model_3d for shape-based 3D matching and the operator write_surface_model for
surface-based 3D matching. To read the 3D shape model or 3D surface model from file again to re-
use the model in another application, you apply read_shape_model_3d or read_surface_model,
respectively.

10.2.4 Use Region Of Interest

When searching in images, i.e., when using shape-based 3D matching, the search can be sped up using
a region of interest. The more the region in which the objects are searched can be restricted, the faster
and more robust the search will be.

For detailed information see the description of this method on page 19.

10.2.5 Visualize Results

A typical visualization task for shape-based 3D matching is to use the operator
project_object_model_3d or project_shape_model_3d to project the outline of the 3D ob-
ject model or the 3D shape model into the image. For both operators, an object-camera pose is needed,

3D
M

at
ch

in
g

134 3D Matching

which can be determined, e.g., by the operator create_cam_pose_look_at_point. Another common
visualization task is to display the pose that is obtained by find_shape_model_3d.

A typical visualization task for surface-based 3D matching is to use the operator
project_object_model_3d and a known object-camera pose to project the outline of the 3D
object model that is used as model into an image. For example, if the 3D object model that is used
as search data was reconstructed with a multi-view stereo setup, the model can be projected into
one of the used stereo images. This type of visualization is applied, e.g., in the HDevelop example
program hdevelop/Applications/Robot-Vision/locate_pipe_joints_stereo.hdev. Another
common visualization task is to display the 3D object model that is used as model not in an image but
within a 3D scene, e.g., within the 3D object model that is used as search data. A procedure that allows
to interactively inspect such a 3D scene (disp_object_model_3d) is provided, e.g., with the HDevelop
example program hdevelop/3D-Matching/Surface-Based/find_surface_model.hdev.

For general information about visualizing results see the description of the method Visualization on page
289.

10.3 Programming Examples

This section shows how to use HALCON for 3D matching.

10.3.1 Recognize 3D Clamps and Their Poses in Images

Example: hdevelop/Applications/Position-Recognition-3D/3d_matching_clamps.hdev

This example shows how to apply shape-based 3D matching to find a 3D object, in particular the clamp
shown in Figure 10.1 on page 128, in images. Besides the basic steps introduced in the first example, ad-
vanced steps are applied and a procedure is provided that helps to interactively determine an appropriate
pose range for the creation of the 3D shape model.

At the beginning of the program, you can select by commenting or uncommenting the corresponding
code lines whether you want to use an already created 3D shape model or whether you want to create
a new one. Further, the camera parameters are assigned to a variable and the 3D object model of the
clamps is loaded.

ReCreateShapeModel3D := false

* ReCreateShapeModel3D := true

CamParam := [0.01221,-2791,7.3958e-6,7.4e-6,308.21,245.92,640,480]

read_object_model_3d ('clamp_sloped', 'mm', [], [], ObjectModel3DID, \

DxfStatus)

The procedure inspect_object_model_3d can now be used to interactively visualize the model, set
the reference pose, and determine further parameters for the creation of the 3D shape model. For ex-
ample, selected images that were acquired before calling the procedure can be succesively added to the
visualization by selecting the buttons Next Image or Previous Image. With the mouse, you can rotate
the 3D object model and, after selecting the mouse mode Move Image, move the underlying image so
that the object model matches the image (see Figure 10.2). The returned pose for each image can be

10.3 Programming Examples 135

added to the pose range by the button Add to Pose Range. When leaving the procedure by selecting
Exit, the procedure returns values for a pose range that can be used to create a 3D shape model.

gen_empty_obj (Images)

for Index := 1 to 3 by 1

read_image (Image, 'clamp_sloped/clamp_sloped_'+Index$'02')
concat_obj (Images, Image, Images)

endfor

inspect_object_model_3d (Images, ObjectModel3DID, CamParam, RefRotX, \

RefRotY, RefRotZ, LongitudeMin, LongitudeMax, \

LatitudeMin, LatitudeMax, CamRollMin, CamRollMax, \

DistMin, DistMax, MinFaceAngle)

Figure 10.2: Interactive determination of the reference pose and the pose range for the 3D matching of
clamps.

Additionally, within the procedure a Hidden Line Removal mode can be selected and the minimum
face angle (Increase MinFaceAngle, Decrease MinFaceAngle) can be set. The latter is used, e.g.,
to suppress edges that are needed to approximate curved structures in the 3D object model but do not
appear in the image and thus cannot be matched in the image (see Figure 10.3).

Within the main procedure, the operator create_shape_model_3d creates a new 3D shape model
if the variable ReCreateShapeModel3D was set to true. For this, the parameters determined by
the procedure described above are used. The resulting 3D shape model is written into file using
write_shape_model_3d. If an already existing 3D shape model is used (ReCreateShapeModel3D set

3D
M

at
ch

in
g

136 3D Matching

to false) and the procedure was used mainly for visualization purposes, the existing 3D shape model
is read from file using read_shape_model_3d. Since the 3D shape model is available now, we do not
need the 3D object model anymore. It is destroyed by clear_object_model_3d.

if (ReCreateShapeModel3D)

create_shape_model_3d (ObjectModel3DID, CamParam, RefRotX, RefRotY, \

RefRotZ, 'gba', LongitudeMin, LongitudeMax, \

LatitudeMin, LatitudeMax, 0, rad(360), DistMin, \

DistMax, 10, 'min_face_angle', MinFaceAngle, \

ShapeModel3DID)

write_shape_model_3d (ShapeModel3DID, 'clamp_sloped_user.sm3')
else

read_shape_model_3d ('clamp_sloped_35.sm3', ShapeModel3DID)

endif

clear_object_model_3d (ObjectModel3DID)

Figure 10.3: Different minimum face angles: (left) 8 degrees, (right) 45 degrees.

For the actual 3D matching, all images that contain the clamps are read and for each image the operator
find_shape_model_3d searches for instances of the 3D shape model in the image. With the resulting
values, the edges of the 3D shape model are projected into the image using project_shape_model_3d.
The numerical values of the pose are displayed using the procedure display_match_pose.

10.3 Programming Examples 137

for ImageNo := 1 to 35 by 1

read_image (Image, 'clamp_sloped/clamp_sloped_'+ImageNo$'02')
find_shape_model_3d (Image, ShapeModel3DID, 0.7, 0.9, 5, ['num_matches', \

'pose_refinement'], [2,'least_squares_very_high'], \

Pose, CovPose, Score)

for I := 0 to |Score|-1 by 1

PoseI := Pose[I*7:I*7+6]

CovPoseI := CovPose[I*6:I*6+5]

ScoreI := Score[I]

project_shape_model_3d (ModelContours, ShapeModel3DID, CamParam, \

PoseI, 'true', 0.523599)

display_match_pose (ShapeModel3DID, PoseI, WindowHandle)

endfor

endfor

Inside the procedure display_match_pose the reference point and the camera parameters are queried
by get_shape_model_3d_params to align the displayed strings in the image.

get_shape_model_3d_params (ShapeModel3DID, 'reference_point', \

ReferencePoint)

get_shape_model_3d_params (ShapeModel3DID, 'cam_param', CamParam)

pose_to_hom_mat3d (Pose, HomMat3D)

affine_trans_point_3d (HomMat3D, ReferencePoint[0], ReferencePoint[1], \

ReferencePoint[2], X, Y, Z)

project_3d_point (X, Y, Z, CamParam, Row, Column)

set_tposition (WindowHandle, Row, Column - 10)

write_string (WindowHandle, 'Pose:')
set_tposition (WindowHandle, Row+15, Column)

write_string (WindowHandle, 'X: '+(1000*Pose[0])$'4.1f'+' mm')
... etc. ...

At the end of the program, the shape model is destroyed by the operator clear_shape_model_3d.

clear_shape_model_3d (ShapeModel3DID)

10.3.2 Recognize Pipe Joints and Their Poses in a 3D Scene

Example: hdevelop/Applications/Robot-Vision/locate_pipe_joints_stereo.hdev

This example shows how to apply surface-based 3D matching to find a 3D object, in particular a pipe
joint, in a 3D scene given as a 3D object model.

First, the model is accessed. It is available as a CAD model in PLY format and is accessed with
read_object_model_3d. From this 3D object model the corresponding surface model is created using
create_surface_model.

read_object_model_3d ('pipe_joint.ply', 'm', [], [], PipeJointOM3DID, \

Status)

create_surface_model (PipeJointOM3DID, 0.03, [], [], PipeJointSMID)

3D
M

at
ch

in
g

138 3D Matching

Note that a visualization with a hidden surface removal is possible only for 3D object models that were
prepared for shape-based 3D matching. Thus, although we do not want to apply a shape-based 3D
matching we prepare the 3D object model for it to enable a proper visualization.

prepare_object_model_3d (PipeJointOM3DID, 'shape_based_matching_3d', 'true', \

[], [])

In the example, the 3D scene that builds the search data is accessed using multi-view stereo. Note that
the following code shows only a part of the stereo reconstruction. The rest is explained in section 18.3.2
on page 284. Figure 10.4 shows the images that are used to reconstruct one of the 3D scenes.

for Index := 1 to NumImages by 1

read_multi_view_stereo_images (Images, ImagePath, ImagePrefix, Index, \

NumCameras)

reconstruct_surface_stereo (Images, StereoModelID, PipeJointPileOM3DID)

Figure 10.4: Images used for the multi-view stereo reconstruction of the search data (3D scene).

The matching is applied with find_surface_model. It searches the surface model in the 3D scene and
returns the poses of the three best matching model instances.

NumMatches := 3

Params := ['num_matches','pose_ref_scoring_dist_rel']
Values := [NumMatches, 0.02]

find_surface_model (PipeJointSMID, PipeJointPileOM3DID, 0.04, 0.15, \

MinScore, 'false', Params, Values, Poses, Scores, \

SurfaceMatchingResultID)

To visualize the result of each match the 3D object model that was accessed from the CAD model and
that was prepared for visualization is transformed with the pose that was returned for the specific match.
The transformed 3D object model is then projected into one of the images that were used to reconstruct
the 3D scene that was used as search data (see figure 10.5).

10.4 Selecting Operators 139

Figure 10.5: Projection of the three best matches into one of the multi-view stereo images.

dev_display (Img)

for MatchIndex := 0 to |Scores|-1 by 1

pose_to_hom_mat3d (Poses[MatchIndex*7:(MatchIndex*7)+6], \

HomMat3DObjToWorld)

affine_trans_object_model_3d (PipeJointOM3DID, HomMat3DObjToWorld, \

ObjectModel3DIDAffineTrans)

project_object_model_3d (ModelContours, ObjectModel3DIDAffineTrans, \

CamParam0, WorldPose0, ['data', \

'hidden_surface_removal'], ['faces', \

'true'])
dev_display (ModelContours)

When the different 3D object models and the surface model are not needed anymore, they are destroyed
by the operators clear_object_model_3d or clear_surface_model, respectively.

clear_object_model_3d (ObjectModel3DIDAffineTrans)

endfor

clear_object_model_3d (PipeJointPileOM3DID)

endfor

clear_surface_model (PipeJointSMID)

clear_object_model_3d (PipeJointOM3DID)

10.4 Selecting Operators

10.4.1 Access 3D Object Model

Standard:

read_object_model_3d

Advanced:

3D
M

at
ch

in
g

140 3D Matching

prepare_object_model_3d

10.4.2 Inspect 3D Object Model

Standard:

get_object_model_3d_params

10.4.3 Create Approach-Specific 3D Model

Standard:

create_shape_model_3d, create_surface_model

Advanced:

convert_point_3d_cart_to_spher, convert_point_3d_spher_to_cart

10.4.4 Destroy 3D Object Model

Standard:

clear_object_model_3d

10.4.5 Inspect Approach-Specific 3D Model

Standard:

get_shape_model_3d_contours, get_shape_model_3d_params, get_surface_model_params

10.4.6 Re-use Approach-Specific 3D Model

Standard:

write_shape_model_3d, read_shape_model_3d, write_surface_model,
read_surface_model

10.5 Relation to Other Methods 141

10.4.7 Acquire Search Data

For shape-based 3D matching, please refer to the operator list for the method Image Acquisition (see
section 2.4 on page 17).

For surface-based 3D matching, please refer to the descriptions of the 3D reconstruction approaches in
the Solution Guide III-C and in the Reference Manual. An overview on the available 3D reconstruction
approaches is given in the Solution Guide III-C, chapter 1 on page 9.

10.4.8 Use Region Of Interest

Please refer to the operator list for the method Region Of Interest (see section 3.4 on page 26).

10.4.9 Find Approach-Specific 3D Model

Standard:

find_shape_model_3d, find_surface_model

10.4.10 Visualize Results

Standard:

project_shape_model_3d, project_object_model_3d

Further operators can be found in the operator list for the method Visualization (see section 19.4 on page
297).

10.4.11 Destroy Approach-Specific 3D Model

Standard:

clear_shape_model_3d, clear_surface_model

10.5 Relation to Other Methods

10.5.1 Alternatives to 3D Matching

Matching (calibrated perspective deformable)
If the 3D pose of planar objects or object parts are searched for, the calibrated perspective, deformable
matching is a fast alternative to 3D matching. There, no 3D model has to be provided, as only a 2D model

3D
M

at
ch

in
g

142 3D Matching

is needed, which can easily be obtained from training images. As no 2D projections of a 3D model are
computed, the calibrated perspective, deformable matching is significantly faster than the shape-based
3D matching. The calibrated perspective, deformable matching is described in the Solution Guide II-B
in section 3.6 on page 124.

Matching (calibrated descriptor-based)
If the 3D pose of planar objects or object parts are searched for and the objects are textured in a way
that distinctive points can be extracted, the calibrated descriptor-based matching is even faster than the
calibrated perspective, deformable matching, especially for a large search space. On the other side, it
is less accurate. The calibrated descriptor-based matching is described in the Solution Guide II-B in
section 3.7 on page 136.

Variation Model 143

Chapter 11

Variation Model

The main principle of a variation model is to compare one or more images to an ideal image to find
significant differences. With this, you can, e.g., identify incorrectly manufactured objects by comparing
them to correctly manufactured objects. The ideal image is often obtained by a training using several
reference images. Besides the ideal image, the training derives information about the allowed gray value
variation for each point of the image. This information is stored in a so-called variation image. Both
images are used to create a variation model, to which other images can be compared.

The advantage of the variation model is that images can be directly compared by their gray values and
the comparison is spatially weighted by the variation image.

11.1 Basic Concept

Variation Model mainly consists of the following parts:

11.1.1 Acquire Image(s)

Both for the training and for the comparison, images are acquired.

For detailed information see the description of this method on page 13.

11.1.2 Create Variation Model

First, you have to create the variation model used for the image comparison by the operator cre-

ate_variation_model. It stores information that is successively added during the following steps.

Va
ri

at
io

n
M

od
el

144 Variation Model

Destroy Variation Model

Compare Variation Model

Prepare Variation Model

Train Variation Model

Align ROIs Or Images

Create Variation Model

Acquire Image(s)

11.1.3 Align ROIs Or Images

For training the variation model, all training images must be placed in the same position and with the
same orientation. Thus, before training the model the objects must be aligned. Similarly, the images that
are to be compared to the variation model must be aligned.

How to perform alignment using shape-based matching is described in the Solution Guide II-B in sec-
tion 2.4.3.2 on page 42.

11.1.4 Train Variation Model

The variation model can be trained by providing a set of images containing good samples. The operator
train_variation_model uses the training images to calculate an ideal image and a corresponding
variation image. The variation image represents the amount of gray value variation, i.e., the tolerance, at
every point of the image.

If you do not want to train the model with multiple images, e.g., for memory reasons, you can also use a
single image as ideal image, but then you need knowledge about the spatial distribution of the variations.
If you know, e.g., that the acceptable tolerances are near the edges of your object, you can create the
variation image by applying an edge filter to the ideal image. For this proceeding, the training step is
skipped.

11.1 Basic Concept 145

11.1.5 Prepare Variation Model

To prepare the variation model for the image comparison, the ideal image and the variation image are
converted into two threshold images. If you have trained the model with several training images using
train_variation_model, you prepare the model with the operator prepare_variation_model. If
you use a single image as ideal image and create the corresponding variation image manually by filtering
the ideal image, e.g., using sobel_amp, edges_image, or gray_range_rect, you have to use pre-

pare_direct_variation_model for the preparation because the ideal image and the variation image
are not yet connected to the variation model.

The obtained threshold images can be directly read out using the operator
get_thresh_images_variation_model.

11.1.6 Compare Variation Model

You compare an image to the prepared variation model with the operator compare_variation_model.
There, the two thresholds obtained during the preparation step (and stored in the variation model) are used
to determine a region containing all points of the image that significantly differ from the model. Extended
parameter settings for the comparison are available when using compare_ext_variation_model in-
stead.

11.1.7 Destroy Variation Model

When you no longer need the variation model, you destroy it with the operator
clear_variation_model.

11.1.8 A First Example

Example: hdevelop/Applications/Print-Inspection/print_check.hdev

An example for this basic concept is the following program. Here, the logos on the pen clips depicted in
figure 11.1 are inspected using a variation model. The model is trained successively by a set of images
containing correct prints. As the pen clips move from image to image, in each image the pen clip is
located and aligned by shape-based matching. After the training, the variation model is prepared for the
comparison with other images.

Va
ri

at
io

n
M

od
el

146 Variation Model

b) c)

a)

Figure 11.1: Inspection of the logo that is printed on the pen clip: (a) training images; (b) accepted images;
(c) rejected images.

create_shape_model (ImageReduced, 5, rad(-10), rad(20), 'auto', 'none', \

'use_polarity', 20, 10, ShapeModelID)

create_variation_model (Width, Height, 'byte', 'standard', VariationModelID)

for I := 1 to 15 by 1

read_image (Image, 'pen/pen-'+I$'02d')
find_shape_model (Image, ShapeModelID, rad(-30), rad(60), 0.5, 1, 0.5, \

'least_squares', 0, 0.9, Row, Column, Angle, Score)

if (|Score| = 1)

vector_angle_to_rigid (Row, Column, Angle, RowRef, ColumnRef, 0, \

HomMat2D)

affine_trans_image (Image, ImageTrans, HomMat2D, 'constant', \

'false')
train_variation_model (ImageTrans, VariationModelID)

endif

endfor

get_variation_model (MeanImage, VarImage, VariationModelID)

prepare_variation_model (VariationModelID, 20, 3)

During the inspection phase, also the images that are to be inspected are aligned by shape-based match-
ing. Then, the images are compared to the variation model to check the print for errors. The erroneous
regions are extracted and displayed. At the end of the program, the handles for the shape model and the
variation model are destroyed.

11.2 Extended Concept 147

find_shape_model (Image, ShapeModelID, rad(-10), rad(20), 0.5, 1, 0.5, \

'least_squares', 0, 0.9, Row, Column, Angle, Score)

if (|Score| = 1)

vector_angle_to_rigid (Row, Column, Angle, RowRef, ColumnRef, 0, \

HomMat2D)

affine_trans_image (Image, ImageTrans, HomMat2D, 'constant', 'false')
reduce_domain (ImageTrans, RegionROI, ImageReduced)

compare_variation_model (ImageReduced, RegionDiff, VariationModelID)

connection (RegionDiff, ConnectedRegions)

select_shape (ConnectedRegions, RegionsError, 'area', 'and', 20, \

1000000)

dev_display (ImageTrans)

endif

clear_shape_model (ShapeModelID)

clear_variation_model (VariationModelID)

11.2 Extended Concept

Often more than the essential steps are necessary. In many cases, after the comparison, a visualization
of the result is required. Additionally, you might want to check the quality of the training or you need to
save memory. The advanced steps are described in the following sections.

11.2.1 Check Model Quality

After training a variation model with several images, the image of the ideal object and the corresponding
variation image can be queried by the operator get_variation_model to check if the images used for
the training all contained similar objects. If the variation image contains large variations in areas that
should exhibit no variations, this leads to the conclusion that at least one of the training images contained
a bad object.

11.2.2 Clear Training Data

After the preparation of the variation model, you can reduce the amount of memory needed for the
variation model by applying the operator clear_train_data_variation_model. But this is only rec-
ommended if you do not need to use the variation model for anything else than for the actual comparison
anymore. A further training or the application of get_variation_model is not possible after deleting
the training data.

11.2.3 Visualize Results

A typical visualization task is to display the image and mark the parts of the image that do not correspond
to the model. These parts can be explicitly extracted by applying connection to separate the connected

Va
ri

at
io

n
M

od
el

148 Variation Model

Destroy Variation Model

Visualize Results

Compare Variation Model

Clear Training Data

Prepare Variation Model

Check Model Quality

Train Variation Model

Align ROIs Or Images

Create Variation Model

Acquire Image(s)

components of the region obtained by the image comparison and afterwards selecting the regions that
are within a specific area range by select_shape.

For detailed information see the description of this method on page 289.

11.3 Programming Examples

This section gives a brief introduction to using HALCON for variation model.

11.3.1 Inspect a Printed Logo Using a Single Reference Image

Example: solution_guide/basics/variation_model_single.hdev

11.3 Programming Examples 149

This example inspects the same logo as the first example, but instead of training the variation model with
multiple images, a single image is used as ideal image.

a) b)

c)

Figure 11.2: Model for the inspection of the pen clips: a) ideal image; b) variation image; c) inspected
image with displayed errors.

From the ideal image a shape model is derived for the later alignment and the variation image is de-
termined manually. To obtain a variation image with tolerances at the edges of the object, the edges
in the domain of the corresponding region of interest (ImageReduced) are extracted by the operator
edges_sub_pix. These edges are converted into regions and the regions are enlarged by a dilation to
create a generic image that contains the slightly enlarged boundaries of the object. As the conversion of
subpixel-precise edges into pixel-precise regions leads to aliasing, the edges are scaled before applying
the conversion. After the region processing, the generic image is zoomed back to the original size using
a weighting function, which additionally smoothes the borders of the regions. A further smoothing is
realized by the operator binomial_filter. The image is used now as variation image (see figure 11.2)
and the variation model is prepared for the image comparison.

Va
ri

at
io

n
M

od
el

150 Variation Model

create_shape_model (ImageReduced, 'auto', -rad(10), rad(20), 'auto', 'auto', \

'use_polarity', [40,50], 40, ShapeModelID)

edges_sub_pix (ImageReduced, Edges, 'sobel_fast', 0.5, 10, 20)

hom_mat2d_identity (HomMat2DIdentity)

hom_mat2d_scale (HomMat2DIdentity, 4, 4, 0, 0, HomMat2DScale)

affine_trans_contour_xld (Edges, ZoomedEdges, HomMat2DScale)

gen_image_const (VarImageBig, 'byte', 4*Width, 4*Height)

count_obj (ZoomedEdges, NEdges)

for i := 1 to NEdges by 1

select_obj (ZoomedEdges, ObjectSelected, i)

get_contour_xld (ObjectSelected, RowEdge, ColEdge)

gen_region_polygon (Region1, RowEdge, ColEdge)

dilation_circle (Region1, RegionDilation, 2.5)

paint_region (RegionDilation, VarImageBig, VarImageBig, 255, 'fill')
endfor

zoom_image_size (VarImageBig, VarImageSmall, Width, Height, 'weighted')
binomial_filter (VarImageSmall, VarImage, 3, 3)

create_variation_model (Width, Height, 'byte', 'direct', VarModelID)

prepare_direct_variation_model (Image, VarImage, VarModelID, 15, 4)

During the inspection, in each image to be checked the boundary of the object is searched for to align
the image to the ideal image. The aligned image is then compared to the variation model using com-

pare_ext_variation_model. As the mode absolut is set, you can alternatively use the operator
compare_variation_model. Differing regions of a certain size are obtained and stored in NDefects.

for i := 1 to 30 by 1

read_image (Image, 'pen/pen-'+i$'02d')
find_shape_model (Image, ShapeModelID, -rad(10), rad(20), 0.5, 1, 0.5, \

'least_squares', 0, 0.9, Row, Column, Angle, Score)

if (|Score| # 0)

vector_angle_to_rigid (Row, Column, Angle, ModelRow, ModelColumn, 0, \

HomMat2D)

affine_trans_image (Image, ImageAffinTrans, HomMat2D, 'constant', \

'false')
reduce_domain (ImageAffinTrans, LogoArea, ImageReduced1)

compare_ext_variation_model (ImageReduced1, RegionDiff, VarModelID, \

'absolute')
connection (RegionDiff, ConnectedRegions)

select_shape (ConnectedRegions, SelectedRegions, 'area', 'and', 10, \

99999)

count_obj (SelectedRegions, NDefects)

endif

endfor

Finally, the handle for the variation model is deleted.

clear_shape_model (ShapeModelID)

clear_variation_model (VarModelID)

11.3 Programming Examples 151

11.3.2 Inspect a Printed Logo under Varying Illumination

Example: solution_guide/basics/variation_model_illumination.hdev

This example inspects caps of bottles using a variation model (see figure 11.3). The difficulty here is
the changing illumination during the inspection. Like in the example described before, a single image is
used as ideal image.

a) b)

c)

Figure 11.3: Model for the inspection of the caps: a) ideal image; b) variation image; c) results of image
comparison for images taken under different illumination conditions.

The variation model here is obtained by filtering the ideal image with the operator sobel_amp.

Va
ri

at
io

n
M

od
el

152 Variation Model

create_variation_model (Width, Height, 'byte', 'direct', VariationID)

sobel_amp (ModelImage, VarImage, 'sum_abs', 5)

prepare_direct_variation_model (ModelImage, VarImage, VariationID, [20,25], \

[1.6,1.6])

To compensate for the changing illumination, inside the procedure get_grayval_range the gray value
range of the variation model is determined.

get_grayval_range (ModelImage, RegionROI, RegionForeground, \

RegionBackground, BackgroundGVModel, ForegroundGVModel)

Inside the procedure the ideal image is reduced to the domain of the region of interest that encloses the
print on the cap. Then, the reduced image is split into foreground and background using bin_threshold
and difference. Finally, for both regions the mean and standard deviation of the gray values is queried
by the operator intensity.

reduce_domain (Image, RegionROI, ImageReduced)

bin_threshold (ImageReduced, RegionBackground)

difference (RegionROI, RegionBackground, RegionForeground)

intensity (RegionForeground, Image, ForegroundGVal, DeviationFG)

intensity (RegionBackground, Image, BackgroundGVal, DeviationBG)

The inspection of the caps is realized inside the procedure inspect_cap.

inspect_cap (rImage, RegionROI, WindowHandle, ModelID, VariationID, \

RowModel, ColumnModel, BackgroundGVModel, \

ForegroundGVModel)

There, in each image the object is searched for and aligned as described in the previous example. Then,
the procedure get_grayval_range derives also the gray value range for the ROI of the object to be
inspected, so that the image can be adapted to the gray value range of the variation model before com-
paring it to the variation model. Thus, also images that are taken under varying illumination can be
compared. The mode for the image comparison using the oparator compare_ext_variation_model
is set to light_dark, so that separate regions for too bright and too dark image points are returned in
RegionDiff.

get_grayval_range (ImageAffinTrans, RegionROI, RegionForegroundImage, \

RegionBackgroundImage, BackgroundImage, \

ForegroundImage)

Mult := (ForegroundGVModel - BackgroundGVModel)/ (ForegroundImage - \

BackgroundImage)

Add := ForegroundGVModel - Mult*ForegroundImage

scale_image (ImageReduced, ImageScaled, Mult, Add)

compare_ext_variation_model (ImageScaled, RegionDiff, VariationID, \

'light_dark')

At the end of the program, again the handle for the variation model is deleted.

11.4 Selecting Operators 153

clear_variation_model (VariationID)

11.4 Selecting Operators

11.4.1 Acquire Image(s)

Please refer to the operator list for the method Image Acquisition (see section 2.4 on page 17).

11.4.2 Create Variation Model

Standard:

create_variation_model

11.4.3 Align ROIs Or Images

Operators for aligning ROIs or images are described in the Solution Guide II-B.

11.4.4 Train Variation Model

Standard:

train_variation_model

11.4.5 Check Model Quality

Standard:

get_variation_model

11.4.6 Prepare Variation Model

Standard:

prepare_variation_model

Advanced:

prepare_direct_variation_model, get_thresh_images_variation_model, sobel_amp,
edges_image, gray_range_rect

Va
ri

at
io

n
M

od
el

154 Variation Model

11.4.7 Clear Training Data

Standard:

clear_train_data_variation_model

11.4.8 Compare Variation Model

Standard:

compare_variation_model

Advanced:

compare_ext_variation_model

11.4.9 Visualize Results

Please refer to the operator list for the method Visualization (see section 19.4 on page 297).

11.4.10 Destroy Variation Model

Standard:

clear_variation_model

Classification 155

Chapter 12

Classification

Classification is the technical term for the assignment of objects to individual instances of a set of classes.
The objects as well as the available classes are described by specific features, e.g., the color of a pixel
or the shape of a region. To define the classes, the features have to be specified, e.g., by a training
that is based on known objects. After the training, the classifier compares the features of the object
with the features associated to the available classes and returns the class with the largest correspondence.
Depending on the selected classifier, possibly additional information about the probabilities of the classes
or the confidence of the classification is given.

Generally, two approaches for a classification of image data can be distinguished. One approach is based
on a pure pixel classification and segments images based on color or texture. The other approach is
more general and classifies arbitrary features, i.e., you can additionally classify regions based on region
features like, e.g., shape, size, or color. For the programming examples introduced here, the focus is on
the first approach. Note that actually the optical character recognition (OCR) provided by HALCON is
a further classification approach, for which specific operators are provided. But these are described in
more detail in the chapter OCR on page 245.

HALCON provides different classifiers. The most important classifiers are the neural network (multi-
layer perceptron or MLP) classifier, a classifier that is based on support vector machines (SVM), and a
classifier that is based on Gaussian mixture models (GMM). Additionally, a box classifier is available,
but as the GMM classifier leads to comparable results and is more robust, here only the GMM classifier
is described. Further, more ’simple’ classifiers can be used for image segmentation. These comprise the
classifiers for two-dimensional pixel classification with class_2dim_sup or class_2dim_unsup, and
the n-dimensional pixel classification approaches based on hyper-cuboids (class_ndim_box), which
is related to the box classifier, or hyper-spheres (class_ndim_norm), which can be used, e.g., for an
euclidean classification. These approaches are less flexible, so the focus of this chapter is on the MLP,
SVM, and GMM classifiers. If you want to use one of the ’simple’ classifiers, have a look at the corre-
sponding examples.

To decide which classifier to use for a specific task and to choose suitable parameters for the selected
classification is rather challenging, as each classification task is different and thus needs different han-
dling. HALCON provides the operators to apply a classification, and this chapter provides some general
hints about their usage. Further, the most salient advantages and disadvantages of the different classifiers

C
la

ss
ifi

ca
tio

n

156 Classification

are summarized for the step Create Classifier and minor differences between the classifiers, which are re-
lated to individual operators, are stated with the corresponding step descriptions or in the corresponding
sections of the Reference Manual. Nevertheless, in contrast to other methods described in this manual,
for classification no set of fixed rules for the selection of the suitable classifier and the selection of the
parameters can be given. In many cases, you have to try out different classifiers for your specific task
and with your specific training data. Independent on the selected approach, in almost any case you have
to play with the parameters to get a satisfying result. Allow extra time for tests and do not despair if your
first tests do not immediately lead to a satisfying result. Classification is complex!

12.1 Basic Concept

Classification consists of the following basic steps:

Destroy Classifier

Classify Data

Train Classifier

Create Classifier

Acquire Image(s)

12.1.1 Acquire Image(s)

When classifying images, both for the generation of the training data and for the classification images
must be acquired.

For detailed information see the description of this method on page 13.

12.1.2 Create Classifier

The first step of a classification is the creation of a new classifier. Here, you have to decide which
classifier to apply for your specific classification task. The main advantages and disadvantages of the
three classifiers (assuming an optimal tuning of the parameters) are as follows:

12.1 Basic Concept 157

• Gaussian Mixture Models: The advantage of the GMM classification is that, controlled by the
parameter settings, a feature vector that does not match to one of the trained classes can be assigned
to a rejection class. Additionally, you can apply a second training that is appended to the first
training, e.g., in order to add new training samples. The disadvantage of the GMM classifier is
that the recognition rates are not as good as the recognition rates obtained by the MLP or SVM
approaches. Further, for the feature vector a length of up to 15 features is recommended, whereas
for the MLP and SVM classifiers a feature vector with 500 features is still realistic.

• Multi-Layer Perceptron: The MLP classifier leads to good recognition rates and is rather fast at
classification. In exchange, the training is not as fast as for the SVM classification, especially for
huge training sets. If the classification is time critical but the training can be applied offline, the
MLP approach is a good choice. A rejection class is returned, but in comparison to the GMM
classifier, it may be influenced by outliers, so that an additional, explicit training of a rejection
class is recommended. Additionally, if you want to add additional training samples, you should
not append a second training, but repeat the training with both the old and the new training samples.

• Support Vector Machines: Compared to the MLP classifier, the SVM classifier leads to slightly
better recognition rates and is faster at training, especially for huge training sets. Additionally, a
training of new training samples can be simply appended to a previous training. In exchange, the
classification is not as fast as for the MLP approach. A rejection class is not obtained automatically.

Dependent on the selected classification approach, you create the classifier using create_class_gmm,
create_class_mlp, or create_class_svm.

When creating a classifier, the correct parameter settings are essential for the success of the later clas-
sification. These are very specific for the different approaches. To name just a few, the parameter
OutputFunction should be set to ’softmax’ for an MLP classifier, as the classifier can also be used
for regression and not only for classification. Additionally, the value for the parameter NumHidden has
to be adjusted very carefully. In contrast to that, for the SVM approach, the parameter KernelType in
most cases should be set to ’rbf’ and the values of the parameters Nu and KernelParam strongly influ-
ence the classification result and thus should be carefully adjusted. Further, different modes and specific
algorithms for the preprocessing of the feature vector can be selected. For details, see the corresponding
operator descriptions in the Reference Manual and the Solution Guide II-D.

12.1.3 Train Classifier

The training consists of two important steps: First, representative training samples, i.e., a set of fea-
ture vectors for each class, are added to the classifier using the operator add_sample_class_gmm,
add_sample_class_mlp, or add_sample_class_svm. If you want to apply a pixel classification,
i.e., you want to segment images into regions of different color or texture, you can alternatively add the
samples using the operators add_samples_image_class_gmm, add_samples_image_class_mlp, or
add_samples_image_class_svm. Then, you can immediately insert a single multi-channel image in-
stead of many feature vectors (one per pixel).

In a second step, the classifier is trained by train_class_gmm, train_class_mlp, or
train_class_svm. Note that complex calculations are performed during the training. Thus, depending
on the number of training samples and some approach-specific influences, e.g., the size of the MLP used
for an MLP classification, the training can take from a few seconds to several hours.

C
la

ss
ifi

ca
tio

n

158 Classification

12.1.4 Classify Data

For the general classification you use the operators classify_class_gmm, classify_class_mlp, or
classify_class_svm. These use the trained classifier to return the classes that are most probable for
the feature vector of the data to classify. In most cases, you need only the best class. Then, you set the
parameter Num to ’1’. In a few cases, e.g., when working with overlapping classes, also the second best
class may be of interest (Num=’2’).

Like for the step of adding samples to the training, for a pixel classification, i.e., if an image is to be
segmented into regions of different color or texture classes, special operators are provided. For image
segmentation, you can use classify_image_class_gmm, classify_image_class_mlp, or clas-
sify_image_class_svm. Again, these take images as input, instead of individual feature vectors for
each pixel, and return regions as output. Note that for images with a maximum of three channels,
you can speed up the image segmentation by using a classification that is based on look-up tables
(LUT-accelerated classification). For further information, please refer to the Solution Guide II-D in
section 6.1.6 on page 74.

Besides the most probable classes, for the GMM classification the probabilities of the classes, and for
the MLP classification the confidence of the classification are returned. Note that the probabilities for the
GMM classification are relatively precise, whereas for the confidence of the MLP classification outliers
are possible because of the way an MLP is calculated. For example, when classifying positions of objects
(rows and columns build the feature vectors), the confidence may be high for positions that are far from
the training samples and low in case of overlapping classes.

For the SVM classification, no information about the confidence of the classification or the probabilities
of the returned classes are given.

12.1.5 Destroy Classifier

When you no longer need the classifier, you destroy it with the operator clear_class_gmm,
clear_class_mlp, or clear_class_svm, dependent on the used classifier. When working with sev-
eral classifiers of the same type, you can destroy them all in one step using clear_all_class_gmm,
clear_all_class_mlp, or clear_all_class_mlp.

12.1.6 A First Example

An example for this basic concept is the following program, which segments the image depicted in
figure 12.1 into regions of the three classes Sea, Deck, and Walls using a GMM pixel classification.
Parts of the image that can not be clearly assigned to one of the specified classes are returned as a
rejection class region.

First, the image is read and the sample regions for the classes Sea, Deck, and Walls are defined and
listed in the tuple Classes.

12.1 Basic Concept 159

a) b) c)

Figure 12.1: Segmentation of a color image: (a) original image, (b) sample regions for the classes Sea

(light gray), Deck (white), and Walls (gray), (c) regions returned by the classification (black
marks the rejected regions).

read_image (Image, 'patras')
gen_rectangle1 (Sea, 10, 10, 120, 270)

gen_rectangle2 (Deck, [170,400], [350,375], [-0.56192,-0.75139], [64,104], \

[26,11])

union1 (Deck, Deck)

gen_rectangle1 (Walls, 355, 623, 420, 702)

concat_obj (Sea, Deck, Classes)

concat_obj (Classes, Walls, Classes)

Then, a new classifier of type Gaussian Mixture Model is created with create_class_gmm. The classi-
fier works for a feature vector with three dimensions (the three channels of the color image) and for three
classes (Sea, Deck, and Walls). The tuple containing the regions that specify each class to be trained is
assigned as a set of samples to the classifier using the operator add_samples_image_class_gmm. The
samples are used now by the operator train_class_gmm to train the classifier.

create_class_gmm (3, 3, [1,10], 'full', 'none', 2, 42, GMMHandle)

add_samples_image_class_gmm (Image, Classes, GMMHandle, 2.0)

train_class_gmm (GMMHandle, 500, 1e-4, 'uniform', 1e-4, Centers, Iter)

Then, the whole image is segmented by classify_image_class_gmm into regions of the
three trained classes and a rejection class, which consists of the parts that can not be as-
signed clearly to one of the trained classes. A rejection class is returned automatically
for GMM and MLP classification. For the MLP approach the rejection class can be in-
fluenced by outliers, so it should be created explicitly like shown in the example hde-

velop/Segmentation/Classification/classify_image_class_mlp.hdev. At the end of the
program, the classifier is destroyed with clear_class_gmm.

classify_image_class_gmm (Image, ClassRegions, GMMHandle, 0.0001)

clear_class_gmm (GMMHandle)

C
la

ss
ifi

ca
tio

n

160 Classification

12.2 Extended Concept

When we look more closely at Classification, further operations can be applied. For example, the training
samples or the trained classifier can be stored to file to be re-used in a later step, or the trained classifier
can be evaluated further.

Destroy Classifier

Visualize Results

Classify Data

Evaluate Classifier

Re-use Classifier

Re-use Training Samples

Train Classifier

Create Classifier

Acquire Image(s)

12.2.1 Train Classifier

If a classification does not lead to a satisfying result, one way to enhance the recognition rate is to add
further training samples to the classifier. For the GMM and the SVM approach, you can add new samples
to the classifier and train the classifier again, so that only those classes are trained again for which new
training samples were added (for details, see the corresponding sections in the Reference Manual). But
if the run time of your application is not critical, we recommend to train the classifier anew, using both
the old and the new training samples. For the MLP approach a new training should be applied in any
case, as the result of appending a second training most likely is not satisfying.

12.2 Extended Concept 161

You may want to access the individual training samples if you have the suspicion that one
of them is classified incorrectly. To do so, you apply the operators get_sample_class_gmm,
get_sample_class_mlp, or get_sample_class_svm. To get the number of available train-
ing samples, the operators get_sample_num_class_gmm, get_sample_num_class_mlp, and
get_sample_num_class_svm can be applied.

If the training and the classification is applied in the same process, you can save mem-
ory by applying the operators clear_samples_class_gmm, clear_samples_class_mlp, or
clear_samples_class_svm after the training. These clear the training samples from memory. This
step is only recommended if you do not want to access the individual samples in a later step. If the train-
ing process and the actual classification is separated (see the step Re-use Classifier), the clearing of the
samples is not necessary as the training samples are not stored anyway (unless you store them explicitly,
see the step Re-use Training Samples).

For the SVM approach, you can use reduce_class_svm to reduce the number of support vectors after
the training. The returned classifier is faster than the originally used classifier.

12.2.2 Re-use Training Samples

In many cases it is necessary to access the samples used for the training in a later step, e.g., if you want
to repeat the training with some additional samples or if you want to access individual samples to check
their correctness. In most applications, you will separate the offline training and the online classification.
Thus, in the classification phase the information about the individual samples is not implicitly available
anymore. To nevertheless access the information, we recommend to write the used samples to file dur-
ing the training phase with the operators write_samples_class_gmm, write_samples_class_mlp,
or write_samples_class_svm. To read them from file again, you use the operators
read_samples_class_gmm, read_samples_class_mlp, and read_samples_class_svm.

12.2.3 Re-use Classifier

In most applications, you will separate the offline training and the online classification. At the end of
the training phase, you typically save the classifier to disk by write_class_gmm, write_class_mlp,
or write_class_svm. To re-use it for the classification phase, you read the stored classifier by
read_class_gmm, read_class_mlp, or read_class_svm, respectively.

If the training and the actual classification are separated, in the classification phase no information
about the creation and training of the classifier is present anymore. To nevertheless get information
about the parameters used for the creation of the classifier, the operators get_params_class_gmm,
get_params_class_mlp, or get_params_class_svm can be applied. If a preprocessing was used
for the feature vectors, which was specified with the creation of the classifier, you can also query
the information content of the preprocessed feature vectors of the training samples. For this, you use
get_prep_info_class_gmm, get_prep_info_class_mlp, or get_prep_info_class_svm.

12.2.4 Evaluate Classifier

After training a classifier, a feature vector can be evaluated. If you need only its most probable class,
or perhaps also the second best class, and the related probabilities or confidences, respectively, these

C
la

ss
ifi

ca
tio

n

162 Classification

are returned also when applying the actual classification (see Classify Data). But if all probabilities
are needed, e.g., to get the distribution of the probabilities for a specific class (see the example de-
scription for hdevelop/Classification/Neural-Nets/class_overlap.hdev in the Programming
Examples section), an evaluation is necessary. For the GMM approach, the evaluation with evalu-

ate_class_gmm returns three different probability values: the a-posteriori probability (stored in the
variable ClassProb), the probability density, and the k-sigma error ellipsoid. For the MLP approach,
the result of the evaluation of a feature vector with evaluate_class_mlp is stored in the variable Re-
sult. The values of ClassProb and Result both can be interpreted as probabilities of the classes.
The position of the maximum value corresponds to the class of the feature vector, and the corresponding
value is the probability of the class. For the SVM classification, no information about the confidence of
the classification or the probabilities of the returned classes are given.

12.2.5 Visualize Results

Finally, you might want to display the result of the classification.

For detailed information see the description of this method on page 289.

12.3 Programming Examples

This section gives a brief introduction to using HALCON for classification.

12.3.1 Inspection of Plastic Meshes via Texture Classification

Example: hdevelop/Segmentation/Classification/novelty_detection_svm.hdev

This example shows how to apply an SVM texture classification in order to detect deviations from the
training data (novelties), in this case defects, in a textured material. The image depicted in figure 12.2
shows one of five images used to train the texture of a plastic mesh and the result of the classification for
a mesh with defects.

The program reads the first training image, defines a region of interest to avoid problems at the image
border that would occur because of the later used texture filters and the specific structure of the mesh,
and then creates the SVM classifier SVMHandle using create_class_svm. There, the mode ’novelty-
detection’ is selected. With this mode, feature vectors that are not contained in the training samples are
classified as a new class. Thus, novelties in the texture of the plastic mesh can be detected. For novelty
detection, always the kernel type ’rbf’ has to be selected, but also for other modes it is recommended
in most cases.

read_image (Image, 'plastic_mesh/plastic_mesh_01')
gen_rectangle1 (Rectangle, 10, 10, Height/2-11, Width/2-11)

create_class_svm (5, 'rbf', 0.01, 0.0005, 1, 'novelty-detection', \

'normalization', 5, SVMHandle)

Then, all five training images are read in a loop, zoomed, and transformed into texture images by the
procedure gen_texture_image.

12.3 Programming Examples 163

a) b)

Figure 12.2: Inspection of a plastic mesh: (a) (zoomed) training image with correct texture (region of
interest marked in white), (b) mesh with defects (texture novelties marked in white).

for J := 1 to 5 by 1

read_image (Image, 'plastic_mesh/plastic_mesh_'+J$'02')
zoom_image_factor (Image, ImageZoomed, 0.5, 0.5, 'constant')
gen_texture_image (ImageZoomed, ImageTexture)

The procedure creates a texture image as follows: Five different texture filters (texture_laws with
different filter types) are applied to the zoomed image and the resulting five images are used to build a
five-channel image (compose5). Additionally, the five-channel image is smoothed.

texture_laws (Image, ImageEL, 'el', 5, 5)

texture_laws (Image, ImageLE, 'le', 5, 5)

texture_laws (Image, ImageES, 'es', 1, 5)

texture_laws (Image, ImageSE, 'se', 1, 5)

texture_laws (Image, ImageEE, 'ee', 2, 5)

compose5 (ImageEL, ImageLE, ImageES, ImageSE, ImageEE, ImageLaws)

smooth_image (ImageLaws, ImageTexture, 'gauss', 5)

After the creation of each texture image, it is added as training sample to the classifier by
add_samples_image_class_svm.

add_samples_image_class_svm (ImageTexture, Rectangle, SVMHandle)

endfor

After all training samples were added to the classifier, the training is applied by train_class_svm. To
enhance the speed of the classification, the number of support vectors is reduced by reduce_class_svm,
which leads to a new classifier named SVMHandleReduced.

train_class_svm (SVMHandle, 0.001, 'default')
reduce_class_svm (SVMHandle, 'bottom_up', 2, 0.001, SVMHandleReduced)

C
la

ss
ifi

ca
tio

n

164 Classification

Now, the images that have to be inspected are read in a loop. Each image is again zoomed and trans-
formed into a texture image. The image is reduced to the part described by the region of interest and the
reduced image is classified using the operator classify_image_class_svm with the reduced classifier
SVMHandleReduced.

for J := 1 to 14 by 1

read_image (Image, 'plastic_mesh/plastic_mesh_'+J$'02')
zoom_image_factor (Image, ImageZoomed, 0.5, 0.5, 'constant')
gen_texture_image (ImageZoomed, ImageTexture)

reduce_domain (ImageTexture, Rectangle, ImageTextureReduced)

classify_image_class_svm (ImageTextureReduced, Errors, SVMHandleReduced)

The regions Errors that are returned by the classification and which describe the classes with the nov-
elties, can now be visualized in the image. For that, morphological operators are applied to smooth the
borders of the error regions, and connected components are extracted. Regions of a certain size are se-
lected and the result of the texture inspection is visualized as text. In particular, the texture of the mesh
is classified as being good, if the number of selected regions (NumErrors) is 0. Otherwise, the mesh is
classified as being erroneous.

opening_circle (Errors, ErrorsOpening, 3.5)

closing_circle (ErrorsOpening, ErrorsClosing, 10.5)

connection (ErrorsClosing, ErrorsConnected)

select_shape (ErrorsConnected, FinalErrors, 'area', 'and', 300, 1000000)

count_obj (FinalErrors, NumErrors)

if (NumErrors > 0)

disp_message (WindowHandle, 'Mesh not OK', 'window', -1, -1, \

'black', 'true')
else

disp_message (WindowHandle, 'Mesh OK', 'window', -1, -1, 'black', \

'true')
endif

if (J < 14)

disp_continue_message (WindowHandle, 'black', 'true')
endif

endfor

At the end of the program, both classifiers are destroyed.

clear_class_svm (SVMHandle)

clear_class_svm (SVMHandleReduced)

12.3.2 Classification with Overlapping Classes

Example: hdevelop/Classification/Neural-Nets/class_overlap.hdev

This artificial example shows how an MLP classification behaves for classes with overlapping feature
vectors. Three overlapping classes are defined by 2D feature vectors that consist of the rows and columns
of region points. The classes are depicted in figure 12.3.

12.3 Programming Examples 165

c)b)a)

Figure 12.3: Three overlapping classes (feature vectors consist of rows and columns): (a) class1, (b)
class 2, (c) class 3.

The classes are created as follows: For each class, an elliptic region is generated. Then, noise is added
to a generic image, to which a threshold is applied to get three randomly distributed regions consisting
of small dots. These regions are intersected with the elliptic regions of the individual classes. The result
is an elliptic cluster of small dots for each class.

gen_ellipse (RegionClass1, 60, 60, rad(-45), 60, 40)

gen_ellipse (RegionClass2, 70, 130, rad(-145), 70, 30)

gen_ellipse (RegionClass3, 140, 100, rad(100), 55, 40)

gen_image_const (Image, 'byte', 200, 200)

add_noise_white (Image, ImageNoise1, 60)

add_noise_white (Image, ImageNoise2, 60)

add_noise_white (Image, ImageNoise3, 60)

threshold (ImageNoise1, RegionNoise1, 40, 255)

threshold (ImageNoise2, RegionNoise2, 40, 255)

threshold (ImageNoise3, RegionNoise3, 40, 255)

intersection (RegionClass1, RegionNoise1, SamplesClass1)

intersection (RegionClass2, RegionNoise2, SamplesClass2)

intersection (RegionClass3, RegionNoise3, SamplesClass3)

For each elliptic cluster, the positions of the region points are obtained by get_region_points.
Each position builds a feature vector (Rows[j], Cols[j]) that is added to the training by
add_sample_class_mlp. Then, the classifier is trained with train_class_mlp.

C
la

ss
ifi

ca
tio

n

166 Classification

concat_obj (SamplesClass1, SamplesClass2, Samples)

concat_obj (Samples, SamplesClass3, Samples)

create_class_mlp (2, 5, 3, 'softmax', 'normalization', 1, 42, MLPHandle)

for Class := 0 to 2 by 1

select_obj (Samples, SamplesClass, Class+1)

get_region_points (SamplesClass, Rows, Cols)

for J := 0 to |Rows|-1 by 1

add_sample_class_mlp (MLPHandle, real([Rows[J],Cols[J]]), Class)

endfor

endfor

train_class_mlp (MLPHandle, 300, 0.01, 0.01, Error, ErrorLog)

After the training, the classifier is evaluated. To visualize the probabilities of the classes, we create a
probability image for each class. In a loop, the operator evaluate_class_mlp returns the probabilities
for each pixel position. The first value of the returned tuple shows the probability of the pixel to belong
to class 1, the second value shows the probability of the pixel to belong to class 2, etc. The probability
value of each class is then used as gray value for the corresponding probability image. Additionally, the
result of the classification that is returned by classify_class_mlp, i.e., the most probable class for
each position, is visualized in a probability image. The probability images showing the probabilities of
the individual classes are depicted in figure 12.4. In figure 12.5a the probabilities of the three classes
are united into a three-channel (color) image with compose3. Figure 12.5b shows the result of the
classification, i.e., the most probable class for each position in the image.

gen_image_const (ProbClass1, 'real', 200, 200)

gen_image_const (ProbClass2, 'real', 200, 200)

gen_image_const (ProbClass3, 'real', 200, 200)

gen_image_const (LabelClass, 'byte', 200, 200)

for R := 0 to 199 by 1

for C := 0 to 199 by 1

Features := real([R,C])

evaluate_class_mlp (MLPHandle, Features, Prob)

classify_class_mlp (MLPHandle, Features, 1, Class, Confidence)

set_grayval (ProbClass1, R, C, Prob[0])

set_grayval (ProbClass2, R, C, Prob[1])

set_grayval (ProbClass3, R, C, Prob[2])

set_grayval (LabelClass, R, C, Class)

endfor

endfor

label_to_region (LabelClass, Classes)

compose3 (ProbClass1, ProbClass2, ProbClass3, Probs)

clear_class_mlp (MLPHandle)

Similar examples, but with GMM and SVM classifiers instead of an MLP classifier are
hdevelop/Classification/Gaussian-Mixture-Models/class_overlap_gmm.hdev and
hdevelop/Classification/Support-Vector-Machines/class_overlap_svm.hdev. For
the GMM example, additionally the k-sigma probability is calculated for each feature vector. This can
be used to reject all feature vectors that do not belong to one of the three classes. For the SVM example,
the importance of selecting suitable parameter values is shown. For SVM classification, especially
the parameter value Nu, which specifies the ratio of outliers in the training data set, has to be selected

12.3 Programming Examples 167

c)b)a)

Figure 12.4: Probabilities for the overlapping classes ("white"=most probable): (a) probability of class 1
(b) probability of class 2, (c) probability of class 3.

a) b)

Figure 12.5: Probabilities for each pixel: (a) probabilities of the individual classes composed to a three-
channel image, (b) confidences returned by the classification.

sufficiently (see figure 12.6).

c)b)a)

Figure 12.6: For SVM classification, the value for the parameter Nu has to be selected carefully: (a) Nu
=0.01 (too small, wrong classification), (b) Nu = 0.18 (still too small, overfitting), (c) Nu = 25
(good classification).

C
la

ss
ifi

ca
tio

n

168 Classification

12.4 Selecting Operators

12.4.1 Acquire Image(s)

Please refer to the operator list for the method Image Acquisition (see section 2.4 on page 17).

12.4.2 Create Classifier

Standard:

create_class_gmm, create_class_mlp, create_class_svm

Advanced:

create_class_lut_gmm, create_class_lut_mlp, create_class_lut_svm

12.4.3 Train Classifier

Standard:

add_sample_class_gmm, add_sample_class_mlp, add_sample_class_svm,
add_samples_image_class_gmm, add_samples_image_class_mlp,
add_samples_image_class_svm, train_class_gmm, train_class_mlp, train_class_svm

Advanced:

clear_samples_class_gmm, clear_samples_class_mlp, clear_samples_class_svm,
get_sample_num_class_gmm, get_sample_num_class_mlp, get_sample_num_class_svm,
get_sample_class_gmm, get_sample_class_mlp, get_sample_class_svm,
reduce_class_svm

12.4.4 Re-use Training Samples

Standard:

write_samples_class_gmm, write_samples_class_mlp, write_samples_class_svm,
read_samples_class_gmm, read_samples_class_mlp, read_samples_class_svm

12.4.5 Re-use Classifier

Standard:

write_class_gmm, write_class_mlp, write_class_svm, read_class_gmm, read_class_mlp,
read_class_svm

12.5 Relation to Other Methods 169

Advanced:

get_params_class_gmm, get_params_class_mlp, get_params_class_svm,
get_prep_info_class_gmm, get_prep_info_class_mlp, get_prep_info_class_svm

12.4.6 Evaluate Classifier

Standard:

evaluate_class_gmm, evaluate_class_mlp

12.4.7 Classify Data

Standard:

classify_class_gmm, classify_class_mlp, classify_class_svm,
classify_image_class_gmm, classify_image_class_mlp, classify_image_class_svm

Advanced:

classify_image_class_lut

12.4.8 Visualize Results

Please refer to the operator list for the method Visualization (see section 19.4 on page 297).

12.4.9 Destroy Classifier

Standard:

clear_class_gmm, clear_class_mlp, clear_class_svm, clear_all_class_gmm,
clear_all_class_mlp, clear_all_class_svm

Advanced:

clear_class_lut

12.5 Relation to Other Methods

12.5.1 Methods that are Useful for Classification

Filtering

C
la

ss
ifi

ca
tio

n

170 Classification

When applying a pixel classification, a preprocessing, in particular a filtering of the image may be con-
venient to minimize problems like noise, texture, or overlaid structures. Operators like mean_image or
gauss_image can be used to eliminate noise. A fast but slightly less perfect alternative to gauss_image
is binomial_filter. The operator median_image is helpful for suppressing small spots or thin lines
and gray value morphology can be used to eliminate noise structures.

Region Of Interest (see description on page 19)
The concept of domains (the HALCON term for a region of interest) is useful for classification. Domains
are used, e.g., to restrict the classification to the image part that has to be classified. For an overview on
how to construct regions of interest and how to combine them with the image see the method Region Of
Interest on page 19.

Texture Analysis (see description on page 189)
Texture analysis is a method for finding regular or irregular structures, e.g., on the surface of an object.
For this not only the single gray values but also a larger pixel neighborhood is used. HALCON provides
filters that emphasize or suppress specific textures. If your application includes objects with a textured
surface it might be helpful to apply texture analysis first before segmenting objects using pixel classifiers.

12.5.2 Methods that are Using Classification

Color Processing (see description on page 173)
Classification is used for color processing. There, the feature vector for a pixel consists of the gray values
connected to each channel of the image. The classification of the pixels due to their color can then be
used, e.g., to segment an image into regions of different color classes. With the description of the color
processing method you find the example solution_guide/basics/color_pieces.hdev which uses
an MLP classification to check the completeness of colored game pieces.

OCR (see description on page 245)
Classification is used for optical character recognition (OCR). HALCON provides OCR-specific oper-
ators that classify previously segmented regions of images into character classes. The OCR-specific
operators are available for the MLP, SVM, and box classifier. The latter is not recommended anymore as
MLP and SVM are more powerful.

12.5.3 Alternatives to Classification

Blob Analysis (see description on page 31)
Classification is time consuming and rather complex to handle. Thus, it should be applied mainly if other
methods fail. One method that may also solve a classification problem is blob analysis. For example,
scratches can be separated from a surface by a classification, but in most cases a comparable result can
be obtained also by a segmentation of the image via blob analysis, which needs significantly less time
and is easy to apply.

Matching (see description on page 97)
If 2D shapes with fixed outlines are to be classified, in many cases it is more convenient to apply a
template matching instead of a classification. A classification may be used if not only the shape but also
the color or texture of the object is needed to distinguish the objects of different classes.

12.6 Tips & Tricks 171

Variation Model (see description on page 143)
If differences between images and a reference image are searched for, the variation model may be used.
In contrast to, e.g., template matching, images can be directly compared by their gray values and the
comparison is spatially weighted by the variation image.

12.6 Tips & Tricks

12.6.1 OCR for General Classification

The OCR-specific classification operators are developed for optical character recognition but are not
limited to characters. Actually, assuming a suitable training, you can classify any shape of a region with
OCR. In some cases, it may be more convenient to classify the shapes of regions using the OCR-specific
operators instead of the classification operators described here.

12.7 Advanced Topics

12.7.1 Selection of Training Samples

The quality of a classification depends not only on the selected parameters, but also on the set of training
samples used to train the classifier. Thus, for a good classification result, you should carefully select
your training samples:

• Use as many training samples as possible.

• Use approximately the same number of samples for each class.

• Take care that the samples of a class show some variations. If you do not have enough samples with
variations, you can artificially create more of them by slightly changing your available samples.

C
la

ss
ifi

ca
tio

n

172 Classification

Color Processing 173

Chapter 13

Color Processing

The idea of color processing is to take advantage of the additional information encoded in color or multi-
spectral images. Processing color images can simplify many machine vision tasks and provide solutions
to certain problems that are simply not possible in gray value images. In HALCON the following ap-
proaches in color processing can be distinguished: First, the individual channels of a color image can
be processed using standard methods like blob analysis. In this approach the channels of the original
image have to be decomposed first. An optional color space transformation is often helpful in order to
access specific properties of a color image. Secondly, HALCON can process the color image as a whole
by calling specialized operators, e.g., for pixel classification. Advanced applications of color processing
include lines and edges extraction.

b)a)

Figure 13.1: Simple color segmentation.

The example illustrated in figure 13.1 shows how to segment blue pieces of plasticine in a color image.

C
ol

or
P

ro
ce

ss
in

g

174 Color Processing

13.1 Basic Concept

Simple color processing, which is using the methods of blob analysis, mainly consists of three parts:

Process Image (Channels)

Decompose Channels

Acquire Image(s)

13.1.1 Acquire Image(s)

First, an image is acquired.

For detailed information see the description of this method on page 13.

13.1.2 Decompose Channels

In order to be able to process the individual channels, RGB color images have to be split up into a red,
green, and blue channel by using the operator decompose3.

13.1.3 Process Image (Channels)

Depending on the application, the individual channels can be processed using standard methods de-
scribed in this chapter. One of the most frequently used methods is blob analysis (see Blob Analysis on
page 31).

13.1.4 A First Example

An example for this basic concept is the following program, which belongs to the example explained
above.

Here, an RGB image is acquired from file. The image is split into its channels using decompose3. The
red and green channels are subtracted from the blue channel using sub_image. The purpose of this
process is to fade out pixels with high values in the other channels, leaving pure blue pixels only. Using
threshold, the blue pixels with a certain intensity are selected.

13.2 Extended Concept 175

Red Green Blue

Figure 13.2: Color image decomposed to its red, green, and blue channels.

read_image (Image, 'plasticine')
decompose3 (Image, Red, Green, Blue)

sub_image (Blue, Red, RedRemoved, 1, 0)

sub_image (RedRemoved, Green, RedGreenRemoved, 1, 0)

threshold (RedGreenRemoved, BluePixels, 10, 255)

13.2 Extended Concept

In many cases the processing of color images will be more advanced than in the above example. Depend-
ing on the actual application, the order of the following steps may vary, or some steps may be omitted
altogether.

13.2.1 Demosaick Bayer Pattern

If the acquired image is a Bayer image, it can be converted to RGB using the operator cfa_to_rgb. The
encoding type of the Bayer pattern (the color of the first two pixels of the first row) must be known (see
figure 13.3).

13.2.2 Transform Color Space

The RGB color space is not always the most appropriate starting point to process color images. If
this is the case, a transformation to a different color space might be useful. HALCON supports many
important color spaces. Namely, the HSV and HSI color spaces are favorable to select distinct col-
ors independent of their intensity. Therefore, color segmentations in these color spaces are very ro-
bust under varying illumination. The i1i2i3 color space qualifies for color classification, whereas
the cielab color space is a close match to human perception. Typical operators for color trans-
form are trans_from_rgb and trans_to_rgb. The operators create_color_trans_lut and ap-

ply_color_trans_lut are, however, faster for time-consuming transformations. How time-consuming
a transformation is, depends on both the color space and the used hardware. The example hde-

velop/Filters/Color/color_trans_lut.hdev shows how to use the "faster" operators.

C
ol

or
P

ro
ce

ss
in

g

176 Color Processing

Visualize Results

Compose Channels

Classify Colors

Use Region Of Interest

Train Colors

Transform Color Space

Decompose Channels

Demosaick Bayer Pattern

Acquire Image(s)

GR R G

GR R G

BG G B

BG G B

encoding

Figure 13.3: Sample Bayer pattern and corresponding encoding.

13.2.3 Train Colors

In order to do color classification the colors that need to be distinguished have to be trained. There
are different approaches for full color classification including, e.g., gaussian mixture models (GMM),
multilayer perceptron (MLP), and support vector machine (SVM) classification. For further information

13.3 Programming Examples 177

about classification, see Classification on page 155.

13.2.4 Use Region Of Interest

Color processing can be sped up by using a region of interest. The more the region in which the segmen-
tation is performed can be restricted, the faster and more robust it will be.

For detailed information see the description of this method on page 19.

13.2.5 Classify Colors

The colors trained in the previous step are used in subsequent images to do the actual classification.

13.2.6 Compose Channels

Any number of channels can be joined to a multi-channel image using the operators compose2 through
compose7, or append_channel. This way, channels that were processed separately can be composed
back to color images for visualization purposes.

13.2.7 Visualize Results

Finally, you might want to display the images, the regions, and the features.

For detailed information see the description of this method on page 289.

13.3 Programming Examples

This section gives a brief introduction to using HALCON for color processing.

13.3.1 Robust Color Extraction

Example: solution_guide/basics/color_simple.hdev

The object of this example is to segment the yellow cable in a color image in a robust manner.

Here, an RGB image is acquired from file. The image is split into its channels using decompose3.
Afterwards, a color space transformation from RGB to HSV is performed using trans_from_rgb. This
transformation converts the image channels into the separate components hue, saturation and intensity.
In the next steps the operator threshold selects all pixels with a high saturation value, followed by
reduce_domain in the hue channel which effectively filters out pale colors and grays. A histogram of the
remaining saturated (vivid) colors is displayed in figure 13.5. Each peak in this histogram corresponds to
a distinct color. The corresponding color band is shown below the histogram. Finally, the last threshold
selects the yellowish pixels.

C
ol

or
P

ro
ce

ss
in

g

178 Color Processing

Figure 13.4: Segmentation of a specific color.

read_image (Image, 'cable' + i)

decompose3 (Image, Red, Green, Blue)

trans_from_rgb (Red, Green, Blue, Hue, Saturation, Intensity, 'hsv')
threshold (Saturation, HighSaturation, 100, 255)

reduce_domain (Hue, HighSaturation, HueHighSaturation)

threshold (HueHighSaturation, Yellow, 20, 50)

Saturated Hues

Hue Saturation Value

yellow range

Figure 13.5: Segmentation in HSV color space.

Finding the proper threshold margins is crucial in applications like this. In HDevelop the Gray His-
togram tool can be used to determine the values interactively. See the HDevelop User’s Guide for more
information. To generate the color band shown in figure 13.5, use the following code snippet:

13.3 Programming Examples 179

gen_image_gray_ramp (Hue, 0, 1, 128, 32, 128, 256, 64)

gen_image_proto (Hue, White, 255)

trans_to_rgb (Hue, White, White, Red, Green, Blue, 'hsv')
compose3 (Red, Green, Blue, MultiChannelImage)

13.3.2 Sorting Fuses

Example: solution_guide/basics/color_fuses.hdev

Figure 13.6: Simple classification of fuses by color with varying illumination.

In this example different types of fuses are classified using color images. The applied method is similar
to the previous example. A training image has been used to specify ranges of hue for the fuse types that
need to be distinguished. The determined ranges are hard-coded in the program.

FuseColors := ['Orange','Red','Blue','Yellow','Green']
FuseTypes := [5,10,15,20,30]

* HueRanges: Orange 10-30, Red 0-10...

HueRanges := [10,30,0,10,125,162,30,64,96,128]

A sequence of images is acquired from file, converted to the HSV color space, and reduced to contain
only saturated colors just like in the previous example. As already mentioned, color selection in this
color space is pretty stable under changing illumination. That is why the hard-coded color ranges are
sufficient for a reliable classification. However, it has to be kept in mind that a certain degree of color
saturation must be guaranteed for the illustrated method to work.

decompose3 (Image, Red, Green, Blue)

trans_from_rgb (Red, Green, Blue, Hue, Saturation, Intensity, 'hsv')
threshold (Saturation, Saturated, 60, 255)

reduce_domain (Hue, Saturated, HueSaturated)

C
ol

or
P

ro
ce

ss
in

g

180 Color Processing

The classification iterates over the fuse types and checks for sufficiently large areas in the given hue
range. This is done using blob analysis. Afterwards, an additional inner loop labels the detected fuses.

for Fuse := 0 to |FuseTypes|-1 by 1

threshold (HueSaturated, CurrentFuse, HueRanges[Fuse*2], \

HueRanges[Fuse*2+1])

connection (CurrentFuse, CurrentFuseConn)

fill_up (CurrentFuseConn, CurrentFuseFill)

select_shape (CurrentFuseFill, CurrentFuseSel, 'area', 'and', 6000, \

20000)

area_center (CurrentFuseSel, FuseArea, Row1, Column1)

dev_set_color ('magenta')
for i := 0 to |FuseArea|-1 by 1

set_tposition (WH, Row1[i], Column1[i])

write_string (WH, \

FuseColors[Fuse] + ' ' +FuseTypes[Fuse]+' Ampere')
endfor

set_tposition (WH, 24*(Fuse+1), 12)

dev_set_color ('slate blue')
write_string (WH, FuseColors[Fuse] + ' Fuses: ' + |FuseArea|)

endfor

stop ()

13.3.3 Completeness Check of Colored Game Pieces

Example: solution_guide/basics/color_pieces.hdev

Completeness checks are very common in machine vision. Usually, packages assembled on a production
line have to be inspected for missing items. Before this inspection can be done, the items have to be
trained. In the example presented here, a package of game pieces has to be inspected. The game pieces
come in three different colors, and the package should contain four of each type. The pieces themselves
can be of slightly different shape, so shape-based matching is not an option. The solution to this problem
is to classify the game pieces by color. The method applied here is a classification using neural nets
(MLP classification).

In the training phase an image is acquired, which contains the different types of game pieces. The task
is to specify sample regions for the game pieces and the background using the mouse (see Figure 13.7a).
This is accomplished by looping over the draw_rectangle1 and gen_rectangle1 operators to draw
and create the corresponding regions. The tuple Classes, which will be used for the actual training, is
extended each time.

13.3 Programming Examples 181

(a) (b)

Figure 13.7: Example MLP classification: (a) Training, (b) Result.

read_image (Image, ImageRootName+'0')
for i := 1 to 4 by 1

dev_display (Image)

dev_display (Classes)

disp_message (WindowHandle, \

['Drag rectangle inside ' + Regions[i-1] + ' color', \

'Click right mouse button to confirm'], 'window', \

24, 12, 'black', 'false')
draw_rectangle1 (WindowHandle, Row1, Column1, Row2, Column2)

gen_rectangle1 (Rectangle, Row1, Column1, Row2, Column2)

concat_obj (Classes, Rectangle, Classes)

endfor

Once the classes are specified, a multilayer perceptron is created using create_class_mlp. With the
operator add_samples_image_class_mlp the training samples from the image are added to the train-
ing data of the multilayer perceptron. The actual training is started with train_class_mlp. The dura-
tion of the training depends on the complexity and sizes of the training regions.

create_class_mlp (3, 7, 4, 'softmax', 'normalization', 3, 42, MLPHandle)

add_samples_image_class_mlp (Image, Classes, MLPHandle)

set_tposition (WindowHandle, 100, 12)

write_string (WindowHandle, 'Training...')
train_class_mlp (MLPHandle, 400, 0.5, 0.01, Error, ErrorLog)

After the training has finished, subsequent images are acquired and classified using clas-

sify_image_class_mlp. The operator returns a classified region.

C
ol

or
P

ro
ce

ss
in

g

182 Color Processing

for img := 0 to 3 by 1

read_image (Image, ImageRootName + img)

classify_image_class_mlp (Image, ClassRegions, MLPHandle, 0.5)

stop ()

endfor

The returned result is processed further using blob analysis. Each class of the classified region (with the
exception of the background class) is accessed using copy_obj. The regions of each class are split up
using connection and reduced to regions of a relevant size (select_shape). The remaining few lines
of code calculate the number of game pieces found for each class and make a decision whether the result
was OK or not.

for figure := 1 to 3 by 1

copy_obj (ClassRegions, ObjectsSelected, figure, 1)

connection (ObjectsSelected, ConnectedRegions)

select_shape (ConnectedRegions, SelectedRegions, 'area', 'and', \

400, 99999)

count_obj (SelectedRegions, Number)

dev_set_color (Highlight[figure-1])

dev_display (SelectedRegions)

OutString := Regions[figure-1] + ': ' +Number+' '
dev_set_color ('green')
disp_message (WindowHandle, OutString, 'window', 24+30*figure, \

12, 'black', 'false')
if (Number#4)

disp_message (WindowHandle, 'Not OK', 'window', \

24+30*figure, 120, 'red', 'false')
else

disp_message (WindowHandle, 'OK', 'window', 24+30*figure, \

120, 'green', 'false')
endif

endfor

To illustrate the advantage of using color information, and to compare the classification results, the
example program runs an additional training and classification on a converted gray image. As can be
seen in figure 13.8 only the yellow region is detected faithfully.

rgb1_to_gray (Image, GrayImage)

compose3 (GrayImage, GrayImage, GrayImage, Image)

For more complex (and time-consuming) classifications, it is recommended to save the train-
ing data to the file system using write_class_mlp. Later, the saved data can be re-
stored using read_class_mlp. As an alternative to the MLP classification you can also
apply a classification based on support vector machines (SVM). The corresponding op-
erators are create_class_svm, add_samples_image_class_svm, train_class_svm, clas-

sify_image_class_svm, write_class_svm, and read_class_svm. In order to speed up the clas-
sification itself, you can apply a segmentation based on look-up tables (for LUT-accelerated classifica-
tion, please refer to the Solution Guide II-D in section 6.1.6 on page 74) or use a different classification
method like Euclidean classification (see solution_guide/basics/color_pieces_euclid.hdev).

13.3 Programming Examples 183

Figure 13.8: Poor classification result when only using the gray scale image.

13.3.4 Inspect Power Supply Cables

Example: hdevelop/Filters/Lines/lines_color.hdev

The task of this example is to locate and inspect the power supply cables depicted in figure 13.9.

a) b)

Figure 13.9: (a) Original color image with cable centers extracted using the color line extractor; (b) corre-
sponding results when using the gray value image.

The input for the program are sample images of colored power supply cables. The task is to extract the
centers of each cable together with the width. This is performed using the subpixel-precise color line
extractor. To remove irrelevant structures, contours that are too short are removed.

lines_color (Image, Lines, 3.5, 0, 12, 'true', 'false')
select_contours_xld (Lines, LongLines, 'contour_length', 450, 100000, 0, \

0)

C
ol

or
P

ro
ce

ss
in

g

184 Color Processing

The cable width is determined by accessing the line width attribute. For display purposes, a contour is
generated for each side.

count_obj (LongLines, Number)

gen_empty_obj (EdgesL)

gen_empty_obj (EdgesR)

for K := 1 to Number by 1

select_obj (LongLines, Line, K)

get_contour_xld (Line, Row, Col)

get_contour_attrib_xld (Line, 'angle', Angle)

get_contour_attrib_xld (Line, 'width_right', WidthR)

get_contour_attrib_xld (Line, 'width_left', WidthL)

EdgeRR := Row+cos(Angle)*WidthR

EdgeRC := Col+sin(Angle)*WidthR

EdgeLR := Row-cos(Angle)*WidthL

EdgeLC := Col-sin(Angle)*WidthL

gen_contour_polygon_xld (EdgeR, EdgeRR, EdgeRC)

gen_contour_polygon_xld (EdgeL, EdgeLR, EdgeLC)

concat_obj (EdgesL, EdgeL, EdgesL)

concat_obj (EdgesR, EdgeR, EdgesR)

endfor

To compare this result with the classical line extraction approach (see Edge Extraction (Subpixel-Precise)
on page 73), a line extractor is also applied to the gray value image. The result is depicted in figure 13.9b.
Here, it becomes obvious how hard it is to extract the cable using the luminance only.

rgb1_to_gray (Image, GrayImage)

lines_gauss (GrayImage, LinesGray, 3.5, 0.0, 0.7, 'dark', 'true', \

'bar-shaped', 'false')

13.3.5 Locating Board Components by Color

Example: hdevelop/Applications/Completeness-Check/ic.hdev

The task of this example is to locate all components on the printed circuit board depicted in figure 13.10.

The input data is a color image, which allows locating components like capacitors and resistors very
easily by their significant color: Using a color space transformation, the hue values allow the selection of
the corresponding components. The following code extracts the resistors; the extraction of the capacitors
is performed along the same lines.

decompose3 (Image, Red, Green, Blue)

trans_from_rgb (Red, Green, Blue, Hue, Saturation, Intensity, 'hsv')
threshold (Saturation, Colored, 100, 255)

reduce_domain (Hue, Colored, HueColored)

threshold (HueColored, Red, 10, 19)

connection (Red, RedConnect)

select_shape (RedConnect, RedLarge, 'area', 'and', 150.000000, 99999.000000)

shape_trans (RedLarge, Resistors, 'rectangle2')

13.3 Programming Examples 185

a) b)

Figure 13.10: (a) Original image; (b) extracted ICs, resistors, and capacitors.

The extraction of the ICs is more difficult because of the bright imprints, which do not allow a simple
thresholding in one step. Instead of this, dark areas are selected first, which are then combined using a
dilation.

threshold (Intensity, Dark, 0, 50)

dilation_rectangle1 (Dark, DarkDilation, 14, 14)

connection (DarkDilation, ICLarge)

After this, the segmentation is repeated inside the thus extracted connected components.

add_channels (ICLarge, Intensity, ICLargeGray)

threshold (ICLargeGray, ICDark, 0, 50)

shape_trans (ICDark, IC, 'rectangle2')

To locate the contact points, small ROIs are generated on the left and right side of each IC.

dilation_rectangle1 (IC, ICDilation, 5, 1)

difference (ICDilation, IC, SearchSpace)

dilation_rectangle1 (SearchSpace, SearchSpaceDilation, 14, 1)

union1 (SearchSpaceDilation, SearchSpaceUnion)

Inside these areas, locally bright spots are detected.

reduce_domain (Intensity, SearchSpaceUnion, SearchGray)

mean_image (SearchGray, SearchMean, 15, 15)

dyn_threshold (SearchGray, SearchMean, PinsRaw, 5.000000, 'light')
connection (PinsRaw, PinsConnect)

fill_up (PinsConnect, PinsFilled)

select_shape (PinsFilled, Pins, 'area', 'and', 10, 100)

C
ol

or
P

ro
ce

ss
in

g

186 Color Processing

13.4 Selecting Operators

13.4.1 Acquire Image(s)

Please refer to the operator list for the method Image Acquisition (see section 2.4 on page 17).

13.4.2 Demosaick Bayer Pattern

Standard:

cfa_to_rgb

13.4.3 Decompose Channels

Standard:

decompose3, access_channel

13.4.4 Transform Color Space

Standard:

trans_from_rgb, trans_to_rgb, create_color_trans_lut, apply_color_trans_lut,
clear_color_trans_lut, clear_all_color_trans_luts

The following color spaces are supported:

• argyb

• cielab

• ciexyz

• hls

• hsi

• hsv

• i1i2i3

• ihs

• rgb

• yiq

• yuv

13.4 Selecting Operators 187

13.4.5 Train Colors

Standard:

train_class_gmm, train_class_mlp, train_class_svm, histo_2dim, learn_ndim_norm,
learn_ndim_box

13.4.6 Use Region Of Interest

Please refer to the operator list for the method Region Of Interest (see section 3.4 on page 26).

13.4.7 Process Image (Channels)

Standard:

smooth_image, mean_image, median_image

Advanced:

lines_color, edges_color, edges_color_sub_pix

Further operators can be found in the operator list for the method Blob Analysis (see section 4.4 on page
43).

13.4.8 Classify Colors

Standard:

classify_image_class_gmm, classify_image_class_mlp, classify_image_class_svm,
classify_image_class_lut, class_2dim_sup, class_2dim_unsup, class_ndim_norm,
class_ndim_box

13.4.9 Compose Channels

Standard:

compose3, append_channel

13.4.10 Visualize Results

Standard:

disp_color, disp_obj

Further operators can be found in the operator list for the method Visualization (see section 19.4 on page
297).

C
ol

or
P

ro
ce

ss
in

g

188 Color Processing

13.5 Tips & Tricks

13.5.1 Speed Up

Many online applications require maximum speed. Because of its flexibility, HALCON offers many
ways to achieve this goal. Here, the most common methods are listed.

• Of the color processing approaches discussed in this section, the simplest is also the fastest (de-
compose color image and apply blob analysis). If you want to do color classification, you should
consider using class_ndim_norm or class_2dim_sup for maximum performance.

• Regions of interest are the standard method to increase the speed by processing only those areas
where objects need to be inspected. This can be done using pre-defined regions but also by an
online generation of the regions of interest that depend on other objects found in the image.

• By default, HALCON performs some data consistency checks. These can be switched off using
set_check.

• By default, HALCON initializes new images. Using set_system with the parameter
"init_new_image", this behavior can be changed.

13.6 Advanced Topics

13.6.1 Color Edge Extraction

Similar to the operator edges_image for gray value images (see Edge Extraction (Pixel-Precise) on
page 63), the operator edges_color can be applied to find pixel-precise edges in color images. For a
subpixel-precise edge extraction in color images, the operator edges_color_sub_pix is provided. It
corresponds to the gray value based operator edges_sub_pix (see Edge Extraction (Subpixel-Precise)
on page 73). Processing the detected color edges is the same as for gray value images (see Contour
Processing on page 83).

13.6.2 Color Line Extraction

Similar to color edge extraction, HALCON supports the detection of lines in color images using
lines_color. For processing the detected lines, please refer to Edge Extraction (Subpixel-Precise)
on page 73 and Contour Processing on page 83.

Texture Analysis 189

Chapter 14

Texture Analysis

The concept of texture analysis is based on the use of an object’s structural features. In order to thor-
oughly understand the suitable application of texture analysis, it is important to first comprehend texture
itself. Texture designates the structural characteristics of a surface which present themselves as gray
value variations in an image. The regularity of a texture varies from absolutely regular to irregular. The
basis of a regular texture is an ideal grid structure whereas irregular textures or statistical structures are
based upon a random function.

a) b)

Figure 14.1: a) Regular texture; b) irregular texture.

Textures are composed of so-called texels, a shortform for texture elements, which can easily be rec-
ognized in a regular texture. Irregular textures also have recurring elements, which are, however, more
difficult to recognize. When working with irregular textures the measures of a texel have to be approxi-
mated if necessary. A texel is the smallest recurring structure as depicted in figure 14.2.

Texture analysis is a very useful method for all tasks which cannot simply be solved as their gray value
structure is too complex. It can help you to answer two questions:

• Where is a certain texture located?

• What kind of texture is it?

Te
xt

ur
e

A
na

ly
si

s

190 Texture Analysis

a) b)

Figure 14.2: Texture elements of extremely regular texture: a) original image; b) texel.

The first task is typically solved by filtering the image with filters that enhance or suppress certain
textures. The filtered image is then segmented into regions with similar texture, either with standard
blob analysis or by classifying each pixel.

The second task is typically solved by computing texture features for the whole image or for individual
regions. Based on these features, the image or region is then classified. As a preprocessing, texture filters
can be applied to enhance or suppress certain textures.

14.1 Basic Concept

A simple texture analysis consists of the following steps:

Use Results

Compute Features

Apply Texture Filter

Acquire Image(s)

14.1 Basic Concept 191

14.1.1 Acquire Image(s)

First, an image is acquired.

For detailed information see the description of this method on page 13.

14.1.2 Apply Texture Filter

With a texture filter, specific textural structures can be emphasized or suppressed. HALCON’s standard
texture filter is texture_laws.

14.1.3 Compute Features

The standard HALCON operator for computing texture features is gen_cooc_matrix, which generates
the cooccurrence matrix of an image. Other feature related operators are entropy_gray for calculating
the entropy or the anisotropy of an image or region. These calculations are computed on the original
image. To determine the amount of a feature, the intensity, with a threshold, the task is performed on the
image after filtering.

14.1.4 A First Example

Example: hdevelop/Applications/Measuring-2D/vessel.hdev

The example for this basic concept clarifies how texture analysis allows the segmentation of textured
images which are impossible to segment using classical segmentation methods like thresholding.

a) b)

Figure 14.3: a) Original image; b) segmented vessel.

The example illustrated in figure 14.3 shows how to segment a blood vessel in a gray value image using
texture analysis.

In the gray value image a), a blood vessel has to be segmented and measured. In order to perform
this task, texture_laws enhances the structure of the texture by extracting structural elements of a

Te
xt

ur
e

A
na

ly
si

s

192 Texture Analysis

certain direction as well as their frequency. Then mean_image with the filter size of one texture ele-
ment, smoothes the image. bin_threshold is then able to segment the vessel. Now that the vessel is
segmented from its environment in image b), it can easily be measured.

read_image (Image, 'vessel')
texture_laws (Image, Texture, 'el', 2, 5)

mean_image (Texture, Energy, 211, 61)

bin_threshold (Energy, Vessel)

14.2 Extended Concept

It will, however, sometimes be necessary to perform more advanced steps during texture analysis in order
to achieve a state where the image can be, depending on the kind of analysis undertaken, segmented or
classified.

Use Results

Visualize Results

Compute Features

Apply Texture Filter

Align ROIs Or Images

Use Region Of Interest

Scale Down Image(s)

Rectify Image(s)

Acquire Image(s)

14.2 Extended Concept 193

14.2.1 Rectify Image(s)

If the camera looks at an angle onto the object to inspect, it may be necessary to rectify the image to
remove lens distortion and perspective distortion.

Detailed information about rectifying images can be found in the Solution Guide III-C in section 3.4 on
page 62.

14.2.2 Scale Down Image(s)

When both the texel and its smallest substructure are relatively large, you can downscale the image with
the operator zoom_image_factor to speed up the texture analysis.

You can also create a pyramid of downscaled images by calling zoom_image_factor multiple times
and then apply the texture filtering or feature computation to the image pyramid. Thus, texture analysis
is performed at multiple scales as is shown in example classify_wood.hdev on page 197.

14.2.3 Use Region Of Interest

A region of interest can be created to reduce the image domain for which the texture analysis will be
performed. This will reduce the processing time. In particular when computing texture features, the
region of interest can be the result of a previous segmentation.

For detailed information see the description of this method on page 19.

14.2.4 Align ROIs Or Images

If you are dealing with a regular texture, you can exploit this fact by rotating the image such that the
texture appears aligned to the image axes. Then, both texture filtering and texture features can be applied
or computed more specifically.

How to perform alignment using shape-based matching is described in the Solution Guide II-B in sec-
tion 2.4.3.2 on page 42.

14.2.5 Apply Texture Filter

The operator texture_laws actually provides a family of texture filters. More information can be
found in section 14.8 on page 209. After calling texture_laws, you should smooth the image by using
mean_image with the mask size set to the size of the texel.

For certain images with simple textures, the operator dyn_threshold can be a good alternative to a
regular filter as it is faster. Before using this operator, you must call mean_image with the mask size set
to twice the texel size.

Te
xt

ur
e

A
na

ly
si

s

194 Texture Analysis

14.2.6 Compute Features

If you want to use the cooccurrence matrix corresponding to different directions, it is more
efficient to generate the matrix with gen_cooc_matrix and then compute the features with
cooc_feature_matrix.

Besides the texture features based on the cooccurrence matrix, you can also use the entropy and
anisotropy of an image, which are computed by the operator entropy_gray, respectively. After the
filtering has been performed, the intensity of a feature in the image can be computed using a threshold.

All operators can compute the texture features either for the complete image or for image regions. More
information about texture features can be found in section 14.7 on page 203.

As an advanced texture feature, you can also compute the distribution of the image gradient, which
shows how the gray values change by first filtering the image with sobel_amp and then computing the
histogram with gray_histo_abs.

14.2.7 Visualize Results

To check the results of texture analysis, you might want to display the images, the regions, and the
features. To visualize the cooccurrence matrix, you must compute the matrix and its features in separate
steps using gen_cooc_matrix and cooc_feature_matrix.

Often, details in the texture images and the cooccurrence matrix do not show up clearly in the original
gray value image. In such a case, you can try to change the look-up table (LUT).

For detailed information see the description of this method on page 289.

14.2.8 Use Results

The filtered image is typically used as input for segmentation tasks, either by Blob Analysis on page
31 or by (pixel) Classification on page 155. Described examples are vessel.hdev on page 191, nov-
elty_detection_svm.hdev, and novelty_detection_dyn_threshold.hdev. The computed tex-
ture features are typically used as input for general Classification on page 155. A described example is
classify_wood.hdev on page 197.

14.3 Programming Examples

14.3.1 Detect Defects in a Texture with Novelty Detection

Example: hdevelop/Segmentation/Classification/novelty_detection_svm.hdev

A detailled description of this example can be found in the chapter Classification on page 155.

The task of this example is to detect defects in a texture that do not correspond to the texture of trained
good objects. For this, it uses the novelty detection mode of the SVM classifier. In the example

14.3 Programming Examples 195

novelty_detection_dyn_threshold.hdev, which is described in the next section, the same task
is solved with the operator dyn_threshold.

The raw errors returned by the SVM are postprocessed to remove insignificant parts of the detected
errors. The texture image is generated in a procedure: It is a five-channel image that contains the result
of applying five different Laws filters, which basically correspond to first and second derivatives, and
smoothing them sufficiently. Laws filters, included in the HALCON operator texture_laws, are very
useful whenever it is necessary to enhance certain structures in a texture as becomes clear in figure 14.4.

texture_laws (Image, ImageEL, 'el', 5, 5)

texture_laws (Image, ImageLE, 'le', 5, 5)

texture_laws (Image, ImageES, 'es', 1, 5)

texture_laws (Image, ImageSE, 'se', 1, 5)

texture_laws (Image, ImageEE, 'ee', 2, 5)

compose5 (ImageEL, ImageLE, ImageES, ImageSE, ImageEE, ImageLaws)

smooth_image (ImageLaws, ImageTexture, 'gauss', 5)

The figure 14.4 shows a plastic mesh without defects on the left side and one that is damaged on the
right side. Starting with the original image, first the Laws filter el is applied which enhances horizontal
structures, followed by the Laws filter le, stressing vertical structures. The damages in the filtered images
d) to f) are quite clearly visible. For more information about the Laws filter read in section 14.8 on page
209 later in this chapter.

14.3.2 Detect Defects in a Web Using Dynamic Thresholding

Example: solution_guide/basics/novelty_detection_dyn_threshold.hdev

The task of this example is also to detect defects in a texture that do not correspond to the texture of
trained good objects similar to the example novelty_detection_svm.hdev on page 194.

The task of this example is to detect defects in a mesh using the operator dyn_threshold. In this way,
the operator can be used to find textures that differ from the rest of the image. dyn_threshold is an
operator that is easy to handle. Together with a smoothing filter like mean_image, it can extract objects
that differ locally from their neighborhood. Note that the operator dyn_threshold can only be used
successfully for texture analysis if the defects can be detected as darker or brighter then the rest of the
texture.

Te
xt

ur
e

A
na

ly
si

s

196 Texture Analysis

a) Original image: mesh

b) Laws filter el

c) Laws filter le

d) original image: damaged mesh

e) Laws filter el

f) Laws filter le

Figure 14.4: Images a) to c) mesh without defects; images d) to f) damaged mesh.

First, the image is smoothed using the HALCON operator mean_image. The mash size determines the
size of the extracted objects: The larger the mask size is chosen, the larger the found regions become.
As a rule of thumb, the mask size should be about twice the diameter of the objects to be extracted.
Subsequently, dyn_threshold is performed and connected regions are looked for. The parameter ’area’
of the operator select_shape makes it possible to find regions that differ in size, e.g., that are too small.
Found errors are finally counted and displayed.

14.3 Programming Examples 197

read_image (Image, 'plastic_mesh/plastic_mesh_'+J$'02')
mean_image (Image, ImageMean, 49, 49)

dyn_threshold (Image, ImageMean, RegionDynThresh, 5, 'dark')
connection (RegionDynThresh, ConnectedRegions)

select_shape (ConnectedRegions, ErrorRegions, 'area', 'and', 500, 99999)

count_obj (ErrorRegions, NumErrors)

If the number of the errors exceeds zero, the message ’Mesh not OK’ is displayed. Otherwise the web is
undamaged and ’Mesh OK’ appears as is shown in figure 14.5.

b) smoothed image

c) connected regions d) classification result

a) mesh without defect

Figure 14.5: a) Faultless mesh b) smoothed image c) connected regions d) classification: Mesh OK. .

14.3.3 Classification of Different Types of Wood

Example: solution_guide/basics/classify_wood.hdev

The objective of this example is to classify different types of wood according to their surface texture.

First the different classes of wood, as shown in figure 14.7, are specified.

Classes := ['apple','beech','cherry','maple', 'oak', 'walnut']

Then, the training is performed, which means that several images are read and trained for each type of
wood. Therefore, the SVM learns different wood textures and compares each new wood image to the
existing images. It checks which class is most similar and displays the assigned class.

Te
xt

ur
e

A
na

ly
si

s

198 Texture Analysis

b) smoothed image

c) connected regions d) classification result

a) mesh with defects

Figure 14.6: a) Defective mesh b) smoothed image c) connected regions d) classification: Mesh not OK. .

For each image, features are computed in a procedure and then passed to the operator clas-

sify_image_class_mlp.

gen_features (Image, FeatureVector)

classify_class_mlp (MLPHandle, FeatureVector, 2, FoundClassIDs, Confidence)

The procedure gen_features calls the actual feature extraction procedure and then downsamples the im-
age and calls the second procedure with the smaller image again.

procedure gen_features (Image, FeatureVector)

gen_sobel_features (Image, FeatureVector, FeatureVector)

zoom_image_factor (Image, Zoomed1, 0.5, 0.5, 'constant')
gen_sobel_features (Zoomed1, FeatureVector, FeatureVector)

The procedure gen_sobel_features calculates multiple texture features. First the cooccurrence matrix is
computed for the directions 0 and 90 degrees.

procedure gen_sobel_features (Image, Features, FeaturesExtended)

* Coocurrence matrix for 0 deg and 90 deg:

cooc_feature_image (Image, Image, 6, 0, Energy, Correlation, Homogeneity, \

Contrast)

cooc_feature_image (Image, Image, 6, 90, Energy, Correlation, Homogeneity, \

Contrast)

14.3 Programming Examples 199

a) b)

c) d)

e) f)

Figure 14.7: Result of wood classification: a) apple, b) beech, c) cherry, d) maple, e) oak, f) walnut .

Furthermore, within the procedure the gray value edges are extracted with the operator sobel_amp. The
bigger the gray value difference between neighboring pixels is, the brighter these areas are shown in
the resulting image. This way, the filtering enables to find and highlight structures in an image. As a
feature derived from the sobel image, the absolute gray value histogram of the edge amplitude image is
computed.

sobel_amp (Image, EdgeAmplitude, 'sum_abs', 3)

gray_histo_abs (EdgeAmplitude, EdgeAmplitude, 8, AbsoluteHistoEdgeAmplitude)

* entropy_gray (Image, Image, Entropy, Anisotropy)

* gray_histo_abs (Image, Image, 8, AbsoluteHistoImage)

All calculated features are appended to the input feature vector and returned in the output feature vector.

Te
xt

ur
e

A
na

ly
si

s

200 Texture Analysis

FeaturesExtended := [Features,Energy,Correlation,Homogeneity,Contrast]

FeaturesExtended := [FeaturesExtended,AbsoluteHistoEdgeAmplitude]

As already noted, the texture features are computed on multiple pyramid levels by zooming the images
with a factor of 0.5 for each level. This makes it possible to analyze a bigger neighborhood. In the
example, only 2 pyramid levels are used; to use more for a more complex task, you can activate the
corresponding lines. Note, however, that you must then train the classifier anew.

zoom_image_factor (Image, Zoomed1, 0.5, 0.5, 'constant')
gen_sobel_features (Zoomed1, FeatureVector, FeatureVector)

zoom_image_factor (Zoomed1, Zoomed2, 0.5, 0.5, 'constant')
* gen_sobel_features (Zoomed2, FeatureVector, FeatureVector)

FeatureVector := real(FeatureVector)

Similarly, the procedure gen_sobel_features contains deactivated code to compute more features: the
entropy, anisotropy, and the absolute gray value histogram of the image.

* entropy_gray (Image, Image, Entropy, Anisotropy)

* gray_histo_abs (Image, Image, 8, AbsoluteHistoImage)

* FeaturesExtended := [FeaturesExtended,Entropy,Anisotropy]

* FeaturesExtended := [FeaturesExtended,AbsoluteHistoImage]

Note again that if you use more features you must train the classifier anew.

14.4 Selecting Operators

14.4.1 Acquire Image(s)

Please refer to the operator list for the method Image Acquisition (see section 2.4 on page 17).

14.4.2 Rectify Image(s)

Operators for rectifying images are described in the Solution Guide III-C.

14.4.3 Scale Down Image(s)

Standard:

zoom_image_factor

14.4.4 Use Region Of Interest

Please refer to the operator list for the method Region Of Interest (see section 3.4 on page 26).

14.5 Relation to Other Methods 201

14.4.5 Align ROIs Or Images

Operators for rectifying images are described in the Solution Guide II-B.

14.4.6 Apply Texture Filter

Standard:

texture_laws, dyn_threshold, mean_image

14.4.7 Compute Features

Standard:

cooc_feature_image, entropy_gray, anisotropic_diffusion

Advanced:

gen_cooc_matrix, cooc_feature_matrix, sobel_amp, gray_histo_abs

14.4.8 Visualize Results

Please refer to the operator list for the method Visualization (see section 19.4 on page 297).

14.4.9 Use Results

Please refer to the following places: detailed operator list for the step Segment Image(s) on page 44,
operator list for the method Classification (see section 12.4 on page 168).

14.5 Relation to Other Methods

14.5.1 Methods that are Using Texture Analysis

Blob Analysis (see description on page 31)
Blob analysis identifies pixels of relevant objects (also called foreground) by their gray value in an image.
Whenever objects cannot simply be segmented by separating dark pixels from bright pixels, those objects
can possibly be identified by their texture. Therefore, it is useful to perform a texture analysis first and
then use the results to segment the objects.

Te
xt

ur
e

A
na

ly
si

s

202 Texture Analysis

Classification (see description on page 155)
Classification is the technical term for the assignment of objects to individual instances of a set of classes
and can be a useful method to follow the texture analysis if the object is characterized by a particular
texture. To define the classes, this texture has to be specified, e.g., by a training that is based on known
objects. After the training, the classifier compares the features of the object with the features associated
to the available classes and returns the class with the largest correspondence.

14.6 Advanced Topics

14.6.1 Fast Fourier Transform (FFT)

Fast Fourier transform, short FFT, is another option for texture analysis. This method makes use of the
different frequencies in textures. HALCON’s FFT exactly determines the amount of each frequency in
the image. It enables the construction of any type of linear filters which means that application-oriented
filter designs are possible. There is also a huge set of predefined filters as well as advanced Gabor texture
filters. With HALCON’s FFT it is possible, e.g., to emphasize any structure of a special texture (see
figure 14.8). A convolution can be performed by transforming the image and the filter into the frequency
domain, multiplying the two results, and transforming the result back into the spatial domain. Therefore
the two reasons for using FFT are:

• For bigger filter sizes it is more efficient to apply the filters in Fourier domain as FFT always takes
the same time for any mask size, unlike normal filters.

• It is a great advantage that filters can be customized to remove or emphasize specific frequencies
from the image.

a) b)

Figure 14.8: a) Original image b) with FFT enhanced defect structure.

Standard operators for FFT are:

• fft_generic: a generic version of the complex Fourier transform,

• rft_generic: real-valued Fourier transform,

• fft_image, a shortcut for the forward transformation with fft_generic

14.7 More Information About Texture Features 203

• and fft_image_inv, a shortcut to the backward transformation with fft_generic.

14.6.2 Texture Analysis in Color Images

By combining texture analysis with Color Processing on page 173, even more tasks can be solved effi-
ciently. Typically, the color image is first split into color channels and possibly transferred into another
color space. Then, texture filtering is applied and/or texture features are computed.

14.7 More Information About Texture Features

14.7.1 Entropy and Anisotropy (entropy_gray)

Entropy and anisotropy describe the gray value distribution of an image independent of the position of
the pixels.

The entropy for white noise, as shown in image a) of figure 14.9, is high as white noise comprises of an
equal number for all gray values.

Even though binary noise (image b) of figure 14.9 looks similar to white noise at first sight, it is in fact
quite different because it only consists of two gray values: black and white. Therefore, the entropy is
very low.

Image c) of figure 14.9 shows a gray ramp and image a) of figure 14.9 shows white noise. Both have the
same value for entropy even though they look very different. Both images include, however, the same
frequency for each gray value. This shows that the position of pixels within an image has no influence
on the image’s entropy.

Even though real images do not usually show such extreme values, the examples in figure 14.10 still
highlight the connection between gray value distribution (as is presented in the histogram) and the en-
tropy value.

Anisotropy determines the symmetry of the gray value distribution. A value of -0,5 means that the
histogram curve is symmetric. The value is higher if the image has more bright parts and lower if it has
more dark parts as becomes clear from images a) and b) of figure 14.11.

Te
xt

ur
e

A
na

ly
si

s

204 Texture Analysis

 a) entropy = 8 b) entropy = 1 c) entropy = 8

Figure 14.9: a) White noise; b) binary noise; c) gray ramp.

14.7.2 Cooccurrence Matrix (gen_cooc_matrix)

The cooccurrence matrix describes the relationship between the gray value of a pixel and the gray values
of its neighbors. The matrix elements contain the probability that two gray values appear next to each
other. Slow gray value changes are indicated by high values along the diagonal of the principal axis.
Strong contrasts lead to entries far away from the diagonal of the principal axis. The connection between
gray values in the image, in the histogram, and finally in the cooccurrence matrix is shown in images
a), b), and c) of figure 14.12. Computing the cooccurrence matrix, you can select which neighbors are
evaluated. Based on the cooccurrence matrix, four features can be computed:

• energy,

• correlation,

• homogeneity, and

• contrast.

14.7.3 Features of the Cooccurrence Matrix

Energy

14.7 More Information About Texture Features 205

a) entropy = 5.12 b) entropy = 6.4

Figure 14.10: Entropy values of a) honeycomb structure and b) dust filter.

a) anisotropy = −0.55 b) anisotropy = −0.5 c) anisotropy = −0.4

Figure 14.11: Anisotropy in images with different gray value distributions.

Te
xt

ur
e

A
na

ly
si

s

206 Texture Analysis

b) c)a)

Figure 14.12: a) Original image; b) gray value histogram; c) cooccurrence matrix.

Energy is actually the short form for uniformity of energy and indicates if all kinds of gray value com-
binations are present or if certain gray value combinations are dominant. An image with a constant gray
value has the highest energy.

a) energy = 0.45 b) energy = 0.0002

Figure 14.13: Energy values.

Image a) in figure 14.13 has a high energy because there are only few gray value combinations, which
change always according to the same scheme. Image b) has little energy because the changes between
pixels differ, i.e., there is no uniformity.

The textures in figure 14.14 show how parts that contain pixels of the same gray value contribute to the
higher energy of image a), whereas gray values in image b) are almost constantly changing and therefore
lead to a low energy.

Correlation

Correlation defines the measure of dependency between neighboring values. If the matrix shows a thin
line from top left to right bottom, this means that the image is blurry, which is why the values are so close
together. A wide, roundish progress indicates a focussed image. Contrasts and little or no correlation
are indicated by pixels far away from the main diagonal. The question of correlation between pixels can
however sometimes depend on the image’s orientation as is depicted in figure 14.15.

The two correlation values of the same image are very different depending on the rotation of the image.
0° causes a low correlation wheras 90° has a high one. In figure 14.16 the correlation values show that

14.7 More Information About Texture Features 207

a) energy = 0.088 b) energy = 0.005

Figure 14.14: Energy values of a) canvas and b) dust filter.

a) original image b) correlation 0° = −1.0 c) correlation 90° = 1.0

Figure 14.15: Correlation values for different image orientations. Note that images b) and c) are depicted
in pseudocolors to enhance the perceptability of the cooccurrence matrix.

image a) with extreme gray value changes has a lower value than image b) with a texture that consists of
gray values which are quite similar to each other.

a) correlation = 0.0959 b) correlation = 0.795

Figure 14.16: Correlation values of a) mesh and b) dust filter.

Homogeneity

Te
xt

ur
e

A
na

ly
si

s

208 Texture Analysis

Homogeneity is high if large areas in an image have the same gray values.

a) homogeneity = 0.47 b) homogeneity = 0.5

Figure 14.17: Homogeneity values.

Image a) of figure 14.17 does not include any groups of pixels with the same gray values which makes it
very inhomogeneous. Image b) with white noise includes areas, a feature which makes it more homoge-
neous. A unicolored image has the highest homogeneity value.

a) homogeneity = 0.65 b) homogeneity = 0.66

Figure 14.18: Homogeneity values of a) mesh and b) grid.

Realistic images, as shown in figure 14.18, clarify these homogeneity rules. Even though both images
look partially homogeneous (they both contain bright and dark parts of a certain size but also include
some changes from dark to bright) there are little differences. The mesh image is less homogeneous
because the structure is three dimensional and therefore little deviations in brightness can cause slightly
different gray values on the white mesh. Image b), however, contains bigger parts with a same gray value
(the white background) and is also only two dimensional.

Contrast

The contrast value between two pixels is multiplied and squared. High differences lead to steep edges
and a high value.

The example images in figure 14.19 depict lines that run in different distances from each other. The

14.8 More Information About Texture Filtering 209

a) contrast = 3969 b) contrast = 203,9

Figure 14.19: Contrast values.

image with the denser lines also has a higher contrast. This shows that the contrast value includes the
frequency as well as the intensity.

a) contrast = 86.2 b) contrast = 10.8

Figure 14.20: Contrast values of a) grid and b) dust filter.

In figure 14.20, the grid structure in image a) has a higher contrast than the dust filter in image b) because
the gray value changes in image a) are more extreme than the gray value changes in image b).

14.8 More Information About Texture Filtering

14.8.1 The Laws Filter (texture_laws)

By applying a Laws filter you can enhance or suppress textural structures in an image based on their
spatial frequency, i.e., the size of the texels.

The operator texture_laws applies texture transformations (according to K. I. Laws) to an image. This
is done by convolving the input image with a special filter mask of either 3x3, 5x5, or 7x7 pixels. For
most of the filters the resulting gray values must be modified by a shift. This makes the different textures
in the output image more comparable to each other, provided suitable filters are used.

Te
xt

ur
e

A
na

ly
si

s

210 Texture Analysis

The name of the filter is composed of the letters of the two vectors used, where the first letter specifies
a convolution in the column direction, while the second letter specifies a convolution in the row direc-
tion. The letters themselves specify the convolution. You can select "l", "e", "s", "r", "w", "o" with "l"
emphasizing low and "o" emphasizing high frequencies.

Therefore, the second letters detecting low frequencies to high frequencies are "l", "e", "s", "r", "w" and
"o". The example figures figure 14.21 and figure 14.22 show how the two common texture filters "le"
and "ls" work on two different textures.

a) b) c)

Figure 14.21: a) Mesh (original image) b) Laws filter le and b) Laws filter ls.

The Laws filter "le" looks for low frequencies in the image. As can be seen in figure 14.21, there are
a few low frequencies in the image. The Laws filter "ls", however, looks for high frequencies, which
occurr very rarely in the image in places where gray values change from black to white and vice versa.
As a result, the filtered image looks quite dark.

b)a) c)

Figure 14.22: a) Dust filter (original image) b) Laws filter le and b) Laws filter ls.

The filtered images in figure 14.22 show that the original image contains low frequencies as well as high
frequencies as it responds to both the "le" and "ls" filter. The Laws filter is therefore useful to distinguish
textures which differ in their frequencies in a certain direction.

Bar Code 211

Chapter 15

Bar Code

The idea of bar code reading is quite easy. You initialize a bar code model and then execute the operator
for reading bar codes. Within this operator, you specify the desired bar code type. That way, you can
read different bar code types by successively applying the operator with different parameters for the type,
but without the need to create a separate model for each bar code type. The result of the reading is a
region that contains the bar code and the decoded string.

The advantage of the HALCON bar code reader is its ease of use. No advanced experience in program-
ming or image processing is required. Only a few operators in a clear and simple order are applied.
Furthermore, the bar code reader is very powerful and flexible. An example for this is its ability to read
an arbitrary number of bar codes of the same code type in any orientation even if parts are missing.

15.1 Basic Concept

Bar code reading consists mainly of four steps:

Destroy Bar Code Model

Read Bar Code(s)

Create Bar Code Model

Acquire Image(s)

B
ar

C
od

e

212 Bar Code

15.1.1 Acquire Image(s)

For the online part, i.e., during reading only, images must be acquired.

For detailed information see the description of this method on page 13.

15.1.2 Create Bar Code Model

You create a bar code model with the operator create_bar_code_model. The returned handle provides
all necessary information about the structure of the bar code. In most cases, you do not have to adjust
any parameters.

15.1.3 Read Bar Code(s)

Bar codes are read using the operator find_bar_code. Within this operator, you specify the model and
the bar code type that you search for. The operator returns the regions and the decoded strings of all bar
codes of the specified type that are found in the image or in the specified region of interest.

15.1.4 Destroy Bar Code Model

When you no longer need the bar code model, you destroy it with the operator clear_bar_code_model.

15.1.5 A First Example

As an example for this basic concept, here is a very simple program, that reads the EAN 13 bar code
depicted in figure 15.1.

A test image is acquired from file and the bar code model is created with create_bar_code_model.
Then, the operator find_bar_code (with CodeType set to ’EAN-13’) returns the region and the de-
coded string for the found bar code. At the end of the program, the bar code model is destroyed using
clear_bar_code_model.

read_image (image, 'barcode/ean13/ean1301')
create_bar_code_model ([], [], BarCodeHandle)

find_bar_code (image, SymbolRegions, BarCodeHandle, 'EAN-13', \

DecodedDataStrings)

clear_bar_code_model (BarCodeHandle)

15.2 Extended Concept

In some cases, bar code reading can be more advanced than in the example above. For example, a
preprocessing or rectification of the image as well as the visualization of results can be necessary.

15.2 Extended Concept 213

Figure 15.1: Reading a bar code.

15.2.1 Use Region Of Interest

Bar code reading can be sped up by using a region of interest. The more the region in which the code is
searched can be restricted, the faster and more robust the search will be.

For detailed information see the description of this method on page 19.

15.2.2 Preprocess Image(s)

There are various possibilities of preprocessing bar codes. Some of the most common ones are listed
below.

If a bar code image is a bit blurry, emphasize can be used to emphasize high frequency areas of the
image and, therefore, let it appear sharper.

The operator zoom_image_factor enlarges a bar code that is too small to be read.

Low contrast images can be enhanced by scaling the gray value range with scale_image (or easier with
the external convenience procedure scale_image_range).

HALCON expects bar codes to be printed dark on a light background. To read light bar codes on a dark
background you must first invert the image using the operator invert_image.

15.2.3 Rectify Image(s)

The bar code reader can handle perspective distortions up to a certain extent. For very strong distortions,
it might be necessary to rectify the image before applying the bar code reader.

B
ar

C
od

e

214 Bar Code

Visualize Results

Check Print Quality

Destroy Bar Code Model

Read Bar Code(s)

Adjust Bar Code Model

Create Bar Code Model

Rectify Image(s)

Preprocess Image(s)

Use Region Of Interest

Acquire Image(s)

How to perform the rectification for a bar code that is printed radially on a CD is shown in the description
of the example program circular_barcode.hdev on page 228. Detailed information about compen-
sating distortions caused, e.g., by non-perpendicularly mounted cameras, can be found in the Solution
Guide III-C in section 3.4 on page 62.

15.2.4 Create Bar Code Model

Sometimes, a better result can be obtained when adjusting parameters like the range for the element size
(’element_size_min’, ’element_size_max’). All available parameters can be changed either here,
or in a later step using set_bar_code_param.

15.2 Extended Concept 215

15.2.5 Adjust Bar Code Model

In most cases no adaptation of parameters is necessary for reading bar codes with HALCON. If
the bar code reading fails, however, you can adjust the following parameters with the operator
set_bar_code_param before applying find_bar_code.

Adjust Element Size

In particular, you can adjust the range of the bar code element’s width with

• the parameter ’element_size_min’ and

• the parameter ’element_size_max’.

The description of the example barcode_typical_cases.hdev on page 221 shows how an adaption
of the element’s size can improve the decoding.

Determine Check Character

For code types having a check character, you can specify whether the check character is used to check
the result or if it is returned as part of the decoded string (’check_char’).

Adapting the Thresholds for the Extraction of Element Edges

Two threshold parameters control the detection of edges within a bounding box. ’meas_thresh’ calcu-
lates a relative threshold by detecting the highest and lowest gray values within a rough bar code region
and using this dynamic range as a basis for edge detection. ’meas_thresh’ works well unless images
contain lots of noise. It also fails if the code is a stacked code, which, due to its structure, contains a white
patch within the bounding box. In both cases the calculated gray-value range of the images is small. This
results in an unreasonably small value for ’meas_thresh’ and can therefore cause the detection of false
edges.

This, however, is prevented by ’meas_thresh_abs’, which sets an absolute threshold of 5.0 for all
images. This means that the difference between the brightest and the darkest value of the element border
has to be more than 5.0 to be classified as an edge. Therefore, no false edges are detected in images with
a small dynamic range.

Sometimes, a low threshold is needed, e.g., if an image contains parts with a high dynamic range as
well as parts with a low one, due to inhomogeneous illumination. Then, ’meas_thresh_abs’ must be
turned off, by setting it to 0.0 before decreasing the value of ’meas_thresh’.

Speedup

There are two cases in which you can improve the performance. The first case concerns images with too
many false candidates, which are scanned with the default value of 10 scanlines each, whereas a valid
bar code itself is usually decoded after one or two scans. Reducing the number of scanlines therefore
leads to a significant speedup. Note that if the bar code cannot be detected after reducing the number
of scanlines, the number has to be increased again. The second case concerns images with stacked bar
codes (currently RSS-14 Stacked, RSS-14 Stacked Omnidirectional, and RSS Expanded Stacked). The
reader evaluates by default the necessary number of scanlines, 20 for RSS-14 Stacked and 55 for RSS
Expanded Stacked, which may be higher than necessary. If an RSS Expanded Stacked code does not
have the maximum possible number of rows, it is useful to specify the number of scanlines with the
parameter ’num_scanlines’ (the reader uses 5 scanlines per row). Consequently, the performance is

B
ar

C
od

e

216 Bar Code

increased. Both cases are demonstrated in the example examples\hdevelop\Identification\Bar-
Code\barcode_param_num_scanlines.hdev. Please refer to the Reference Manual for further infor-
mation. If the number of bar codes per image is known, decoding time can be decreased by specifying
this number with the parameter ’stop_after_result_num’ of the operators set_bar_code_param
or set_bar_code_param_specific. This way, the detection of false codes after all existing bar codes
have already been read can be prevented and, as a consequence, processing can be sped up.

Increase Bar Code Detection Robustness

The parameter ’min_identical_scanlines’ specifies how many successfully decoded scanlines with
identical result are required to decode a bar code. If this parameter is not set, a bar code is considered
as decoded after the first scanline was successfully decoded. It can be useful to increase the value of
this parameter when working either with an image containing lots of noise or with various bar codes
to prevent the detection of false bar codes. The use of the parameter is demonstrated in the example
hdevelop/Identification/Bar-Code/barcode_param_scanning_control.hdev.

Adapt Tolerance for Start/Stop Matching Criteria

The ’start_stop_tolerance’ specifies the tolerance for detecting the start- and stop pattern. A less
tolerant criterion increases the robustness against false detections, but might reduce the general detection
rate. This criterion can be activated by setting the parameter to ’low’. A ’high’ tolerance is recommended
if the boundary of the symbol in the image is clearly visible, the image is not noisy, and the symbol does
not contain bar codes of different types. Note that the parameter is currently only implemented for Code
128. How to adapt the parameter ’start_stop_tolerance’ to avoid misdectection is demonstrated in
the example hdevelop/Identification/Bar-Code/barcode_param_scanning_control.hdev.

To query the values that are currently used for the individual parameters, you can apply the operator
get_bar_code_param.

Determine Bar Code Parameters by Training In order to determine the best parameter settings, an
automatical training can be performed. The advantage of this training is an increased robustness of the
bar code reader. Furthermore, the decoding time can be reduced as a side effect. Parameter settings can
be determined for ’element_size_min’, ’element_size_max’, ’orientation’, ’meas_thresh’,
’meas_thresh_abs’ and ’max_diff_orient’. To activate the training mode, use the operator cre-
ate_bar_code_model to create a model for the training and set the generic parameter ’train’ to a
tuple of parameter names that should be trained or ’all’ to train all bar code parameters that are avail-
able for the training. To determine all parameters with given properties, e.g., ’trained’, the operator
query_bar_code_params can be used. How to perform the training is demonstrated in the example
examples\hdevelop\Identification\Bar-Code\barcode_training.hdev. Please refer to the
Reference Manual for further information.

15.2.6 Read Bar Code(s)

The operator find_bar_code allows you to either find one bar code type or several bar code types in
one call. When reading one code type, choose the type - if it is known - as ’CodeType’.

Autodiscrimination

Autodiscrimination describes the simultaneous decoding of multiple bar code types. It is activated by
setting ’CodeType’ to ’auto’ or by choosing the expected bar code types. Note, however, that each al-
lowed bar code type increases the runtime of the operator and too many bar code types may decrease the

15.2 Extended Concept 217

reliability of the decoding. You should at least exclude all definitely not occurring bar code types that are
scanned before the first expected bar code type occurs or, even better, just scan for the expected bar code
types (see figure 15.2). For more information on autodiscrimination including the decoding order, please
refer to the documentation of find_bar_code in the Reference Manual. Furthermore, the example
examples\hdevelop\Identification\Bar-Code\barcode_autodiscrimination.hdev demon-
strates the practical use of autodiscrimination. The operators set_bar_code_param_specific and
get_bar_code_param_specific allow to set parameters of the bar code model specifically for certain
bar code types, which may especially be interesting for autodiscrimination.

Figure 15.2: Using the ’autodiscrimination’ feature, different bar codes within one image - in this case two
codes of the type Code 39 and one EAN-13 - can automatically be recognized and read.

Restrict the reading to a part of the image

If the code always appears approximately in the same position within every image, you can speed
up your application using the operator decode_bar_code_rectangle2 instead of the operator
find_bar_code. Rather than performing a time-consuming search for candidate regions, de-

code_bar_code_rectangle2 scans the provided region directly for bar codes. The position of the
code is given in an arbitrarily oriented rectangle. Note that the direction is important. It needs to be
perpendicular to the elements.

Access results

After reading the bar codes with find_bar_code, you can explicitly query the regions of the decoded
bar codes or their candidates with the operator get_bar_code_object. The decoded strings or the

B
ar

C
od

e

218 Bar Code

underlying reference data (including, e.g., the start/stop characters) can be queried with the operator
get_bar_code_result.

Diagnostic status messages

In order to control why scanlines are not successfully detected or why the code reading fails completely,
diagnostic status messages in human readable format can be returned (see figure 15.3). With the op-
erator get_bar_code_result set to ’status’ or ’status_id’ and supplying a candidate handle,
diagnostic status messages for each possible scanline in the candidate region are returned in a tuple. Use
the operator get_bar_code_object with the parameter ’scanlines_all’ to query the correspond-
ing scanlines. Note that the status of the scanlines of a bar code can only be evaluated if the operator
find_bar_code or the operator decode_bar_code_rectangle2 was called before while in ’persis-
tence’ mode. Determining the status increases runtime and should therefore only be performed if the
debugging information is needed. The example examples\hdevelop\Identification\Bar-Code\

barcode_status.hdev demonstrates the use of the bar code parameters ’status’ and ’status-id’.

Figure 15.3: Status messages can be used to solve problems that might occur when reading bar codes.

What if the code reading fails?

If the code reading fails, an error message is returned. Depending on the message we have several
suggestions on how to solve the problem.

15.2 Extended Concept 219

Error Message(s) Possible Solution
edges: not enough edges detected. Inspect the region by querying region and scan-

lines with the operators get_bar_code_object

and get_bar_code_result.
edges: not enough edges for a start, a stop and at
least one data character.
edges: too many edges detected.
edges: center of scanline not within domain. Change the ROI or use the operator full_domain

to search the whole image. If the posi-
tion of the code is known, the operator de-

code_barcode_rect2 can be used to specify the
exact position.

decoding: could not find stop character. Check the found bar code region or in-
crease the number of scanlines with the
parameter num_scanlines of the operator
set_bar_code_param(_specific).

decoding: could not find start and stop characters.
decoding: number of wide bars of a single charac-
ter is not equal to 2.

Check if the right code type was specified as
’CodeType’ for the operator find_bar_code.

decoding: invalid encoding pattern.
decoding: invalid mix of character sets.
decoding: error decoding the reference to a human
readable string.
decoding: could not detect center guard pattern.
decoding: could not detect left and/or right guard
patterns.
decoding: could not detect add-on guard pattern.
decoding: could not detect enough finder patterns.
decoding: no segment found.
check: detected EAN-13 bar code type instead of
specified type.
check: checksum test failed. Check if the code even has a checksum. If it does

not, set the parameter ’check_char’ of the op-
erator set_bar_code_param_specific to ’ab-
sent’.

check: check of add-on symbol failed. Check if the code has an add-on symbol. If it does
not, change the ’CodeType’ of find_bar_code
to the non-add-on variant.

check: symbol region overlaps with another sym-
bol region.

The whole region is skipped because an-
other symbol region that overlaps with this
region has already been decoded. This is
no error. Set ’stop_after_result_num’

of the operator set_bar_code_param or
set_bar_code_param_specific to the number
of expected codes.

B
ar

C
od

e

220 Bar Code

Warning Message(s) Possible Solution
White spaces too wide. To improve image quality and prevent

errors, please refer to the example program
examples\solution_guide\basics\

barcode_typical_cases.hdev.
White spaces too narrow.
Bars too wide.
Bars too narrow.
Possible saturation of gray values.
No composite component found. Check if the composite code is completely

within the image.

If regions are not found properly, you can either improve the image quality itself, which helps to solve
many problems, or - if that is not possible - adjust the software to better detect your code. If you know
the location of your bar code, you can use the operator decode_barcode_rect2 to specify the location
instead of searching the whole image (see above).

Another reason why regions are not detected can be an element size that is not adjusted to the actual size
of the bar code - which is especially a problem, if the code is very big or very small. You can solve the
problem by adjusting the parameters element_size_min or element_size_max. How to adapt these
parameters and handle other typical cases is described in the example examples\solution_guide\

basics\barcode_typical_cases.hdev, which is documented in this chapter (see the example de-
scriptions in section 15.3). This example presents some typical cases of problems that can occur while
reading bar codes and presents some easy solutions.

The error messages (see the table of error messages on page 219) which lead to a failure of code reading
begin either with ’edges’, ’decoding’ or with ’check’. These categories represent the state within the
decoding process in which the code reading failed. First, edges of the bars, i.e. the white-to-black and
black-to-white transitions from background to bar and bar to background, are detected. Then the code is
decoded according to the specified symbology and finally several tests (’check’) are performed to ensure
a correct result.

The errors with the codes (0),(8),(9) and (13) (’unknown status’, ’decoding: internal error when esti-
mating the maximum string length’, ’decoding: internal error when decoding a single character’ and
’decoding: error decoding the reference to a human readable string’) are internal errors that should not
occur. If they do, however, occur, please contact your local HALCON distributor.

Warning messages (see page 220) occur either with a success message or with an error message. Warn-
ings do not prevent a successful code reading but are merely an indication for possible (future) problems.

15.2.7 Check Print Quality

If you are interested in checking the print quality of your bar code symbols, you can use the HALCON
operator get_bar_code_result, which grades the symbol according to the standard ISO/IEC 15416.
For simple 1D bar codes the print quality is described in a tuple with nine elements:

• Overall Quality,

15.3 Programming Examples 221

• Decode,

• Symbol Contrast,

• Minimal Reflectance,

• Minimal Edge Contrast,

• Modulation,

• Defects,

• Decodability,

• and Additional Requirements.

Note that the names and the order of the grades can be queried with the convenience option
(query_isoiec15416_labels).

For composite bar codes, the print quality is described in a tuple with 24 elements, including components
of both bar code print quality grading and data code print quality grading as described for the method
Data Code on page 233 or in more detail in the Solution Guide II-C in section 6 on page 51.

When investigating the reason for quality defects, it can be useful to query the data that was used
to calculate the values for the print quality elements. This is possible with the parameter qual-

ity_isoiec_15416_values which returns a tuple with the raw values for the following grades: Sym-
bol Contrast, Minimal Reflectance, Minimal Edge Contrast, Modulation, Defects, and Decodability for
simple bar codes, and Symbol Contrast, Minimal Reflectance, Minimal Edge Contrast, Modulation,
Defects, Decodability, Rap Contrast, Rap Minimal Reflectance, Rap Minimal Edge Contrast, Rap Mod-
ulation, Rap Defects, Rap Decodability, Codeword Yield, and Unused Error Correction for composite
bar codes. For grades that are excluded from these lists the operator reports ’N/A’.

For further information on checking print quality of composite bar codes or regular bar codes, please
refer to the description of the operator get_bar_code_result in the reference manual.

15.2.8 Visualize Results

Finally, you might want to display the images, the bar code regions, and the decoded content.

For detailed information see the description of this method on page 289.

15.3 Programming Examples

This section shows how to use the bar code reader.

15.3.1 How to Read Difficult Barcodes

Example: solution_guide/basics/barcode_typical_cases.hdev

B
ar

C
od

e

222 Bar Code

When reading bar codes, there are a few conditions you have to consider. These conditions might have
to do with the code itself, for which you may, for example, have to use different parameters because it is
very big or small, or with the image acquisition environment affecting the image quality. Even though
you should always aim for achieving very good images, for technical reasons, it might sometimes not be
possible to reach a perfect image quality.

The following example can help you identify simple obstacles, find out at which stage of the bar code
reading process they occur, and it subsequently offers suggestions for solving the problem.

The different cases within the example are based on typical defects. There are no problems with reading
the bar code for case 0. It just presents the two stages at which intermediate results can be obtained (see
figure 15.4).

You can query candidate regions to find out if the reader detects a bar code candidate at all with the local
procedure disp_bar_code_candidates. To query scanlines, it is necessary that a candidate region is
found. You can observe the scanlines with the local procedure disp_bar_code_scanlines. Both pro-
cedures use the operator get_bar_code_object, setting either the parameter ’candidate_regions’,
’scanlines_all’ or ’scanlines_valid’, respectively.

a) b) c)

Figure 15.4: a) Original bar code image b) A candidate is detected. c) Valid scanlines are detected.

Case 1 describes a situation where a blurry bar code has to be decoded (see figure 15.5). A first attempt
to read this code fails. Checking at which stage the bar code reading fails, you can see that a candidate
is detected but no valid scanlines are found. To make the code readable again, the edges of the bars
have to be sharpened. This can be achieved with the operator emphasize. By filtering the image, the
operator enhances high frequency areas, like edges and corners and therefore makes it look sharper.
To calculate the mask width and height, the blur radius, i.e., how many pixels are blurred, has to be
measured. The easiest way to measure in an image is to zoom the window by choosing Zoom Window
under Visualization in the window bar. The new window allows you to move the mouse cursor over
the image and check row and column in the lower right corner of the Zoom window. Depending on your
measuring direction, the row or column number, the difference between your start point and your end
point equals the size of the blur radius in pixels. As emphasize needs uneven numbers as mask sizes,
the formula is to multiply this result by two and then add one.

BlurRadius := 5

emphasize (Image, ImageEmphasize, BlurRadius*2+1, BlurRadius*2+1, 1)

15.3 Programming Examples 223

a) b)

Figure 15.5: a) A blurry bar code cannot be decoded. b) After enhancing the contrast, the code can be
read.

Subsequently, it is possible to read the bar code immediately and both candidate and scanlines are found.

B
ar

C
od

e

224 Bar Code

Case 2 is very easy to solve as well. The problem here is to keep in mind, that very large bar codes (see
figure 15.6) demand a change of the values for the parameter ’element_size_max’. Otherwise, the
default parameter is too small with the result that no candidate is found, as in this case. Adapting the
parameter ’element_size_max’ with the operator set_bar_code_param to the size of the elements
makes the code readable. How you can measure the width of the elements in HDevelop is described in
case 1.

set_bar_code_param (BarCodeHandle, 'element_size_max', 32)

a) b)

Figure 15.6: a) The large bar code cannot be read. b) After adapting the corresponding parameter to the
element size, the code can be read.

Case 3 describes the opposite problem. A very small bar code has to be decoded (see figure 15.7). First,
it cannot be read because no candidates are found. The solution is very simple: Zooming the image with
’zoom_image_factor’ makes it readable again. Generally, zooming is necessary for barcode images
with elements that are smaller than two pixels in width.

zoom_image_factor (Image, ImageZoomed, 2, 2, 'none')

15.3 Programming Examples 225

a)

c)

b)

d)

Figure 15.7: a) The small code cannot be read. b) The Zoom window shows that the elements are too
small. c) Zooming the image makes it possible to read the code. d) Due to the zooming, the
element width is larger now.

Case 4 deals with a bar code in a very low contrast image (see figure 15.8). Subsequently, no candidates
are found. However, just one preprocessing step is necessary to overcome this obstacle. The knowledge
that there is a defined gray value difference between the code bars and the background leads to the
solution. The single gray values lie, however, very close together which makes it impossible for the
reader to distinguish the code from the background. The contrast can simply be improved by scaling
the gray value range of the image with the convenience procedure scale_image_range and therefore
achieving a bright background and a black bar code again. To obtain the scaling range, it is useful to
check the gray histogram of the image.

B
ar

C
od

e

226 Bar Code

scale_image_range (Image, ScaledImage, 0, 20)

a) b)

c) d)

Figure 15.8: a) A bar code with a very low contrast. b) Histogram of the low contrast image. c) Scaling
gray values make it possible to decode the bar code. d) The histogram of this image shows
how the gray values have been scaled.

After scaling the image, the code can be read and both candidate and scanlines are found.

Case 5 shows a bar code in an overexposed image (see figure 15.9). Neither candidates nor scanlines of
the code can be found. To reverse the effect of an overexposed image, causing a decreased contrast and
slimmer code elements, gray_erosion_shape can be used. However, the overexposure radius, which
is the amount of enlargement of bright areas that is caused by overexposure, is needed first. It can be
measured as decribed for case 1. From this radius the image width and height for gray_erosion_shape
is calculated by multiplying it with two and adding one.

OverexposureRadius := 0.8

gray_erosion_shape (Image, ImageErosion, OverexposureRadius*2+1, \

OverexposureRadius*2+1, 'octagon')

15.3 Programming Examples 227

a) b)

Figure 15.9: a) An overexposed bar code b) gray_erosion_shape reverses the effect of the overexposure.

Now that the code is back to its normal shape again, both candidates and scanlines are found and the
code can be read.

Case 6 shows another problem that is connected with illumination. The light distribution in the image
is inhomogeneous (see figure 15.10). ’disp_bar_code_candidates’ does not detect the "whole"
candidate first, because the contrast diminishes in the darker parts of the image. Decreasing the value of
’meas_thresh’ makes it possible to detect and read the whole bar code. It is, however, necessary to
disable ’meas_thresh_abs’ first, because ’meas_thresh_abs’ sets a default threshold of 5.0, which
is too high in this case.

set_bar_code_param (BarCodeHandle, 'meas_thresh_abs', 0.0)

set_bar_code_param (BarCodeHandle, 'meas_thresh', 0.01)

a) b)

Figure 15.10: a) Bar code with inhomogeneous illumination b) Decreasing ’meas_thresh’ makes the
code readable.

B
ar

C
od

e

228 Bar Code

15.3.2 Reading a Bar Code on a CD

Example: hdevelop/Applications/Bar-Codes/circular_barcode.hdev

Figure 15.11 shows an image of a CD, on which a bar code is printed radially. The task is to read this
circular bar code. Because the bar code reader cannot read this kind of print directly, first the image must
be transformed such that the elements of the bar code are parallel.

b)

a)

Figure 15.11: (a) Original image with segmented ring; (b) rectified ring with decoded bar code.

The first step is to segment the dark ring on which the bar code is printed. This is performed using
bin_threshold followed by connection. This segmentation returns all dark areas in the image, in-
cluding the dark ring. To select the ring, select_shape is used with corresponding values for the
extent.

bin_threshold (Image, Region)

connection (Region, ConnectedRegions)

select_shape (ConnectedRegions, Ring, ['width','height'], 'and', [550,550], \

[750,750])

After that, the parameters of the outer and the inner circle are determined. The outer circle can be
determined directly using shape_trans. The inner circle is more complicated to extract. Here, it is
calculated by creating the complement region of the ring with appropriate dimensions and then selecting
its inner part. With smallest_circle, the parameters of the inner and outer circle are determined.

shape_trans (Ring, OuterCircle, 'outer_circle')
complement (Ring, RegionComplement)

connection (RegionComplement, ConnectedRegions)

select_shape (ConnectedRegions, InnerCircle, ['width','height'], 'and', \

[450,450], [650,650])

smallest_circle (Ring, Row, Column, OuterRadius)

smallest_circle (InnerCircle, InnerRow, InnerColumn, InnerRadius)

15.3 Programming Examples 229

The parameters for inner and outer circle are the input for the polar transform (po-
lar_trans_image_ext), which transforms the image inside the ring into a rectangular area. Then,
the image is inverted to obtain dark bar code elements on a light background (see figure 15.11b).

WidthPolar := 1440

HeightPolar := round(OuterRadius-InnerRadius-10)

polar_trans_image_ext (Image, PolarTransImage, Row, Column, rad(360), 0, \

OuterRadius-5, InnerRadius+5, WidthPolar, \

HeightPolar, 'bilinear')
invert_image (PolarTransImage, ImageInvert)

To read the bar code, first a model is created with create_bar_code_model. As the bar code elements
are very thin, parameters are adjusted with the operator set_bar_code_param. In particular, the pa-
rameter ’element_size_min’ is set to 1.5 and the parameter ’meas_thresh’ is set to 0.1. Then,
find_bar_code finds and decodes the bar code, which is of the specified code type ’Code 128’. The
bar code model is destroyed with clear_bar_code_model.

create_bar_code_model ([], [], BarCodeHandle)

set_bar_code_param (BarCodeHandle, 'element_size_min', 1.5)

set_bar_code_param (BarCodeHandle, 'meas_thresh', 0.3)

find_bar_code (ImageZoomed, SymbolRegions, BarCodeHandle, 'Code 128', \

DecodedDataStrings)

clear_bar_code_model (BarCodeHandle)

Finally, the region of the bar code that was returned by find_bar_code is transformed back to the
original shape of the bar code by polar_trans_region_inv and is displayed in the image.

polar_trans_region_inv (SymbolRegions, CodeRegionCircular, Row, Column, \

rad(360), 0, OuterRadius-5, InnerRadius+5, \

WidthPolar, HeightPolar, Width, Height, \

'nearest_neighbor')
dev_display (CodeRegionCircular)

15.3.3 Checking Bar Code Print Quality

Example: hdevelop/Identification/Bar-Code/print_quality_isoiec15416.hdev

This example checks the print quality of bar codes, according to the ISO/IEC 15416 standard, for con-
trast, minimal reflectance, modulation, minimal edge contrast, defects, decodability and additional re-
quirements.

This program will be explained exemplarily, using the "Contrast" grade, which checks whether the range
between the minimal and the maximal value in the reflectance profile is lower or equal to 0.5 of the max-
imal reflectance value. Otherwise, a value of 0 is assigned as you can see in figure 15.12. Furthermore,
the program returns raw values for some quality grades to investigate the reason for quality defects.

First, the data code is detected in the image, then the operator get_bar_code_result checks the print
quality of the code.

B
ar

C
od

e

230 Bar Code

find_bar_code (ImageDefect, SymbolRegions, BarCodeHandle, 'EAN-13', \

DecodedDataStrings)

get_bar_code_result (BarCodeHandle, 0, 'quality_isoiec15416', Quality)

Finally, the result is displayed in a message.

min_max_gray (SymbolRegions, ImageDefect, 0, Min, Max, Range)

Contrast := Range/255

dev_display (ImageDefect)

dev_set_color ('green')
dev_display (SymbolRegions)

grade_message_text (Labels, Quality, QualityValues, GRADE_CONTRAST, Message)

disp_message (WindowHandle, Message, 'window', 10, -1, 'black', 'true')

a) b)

Figure 15.12: a) The bar code with a high contrast gets the grade 4 and a raw value of 82.45%. b) The
defective bar code with a very low contrast gets the grade 0 and a raw value of 15.84%.

The program repeats these checks for the print quality features listed above. For more
information concerning composite codes view the example hdevelop/Identification/Bar-

Code/composite_print_quality_isoiec15416.hdev.

15.4 Selecting Operators

15.4.1 Acquire Image(s)

Please refer to the operator list for the method Image Acquisition (see section 2.4 on page 17).

15.4.2 Use Region Of Interest

Please refer to the operator list for the method Region Of Interest (see section 3.4 on page 26).

15.4 Selecting Operators 231

15.4.3 Preprocess Image(s)

Standard:

emphasize, zoom_image_factor, scale_image, invert_image

15.4.4 Rectify Image(s)

Operators for rectifying images are described in the Solution Guide III-C.

15.4.5 Create Bar Code Model

Standard:

create_bar_code_model

15.4.6 Adjust Bar Code Model

Standard:

get_bar_code_param, set_bar_code_param

15.4.7 Read Bar Code(s)

Standard:

find_bar_code

Advanced:

get_bar_code_object, get_bar_code_result

15.4.8 Destroy Bar Code Model

Standard:

clear_bar_code_model

B
ar

C
od

e

232 Bar Code

15.4.9 Check Print Quality

Standard:

get_bar_code_result

15.4.10 Visualize Results

Please refer to the operator list for the method Visualization (see section 19.4 on page 297).

15.5 Relation to Other Methods

15.5.1 Alternatives to Bar Code

OCR (see description on page 245)
With some bar codes, e.g., the EAN 13, the content of the bar code is printed in plain text below the
elements. Here, OCR can be used, e.g., to check the consistency of the reading process.

15.6 Advanced Topics

15.6.1 Use Timeout

With the operator set_bar_code_param, you can set a timeout. Then, the operator find_bar_code
will return at the latest after the specified time. This mechanism is demonstrated for Matching (Shape-
Based) in the example hdevelop/Matching/Shape-Based/set_shape_model_timeout.hdev.

Data Code 233

Chapter 16

Data Code

Data codes are a special kind of two-dimensional patterns that encode text and numbers. HALCON is
able to read the three most popular data codes: Data Matrix ECC 200, QR Code, and PDF417. These
codes consist of a so-called finder pattern, which is used to locate the pattern and get basic information
about the geometric properties. The code itself contains multiple dots or small squares. Because of the
special design of the codes, they can be decoded even if some parts are disturbed.

The advantage of the HALCON data code reader is its ease of use. No advanced experience in pro-
gramming or image processing is required. Only a few operators in a clear and simple order need to be
applied. Furthermore, the data code reader is very powerful and flexible. Examples for this are its ability
to read codes in many print styles and the possibility to automatically learn optimal parameters.

16.1 Basic Concept

Data code reading consists mainly of four steps:

16.1.1 Acquire Image(s)

For the online part, i.e., during reading, images are acquired.

For detailed information see the description of this method on page 13.

16.1.2 Create Data Code Model

First, you create a data code model with the operator create_data_code_2d_model. This model
provides the reader with all necessary information about the structure of the code. For normal printed
codes only the name needs to be provided and HALCON will select suitable default parameters. For
special cases, you can modify the model by passing specific parameters.

D
at

a
C

od
e

234 Data Code

Destroy Data Code Model

Read Data Code(s)

Use Region Of Interest

Create Data Code Model

Acquire Image(s)

16.1.3 Read Data Code(s)

To read a data code, just one operator is needed: find_data_code_2d. It will locate one or more data
codes and decode the content.

16.1.4 Destroy Data Code Model

When you no longer need the data code model, you destroy it with the operator
clear_data_code_2d_model.

16.1.5 A First Example

As an example for this basic concept, here a very simple program, which reads the data code on the chip
depicted in figure 16.1, is discussed.

After reading an image from file, the data code model is generated by calling cre-

ate_data_code_2d_model. As the only required parameter value, the code name ’ECC200’ is speci-
fied.

read_image (Image, 'datacode/ecc200/ecc200_cpu_003')
create_data_code_2d_model ('ECC200', [], [], DataCodeHandle)

Then, the data code is read with the operator find_data_code_2d.

find_data_code_2d (Image, SymbolXLDs, DataCodeHandle, [], [], ResultHandles, \

DecodedDataStrings)

At the end of the program, the data code model is destroyed using clear_data_code_2d_model.

16.2 Extended Concept 235

Figure 16.1: Reading a data code.

clear_data_code_2d_model (DataCodeHandle)

16.2 Extended Concept

In some cases, data code reading can be more advanced than in the example above. Reasons for this are,
e.g., parameter optimization for improved execution time. Furthermore, preprocessing like rectification
or the visualization of results might be required. The following sections give a brief overview. More
detailed information can be found in the Solution Guide II-C.

16.2.1 Acquire Image(s)

Optionally, additional images can be acquired for parameter optimization (see the description of the step
Optimize Model on page 237).

For detailed information see the description of this method on page 13.

16.2.2 Rectify Image(s)

HALCON’s data code reader is robust against image distortions up to a certain limit. But if the data code
is printed on a cylindrical surface or if the camera is tilted relative to the surface, it might be necessary
to rectify the image before applying the data code reader.

Detailed information about rectifying images can be found in the Solution Guide III-C in section 3.4 on
page 62.

D
at

a
C

od
e

236 Data Code

Destroy Data Code Model

Visualize Results

Check Print Quality

Inspect Data Code(s)

Read Data Code(s)

Use Region Of Interest

Train Model

Optimize Model

Create Data Code Model

Rectify Image(s)

Acquire Image(s)

16.2.3 Create Data Code Model

The operator create_data_code_2d_model expects the name of the desired code and optionally pa-
rameters to specify the geometry and radiometry as input. By default, a parameter set is used that is
suitable for data codes that fulfill the following requirements:

• The code must be printed dark on light,

• the contrast must be bigger than 30,

• the size of symbol is smaller or equal to 48x48 modules,

16.2 Extended Concept 237

• the width and the height of the modules are between 6 and 20 pixels, and

• there is no or only a small gap in between neighboring modules.

This parameter set is also used if you specify the value ’standard_recognition’ for the parameter
GenParamValues. In contrast, if you specify the value ’enhanced_recognition’, a parameter set
is used that detects codes that do not follow the rules given above. However, using this parameter set
possibly results in a longer processing time.

16.2.4 Optimize Model

Using the default parameters, the data code reader is able to read a wide range of codes. For non-standard
codes the parameters can be adapted accordingly. For this, the operator set_data_code_2d_param is
used.

The easiest way is to use the parameter value ’enhanced_recognition’, which uses a model that is
able to find a very wide range of print styles. An alternative is to specify parameter values separately to
adapt the model to the conditions of the used print style.

If a data code symbol is not detected although it is well visible in the image, check whether the symbol’s
appearance complies with the model. In particular, have a look at the polarity (’polarity’: dark-on-
light or light-on-dark), the module size (’module_size’ and ’module_shape’) and the minimum con-
trast (’contrast_min’). In addition, the parameters ’module_gap’ (allowed gap between modules),
’symbol_size’, and ’slant_max’ (angle variance of the legs of the finder pattern) should be checked.
The current settings of these values can be queried by the operator get_data_code_2d_param.

All possible parameter values can be checked in the Reference Manual. Besides this, they can also be
queried with the operator query_data_code_2d_params.

As an alternative, you can train the model (see below).

16.2.5 Train Model

Instead of modifying the model parameters manually as described above, you can also let HALCON
train the model automatically using the operator find_data_code_2d. All you need to do is to call
this operator with the parameter values ’train’ and ’all’. Then, HALCON will search for the best
parameters needed to extract the given code. It is recommended to apply this to multiple example images
to ensure that all variations are covered.

As an alternative, you can execute the finder with normal parameters and request the features of the
found symbols with get_data_code_2d_results. These values can then be used to change the model
with set_data_code_2d_param.

16.2.6 Use Region Of Interest

Reading data codes can be sped up by using a region of interest. The more the region in which codes are
searched can be restricted, the faster and more robust the search will be.

For detailed information see the description of this method on page 19.

D
at

a
C

od
e

238 Data Code

16.2.7 Read Data Code(s)

The operator find_data_code_2d returns for every successfully decoded symbol the surrounding
XLD contour in SymbolXLDs, a handle to a result structure, which contains additional information
about the symbol as well as about the search and decoding process (ResultHandles), and the string
that is encoded in the symbol (DecodedDataStrings). With the result handles and the operators
get_data_code_2d_results and get_data_code_2d_objects, additional data about the extraction
process can be accessed.

16.2.8 Inspect Data Code(s)

Using the handles of the successfully decoded symbols returned by find_data_code_2d, you
can request additional information about the symbol and the finding process using the operators
get_data_code_2d_results and get_data_code_2d_objects. This is useful both for process anal-
ysis and for displaying.

In addition, information about rejected candidates can also be queried by requesting the corresponding
handles with get_data_code_2d_results using, e.g., the parameter values ’all_undecoded’ and
’handle’.

The operator get_data_code_2d_results gives access to several alphanumerical results that were
calculated while searching and reading the data code symbols. Besides basic information like the dimen-
sions of the code, its polarity, or the found contrast, also the raw data can be accessed.

The operator get_data_code_2d_objects gives access to iconic objects that were created while
searching and reading the data code symbols. Possible return values are the surrounding contours or
the regions representing the foreground or background modules.

16.2.9 Check Print Quality

If your first aim is not to quickly read the 2D data code symbols but to check how good they were
printed, you can query the print quality of a symbol in accordance to the standards ISO/IEC 15415 or
AIM DPM-1-2006. For details, see the Solution Guide II-C in section 6 on page 51.

16.2.10 Visualize Results

Finally, you might want to display the images, the data code regions, and the decoded content.

For detailed information see the description of this method on page 289.

16.3 Programming Examples

This section gives a brief introduction to the programming of the data code reader.

16.3 Programming Examples 239

16.3.1 Training a Data Code Model

Example: solution_guide/basics/ecc200_training_simple.hdev

c)b)a)

Figure 16.2: (a) Dark training image; (b) bright training image; (c) read code with extracted modules.

In this example we show how easy it is to train a data code model, here to allow changes in the illumina-
tion of the images. To prepare the reading of the data codes, three major steps are performed: First, the
connection to an image sequence is established by calling open_framegrabber.

SequenceName := 'datacode/ecc200/ecc200_cpu_light.seq'
open_framegrabber ('File', 1, 1, 0, 0, 0, 0, 'default', -1, 'default', -1, \

'default', SequenceName, 'default', -1, -1, FGHandle)

Then, a model for an ECC 200 is created with create_data_code_2d_model.

create_data_code_2d_model ('ECC200', [], [], DataCodeHandle)

To get the optimal parameters for finding the data code, two sample images are loaded and passed to
find_data_code_2d with the parameter value ’train’.

grab_image (Image, FGHandle)

find_data_code_2d (Image, SymbolXLDs, DataCodeHandle, 'train', 'all', \

ResultHandles, DecodedDataStrings)

grab_image (Image, FGHandle)

find_data_code_2d (Image, SymbolXLDs, DataCodeHandle, 'train', 'all', \

ResultHandles, DecodedDataStrings)

As a preparation for the detection loop, the settings for the find operator are changed with
set_data_code_2d_param to enable the saving of visual data.

set_data_code_2d_param (DataCodeHandle, 'persistence', 1)

D
at

a
C

od
e

240 Data Code

Inside the while-loop, images are grabbed and find_data_code_2d is applied to read the code from
the image. After that, iconic results and the read code are visualized. The regions with the foreground
and background modules are requested with get_data_code_2d_objects.

while (1)

grab_image (Image, FGHandle)

dev_display (Image)

find_data_code_2d (Image, SymbolXLDs, DataCodeHandle, [], [], \

ResultHandles, DecodedDataStrings)

dev_set_color ('yellow')
dev_display (SymbolXLDs)

set_tposition (WindowHandle, 430, 80)

write_string (WindowHandle, DecodedDataStrings)

get_data_code_2d_objects (Foreground, DataCodeHandle, ResultHandles[0], \

'module_1_rois')
get_data_code_2d_objects (Background, DataCodeHandle, ResultHandles[0], \

'module_0_rois')
dev_set_color ('cyan')
dev_display (Foreground)

dev_set_color ('magenta')
dev_display (Background)

endwhile

At the end of the program the model for the data code reader is destroyed and the connection to the image
sequence is closed.

clear_data_code_2d_model (DataCodeHandle)

close_framegrabber (FGHandle)

16.3.2 Reading 2D Data Codes on Chips

Example: hdevelop/Applications/Data-Codes/ecc200_optimized.hdev

This example program reads 2D data codes of type ECC200, which like the example described before
are engraved in chips (see figure 16.3).

The example shows how to set optimized parameters for efficient data code reading. The code printed
on a chip is always light on dark in this application and has a given size and number of modules. Also,
the contrast is within a predefined range. By specifying these values for the model, the execution time
can be sped up significantly.

16.4 Selecting Operators 241

Figure 16.3: Decoded data code.

create_data_code_2d_model ('Data Matrix ECC 200', [], [], DataCodeHandle)

set_data_code_2d_param (DataCodeHandle, ['module_size_min', \

'module_size_max'], [4,7])

set_data_code_2d_param (DataCodeHandle, 'module_gap', 'no')
set_data_code_2d_param (DataCodeHandle, 'polarity', 'light_on_dark')
set_data_code_2d_param (DataCodeHandle, 'mirrored', 'no')
set_data_code_2d_param (DataCodeHandle, 'contrast_min', 10)

set_data_code_2d_param (DataCodeHandle, 'symbol_size', 18)

find_data_code_2d (Image, SymbolXLDs, DataCodeHandle, [], [], ResultHandles, \

DecodedDataStrings)

16.4 Selecting Operators

16.4.1 Acquire Image(s)

Please refer to the operator list for the method Image Acquisition (see section 2.4 on page 17).

16.4.2 Rectify Image(s)

Operators for rectifying images are described in the Solution Guide III-C.

16.4.3 Create Data Code Model

Standard:

create_data_code_2d_model

D
at

a
C

od
e

242 Data Code

16.4.4 Optimize Model

Standard:

set_data_code_2d_param, get_data_code_2d_param

Advanced:

query_data_code_2d_params

16.4.5 Train Model

Standard:

find_data_code_2d

Advanced:

get_data_code_2d_results, set_data_code_2d_param

16.4.6 Use Region Of Interest

Please refer to the operator list for the method Region Of Interest (see section 3.4 on page 26).

16.4.7 Read Data Code(s)

Standard:

find_data_code_2d

16.4.8 Inspect Data Code(s)

Standard:

get_data_code_2d_results, get_data_code_2d_objects

16.4.9 Check Print Quality

Standard:

get_data_code_2d_results

16.5 Advanced Topics 243

16.4.10 Visualize Results

Please refer to the operator list for the method Visualization (see section 19.4 on page 297).

16.4.11 Destroy Data Code Model

Standard:

clear_data_code_2d_model

16.5 Advanced Topics

16.5.1 Use Timeout

With the operator set_data_code_2d_param, you can set a timeout. Then, the opera-
tor find_data_code_2d will return at the latest after the specified time. This mecha-
nism is demonstrated for Matching (Shape-Based) in the example hdevelop/Matching/Shape-

Based/set_shape_model_timeout.hdev.

D
at

a
C

od
e

244 Data Code

OCR 245

Chapter 17

OCR

Optical Character Recognition (OCR) is the technical term for reading, i.e., identifying symbols. In
HALCON, OCR is defined as the task to assign an interpretation to regions of an image. These regions
typically represent single characters and therefore we consider this as reading single symbols.

In an offline phase, the characters are trained by presenting several samples for each character. In the
online phase, the image is segmented to extract the regions representing the characters and then the OCR
reader is applied to get the interpretation for each character.

Figure 17.1 shows the principal steps. The first part is offline and consists of collecting training samples
and, after that, applying the training. The online part consists of extracting the characters and then
reading them.

The advantage of OCR is the flexibility of the training, which allows to select features optimized for an
application. Furthermore, the used classifiers are based on the latest neural network technology or on
support vector machines, providing both best possible performance.

As a further advantage, HALCON provides you with a set of pretrained fonts, which are based on a
large amount of training data from various application areas. These fonts allow you to read text in docu-
ments, on pharmaceutical or industrial products, dot prints, and even handwritten numbers. Furthermore,
HALCON includes pretrained fonts for OCR-A and OCR-B.

17.1 Basic Concept

The OCR is split into two major parts: training and reading. Each of these major parts requires additional
preparation steps:

17.1.1 Acquire Image(s)

Both for the generation of training data and for the OCR itself images must be acquired.

For detailed information see the description of this method on page 13.

O
C

R

246 OCR

selection of training charactersimage

training of a font file

reading of charactersimage

creation of training files

Offline

Online

Figure 17.1: Main steps of OCR.

Destroy Classifier

Read Symbol

Train OCR

Segment Image(s)

Use Region Of Interest

Acquire Image(s)

17.1.2 Segment Image(s)

Both for the training samples and for the online reading process, characters must be extracted
from the image. This step is called segmentation. This means that the OCR operators like
do_ocr_single_class_svm do not search for the characters within a given region of interest, but

17.1 Basic Concept 247

expect a segmented region, which then will be classified.

If the samples for training are taken from real application images, the same segmentation method will
be applied for both training and reading. If the training images are more “artificial”, a simpler method
might be used to segment the training images.

17.1.3 Train OCR

The training consists of two important steps: First, a number of samples for each character is selected
and stored in so-called training files. In the second step, these files are input for a newly created OCR
classifier.

As already noted, HALCON provides pretrained fonts, i.e., ready-to-use classifiers, which already solve
many OCR applications. These fonts can be found in the subdirectory ocr of the folder where you
installed HALCON.

17.1.4 Read Symbol

For reading, you only have to read the trained classifier from disk, segment the characters from the image,
and use the segmented characters as input for one of the reading operators that will be discussed later.

17.1.5 Destroy Classifier

When you no longer need the classifier, you destroy it with the operator clear_ocr_class_mlp or
clear_ocr_class_svm, dependent on the used classifier.

17.1.6 A First Example

An example for this basic concept is the following program, which uses one of the pretrained fonts
provided by HALCON to read the numbers in the image depicted in figure 17.2.

Figure 17.2: Applying a pretrained classifier.

O
C

R

248 OCR

First, the pretrained font Document_0-9 is read using read_ocr_class_mlp. As no file extension is
specified, it is searched for a file with the MLP specific extension “.omc” (since HALCON 8.0) or with
the extension “.fnt”, which was common for box and MLP classifiers in earlier HALCON versions.

FontFile := 'Document_0-9'
read_ocr_class_mlp (FontFile, OCRHandle)

Then, the numbers are segmented using threshold and connection. Because the order is irrelevant
here, no further processing is applied.

threshold (Image, Region, 0, 125)

connection (Region, Characters)

Finally, the numbers are read in a for-loop. The operator do_ocr_single_class_mlp takes the single
region, the image, and the OCR handle as input. As a result the best and the second best interpretation
together with the confidences are returned.

count_obj (Characters, Number)

dev_set_color ('white')
for i := 1 to Number by 1

select_obj (Characters, SingleChar, i)

do_ocr_single_class_mlp (SingleChar, Image, OCRHandle, 2, Class, \

Confidence)

endfor

17.2 Extended Concept

When we look more closely at the OCR, many possibilities for adaptation to specific applications become
apparent. For example, we have to consider an efficient way of collecting samples as well as correct
parameters for the training. In the online phase, an optimal segmentation method is required to extract
all characters in a robust manner.

17.2.1 Use Region Of Interest

The OCR can be sped up by using a region of interest. The more the region in which the characters are
searched can be restricted, the faster and more robust the search will be.

For detailed information see the description of this method on page 19.

17.2.2 Align ROIs Or Images

Because the reading of characters is not invariant to rotation, it may be necessary to correct the orientation
of the image. This can be achieved either by directly determining the orientation of the text using

17.2 Extended Concept 249

Destroy Classifier

Visualize Results

Read Symbol

Train OCR

Segment Image(s)

Extract Segmentation
Parameters

Preprocess Image(s)
(Filtering)

Rectify Image(s)

Align ROIs Or Images

Use Region Of Interest

Acquire Image(s)

the operator text_line_orientation, or by locating another object. Then, the part of the image
containing the characters is cropped and aligned using the orientation of the text or the found object.

How to perform alignment using shape-based matching is described in the Solution Guide II-B in sec-
tion 2.4.3.2 on page 42.

O
C

R

250 OCR

17.2.3 Rectify Image(s)

Similarly to alignment, it may be necessary to rectify the image, e.g., to remove perspective distortions.
For slanted characters, the slant angle can be determined using the operator text_line_slant.

Detailed information about rectifying images can be found in the Solution Guide III-C in section 3.4 on
page 62.

17.2.4 Preprocess Image(s) (Filtering)

Sometimes, the characters may be difficult to extract because of noise, texture, or overlaid structures.
Here, operators like mean_image or gauss_image can be used to eliminate noise. A fast but slightly
less perfect alternative to gauss_image is binomial_filter. The operator median_image is helpful
for suppressing small spots or thin lines. The operator dots_image is optimized to emphasize a dot-print
while suppressing other structures in the image. Gray value morphology can be used to eliminate noise
structures and to adapt the stroke width of characters.

17.2.5 Extract Segmentation Parameters

When segmenting the characters with blob analysis, instead of using fixed threshold values, the values
can be extracted dynamically for each image. For more details, please refer to the description of this step
on page 34. Another possibility is the use of the Smart Text Finder, which is described below.

17.2.6 Segment Image(s)

For the segmentation various methods can be used. Using the Smart Text Finder enables you to pre-
cisely specifiy a text model and therefore leads to a very robust segmentation. Two other common
methods are described under ’General Character Segmentation’.

Segmentation with the Smart Text Finder

In order to segment images more robustly, the Smart Text Finder allows to specify text features very
intuitively. Please view figure 17.3 for overview that also guides you through a segmentation with
the Smart Text Finder. For a more practical introduction to the Smart Text Finder, please refer to
the HDevelop examples hdevelop/Applications/OCR/find_text_bottle_label.hdev or hde-
velop/Applications/OCR/find_text_dongle.hdev and the corresponding example description
page 261.

With the Smart Text Finder, a model, is created first with create_text_model. Segmentation
parameters can then be specified with the operator set_text_model_param and can be queried
with get_text_model_param. After this preparation, the text can be segmented with the operator
find_text. This operator selects character candidates based on region and gray-value features. These
are then further combined to lines which are subsequently tested if they qualify as a text line.

If the text shall be fitted to a line structure, the parameter ’text_line_structure’ of the operator
set_text_model_param can be set, which determines the structure, i.e., the number of characters for

17.2 Extended Concept 251

each character block of the text that shall be detected. If the text is not horizontally aligned, the operators
text_line_orientation and rotate_image can be used. If the text also includes interpunctation
and separators, set the parameters ’return_interpunctions’ and ’return_separators’ with the
operator set_text_model_param.

The result is returned in TextResultID which can be queried with get_text_result and
get_text_object, respectively. get_text_result queries the ResultName of TextResultID as
control value. get_text_object queries the iconic value of text segmentation. To delete the result and
the text model, use the operators clear_text_result and clear_text_model, respectively.

Please refer to the Reference Manual for more information to parameters and values of the operators.

General Character Segmentation

For the common character segmentation you can either use the operator segment_characters to get
a region containing all character candidates and then apply select_characters to select those parts
of the region that are candidates for the individual characters, or you use blob analysis. There, the most
simple method is the operator threshold, with one or more gray value ranges specifying the regions
that belong to the foreground objects. Another very common method is dyn_threshold. Here, a second
image is passed as a reference. With this approach a local instead of a global threshold is used for each
position. Further information can be found in the description of this step for blob analysis on page 32.

17.2.7 Train OCR

Figure 17.4 shows an overview on the generation of the training files: First, the characters from sample
images must be extracted using a segmentation method (see above). To each of the single characters a
name must be assigned. This can be done either by typing it in, by a programmed input in the case of a
well-structured image (having, e.g., multiple samples of each character in different lines), or by reading
the character names from file. Then, the regions together with their names are written into training
files. The most convenient operator to do this is append_ocr_trainf. Before applying the training,
we recommend to check the correctness of the training files. This can, e.g., be achieved by using the
operator read_ocr_trainf combined with visualization operators.

Note that you can also train your own system fonts. By altering and distorting the characters of a font,
you can increase the number of different training samples for each class and thus also increase the
detection rate. hdevelop/Applications/OCR/gen_training_file.hdev is an example program
for the training of system fonts.

The actual training is depicted in figure 17.5. First, a new classifier is created. There are three different
OCR classifiers available, the box classifier, a neural network (multi-layer perceptron or MLP) classi-
fier, and a classifier that is based on support vector machines (SVM). Note that the box classifier is still
available, but not recommended anymore as MLP and SVM are more powerful. Thus, in this manual
only MLP and SVM are described further. Dependent on the chosen classifier, you create the classi-
fier using create_ocr_class_mlp or create_ocr_class_svm. Then, the training is applied using
trainf_ocr_class_mlp or trainf_ocr_class_svm, respectively. After the training, you typically
save the classifier to disk for later use by write_ocr_class_mlp or write_ocr_class_svm.

The difference between the two recommended classifiers is very simple: The MLP classifier is fast at
classification, but for a large training set slow at training (compared to the classifier based on SVM). If

O
C

R

252 OCR

Shall the

&

yes

segment

text

no

if ’persistence’ was activated

TextModel

TextModel

creates the model

TextModel

create_text_modelcreate model

process step description operators

Segmentation based

on thresholds and

detection of line structures

aligned?

horizontally

Is the text

line structure?

text be

Does the

text include

interpunctation

& seperators

yes

no

use

use

− ’return_separators’

parameters:

return result TextResultID

yes

no

that specify the

model TextModel

set model

parameters

fitted to

set_text_ model_param

parameter value:

’text_line_structure’

rotate_image

text_line_orientation

set_text_model_param

− ’return_interpunctions’

find_text

set_text_model_param

TextModel

get_text_model_param

can be queried with

get_text_result

returns ResultName of

TextResultID as control value

− ’num_lines’

get_text_object

−’thresholds’

− ’line’

− ’all_lines’

queries:

queries iconic value of text

segmentation

result:

− ’compensated_image’

clear_text_result

clear_text_model

set the parameters

Figure 17.3: Image segmentation with the Smart Text Finder.

the training can be applied offline and thus is not time critical, MLP is a good choice. The classifier
based on SVM leads to slightly better recognition rates than the MLP classifier and is faster at training

17.2 Extended Concept 253

regions

segmentation

image

combination

training file (*.trf) training file inspection

character names programmed

user interaction

reading text file

Figure 17.4: Creating training files.

training

saving

trained OCR classifier

testing

training file (*.trf) new OCR classifier

font file (*.omc or *.osc)

Figure 17.5: Training an OCR classifier.

(especially for large training sets). But compared to the MLP classifier the classification need more time.

17.2.8 Read Symbol

Figure 17.6 shows an overview on the reading process. First, the characters must be extracted using an
appropriate segmentation method. Here, you must use a method that returns the characters in a form sim-
ilar to the ones used for training. After reading the classifier (font file) from file (read_ocr_class_mlp

O
C

R

254 OCR

or read_ocr_class_svm), the classifier can be used for reading.

segmentation

regionsfont file (*.trf)

classification

symbols grouping text

image

Figure 17.6: Reading characters.

For reading multiple operators are provided: In the easiest case, multiple characters are passed to the
reading operators (do_ocr_multi_class_mlp or do_ocr_multi_class_svm). Here, for each re-
gion the corresponding name and the confidence are returned. Sometimes, it can be necessary not
only to obtain the characters with the highest confidence but also others with lower confidences. A
zero, e.g., might easily be mistaken for the character “O”. This information is returned by the operators
do_ocr_single_class_mlp and do_ocr_single_class_svm.

As a final step it might be necessary to group digits to numbers or characters to words. This can be
realized with the region processing operators like those described for the method blob analysis on page
35.

Additionally, HALCON provides operators for a syntactic and lexicon-based auto-correction. For exam-
ple, you can use the operator do_ocr_word_mlp instead of do_ocr_multi_class_mlp to find sets of
characters, i.e., words, that match a regular expression or that are stored in a lexicon, which was created
by create_lexicon or imported by import_lexicon.

17.2.9 Visualize Results

Finally, you might want to display the images, the blob (regions), and the result of the reading process.

For detailed information see the description of this method on page 289.

17.3 Programming Examples

This section gives a brief introduction to using HALCON for OCR. All important steps from training file
generation over training to reading are presented.

17.3 Programming Examples 255

17.3.1 Generating a Training File

Example: solution_guide/basics/gen_training_file.hdev

Figure 17.7 shows a training image from which the characters in the fourth line are used as training
samples. For this example image, the segmentation is very simple because the characters are significantly
darker than the background. Therefore, threshold can be used.

Figure 17.7: Collecting characters for a training file.

The number of the line of characters that is used for training is specified by the variable TrainingLine.
To select this line, first the operator closing_rectangle1 is used to combine characters horizontally
into lines. These lines are then converted to their connected components with connection. Out of
all lines the relevant one is selected using select_obj. By using intersection with the original
segmentation and the selected line as input, the characters for training are returned. These are sorted
from left to right, using sort_region.

TrainingLine := 3

threshold (Image, Region, 0, 125)

closing_rectangle1 (Region, RegionClosing, 70, 10)

connection (RegionClosing, Lines)

select_obj (Lines, Training, TrainingLine)

intersection (Training, Region, TrainingChars)

connection (TrainingChars, ConnectedRegions)

sort_region (ConnectedRegions, SortedRegions, 'first_point', 'true', \

'column')

Now, the characters can be stored in the training file. As a preparation step a possibly existing older
training file is deleted. Within a loop over all characters the single characters are selected. The variable
Chars contains the names of the characters as a tuple of strings. With the operator append_ocr_trainf
the selected regions, together with the gray values and the corresponding name, are added to the training
file.

O
C

R

256 OCR

Chars := ['0','1','2','3','4','5','6','7','8','9']
TrainFile := 'numbers.trf'
dev_set_check ('~give_error')
delete_file (TrainFile)

dev_set_check ('give_error')
for i := 1 to 10 by 1

select_obj (SortedRegions, TrainSingle, i)

append_ocr_trainf (TrainSingle, Image, Chars[i-1], TrainFile)

endfor

17.3.2 Creating and Training an OCR Classifier

Example: solution_guide/basics/simple_training.hdev

Having prepared the training file, the creation and training of an OCR classifier is very simple. First, the
names of the training file and the final font file are determined. Typically, the same base with different
extensions is used. We recommend to use “.trf” for training files. For font files i.e., for OCR classifiers,
we recommend to use “.obc” for the box classifier (which is not recommended anymore), “.omc” for the
neural network classifier , and “.osc” for the classifier based on support vector machines. If no extension
is specified during the reading process, for the box or neural network classification it is also searched for
files with the extension “.fnt”, which was common for both classifiers in earlier HALCON versions.

To create an OCR classifier, some parameters need to be determined. The most important one is the
list of all possible character names. This list can easily be extracted from the training file by using the
operator read_ocr_trainf_names.

TrainFile := 'numbers.trf'
read_ocr_trainf_names (TrainFile, CharacterNames, CharacterCount)

Another important parameter is the number of nodes in the hidden layer of the neural network. In this
case, it is set to 20. As a rule of thumb, this number should be in the same order as the number of different
symbols. Besides these two parameters, here only default values are used for create_ocr_class_mlp.
The training itself is applied using trainf_ocr_class_mlp. We recommend to simply use the default
values here as well.

NumHidden := 20

create_ocr_class_mlp (8, 10, 'constant', 'default', CharacterNames, \

NumHidden, 'none', 1, 42, OCRHandle)

trainf_ocr_class_mlp (OCRHandle, TrainFile, 200, 1, 0.01, Error, ErrorLog)

Finally, the classifier is stored to disk and the memory is freed.

FontFile := 'numbers.omc'
write_ocr_class_mlp (OCRHandle, FontFile)

clear_ocr_class_mlp (OCRHandle)

17.3 Programming Examples 257

17.3.3 Reading Numbers

Example: solution_guide/basics/simple_reading.hdev

This example works similar to the first example described for the basic concept , i.e., it uses a font file
to read the numbers in the image depicted in figure 17.2. Instead of a pretrained font that is provided
by HALCON, here the font trained in the previous example is used. That means, this time the file
numbers.omc instead of the file Document_0-9.omc is used. The rest of the program corresponds to
the first example.

FontFile := 'numbers.omc'
read_ocr_class_mlp (FontFile, OCRHandle)

17.3.4 "Best Before" Date

Example: hdevelop/Applications/OCR/bottle.hdev

The task of this example is to inspect the "best before" date on the bottle depicted in figure 17.8.

a) b)

Figure 17.8: (a) Original image; (b) read date.

The task is solved in multiple steps. First, dark areas are extracted and post-processed to eliminate
structures that are too thin.

threshold (Bottle, RawSegmentation, 0, 95)

fill_up_shape (RawSegmentation, RemovedNoise, 'area', 1, 5)

opening_circle (RemovedNoise, ThickStructures, 2.5)

fill_up (ThickStructures, Solid)

Next, the region is split into the individual characters; even the characters that are so close that they touch
each other can be separated.

O
C

R

258 OCR

opening_rectangle1 (Solid, Cut, 1, 7)

connection (Cut, ConnectedPatterns)

intersection (ConnectedPatterns, ThickStructures, NumberCandidates)

select_shape (NumberCandidates, Numbers, 'area', 'and', 300, 9999)

sort_region (Numbers, FinalNumbers, 'first_point', 'true', 'column')

Finally, the actual reading is performed.

read_ocr_class_mlp (FontName, OCRHandle)

do_ocr_multi_class_mlp (FinalNumbers, Bottle, OCRHandle, RecNum, Confidence)

17.3.5 Reading Engraved Text

Example: hdevelop/Applications/OCR/engraved.hdev

The task of this example is to read the engraved text on the metal surface depicted in figure 17.9.

b)a)

Figure 17.9: (a) Original image; (b) read characters.

The segmentation is solved by using advanced blob analysis: The characters cannot simply be extracted
by selecting dark or light pixels. Instead, a simple segmentation would yield only fractions of the charac-
ters together with noise objects. Preprocessing the image using gray value morphology allows to segment
the real characters.

gray_range_rect (Image, ImageResult, 7, 7)

invert_image (ImageResult, ImageInvert)

threshold (ImageResult, Region, 128, 255)

connection (Region, ConnectedRegions)

select_shape (ConnectedRegions, SelectedRegions, 'area', 'and', 1000, 99999)

sort_region (SelectedRegions, SortedRegions, 'first_point', 'true', \

'column')

Finally, the actual reading is performed.

17.3 Programming Examples 259

read_ocr_class_mlp (FontName, OCRHandle)

for i := 1 to Number by 1

select_obj (SortedRegions, ObjectSelected, i)

do_ocr_single_class_mlp (ObjectSelected, ImageInvert, OCRHandle, 1, \

Class, Confidence)

endfor

clear_ocr_class_mlp (OCRHandle)

17.3.6 Reading Forms

Example: hdevelop/Applications/OCR/ocrcolor.hdev

The task of this example is to extract the symbols in the form. A typical problem is that the symbols are
not printed in the correct place, as depicted in figure 17.10.

Figure 17.10: Example images for OCR.

To solve the problem of numbers printed on lines, color is used here: The hue value of the characters
differs from the hue of the form. The color classification method is a very simple way to save execution
time: In contrast to more difficult color processing problems, here it is sufficient to consider the difference
of the red and green channel combined with the intensity.

O
C

R

260 OCR

threshold (Green, ForegroundRaw, 0, 220)

sub_image (RedReduced, GreenReduced, ImageSub, 2, 128)

mean_image (ImageSub, ImageMean, 3, 3)

bin_threshold (ImageMean, Cluster1)

difference (Foreground, Cluster1, Cluster2)

concat_obj (Cluster1, Cluster2, Cluster)

opening_circle (Cluster, Opening, 2.5)

The selected pixels are grouped and post-processed with morphological operators.

closing_rectangle1 (NumberRegion, NumberCand, 1, 20)

difference (Image, NumberCand, NoNumbers)

connection (NumberRegion, NumberParts)

intensity (NumberParts, Green, MeanIntensity, Deviation)

expand_gray_ref (NumberParts, Green, NoNumbers, Numbers, 20, 'image', \

MeanIntensity, 48)

union1 (Numbers, NumberRegion)

connection (NumberRegion, Numbers)

For reading, it is important not to use the gray values of the background because of the changes in color.
To solve this, only region features are used for the font, i.e., the regions are used to create an artificial
image that is printed dark on light.

paint_region (NoNumbers, Green, ImageOCRRaw, 255, 'fill')
paint_region (NumberRegion, ImageOCRRaw, ImageOCR, 0, 'fill')

The actual character classification is performed in the artificial image.

read_ocr_class_mlp ('Industrial_0-9', OCRHandle)

do_ocr_multi_class_mlp (FinalNumbers, ImageOCR, OCRHandle, RecChar, \

Confidence)

clear_ocr_class_mlp (OCRHandle)

17.3.7 Segment and Select Characters

17.3.7.1 Segment Rotated Characters

Example: hdevelop/OCR/Segmentation/select_characters.hdev

This example shows how to easily segment the characters of a rotated dot print using the segmentation
operators that are provided especially for OCR (see figure 17.11).

First, the image is read from file. As the print is rotated, the orientation of the text line is determined
via text_line_orientation. The obtained angle is used to rotate the image so that the print becomes
horizontal.

17.3 Programming Examples 261

a) b)

Figure 17.11: (a) Original image; b) selected characters.

read_image (Image, 'dot_print_rotated/dot_print_rotated_'+J$'02d')
text_line_orientation (Image, Image, 50, rad(-30), rad(30), \

OrientationAngle)

rotate_image (Image, ImageRotate, -OrientationAngle/rad(180)*180, \

'constant')

Then, the operators segment_characters and select_characters are applied to first segment the
region of the complete print and then select those parts of the region that are candidates for individual
characters. In contrast to a classical segmentation using blob analysis, here the regions of the individual
characters are found although they still consist of components that are not connected.

segment_characters (ImageRotate, ImageRotate, ImageForeground, \

RegionForeground, 'local_auto_shape', 'false', 'true', \

'medium', 25, 25, 0, 10, UsedThreshold)

select_characters (RegionForeground, RegionCharacters, 'true', \

'ultra_light', 60, 60, 'false', 'false', 'none', 'true', \

'wide', 'true', 0, 'completion')

The extracted regions can now be used for an OCR application like those described above.

17.3.7.2 Segment Characters with the Smart Text Finder

Example: hdevelop/Applications/OCR/find_text_dongle.hdev

This example demonstrates how to segment characters printed in dot print on a dongle with the operator
find_text before performing OCR. For more background information, please refer to the section about
the segmentation with the Smart Text Finder in section 17.2.6 on page 250 and the figure figure 17.3.

First, image and classifier are read.

O
C

R

262 OCR

read_image (Image, 'ocr/dongle_01')
read_ocr_class_mlp ('DotPrint', OCRHandle)

Then a text model (TextModel) is created with the operator create_text_model and the text properties
are specified with the operator set_text_model_param and TextModel.

create_text_model (TextModel)

set_text_model_param (TextModel, 'char_width', 24)

set_text_model_param (TextModel, 'char_height', 32)

set_text_model_param (TextModel, 'is_dotprint', 'true')
set_text_model_param (TextModel, 'max_line_num', 2)

set_text_model_param (TextModel, 'return_interpunctations', 'false')
set_text_model_param (TextModel, 'return_separators', 'false')
set_text_model_param (TextModel, 'stroke_width', 4)

set_text_model_param (TextModel, 'eliminate_horizontal_lines', 'true')

The structures of the text lines are defined with the parameter ’text_line_structure’. E.g.,
’text_line_structure’ ’6 1 8’ means that the text has three blocks consisting of 6, 1 and 8 char-
acter(s). In order to define more than one structure, an index number can be added to the parameter name
like, e.g., ’text_line_structure_2’.

Note that for the second line two structures are defined, because sometimes the ’/’ is classified as sepa-
rator and sometimes as character. Furthermore, to increase the robustness of the character recognition, a
regular expression is defined, which will later be used by do_ocr_word_mlp.

set_text_model_param (TextModel, 'text_line_structure_0', '6 1 8')
set_text_model_param (TextModel, 'text_line_structure_1', '8 10')
set_text_model_param (TextModel, 'text_line_structure_2', '19')
TextPattern1 := '(FLEXID[0-9][A-Z][0-9]{3}[A-F0-9]{4})'
TextPattern2 := '([A-Z]{3}[0-9]{5}.?[A-Z][0-9]{4}[A-Z][0-9]{4})'
Expression := TextPattern1 +'|'+ TextPattern2

For preprocessing the domain is reduced to the dark area where the text is assumed to be found.

bin_threshold (Image, Region)

opening_rectangle1 (Region, RegionOpening, 400, 50)

connection (RegionOpening, ConnectedRegions)

select_shape_std (ConnectedRegions, SelectedRegion, 'max_area', 70)

reduce_domain (Image, SelectedRegion, ImageReduced)

The contrast is then improved with scale_image_max and the image is horizontally aligned.

scale_image_max (ImageReduced, ImageScaleMax)

text_line_orientation (SelectedRegion, ImageScaleMax, 30, rad(-30), rad(30), \

OrientationAngle)

rotate_image (ImageScaleMax, ImageRotate, deg(-OrientationAngle), \

'constant')

17.3 Programming Examples 263

Figure 17.12: Reading characters on a dongle with the Smart Text Finder.

The text is found and the results are displayed for every segmented region. The OCR uses regular
expressions to read the text more robustly.

get_text_result returns the number of lines with ’num_lines’. It can also be used to query
’thresholds’ if the parameter ’persistance’ of the operator set_text_model_param was acti-
vated. get_text_object can be used to return ’all_lines’ or in this case with ’line’, it queries
specific lines. The operator also returns ’compensated_image’ if ’persistance’ was activated.

get_text_result (TextResult, 'num_lines', NumLines)

dev_display (ImageRotate)

for J := 0 to NumLines - 1 by 1

get_text_object (Line, TextResult, ['line', J])

do_ocr_word_mlp (Line, ImageRotate, OCRHandle, Expression, 3, 5, Class, \

Confidence, Word, Score)

The results are then displayed.

smallest_rectangle1 (Line, Row1, Column1, Row2, Column2)

count_obj (Line, NumberOfCharacters)

dev_set_colored (6)

dev_display (Line)

dev_set_color ('white')
for K := 1 to NumberOfCharacters by 1

select_obj (Line, Character, K)

set_tposition (WindowHandle, Row2[0]+4, Column1[K-1])

endfor

Finally, text result, model and handle are deleted.

clear_text_result (TextResult)

clear_text_model (TextModel)

clear_ocr_class_mlp (OCRHandle)

17.3.8 Syntactic and Lexicon-Based Auto-Correction of OCR Results

Example: hdevelop/OCR/Neural-Nets/label_word_process_mlp.hdev

O
C

R

264 OCR

This example reads the "best before" date depicted in figure 17.13. To correct an incorrect OCR result
for the upper text line, a lexicon-based auto-correction is used. Errors can occur, e.g., because of the
similarity of characters, e.g., between the character O and the number 0. For the second text line, regular
expressions are used to ensure that the result has the correct format.

a) b)

Figure 17.13: (a) Original image; (b) text is corrected using syntactic and lexicon-based auto-correction.

First, the pretrained font Industrial is read as preparation for the actual OCR reading. For the upper
line of the text, the three expected words are stored in a lexicon that is created with create_lexicon

and will be used later. Then, the images are read, an ROI for the print is generated and aligned, and the
regions for the characters are extracted and stored in the variable SortedWords using blob analysis.

read_ocr_class_mlp ('Industrial', OCRHandle)

create_lexicon ('label', ['BEST','BEFORE','END'], LexiconHandle)

for i := 1 to 9 by 1

read_image (Image, 'label/label_0' + i + '.png')
... get ROI, align print, and extract regions ...

Now, the text line is read twice with the operator do_ocr_word_mlp. The first time it is read without
syntactic or lexicon-based auto-correction, and the second time the result is corrected by matching it to
the lexicon entries.

17.3 Programming Examples 265

sort_region (CharactersWords, SortedWords, 'character', 'true', 'row')
gen_empty_obj (Word)

Text := ''
OriginalText := ''
for j := 1 to |Column| - 1 by 1

select_obj (SortedWords, Character, j)

concat_obj (Word, Character, Word)

if (j = |Column| or (Column[j] - Column[j-1]) > 30)

do_ocr_word_mlp (Word, ImageOCR, OCRHandle, '.*', 1, 5, Class, \

Confidence, WordText, WordScore)

OriginalText := OriginalText + ' ' + WordText

do_ocr_word_mlp (Word, ImageOCR, OCRHandle, '<label>', 1, 5, Class, \

Confidence, WordText, WordScore)

Text := Text + ' ' + WordText

gen_empty_obj (Word)

endif

endfor

The second text line, i.e., the actual date, is read using a regular expression that ensures the correct format
for the date. This is done to suppress structures that may be extracted as candidates for characters but
syntactically do not fit into the searched string.

sort_region (CharactersDate, SortedDate, 'character', 'true', 'row')
do_ocr_word_mlp (SortedDate, ImageOCR, OCRHandle, '.*', 5, 5, Class, \

Confidence, OriginalDateText, DateScore)

do_ocr_word_mlp (SortedDate, ImageOCR, OCRHandle, \

'^([0-2][0-9]|30|31)/(0[0-9]|11|12)/0[0-5]$', 5, 5, Class, \

Confidence, DateText, DateScore)

O
C

R

266 OCR

17.4 Selecting Operators

17.4.1 Acquire Image(s)

Please refer to the operator list for the method Image Acquisition (see section 2.4 on page 17).

17.4.2 Use Region Of Interest

Please refer to the operator list for the method Region Of Interest (see section 3.4 on page 26).

17.4.3 Align ROIs Or Images

Standard:

text_line_orientation

Further operators for aligning ROIs or images are described in the Solution Guide II-B.

17.4.4 Rectify Image(s)

Standard:

text_line_slant

Further operators for rectifying images are described in the Solution Guide III-C.

17.4.5 Preprocess Image(s) (Filtering)

Standard:

mean_image, gauss_image, binomial_filter, median_image, gray_opening_shape,
gray_closing_shape, dots_image, gray_range_rect

Advanced:

gray_dilation_shape, gray_erosion_shape, anisotrope_diff

17.4.6 Extract Segmentation Parameters

Please refer to the detailed operator list for the step Extract Segmentation Parameters on page 44.

17.4 Selecting Operators 267

17.4.7 Segment Image(s)

Standard:

create_text_model, set_text_model_param, get_text_model_param, find_text,
get_text_result, get_text_object, clear_text_result, clear_text_model,
clear_all_text_results, clear_all_text_models

Advanced:

segment_characters, select_characters

Further operators can be found in the detailed operator list for the step Segment Image(s) on page 44.

17.4.8 Train OCR

Standard:

read_string, append_ocr_trainf, delete_file, read_ocr_trainf,
create_ocr_class_mlp, trainf_ocr_class_mlp, write_ocr_class_mlp,
create_ocr_class_svm, trainf_ocr_class_svm, write_ocr_class_svm

Advanced:

get_prep_info_ocr_class_mlp, get_prep_info_ocr_class_svm

17.4.9 Read Symbol

Standard:

read_ocr_class_mlp, do_ocr_multi_class_mlp, do_ocr_word_mlp,
do_ocr_single_class_mlp, read_ocr_class_svm, do_ocr_multi_class_svm,
do_ocr_word_svm, do_ocr_single_class_svm

Advanced:

clear_all_lexica, clear_lexicon, create_lexicon, import_lexicon, inspect_lexicon,
lookup_lexicon, suggest_lexicon, dilation_rectangle1, closing_circle,
partition_rectangle, partition_dynamic

17.4.10 Visualize Results

Please refer to the operator list for the method Visualization (see section 19.4 on page 297).

O
C

R

268 OCR

17.4.11 Destroy Classifier

Standard:

clear_ocr_class_mlp, clear_all_ocr_class_mlp, clear_ocr_class_svm,
clear_all_ocr_class_svm

17.5 Relation to Other Methods

17.5.1 Alternatives to OCR

Matching (see description on page 97)
As an alternative to classical OCR, matching can be used to read single characters or more complex
symbols. In this case, one model for each character must be generated. The advantage of matching
is the invariance to rotation. Furthermore, it is not necessary to segment the characters prior to the
classification. Therefore, the matching approach should be considered when there is no robust way to
separate the characters from the background.

Classification
You can consider the OCR tool as a convenient way of using a classifier. The OCR automatically derives
invariant features and passes them to the underlying classifier. If the features offered by the OCR do
not fulfill the needs of your application, you can create an “extended” OCR classifier by calculating the
features using normal HALCON feature extraction operators and then using them with one of the classi-
fiers that HALCON offers (see the chapters “Regions . Features” and “Classification” in the Reference
Manual).

17.6 Tips & Tricks

17.6.1 Composed Symbols

Some characters and symbols are composed of multiple sub-symbols, like an “i”, “%”, or “!”. For
the OCR, these sub-symbols must be combined into a single region. If you use the operators seg-

ment_characters and select_characters for the segmentation of the characters, sub-symbols are
automatically combined. Otherwise, you can combine them by calling closing_rectangle1 after
thresholding, typically using a small width but a larger height. After calling connection to separate
the characters, you use the operator intersection to get the original segmentation (input parameter 2),
while preserving the correct connected components from connection (input parameter 1).

17.7 Advanced Topics 269

17.7 Advanced Topics

17.7.1 Line Scan Cameras

In general, line scan cameras are treated like normal area sensors. But in some cases, not single images
but an “infinite” sequence of images showing objects, e.g., on a conveyor belt, must be processed. In
this case, the end of one image is the beginning of the next one. This means that text or numbers, which
partially lie in both images, must be combined into one object. For this purpose, HALCON provides
the operator merge_regions_line_scan. This operator is called after the segmentation of one image,
and combines the current objects with those of previous images. For more information see the Solution
Guide II-A.

17.7.2 Circular Prints

In some cases the symbols are not printed as straight lines but along arcs, e.g., on a CD. To read
these, the (virtual) center and radius of the corresponding circle are extracted. Using the operator po-
lar_trans_image_ext, the image is then unwrapped. To project a region obtained in the unwrapped
image back into the original image, you can use the operator polar_trans_region_inv.

17.7.3 OCR Features

HALCON offers many different features for the OCR. Most of these are for advanced use only. In
most cases it is recommended to use the feature combination ’default’. This combination is based
on the gray values within the surrounding rectangle of the character. In case that the background of the
characters cannot be used, e.g., if it varies because of texture, the features ’pixel_binary’, ’ratio’,
and ’anisometry’ are good combinations. Here, only the region is used, the underlying gray values
are ignored.

17.8 Pretrained OCR Fonts

The following sections shortly introduce you to the pretrained OCR fonts provided by HALCON. You
can access them in the subdirectory ocr of the folder where you installed HALCON. Note that the
pretrained fonts were trained with symbols that are printed dark on light. If you want to read light on
dark symbols with one of the provided fonts, you can either invert the image with the operator in-
vert_image, or, if this does not lead to a satisfying result, preprocess the image by applying first the
operator gen_image_proto with a light gray value and then overpaint_region with the gray value
set to 0.

Note that pretrained fonts are not available for the classifier based on SVM.

O
C

R

270 OCR

17.8.1 Nomenclature for the Ready-to-Use OCR Fonts

There are several groups of OCR fonts available. The members of each group differ as they contain
different symbol sets. The content of an OCR font is described by its name. For the names of the
pretrained OCR fonts the following nomenclature is applied:

The name starts with the group name, e.g., Document or DotPrint, followed by indicators for the set of
symbols contained in the OCR font. The meaning of the indicators is the following:

• 0-9: The OCR font contains the digits 0 to 9.

• A-Z: The OCR font contains the uppercase characters A to Z.

• + : The OCR font contains special characters. The list of special characters varies slightly over
the individual OCR fonts. It is given below for each OCR font separately.

If the name of the OCR font does not contain any of the above indicators, typically, the OCR font contains
the digits 0 to 9, the uppercase characters A to Z, the lowercase characters a to z, and special characters.
Some of the OCR fonts do not contain lowercase characters or the full set of uppercase characters (e.g.,
MICR). For these OCR fonts, the contained symbols are named explicitly.

17.8.2 Ready-to-Use OCR Font ’Document’

The OCR font Document can be used to read characters printed in fonts like Arial, Courier, or Times
New Roman. These are typical fonts for printing documents or letters.

Note that the characters I and l of the font Arial cannot be distinguished. That means that an l may be
mistaken for an I and vice versa.

Available special characters: - = + < > . # $ % & () @ *

The following OCR fonts with different symbol sets are available:

• Document

• Document_A-Z+

• Document_0-9

• Document_0-9A-Z

17.8.3 Ready-to-Use OCR Font ’DotPrint’

The OCR font DotPrint can be used to read characters printed with dot printers (see figure 17.14).

It contains no lowercase characters.

Available special characters: - / . * :

The following OCR fonts with different symbol sets are available:

• DotPrint

17.8 Pretrained OCR Fonts 271

• DotPrint_A-Z+

• DotPrint_0-9

• DotPrint_0-9+

• DotPrint_0-9A-Z

Figure 17.14: Examples for dot prints.

17.8.4 Ready-to-Use OCR Font ’HandWritten_0-9’

The OCR font HandWritten_0-9 can be used to read handwritten numbers (see figure 17.15).

It contains the digits 0-9.

Available special characters: none

Figure 17.15: Examples for handwritten numbers.

17.8.5 Ready-to-Use OCR Font ’Industrial’

The OCR font Industrial can be used to read characters printed in fonts like Arial, OCR-B, or other
sans-serif fonts (see figure 17.16). These fonts are typically used to print, e.g., labels.

Available special characters: - / + . $ % * e

The following OCR fonts with different symbol sets are available:

• Industrial

• Industrial_A-Z+

O
C

R

272 OCR

• Industrial_0-9

• Industrial_0-9+

• Industrial_0-9A-Z

Figure 17.16: Examples for industrial prints.

17.8.6 Ready-to-Use OCR Font ’MICR’

The OCR font MICR can be used to read characters printed in the font MICR (see figure 17.17).

It contains the digits 0-9 and the characters A-D.

Available special characters: none

Figure 17.17: The MICR font.

17.8.7 Ready-to-Use OCR Font ’OCR-A’

The OCR font OCR-A can be used to read characters printed in the font OCR-A (see figure 17.18).

Available special characters: - ? ! / \{} = + < > . # $ % & () @ *

The following OCR fonts with different symbol sets are available:

• OCRA

• OCRA_A-Z+

• OCRA_0-9

• OCRA_0-9A-Z

17.8 Pretrained OCR Fonts 273

Figure 17.18: Selected characters of the OCR-A font.

17.8.8 Ready-to-Use OCR Font ’OCR-B’

The OCR font OCR-B can be used to read characters printed in the font OCR-B (see figure 17.19).

Available special characters: - ? ! / \{} = + < > . # $ % & () @ *

The following OCR fonts with different symbol sets are available:

• OCRB

• OCRB_A-Z+

• OCRB_0-9

• OCRB_0-9A-Z

• OCRB_passport (contains digits, uppercase characters, and the special characters + and <)

Figure 17.19: Selected characters of the OCR-B font.

O
C

R

274 OCR

17.8.9 Ready-to-Use OCR Font ’Pharma’

The OCR font Pharma can be used to read characters printed in fonts like Arial, OCR-B, and other fonts
that are typically used in the pharmaceutical industry (see figure 17.20).

This OCR font contains no lowercase characters.

Available special characters: - / . () :

The following OCR fonts with different symbol sets are available:

• Pharma

• Pharma_0-9

• Pharma_0-9A-Z

• Pharma_0-9+

Figure 17.20: Examples for pharmaceutic labels.

17.8 Pretrained OCR Fonts 275

17.8.10 Ready-to-Use OCR Font ’SEMI’

The OCR font ’SEMI’

The OCR font SEMI can be used to read characters printed in the SEMI font which consists of characters
which are designed to be easily destinguished from each other. It has a limited set of characters which
can be viewed in figure 17.21. This OCR font contains no lowercase characters.

Available special characters: - .

Figure 17.21: Character set of SEMI font.

Figure 17.22: Examples for SEMI font. Note that these images were inverted before the training was
applied! That is, this font is nevertheless pretrained only for dark on light symbols.

O
C

R

276 OCR

Stereo Vision 277

Chapter 18

Stereo Vision

The basic principle of stereo vision is that 3D coordinates of object points are determined from two or
more images that are acquired simultaneously from different points of view. HALCON provides two
stereo methods: binocular stereo and multi-view stereo.

Binocular stereo uses exactly two cameras and returns disparity images, distance images, or 3D coordi-
nates. Figure 18.1, e.g., shows a stereo image pair of a board and the resulting height map of the board’s
components.

Figure 18.1: Basic principle of binocular stereo. Top: stereo image pair; Bottom: height map.

Multi-view stereo can also use more than two cameras. It can be used to either reconstruct surfaces
that are returned as 3D object models or to reconstruct individual points. Figure 18.2, e.g., shows the
images of a multi-view stereo camera system that is used to reconstruct the surface of pipe joints and the
resulting 3D object model.

S
te

re
o

V
is

io
n

278 Stereo Vision

Figure 18.2: Left: images of a multi-view stereo camera system; right: reconstructed surface of pipe joints.

The advantage of stereo vision is that 3D information of the surface of arbitrarily shaped objects can
be determined from images. Stereo vision can also be combined with other vision methods, e.g., as a
preprocessing step for blob analysis, which can be used to extract specific objects or object parts from
the depth image, or surface-based 3D matching, which locates objects that are provided as 3D models in
the reconstructed surface.

For detailed information about stereo vision, please refer to the Solution Guide III-C, chapter 5 on page
105.

18.1 Basic Concept

The derivation of 3D information with a stereo camera system consists of four main steps:

18.1.1 Acquire Calibration Image(s)

A number of stereo calibration images is acquired. Each image shows the HALCON calibration plate in
a different position and orientation.

18.1.2 Calibrate Stereo Camera System

Using the previously acquired calibration images, the stereo camera system is calibrated. For this, the
image coordinates of the calibration marks must be extracted from the calibration images. Then, the
parameters of the stereo setup are determined.

For binocular stereo, the parameters are then used to create the rectification maps for the rectification
of the stereo images.

For multi-view stereo, a so-called stereo model is created, which contains the camera parameters and
further information.

The calibration process is described in detail in the Solution Guide III-C in section 5.2 on page 110.

18.1 Basic Concept 279

Reconstruct 3D
Information

Rectify Image(s)

Acquire Stereo Image(s)

Calibrate Stereo Camera
System

Acquire Calibration
Image(s)

18.1.3 Acquire Stereo Image(s)

Stereo images are simultaneously acquired with the calibrated stereo camera system. They show the
object for which the 3D information should be reconstructed.

18.1.4 Rectify Image(s)

For binocular stereo, the stereo images must be rectified such that corresponding points (conjugate
points) lie on the same row in both rectified images. For this, the rectification map that has been deter-
mined above must be used.

18.1.5 Reconstruct 3D Information

Now, 3D information can be reconstructed.

With binocular stereo, for each point of the first rectified image the conjugate point in the second
rectified image is determined (stereo matching). For these points, either the disparity or the distance to
the stereo camera system can be calculated and returned as a gray value image. The reference plane to
which these distances are related can be changed (see the Solution Guide III-C, section 5.3.5.3 on page
124). It is also possible to derive the distance or the 3D coordinates for selected points for which the
disparity is known. What is more, 3D coordinates can be determined from the image coordinates of each
pair of conjugate points directly. See the Solution Guide III-C, section 5.3.5 on page 120, for details.

With multi-view stereo, you can reconstruct complete surfaces or 3D coordinates for selected
points. When reconstructing surfaces, you first set parameters for the reconstruction with

S
te

re
o

V
is

io
n

280 Stereo Vision

set_stereo_model_param, then you apply set_stereo_model_image_pairs to define which cam-
eras build pairs, and finally you reconstruct the surface with reconstruct_surface_stereo. When
reconstructing selected points of an object, you first extract the corresponding points from the stereo
images, then you accumulate the correspondence information for all cameras that image the object, and
finally you reconstruct the points with reconstruct_points_stereo. See the Solution Guide III-C,
section 5.4.2 on page 133, for details.

18.2 Extended Concept

In many cases, the derivation of 3D information with a binocular stereo system involves more steps
than described above. Reasons for this are, e.g., the need to restrict the stereo reconstruction to an
ROI. Furthermore, postprocessing like the transformation of the 3D coordinates into another coordinate
system or the visualization of results is often required.

Visualize Results

Transform Results Into
World Coordinates

Reconstruct 3D
Information

Use Region Of Interest

Rectify Image(s)

Acquire Stereo Image(s)

Calibrate Stereo Camera
System

Acquire Calibration
Image(s)

18.3 Programming Examples 281

18.2.1 Use Region Of Interest

A region of interest can be created to reduce the image domain for which the stereo matching will be
performed. This will reduce the processing time.

For detailed information see the description of this method on page 19.

18.2.2 Transform Results Into World Coordinates

In some applications, the 3D coordinates must be transformed into a given world coordinate system.

For binocular stereo, this step is performed after the reconstruction: Beforehand, the relation between
the given world coordinate system and the stereo camera system must be determined. Then, the 3D co-
ordinates can be transformed as requested. How to transform results into world coordinates is described
in detail in the Solution Guide III-C in section 3.3 on page 57.

For multi-view stereo, the world coordinate system can be specified already when creating the stereo
model (see the Solution Guide III-C, section 5.4.1.2 on page 132 for details).

18.2.3 Visualize Results

Finally, you might want to visualize the disparity or distance images or the reconstructed surface (3D
object model). We recommend to have a look at the provided examples.

18.3 Programming Examples

This section gives a brief introduction to using HALCON for stereo vision.

18.3.1 Segment the Components of a Board With Binocular Stereo

Example: hdevelop/Applications/Object-Recognition-2D/board_components.hdev

Figure 18.3 shows a stereo image pair of a board together with the result of a segmentation of raised
objects. The segmentation has been carried out based on the distance image that was derived with
binocular stereo.

First, a calibration data model is created and initialized:

create_calib_data ('calibration_object', 2, 1, CalibDataID)

set_calib_data_cam_param (CalibDataID, 'all', 'area_scan_division', \

StartCamPar)

set_calib_data_calib_object (CalibDataID, 0, CalDescrFile)

Then, a number of calibration images must be acquired. The calibration plate must be completely visible
in each calibration image. A subset of these calibration images is shown in figure 18.4.

S
te

re
o

V
is

io
n

282 Stereo Vision

Figure 18.3: Segment board components based on their height.

Figure 18.4: A subset of the calibration images that are used for the calibration of the stereo camera
system.

The calibration plate is located and the image coordinates of the calibration marks are extracted from the
individual calibration images and stored in the calibration data model.

18.3 Programming Examples 283

for imgnr := 1 to Number by 1

find_caltab (ImageL, CaltabL, CalDescrFile, SizeGauss, MarkThresh, \

MinDiamMarks)

find_caltab (ImageR, CaltabR, CalDescrFile, SizeGauss, MarkThresh, \

MinDiamMarks)

find_marks_and_pose (ImageL, CaltabL, CalDescrFile, StartCamPar, \

StartThresh, DeltaThresh, MinThresh, Alpha, \

MinContLength, MaxDiamMarks, RCoordL, CCoordL, \

StartPoseL)

find_marks_and_pose (ImageR, CaltabR, CalDescrFile, StartCamPar, \

StartThresh, DeltaThresh, MinThresh, Alpha, \

MinContLength, MaxDiamMarks, RCoordR, CCoordR, \

StartPoseR)

set_calib_data_observ_points (CalibDataID, 0, 0, imgnr, RCoordL, \

CCoordL, 'all', StartPoseL)

set_calib_data_observ_points (CalibDataID, 1, 0, imgnr, RCoordR, \

CCoordR, 'all', StartPoseL)

endfor

With this, the actual calibration of the stereo camera system is performed and the results are accessed.

calibrate_cameras (CalibDataID, Error)

get_calib_data (CalibDataID, 'camera', 0, 'params', CamParamL)

get_calib_data (CalibDataID, 'camera', 1, 'params', CamParamR)

get_calib_data (CalibDataID, 'camera', 1, 'pose', cLPcR)

Now, the rectification maps for the rectification of the stereo image pair can be generated.

gen_binocular_rectification_map (MapL, MapR, CamParamL, CamParamR, cLPcR, 1, \

'geometric', 'bilinear', RectCamParL, \

RectCamParR, CamPoseRectL, CamPoseRectR, \

RectLPosRectR)

Then, each stereo image pair acquired with the calibrated stereo camera system can be rectified. This
has the effect that conjugate points have the same row coordinate in both images. The rectified images
are displayed in figure 18.5

map_image (ImageL, MapL, ImageRectifiedL)

map_image (ImageR, MapR, ImageRectifiedR)

From the rectified images, a distance image can be derived in which the gray values represent the distance
of the respective object point to the stereo camera system. This step is the core of the stereo approach.
Here, the stereo matching, i.e., the determination of the conjugate points takes place.

binocular_distance (ImageRectifiedL, ImageRectifiedR, DistanceImage, \

ScoreImageDistance, RectCamParL, RectCamParR, \

RectLPosRectR, 'ncc', MaskWidth, MaskHeight, \

TextureThresh, MinDisparity, MaxDisparity, NumLevels, \

ScoreThresh, 'left_right_check', 'interpolation')

S
te

re
o

V
is

io
n

284 Stereo Vision

Figure 18.5: Rectified images.

Finally, the distance image can, e.g., be corrected such that a given object plane receives a specified
distance value, e.g., zero. Objects that deviate from the given object plane can thus be segmented very
easily with a threshold operation.

threshold (HeightAboveReferencePlaneReduced, Range1, Height1_Min, \

Height1_Max)

threshold (HeightAboveReferencePlaneReduced, Range2, Height2_Min, \

Height2_Max)

threshold (HeightAboveReferencePlaneReduced, Range3, Height3_Min, \

Height3_Max)

18.3.2 Reconstruct the Surface of Pipe Joints With Multi-View Stereo

Example: hdevelop/Applications/Robot-Vision/locate_pipe_joints_stereo.hdev

Figure 18.2 shows images from a 4-camera system. Using multi-view stereo, the surface of the pipe
joints is reconstructed.

Here, the calibration is performed in an offline step and the saved camera setup model is just loaded.

read_camera_setup_model ('../../Calibration/Multi-View/four_camera_setup_model.csm', \

CameraSetupModelID)

Using the camera setup model, a stereo model for surface reconstruction is created. Afterwards, the
camera setup model is destroyed.

create_stereo_model (CameraSetupModelID, 'surface_pairwise', [], [], \

StereoModelID)

clear_camera_setup_model (CameraSetupModelID)

Now, the stereo model is configured by setting several parameters. Some of them adjust the internal call
of binocular_disparity. Others adjust, e.g., the subsamling that is used for the reconstruction or the
bounding box that restricts the reconstruction to a specific part of the 3D space.

18.4 Selecting Operators 285

set_stereo_model_param (StereoModelID, 'sub_sampling_step', 3)

set_stereo_model_param (StereoModelID, 'rectif_interpolation', 'bilinear')
set_stereo_model_param (StereoModelID, 'rectif_sub_sampling', 1.2)

set_stereo_model_param (StereoModelID, 'binocular_method', 'ncc')
set_stereo_model_param (StereoModelID, 'binocular_num_levels', 1)

set_stereo_model_param (StereoModelID, 'binocular_mask_width', 19)

set_stereo_model_param (StereoModelID, 'binocular_mask_height', 19)

set_stereo_model_param (StereoModelID, 'binocular_texture_thresh', 0)

set_stereo_model_param (StereoModelID, 'binocular_score_thresh', 0.4)

set_stereo_model_param (StereoModelID, 'binocular_filter', \

'left_right_check')
set_stereo_model_param (StereoModelID, 'binocular_sub_disparity', \

'interpolation')
set_stereo_model_param (StereoModelID, 'bounding_box', [-0.2,-0.07,-0.075, \

0.2,0.07, -0.004])

Furthermore, the image pairs are specified. That is, it is specified between which cameras the disparity
is computed.

set_stereo_model_image_pairs (StereoModelID, [0,2], [1,3])

Finally, the reconstruction operator is called. It returns the reconstructed surface in form of a 3D object
model.

reconstruct_surface_stereo (Images, StereoModelID, PipeJointPileOM3DID)

In section 10.3.2 on page 137, the reconstructed surface is then used as input for surface-based 3D
matching, which recognizes and locates individual pipe joints.

18.4 Selecting Operators

18.4.1 Calibrate Stereo Camera System

Standard:

create_calib_data, set_calib_data_cam_param, set_calib_data_calib_object,
find_caltab, find_marks_and_pose, set_calib_data_observ_points,
calibrate_cameras, get_calib_data, gen_binocular_rectification_map,
create_stereo_model

18.4.2 Acquire Image(s)

Please refer to the operator list for the method Image Acquisition (see section 2.4 on page 17).

S
te

re
o

V
is

io
n

286 Stereo Vision

18.4.3 Rectify Image(s)

Standard:

map_image

18.4.4 Use Region Of Interest

Standard:

reduce_domain

Further operators can be found in the operator list for the method Region Of Interest (see section 3.4 on
page 26).

18.4.5 Reconstruct 3D Information

Standard:

binocular_disparity, binocular_distance, binocular_disparity_mg,
binocular_distance_mg, disparity_image_to_xyz, disparity_to_distance,
disparity_to_point_3d, distance_to_disparity, intersect_lines_of_sight,
set_stereo_model_param, set_stereo_model_image_pairs,
reconstruct_surface_stereo, reconstruct_points_stereo

18.4.6 Transform Results Into World Coordinates

Operators for transforming results into world coordinates are described in the Solution Guide III-C,
section 5.4.1.2 on page 132.

18.4.7 Visualize Results

Please refer to the operator list for the method Visualization (see section 19.4 on page 297).

18.5 Relation to Other Methods

18.5.1 Methods that are Using Stereo Vision

Blob Analysis (see description on page 31)
The results of binocular stereo can be used as input for blob analysis. This may be useful if locally high
structures must be extracted that cannot be reliably detected from the original image. By applying blob
analysis to the distance image, such structures may be extracted very easily.

18.6 Tips & Tricks 287

3D Matching (Surface-Based) (see description on page 127)
The 3D object model that is returned by a surface reconstruction with multi-view stereo can be used as
input for surface-based 3D matching.

3D Primitives Fitting (see Solution Guide III-C, section 4.4 on page 97)
The 3D object model that is returned by a surface reconstruction with multi-view stereo can be used as
input for 3D primitives fitting if the contained surface is meshed. To get a meshed surface, the parameter
’point_meshing’ must have been set for the stereo model with set_stereo_model_param before
reconstructing the surface.

18.6 Tips & Tricks

18.6.1 Speed Up

Many online applications require maximum speed. Although the stereo matching is a very complex task,
you can speed up this process by using regions of interest, which are the standard method to increase the
speed by processing only those areas where objects must be inspected. This can be done by using pre-
defined regions but also by an online generation of the region of interest that depends on other objects
found in the image.

Additionally, for the surface extraction with multi-view stereo, a significant speed up can be obtained
when selecting the bounding box that restricts the reconstruction to a part of the 3D space as small as
possible. The bounding box must be set with set_stereo_model_param before applying the recon-
struction.

18.7 Advanced Topics

18.7.1 High Accuracy

Sometimes very high accuracy is required. To achieve a high distance resolution, i.e., a high accuracy
with which the distance of the object surface from the stereo camera system can be determined, special
care should be taken of the configuration of the stereo camera setup. The setup should be chosen such
that the distance between the cameras as well as the focal length are large and the stereo camera system
is placed as close as possible to the object. For more information, please refer to the Solution Guide
III-C, section 5.1.2 on page 110.

S
te

re
o

V
is

io
n

288 Stereo Vision

Visualization 289

Chapter 19

Visualization

Displaying data in HALCON is quite easy: In the graphics windows provided by HALCON, all sup-
ported data types can be visualized directly using specific display operators. Both the creation of these
windows and the displaying requires only little programming effort because the functionality is opti-
mized for the use in machine vision.

Making use of the HALCON visualization provides several advantages. First of all, it saves a lot of time
during the development because all important visualization methods are already predefined. Further-
more, the functionality is independent of the operating system: Writing a program under Windows using
the visualization of HALCON can be ported easily to Linux because the visualization operators behave
identically and therefore only user code making use of operating system functions needs to be rewritten.

19.1 Basic Concept

For visualization there are two important aspects to consider: The graphics windows and the data that
must be visualized.

Displaying

Handling Graphics
Windows

19.1.1 Handling Graphics Windows

HALCON provides an easy-to-use operator to create a graphics window for visualization:
open_window. This operator takes all necessary parameters to specify the dimensions, the mode, and the

V
is

ua
liz

at
io

n

290 Visualization

relation to a potential parent window. As a result, a WindowHandle is returned with which you refer to
the window when displaying into it or when visualization parameters are changed. Note that the dimen-
sion of the window is not limited by the size of the virtual display. Thus, you can work also on systems
with multiple screens. The most important operators for controlling a window are clear_window to
reset it to its background color, set_part to specify the display coordinate system and close_window

when the window is no longer needed. The operator set_window_param allows to set different param-
eters of an open window.

19.1.2 Displaying

For each HALCON data type, specific operators for displaying are provided. The most convenient
operator for iconic data (images, regions, and XLD) is disp_obj. This operator automatically handles
gray or color images, regions, and XLDs. To control the way how data is presented in the window,
operators with the prefix set_ (or dev_set_ for the visualization in HDevelop) are used. They allow to
control the color, the draw mode, the line width, and many other parameters.

19.1.3 A First Example

An example for this basic concept is the following program, which shows how to visualize an image
overlaid with a segmentation result. Here, the visualization operators provided in HDevelop are used.

Figure 19.1: Visualizing the segmented clips.

After reading the image from file the dark clips are selected with bin_threshold, which automatically
selects the threshold value. After determining the connected components and selecting regions with

19.2 Extended Concept 291

the appropriate size, the result is visualized. First, the image is displayed. After this, the parameters
for regions are set to multi-colors (12) and margin mode. Finally, the regions are displayed with these
settings.

read_image (Image, 'clip')
bin_threshold (Image, Dark)

connection (Dark, Single)

select_shape (Single, Selected, 'area', 'and', 5000, 10000)

dev_display (Image)

dev_set_colored (12)

dev_set_draw ('margin')
dev_display (Selected)

19.2 Extended Concept

In advanced applications it is required to gain complete control over the visualization process. This can
include using graphics windows in programs developed with Microsoft Visual Basic or Microsoft C++,
changing the behavior of the graphics windows, making use of buffered output, or even using external
programs for the visualization. HALCON provides full control over all these topics to provide advanced
flexibility, in addition to the ease of use.

Gnuplot

Mouse Interaction

Displaying

Handling Graphics
Windows

19.2.1 Handling Graphics Windows

In this section we consider the concept of graphics windows in more detail.

• The graphics windows are designed such that each one stores all the corresponding parameters in
a kind of graphics context. Whenever an operator like set_draw is called, this context is modified
to be used for this window until the value is overwritten. All operators that modify the graphics
context start with the prefix set_. The current value of the context can be requested using the
corresponding operator with the prefix get_, e.g., get_draw.

V
is

ua
liz

at
io

n

292 Visualization

• Besides display parameters, each graphics window has a coordinate system that can be defined with
set_part. The upper left corner of an image is (0,0), the lower right corner is (height-1,width-
1). The size of an image can be requested using get_image_size. Please note that unlike in
HDevelop this coordinate system must be specified by calling set_part. Otherwise, the part of
the image that is visualized is undefined.

• The operator open_window has a parameter called Father. By default, the value 0 is used, which
means that the window has no parent and floats as an independent instance. You can construct hi-
erarchies of windows by passing the handle of one window as parent to the other. Besides this, it is
also possible to use the parent mechanism to embed the graphics windows into other forms (see sec-
tion 19.6 on page 299). To set different parameters of an open window, use set_window_param.

19.2.2 Displaying

After having opened a graphics window, the returned window handle is used to communicate with it.
Typically, first the visualization parameters are specified before data is displayed. To control images
only few operators are needed: set_paint (for profiles and 3D plots), set_lut (for look-up-tables), and
set_part_style (for the zooming interpolation). To specify the output for regions, many parameters
are available. The most important ones are set_draw (for filled or margin mode), set_color (for the
pen color), set_line_width (for the pen width), and set_colored (for multi-color modes). To display
XLD data, the same parameters (except set_draw) are used.

With the display mode ’3d_plot’ you can create an interactive display of a height field in 3D. The operator
update_window_pose allows to manipulate the pose of such a 3D plot in an intuitive way and the
operator unproject_coordinates calculates the image coordinates for a point in a 3D plot window.
The example hdevelop/Graphics/Parameters/set_paint_3d_plot.hdev shows how to use these
operators. Note that when working with HDevelop, you can also switch directly to the interactive display
of the height field in the 3d_plot mode using the button that is described in the HDevelop User’s Guide
(see section 5.7 on page 160).

The visualization itself is performed with operators like disp_image, disp_color, disp_region, or
disp_xld. The most convenient way is to use disp_obj, which automatically uses the correct method.

For text output, you first specify the font with set_font. The desired position in the graphics window
is determined with set_tposition. Writing text into the window is performed with write_string

For a flicker-free display see section 19.6 on page 299.

19.2.3 Mouse Interaction

The most important thing to know is that HALCON does not use an event-driven approach for mouse
handling. Each operator is designed such that the mouse interaction starts when the operator is called
and finishes when the operator returns. If an event-driven mode is needed one has to use the standard
mechanisms provided by the operating system.

Interacting with the mouse mainly involves two tasks:

19.3 Programming Examples 293

• The first task is to request the position of the mouse. This can be achieved using get_mposition if
a pixel-precise result is sufficient, or using get_mposition_sub_pix for a subpixel-precise out-
put. These operators return immediately and have the position and the mouse button as result. An
alternative are get_mbutton and get_mbutton_sub_pix for subpixel-precise positions. These
operators only return when a mouse button has been clicked.

• The second important action is drawing shapes with the mouse. This is done with special operators
whose names start with draw_. Operators for many different shapes (like circles or rectangles)
are provided. Furthermore, different data types like regions or XLD contours can be used for the
result.

19.2.4 Gnuplot

To visualize numeric values, HALCON provides an interface to the public domain software Gnuplot.
This tool is especially useful to plot tuples of values like distributions and also provides extended versions
of 3D plots of images.

19.3 Programming Examples

This section gives a brief introduction to using the visualization operators provided by HALCON.

19.3.1 Displaying HALCON data structures

Example: solution_guide/basics/display_operators.hdev

The example program is designed to show the major features of displaying images, regions, XLD, and
text. It consists of a small main program that calls procedures handling the four different data types.
The program is written for HDevelop and uses its specific display operators. This is done in a way that
naturally ports (e.g., with the automatic export) to other language interfaces like C++, C#, or Visual
Basic.

The main procedure contains five procedures: open_graphics_window, display_image, dis-

play_regions, display_xld, and display_text. To switch between the programs of the individual
procedures you can use the combo box Procedures in the program window. Following, selected parts
of each procedure are explained.

read_image (Image, 'fabrik')
open_graphics_window (Image, WindowHandle)

display_image (Image, WindowHandle)

regiongrowing (Image, Regions, 1, 1, 3, 100)

display_regions (Image, Regions, WindowHandle)

edges_sub_pix (Image, Edges, 'lanser2', 0.5, 10, 30)

display_xld (Image, Edges, WindowHandle)

display_text (Image, Regions, WindowHandle)

V
is

ua
liz

at
io

n

294 Visualization

open_graphics_window is a support procedure to open a graphics window that has the same size as the
image. This is done by calling get_image_size to access the image dimensions. Before opening the
new window, the existing window is closed. To adapt the coordinate system accordingly, dev_set_part
is called. This would be done automatically in HDevelop, but for the other programming environments
this step is necessary. Finally, the default behavior of HDevelop of displaying each result automatically
is switched off. This has the effect that only programmed output will be visible.

get_image_size (Image, Width, Height)

dev_close_window ()

dev_open_window (0, 0, Width, Height, 'white', WindowHandle)

dev_set_part (0, 0, Height-1, Width-1)

dev_update_window ('off')

Then, the display procedure for images is called: display_image. It has the Image and the Win-

dowHandle as input parameters. First, the window is activated, which again is not needed for HDevelop,
but is important for other programming environments. Now, the image is displayed in the graphics
window.

dev_set_window (WindowHandle)

dev_display (Image)

To change the look-up-table (LUT), dev_set_lut is called and the effect will become visible after
calling dev_display once again.

dev_set_lut ('temperature')
dev_display (Image)

Next, a part of the image is displayed using a so-called 3D plot (see figure 19.2). Here, the gray values
are treated as height information. For this mode another LUT is used.

gen_rectangle1 (Rectangle, 358, 298, 387, 329)

dev_set_draw ('margin')
dev_set_color ('yellow')
dev_display (Rectangle)

dev_set_part (358, 298, 387, 329)

dev_set_lut ('twenty_four')
dev_set_paint (['3D-plot_hidden',7,1,110,160,600,0,0])
dev_display (Image)

The procedure to display regions is called display_regions. It first displays the image as background
and then sets the display parameters for the regions. dev_set_draw specifies that only the region border
is visualized. dev_set_colored activates the multi-color mode, where each region is displayed with
different colors (which change cyclically). As an alternative to simply showing the original shape of the
regions, HALCON enables you to modify the shape using dev_set_shape. In the given example the
equivalent ellipses are chosen. The result is depicted in figure 19.3.

19.3 Programming Examples 295

a) b)

Figure 19.2: (a) Original image with ROI; (b) 3D plot of image within the ROI.

dev_display (Image)

dev_set_draw ('margin')
dev_set_colored (6)

dev_display (Regions)

dev_display (Image)

dev_set_shape ('ellipse')
dev_display (Regions)

a) b)

Figure 19.3: (a) Regions and (b) their equivalent ellipses.

The procedure display_xld first shows all contours overlaid on the image using the multi-color
mode. Then, a zoom is defined using dev_set_part. This zoom mode allows to inspect the sub-
pixel accurate contours easily. To give additional information, contours with a given size are selected
and for each of these the control points are extracted using get_contour_xld. The coordinates are
here returned as tuples of real values. For each of these control points, a cross is generated using

V
is

ua
liz

at
io

n

296 Visualization

gen_cross_contour_xld, which is then overlaid onto the contour.

dev_display (Contours)

gen_rectangle1 (Rectangle, 239, 197, 239+17, 197+17)

dev_set_part (239, 197, 239+17, 197+17)

select_shape_xld (Contours, SelectedXLD, 'area', 'and', 2000, 3000)

count_obj (SelectedXLD, Number)

for k := 1 to Number by 1

select_obj (SelectedXLD, SingleContour, k)

get_contour_xld (SingleContour, Row, Col)

for i := 0 to |Row|-1 by 1

gen_cross_contour_xld (Cross, Row[i], Col[i], 0.8, rad(45))

dev_display (Cross)

endfor

endfor

a) b)

Figure 19.4: Subpixel accurate contour control points: (a) original image; (b) zoomed image part.

The last part of the program is a procedure called display_text. It shows how to handle the mouse and
text output. The task is to click with the mouse into the graphics window to select a specific region and to
calculate features, which are then displayed in the graphics window. First, the font is selected. This is the
only part of the visualization where the parameters differ between Linux/UNIX and Windows because
of the incompatible font name handling. However, as can be seen, the program can still be written so
that it ports without problems.

OpSystem := environment('OS')
if (OpSystem='Windows_NT')

set_font (WindowHandle, '-mono-16-*-*-*-*-*-')
else

set_font (WindowHandle, \

'-adobe-courier-bold-r-normal--17-*-*-*-*-*-*-*')
endif

The rest of the program consists of a while-loop, which terminates as soon as the right mouse button is

19.4 Selecting Operators 297

pressed. The mouse operator get_mbutton waits until the user clicks with the mouse into the graphics
window and then returns the coordinate and the button value. This coordinate is used to select the
region that contains this point using select_region_point. For this region, the size and the center
of gravity are calculated with area_center. First, the text cursor is positioned with set_tposition

and the values are displayed using write_string. Here, it can be seen how conveniently strings can be
composed using the "+" operator.

Button := 0

while (Button # 4)

get_mbutton (WindowHandle, Row, Column, Button)

select_region_point (Regions, DestRegions, Row, Column)

area_center (DestRegions, Area, RowCenter, ColumnCenter)

if (|Area| > 0)

set_tposition (WindowHandle, Row, Column)

dev_set_color ('yellow')
write_string (WindowHandle, '('+RowCenter+', \

'+ColumnCenter+') = '+Area)
endif

endwhile

Figure 19.5: Center of gravity and area of selected region.

19.4 Selecting Operators

19.4.1 Handling Graphics Windows

Standard:

open_window, clear_window, close_window, set_window_param

V
is

ua
liz

at
io

n

298 Visualization

19.4.2 Displaying

Standard:

set_paint, set_lut, set_part_style, set_draw, set_line_width, set_color, set_colored,
disp_obj, set_font, set_tposition, write_string, unproject_coordinates,
update_window_pose

Advanced:

disp_image, disp_color, disp_region, disp_xld

19.4.3 Mouse Interaction

Standard:

get_mposition, get_mposition_sub_pix, get_mbutton, get_mbutton_sub_pix,
draw_region, draw_circle

19.4.4 Gnuplot

Advanced:

gnuplot_open_file, gnuplot_open_pipe, gnuplot_plot_ctrl, gnuplot_plot_image

19.5 Tips & Tricks

19.5.1 Saving Window Content

HALCON provides an easy way to save the content of a graphics window to a file. This can, e.g., be
useful for documentation purposes. The corresponding operator is called dump_window. It takes the
window handle and the file name as input. The parameter Device allows to select amongst different file
formats.

19.5.2 Execution Time

Generally, visualization takes time. To reduce time, it is recommended to visualize only when it is
really needed for the specific task. When using HDevEngine (see the Programmer’s Guide in part VI
on page 171), by default the execution of all dev_* operators is supressed. Thus, you can use as much
display operators as you need while developing with HDevelop but save time when executing the final
application from a programming language.

19.6 Advanced Topics 299

Further influences on the run time concern the graphics card and the bit depth. Choosing a bit depth
of 16 instead of 32 in many cases speeds up the program execution significantly. So, if speed is im-
portant for you, we recommend to simply try different bit depths, perform typical display operators
like disp_image, disp_color, disp_region, or disp_xld, and measure the execution time with
count_seconds. Additionally, although it has generally only a small influence on the run time, cases
exist where you can speed up the visualization also by choosing a lower screen resolution.

19.6 Advanced Topics

19.6.1 Programming Environments

The handling of graphics windows differs in the different programming environments. Especially HDe-
velop has a specific way of working with the visualization.

• Because HDevelop is an interactive environment, the handling of windows must be as easy as
possible. In particular, it is important to display data without any need of programming. Therefore,
the concept of window handles is used only if needed. Normally, the window where the output
has to go to is not specified explicitly. Instead, HDevelop makes use of the activation status of the
graphics windows. As a consequence, the display operators of HDevelop do not have a parameter
for a window handle. Visualization operators in HDevelop look identical to their counterparts of
HALCON except that their name starts with dev_ and that the parameter for the window handle is
suppressed. When exporting the code, this missing handle will automatically be inserted.

The second difference is that the windows in HDevelop have a history to automatically redisplay
the data when the window has been resized. This is not the case with standard HALCON graphics
windows.

The last difference is that HDevelop automatically sets the coordinate system according to the
current image, whereas you must do this explicitly with programmed code when using HAL-
CON. To make an export to, e.g., C++, C#, or Visual Basic transparent, we recommend to use
dev_set_window when working with multiple graphics windows and to call dev_set_part to
specify the coordinate system.

• When using HALCON windows in MFC, the usual way is to use the windows as a subwindow of
a parent form. This can easily be achieved by using the window handle of the current form as the
father. The handle must be converted to a long value that can then be passed to open_window.
Note that set_check is needed to change to exception handling of HALCON in this context.

set_window_attr("border_width",0);

set_check("~father");

long lWWindowID = (long)m_hWnd;

open_window(0,0,640,480,lWWindowID,"visible","",&m_lWindowID);

set_check("father");

• Opening a HALCON window in Visual Basic is similar to the approach used
for MFC. Here, you use the memberhWnd of the form or of another subwin-
dow like a picture box. As an alternative, the HWindowXCtrl can be used.

V
is

ua
liz

at
io

n

300 Visualization

Call sys.SetCheck("~father")

Call op.OpenWindow(8, 8, 320, 240, form.hWnd, "", "", WindowHandle)

Call sys.SetCheck("father")

19.6.2 Flicker-Free Visualization

For a flicker-free visualization, a sequential call of display operators is not suitable, because after each
call the new data will immediately be flushed on the visible screen, which may cause flickering results.

Under Linux/UNIX or if you want to create a platform-independent application, this can be
fixed by using a buffer window in addition to the visible window. A buffer window is opened
with open_window, while setting Mode to ’buffer’. Then, all drawing operations are per-
formed into the buffer window. Finally, the buffer window contents are copied into the vis-
ible window using copy_rectangle. An example using a buffer window is provided under
hdevelop/Transformations/2D-Transformations/projective_trans_pixel.hdev.

When working exclusively with Windows, a faster approach is available. Here, you can call set_system
with the parameter value ’flush_graphic’ set to ’false’, perform all display operators - except the
last one - and then call set_system again with ’flush_graphic’ set to ’true’. When finally applying
the last display call of the display sequence, the whole data becomes visible in one step. An example
using this approach is provided under solution_guide/basics/median_interactive.hdev.

19.6.3 Remote Visualization

In some applications, the computer used for processing differs from the computer used for visualization.
Such applications can easily be created with HALCON using the socket communication. Operators like
send_image or receive_tuple allow a transparent transfer of the relevant data to the control computer
to apply visualization there.

19.6.4 Programmed Visualization

Sometimes it might be necessary not to apply the standard HALCON visualization operators, but to use a
self-programmed version. This can be achieved by using the access functions provided for all data types.
Examples for these are get_image_pointer1, get_region_runs, or get_contour_xld. Operators
like these allow full access to all internal data types. Furthermore, they provide the data in various forms
(e.g., runlength encoding, points, or contours) to make further processing easier. Based on this data, a
self programmed visualization can be developed easily.

As an alternative, with set_window_type the window type ’pixmap’ can be chosen. In this case,
all displayed data is painted into an internal buffer that can be accessed with get_window_pointer3.
The returned pointers reference the three color channels of the buffer. This buffer can then easily be
transferred (e.g., to another system) and/or transformed into the desired format. One example for a
conversion is to call gen_image3 to create a HALCON color image.

Index 301

Index

1D measuring
relations to other methods, 60
basic concept, 50
examples, 53
extended concept, 51
operators, 58
overview, 49

3D matching
relations to other methods, 141
basic concept, 128
examples, 134
extended concept, 131
operators, 139
overview, 127

3D reconstruction, 7

access external images, 17
acquire image(s)

basic concept, 14
extended concept, 16
operators, 17

acquire search data for 3D matching (surface-
based)

basic concept, 130
operators, 141

adjust bar code model
extended concept, 215
operators, 231

align regions of interest or images for OCR
extended concept, 248
operators, 266

alignment, 22
apply texture filter

basic concept, 191
extended concept, 193
operators, 201

bar code
relations to other methods, 232

basic concept, 211
examples, 221
extended concept, 212
operators, 230
overview, 211

blob analysis
relations to other methods, 45
basic concept, 32
examples, 36
extended concept, 33
operators, 43
overview, 31

calibrate multiple cameras
basic concept, 278
operators, 285

check print quality of bar code
extended concept, 220
operators, 232

check print quality of data code
extended concept, 238
operators, 242

check variation model quality
extended concept, 147
operators, 153

classification
relations to other methods, 169
basic concept, 156
examples, 162
extended concept, 160
operators, 168
overview, 155

classify colors
extended concept, 177
operators, 187

classify data
basic concept, 158
operators, 169

In
de

x

302 Index

clear training data of variation model
extended concept, 147
operators, 154

close image acquisition device
basic concept, 14
operators, 17

color inspection, 6
color processing

basic concept, 174
examples, 177
extended concept, 175
operators, 186
overview, 173

compare image with variation model
basic concept, 145
operators, 154

completeness check, 6
compose channels for color processing

extended concept, 177
operators, 187

connected components, 46
contour processing

relations to other methods, 95
basic concept, 84
examples, 89
extended concept, 86
operators, 93
overview, 83

convert and access XLD contours
extended concept, 89
operators, 94

create 3D matching model
basic concept, 129
operators, 140

create bar code model
basic concept, 212
extended concept, 214
operators, 231

create classifier
basic concept, 156
operators, 168

create data code model
basic concept, 233
extended concept, 236
operators, 241

create measure object for 1D measuring
basic concept, 50

extended concept, 52
operators, 59

create region
basic concept, 19
extended concept, 22
operators, 27

create region of interest
basic concept, 20
extended concept, 22
operators, 27

create training samples from system fonts, 251
create variation model

basic concept, 143
operators, 153

create XLD contours
basic concept, 84
extended concept, 86
operators, 93

data code
basic concept, 233
examples, 238
extended concept, 235
operators, 241
overview, 233

decompose channels for color processing
basic concept, 174
operators, 186

demosaick Bayer pattern for color processing
extended concept, 175
operators, 186

destroy 3D matching model
basic concept, 130
operators, 141

destroy 3D object model
basic concept, 130
operators, 140

destroy bar code model
basic concept, 212
operators, 231

destroy classifier
basic concept, 158
operators, 169

destroy data code model
basic concept, 234
operators, 243

destroy matching model

Index 303

basic concept, 100
operators, 124

destroy measure object
basic concept, 51
operators, 60

destroy OCR classifier
basic concept, 247
operators, 268

destroy variation model
basic concept, 145
operators, 154

determine bar code parameters by training, 216
determine contour attributes for edge extraction

(subpixel-precise)
extended concept, 76
operators, 80

determine training parameters for matching
extended concept, 104
operators, 122

displaying
basic concept, 290
extended concept, 292
operators, 298

draw region
extended concept, 21
operators, 27

edge extraction (pixel-precise)
relations to other methods, 70
basic concept, 64
examples, 67
extended concept, 65
operators, 69
overview, 63

edge extraction (subpixel-precise)
relations to other methods, 81
basic concept, 73
examples, 77
extended concept, 75
operators, 80
overview, 73

effect of region of interest shape on speed up,
28

effects of programming environment on visual-
ization method, 299

evaluate classifier
extended concept, 161

operators, 169
extract color edges, 188
extract color lines, 188
extract edges (pixel-precise)

basic concept, 64
extended concept, 66
operators, 70

extract edges or lines (subpixel-precise)
basic concept, 74
extended concept, 76
operators, 80

extract features for blob analysis
basic concept, 32
extended concept, 35
operators, 45

extract features of XLD contours
basic concept, 85
extended concept, 89
operators, 94

extract segmentation parameters for blob analy-
sis, 250

extended concept, 34
operators, 44

Fast Fourier Transform (FFT), 202
features for optical character recognition

(OCR), 269
features for texture analysis

basic concept, 191
extended concept, 194
operators, 201

filter image for edge extraction (pixel-precise)
basic concept, 64
extended concept, 66
operators, 70

find 3D matching model
basic concept, 130
operators, 141

find model for matching
basic concept, 100
extended concept, 106
operators, 123

flicker-free visualization method, 300
fuzzy measuring, 61

gnuplot
extended concept, 293
operators, 298

In
de

x

304 Index

gray-value profile, 61

handling graphics windows
basic concept, 289
extended concept, 291
operators, 297

handling gray values outside of the image do-
main, 29

high-accuracy blob analysis, 47
high-accuracy stereo vision, 287

identification, 6
image acquisition

basic concept, 13
examples, 16
extended concept, 15
operators, 17
overview, 13

image filtering with region of interest, 28
inspect 3D matching model

extended concept, 133
operators, 140

inspect 3D object model
extended concept, 132
operators, 140

inspect data code(s)
extended concept, 238
operators, 242

matching
relations to other methods, 125
basic concept, 100
examples, 107
extended concept, 102
operators, 122
overview, 97

matching with high accuracy, 126
measure (1D measuring)

basic concept, 51
operators, 59

measure with gray-value threshold (1D measur-
ing), 61

measuring and comparison 2D, 7
measuring and comparison 3D, 7
model creation (training)

basic concept, 100
extended concept, 104
operators, 123

mouse interaction
extended concept, 292
operators, 298

object recognition 2D, 8
object recognition 3D, 8
open image acquisition device

basic concept, 13
extended concept, 15
operators, 17

optical character recognition (OCR)
relations to other methods, 268
basic concept, 245
examples, 254
extended concept, 248
operators, 266
overview, 245

optimize model of data code
extended concept, 237
operators, 242

perform fitting of XLD contours
basic concept, 84
extended concept, 88
operators, 94

position recognition 2D, 8
position recognition 3D, 9
prepare variation model

basic concept, 145
operators, 153

preprocess image(s) (filtering) for blob analysis
extended concept, 33
operators, 44

preprocess image(s) (filtering) for OCR
extended concept, 250
operators, 266

preprocess image(s) bar code
extended concept, 213
operators, 231

print inspection, 9
process edges (pixel-precise)

basic concept, 65
extended concept, 66
operators, 70

process image (channels) for color processing
basic concept, 174
operators, 187

process regions for blob analysis, 22

Index 305

extended concept, 35
operators, 44

process XLD contours
basic concept, 84
extended concept, 76, 87
operators, 80, 93

programmed visualization method, 300

radiometrically calibrate image(s) for 1D mea-
suring

extended concept, 51
operators, 59

radiometrically calibrate image(s) for edge ex-
traction (subpixel-precise)

extended concept, 75
operators, 80

radiometrically calibrate image(s) for matching
extended concept, 102
operators, 122

re-use 3D matching model
extended concept, 133
operators, 140

re-use classifier
extended concept, 161
operators, 168

re-use classifier training samples
extended concept, 161
operators, 168

re-use measure object, 60
re-use region of interest, 28
read 3D object model

basic concept, 128
operators, 139

read bar code
basic concept, 212
extended concept, 216
operators, 231

read circular print, 269
read composed symbols, 268
read data code(s)

basic concept, 234
extended concept, 238
operators, 242

read symbol
basic concept, 247
extended concept, 253
operators, 267

reconstruct 3D information with stereo
basic concept, 279
operators, 286

rectify image(s) for optical character recogni-
tion (OCR)

extended concept, 250
operators, 266

rectify image(s) for stereo
basic concept, 279
operators, 286

region of interest
relations to other methods, 28
basic concept, 19
examples, 23
extended concept, 21
operators, 26
overview, 19

remote visualization method, 300
robot vision, 10

scale down image(s) for texture analysis
extended concept, 193
operators, 200

security system, 10
segment image(s) for blob analysis, 21

basic concept, 32
extended concept, 35
operators, 44

segment image(s) for optical character recogni-
tion (OCR)

basic concept, 246
extended concept, 250
operators, 267

select classifier training samples, 171
set parameters for image acquisition

extended concept, 16
operators, 17

set timeout for bar code reader, 232
set timeout for data code reader, 243
set timeout for matching, 126
smart text finder, 250
speed up bar code reader, 215
speed up blob analysis, 46
speed up color processing, 188
speed up edge extraction (pixel-precise), 71
speed up matching, 125
speed up stereo vision, 287

In
de

x

306 Index

speed up visualization method, 298
stereo vision

relations to other methods, 286
basic concept, 278
examples, 281
extended concept, 280
operators, 285
overview, 277

suppress clutter or noise for 1D measuring, 60
surface inspection, 11

texture analysis
relations to other methods, 201
basic concept, 190
examples, 194
extended concept, 192
operators, 200
overview, 189

texture analysis in color images, 203
texture inspection, 11
train classifier

basic concept, 157
extended concept, 160
operators, 168

train colors
extended concept, 176
operators, 187

train model of 2D data code
extended concept, 237
operators, 242

train optical character recognition (OCR)
basic concept, 247
extended concept, 251
operators, 267

train variation model
basic concept, 144
operators, 153

transform color space
extended concept, 175
operators, 186

transform results of 1D measuring into 3D
(world) coordinates

extended concept, 53
operators, 59

transform results of blob analysis into 3D
(world) coordinates

extended concept, 35

operators, 45
transform results of contour processing into 3D

(world) coordinates
extended concept, 88
operators, 94

transform results of edge extraction (subpixel-
precise) into 3D (world) coordinates

extended concept, 77
operators, 81

unsupported image acquisition device, 18
use bar code autodiscrimination, 216
use binary images as region of interest, 28
use line scan camera for blob analysis, 47
use line scan camera for contour processing, 95
use line scan camera for optical character recog-

nition (OCR), 269
use optische Schriftzeichenerkennung (OCR)

for classification, 171
use region of interest for stereo

extended concept, 281
operators, 286

use results of texture analysis
extended concept, 194
operators, 201

variation model (image comparison)
basic concept, 143
examples, 148
extended concept, 147
operators, 153
overview, 143

visualization
basic concept, 289
examples, 293
extended concept, 291
operators, 297
overview, 289

visualize results of 1D measuring
extended concept, 53
operators, 60

visualize results of 3D matching
extended concept, 133
operators, 141

visualize results of color processing
extended concept, 177
operators, 187

Index 307

write window content, 298

In
de

x

	1 Guide to HALCON Methods
	1.1 Color Inspection
	1.2 Completeness Check
	1.3 Identification
	1.4 Measuring and Comparison 2D
	1.5 Measuring and Comparison 3D
	1.6 Object Recognition 2D
	1.7 Object Recognition 3D
	1.8 Position Recognition 2D
	1.9 Position Recognition 3D
	1.10 Print Inspection
	1.11 Quality Inspection
	1.12 Robot Vision
	1.13 Security System
	1.14 Surface Inspection
	1.15 Texture Inspection

	2 Image Acquisition
	2.1 Basic Concept
	2.1.1 Open Image Acquisition Device
	2.1.2 Acquire Image(s)
	2.1.3 Close Image Acquisition Device
	2.1.4 A First Example

	2.2 Extended Concept
	2.2.1 Open Image Acquisition Device
	2.2.2 Set Parameters
	2.2.3 Acquire Image(s)

	2.3 Programming Examples
	2.4 Selecting Operators
	2.4.1 Open Image Acquisition Device
	2.4.2 Set Parameters
	2.4.3 Acquire Image(s)
	2.4.4 Close Image Acquisition Device

	2.5 Tips & Tricks
	2.5.1 Direct Access to External Images in Memory
	2.5.2 Unsupported Image Acquisition Devices

	3 Region Of Interest
	3.1 Basic Concept
	3.1.1 Create Region
	3.1.2 Create ROI
	3.1.3 A First Example

	3.2 Extended Concept
	3.2.1 Segment Image(s)
	3.2.2 Draw Region
	3.2.3 Create Region
	3.2.4 Process Regions
	3.2.5 Align ROIs Or Images
	3.2.6 Create ROI
	3.2.7 Visualize Results

	3.3 Programming Examples
	3.3.1 Processing inside a User Defined Region
	3.3.2 Interactive Partial Filtering of an Image
	3.3.3 Inspecting the Contours of a Tool

	3.4 Selecting Operators
	3.4.1 Segment Image(s)
	3.4.2 Draw Region
	3.4.3 Create Region
	3.4.4 Process Regions
	3.4.5 Align ROIs Or Images
	3.4.6 Create ROI
	3.4.7 Visualize Results

	3.5 Relation to Other Methods
	3.6 Tips & Tricks
	3.6.1 Reuse ROI
	3.6.2 Effect of ROI Shape on Speed Up

	3.7 Advanced Topics
	3.7.1 Filter masks and ROIs
	3.7.2 Binary Images
	3.7.3 Problems caused by Gray Values outside of the Image Domain

	4 Blob Analysis
	4.1 Basic Concept
	4.1.1 Acquire Image(s)
	4.1.2 Segment Image(s)
	4.1.3 Extract Features
	4.1.4 A First Example

	4.2 Extended Concept
	4.2.1 Use Region Of Interest
	4.2.2 Align ROIs Or Images
	4.2.3 Rectify Image(s)
	4.2.4 Preprocess Image(s) (Filtering)
	4.2.5 Extract Segmentation Parameters
	4.2.6 Segment Image(s)
	4.2.7 Process Regions
	4.2.8 Extract Features
	4.2.9 Transform Results Into World Coordinates
	4.2.10 Visualize Results

	4.3 Programming Examples
	4.3.1 Crystals
	4.3.2 Atoms
	4.3.3 Analyzing Particles
	4.3.4 Extracting Forest Features from Color Infrared Image
	4.3.5 Checking a Boundary for Fins
	4.3.6 Bonding Balls
	4.3.7 Surface Scratches

	4.4 Selecting Operators
	4.4.1 Acquire Image(s)
	4.4.2 Use Region Of Interest
	4.4.3 Align ROIs Or Images
	4.4.4 Rectify Image(s)
	4.4.5 Preprocess Image(s) (Filtering)
	4.4.6 Extract Segmentation Parameters
	4.4.7 Segment Image(s)
	4.4.8 Process Regions
	4.4.9 Extract Features
	4.4.10 Transform Results Into World Coordinates
	4.4.11 Visualize Results

	4.5 Relation to Other Methods
	4.5.1 Methods that are Useful for Blob Analysis
	4.5.2 Methods that are Using Blob Analysis
	4.5.3 Alternatives to Blob Analysis

	4.6 Tips & Tricks
	4.6.1 Connected Components
	4.6.2 Speed Up

	4.7 Advanced Topics
	4.7.1 Line Scan Cameras
	4.7.2 High Accuracy

	5 1D Measuring
	5.1 Basic Concept
	5.1.1 Acquire Image(s)
	5.1.2 Create Measure Object
	5.1.3 Measure
	5.1.4 Destroy Measure Object

	5.2 Extended Concept
	5.2.1 Radiometrically Calibrate Image(s)
	5.2.2 Align ROIs Or Images
	5.2.3 Rectify Image(s)
	5.2.4 Create Measure Object
	5.2.5 Transform Results Into World Coordinates
	5.2.6 Visualize Results

	5.3 Programming Examples
	5.3.1 Inspecting a Fuse
	5.3.2 Inspect Cast Part
	5.3.3 Inspecting an IC Using Fuzzy Measuring
	5.3.4 Measuring Leads of a Moving IC
	5.3.5 Inspect IC

	5.4 Selecting Operators
	5.4.1 Acquire Image(s)
	5.4.2 Radiometrically Calibrate Image(s)
	5.4.3 Align ROIs Or Images
	5.4.4 Rectify Image(s)
	5.4.5 Create Measure Object
	5.4.6 Measure
	5.4.7 Transform Results Into World Coordinates
	5.4.8 Visualize Results
	5.4.9 Destroy Measure Object

	5.5 Relation to Other Methods
	5.5.1 Alternatives to 1D Measuring

	5.6 Tips & Tricks
	5.6.1 Suppress Clutter or Noise
	5.6.2 Reuse Measure Object
	5.6.3 Use an Absolute Gray Value Threshold

	5.7 Advanced Topics
	5.7.1 Fuzzy Measuring
	5.7.2 Evaluation of Gray Values

	6 Edge Extraction (Pixel-Precise)
	6.1 Basic Concept
	6.1.1 Acquire Image(s)
	6.1.2 Filter Image
	6.1.3 Extract Edges
	6.1.4 Process Edges
	6.1.5 A First Example

	6.2 Extended Concept
	6.2.1 Use Region Of Interest
	6.2.2 Filter Image
	6.2.3 Extract Edges
	6.2.4 Process Edges
	6.2.5 Visualize Results

	6.3 Programming Examples
	6.3.1 Aerial Image Interpretation
	6.3.2 Segmenting a Color Image

	6.4 Selecting Operators
	6.4.1 Acquire Image(s)
	6.4.2 Use Region Of Interest
	6.4.3 Filter Image
	6.4.4 Extract Edges
	6.4.5 Process Edges
	6.4.6 Visualize Results

	6.5 Relation to Other Methods
	6.5.1 Alternatives to Edge Extraction (Pixel-Precise)

	6.6 Tips & Tricks
	6.6.1 Speed Up

	7 Edge Extraction (Subpixel-Precise)
	7.1 Basic Concept
	7.1.1 Acquire Image(s)
	7.1.2 Extract Edges Or Lines
	7.1.3 A First Example

	7.2 Extended Concept
	7.2.1 Radiometrically Calibrate Image(s)
	7.2.2 Use Region Of Interest
	7.2.3 Extract Edges Or Lines
	7.2.4 Determine Contour Attributes
	7.2.5 Process XLD Contours
	7.2.6 Transform Results Into World Coordinates
	7.2.7 Visualize Results

	7.3 Programming Examples
	7.3.1 Measuring the Diameter of Drilled Holes
	7.3.2 Angiography

	7.4 Selecting Operators
	7.4.1 Acquire Image(s)
	7.4.2 Radiometrically Calibrate Image(s)
	7.4.3 Use Region Of Interest
	7.4.4 Extract Edges Or Lines
	7.4.5 Determine Contour Attributes
	7.4.6 Process XLD Contours
	7.4.7 Transform Results Into World Coordinates
	7.4.8 Visualize Results

	7.5 Relation to Other Methods
	7.5.1 Alternatives to Edge Extraction (Subpixel-Precise)

	8 Contour Processing
	8.1 Basic Concept
	8.1.1 Create XLD Contours
	8.1.2 Process XLD Contours
	8.1.3 Perform Fitting
	8.1.4 Extract Features
	8.1.5 A First Example

	8.2 Extended Concept
	8.2.1 Create XLD Contours
	8.2.2 Process XLD Contours
	8.2.3 Perform Fitting
	8.2.4 Transform Results Into World Coordinates
	8.2.5 Extract Features
	8.2.6 Convert And Access XLD Contours
	8.2.7 Visualize Results

	8.3 Programming Examples
	8.3.1 Measuring Lines and Arcs
	8.3.2 Close gaps in a contour
	8.3.3 Extract Roads

	8.4 Selecting Operators
	8.4.1 Create XLD Contours
	8.4.2 Process XLD Contours
	8.4.3 Perform Fitting
	8.4.4 Transform Results Into World Coordinates
	8.4.5 Extract Features
	8.4.6 Convert And Access XLD Contours
	8.4.7 Visualize Results

	8.5 Relation to Other Methods
	8.5.1 Alternatives to Contour Processing

	8.6 Advanced Topics
	8.6.1 Line Scan Cameras

	9 Matching
	9.1 Basic Concept
	9.1.1 Acquire Image(s)
	9.1.2 Create (Train) Model
	9.1.3 Find Model
	9.1.4 Destroy Model
	9.1.5 A First Example

	9.2 Extended Concept
	9.2.1 Radiometrically Calibrate Image(s)
	9.2.2 Rectify Image(s)
	9.2.3 Use Region Of Interest
	9.2.4 Determine Training Parameters
	9.2.5 Create (Train) Model
	9.2.6 Find Model
	9.2.7 Visualize Results

	9.3 Programming Examples
	9.3.1 Creating a Model for the ``Green Dot''
	9.3.2 Locating ``Green Dots''
	9.3.3 Distinguishing coins
	9.3.4 Locate Components on a PCB
	9.3.5 Check the State of a Dip Switch
	9.3.6 Locating a Pipe Wrench in Different States
	9.3.7 Creating a Mosaic Image
	9.3.8 Locate Brochure Pages
	9.3.9 Locate Road Signs

	9.4 Selecting Operators
	9.4.1 Acquire Image(s)
	9.4.2 Radiometrically Calibrate Image(s)
	9.4.3 Rectify Image(s)
	9.4.4 Use Region Of Interest
	9.4.5 Determine Training Parameters
	9.4.6 Create (Train) Model
	9.4.7 Find Model
	9.4.8 Visualize Results
	9.4.9 Destroy Model

	9.5 Relation to Other Methods
	9.5.1 Methods that are Using Matching
	9.5.2 Alternatives to Matching

	9.6 Tips & Tricks
	9.6.1 Speed Up

	9.7 Advanced Topics
	9.7.1 High Accuracy
	9.7.2 Use Timeout

	10 3D Matching
	10.1 Basic Concept
	10.1.1 Access 3D Object Model
	10.1.2 Create Approach-Specific 3D Model
	10.1.3 Destroy 3D Object Model
	10.1.4 Acquire Search Data
	10.1.5 Find Approach-Specific 3D Model
	10.1.6 Destroy Approach-Specific 3D Model
	10.1.7 A First Example

	10.2 Extended Concept
	10.2.1 Inspect 3D Object Model
	10.2.2 Inspect Approach-Specific 3D Model
	10.2.3 Re-use Approach-Specific 3D Model
	10.2.4 Use Region Of Interest
	10.2.5 Visualize Results

	10.3 Programming Examples
	10.3.1 Recognize 3D Clamps and Their Poses in Images
	10.3.2 Recognize Pipe Joints and Their Poses in a 3D Scene

	10.4 Selecting Operators
	10.4.1 Access 3D Object Model
	10.4.2 Inspect 3D Object Model
	10.4.3 Create Approach-Specific 3D Model
	10.4.4 Destroy 3D Object Model
	10.4.5 Inspect Approach-Specific 3D Model
	10.4.6 Re-use Approach-Specific 3D Model
	10.4.7 Acquire Search Data
	10.4.8 Use Region Of Interest
	10.4.9 Find Approach-Specific 3D Model
	10.4.10 Visualize Results
	10.4.11 Destroy Approach-Specific 3D Model

	10.5 Relation to Other Methods
	10.5.1 Alternatives to 3D Matching

	11 Variation Model
	11.1 Basic Concept
	11.1.1 Acquire Image(s)
	11.1.2 Create Variation Model
	11.1.3 Align ROIs Or Images
	11.1.4 Train Variation Model
	11.1.5 Prepare Variation Model
	11.1.6 Compare Variation Model
	11.1.7 Destroy Variation Model
	11.1.8 A First Example

	11.2 Extended Concept
	11.2.1 Check Model Quality
	11.2.2 Clear Training Data
	11.2.3 Visualize Results

	11.3 Programming Examples
	11.3.1 Inspect a Printed Logo Using a Single Reference Image
	11.3.2 Inspect a Printed Logo under Varying Illumination

	11.4 Selecting Operators
	11.4.1 Acquire Image(s)
	11.4.2 Create Variation Model
	11.4.3 Align ROIs Or Images
	11.4.4 Train Variation Model
	11.4.5 Check Model Quality
	11.4.6 Prepare Variation Model
	11.4.7 Clear Training Data
	11.4.8 Compare Variation Model
	11.4.9 Visualize Results
	11.4.10 Destroy Variation Model

	12 Classification
	12.1 Basic Concept
	12.1.1 Acquire Image(s)
	12.1.2 Create Classifier
	12.1.3 Train Classifier
	12.1.4 Classify Data
	12.1.5 Destroy Classifier
	12.1.6 A First Example

	12.2 Extended Concept
	12.2.1 Train Classifier
	12.2.2 Re-use Training Samples
	12.2.3 Re-use Classifier
	12.2.4 Evaluate Classifier
	12.2.5 Visualize Results

	12.3 Programming Examples
	12.3.1 Inspection of Plastic Meshes via Texture Classification
	12.3.2 Classification with Overlapping Classes

	12.4 Selecting Operators
	12.4.1 Acquire Image(s)
	12.4.2 Create Classifier
	12.4.3 Train Classifier
	12.4.4 Re-use Training Samples
	12.4.5 Re-use Classifier
	12.4.6 Evaluate Classifier
	12.4.7 Classify Data
	12.4.8 Visualize Results
	12.4.9 Destroy Classifier

	12.5 Relation to Other Methods
	12.5.1 Methods that are Useful for Classification
	12.5.2 Methods that are Using Classification
	12.5.3 Alternatives to Classification

	12.6 Tips & Tricks
	12.6.1 OCR for General Classification

	12.7 Advanced Topics
	12.7.1 Selection of Training Samples

	13 Color Processing
	13.1 Basic Concept
	13.1.1 Acquire Image(s)
	13.1.2 Decompose Channels
	13.1.3 Process Image (Channels)
	13.1.4 A First Example

	13.2 Extended Concept
	13.2.1 Demosaick Bayer Pattern
	13.2.2 Transform Color Space
	13.2.3 Train Colors
	13.2.4 Use Region Of Interest
	13.2.5 Classify Colors
	13.2.6 Compose Channels
	13.2.7 Visualize Results

	13.3 Programming Examples
	13.3.1 Robust Color Extraction
	13.3.2 Sorting Fuses
	13.3.3 Completeness Check of Colored Game Pieces
	13.3.4 Inspect Power Supply Cables
	13.3.5 Locating Board Components by Color

	13.4 Selecting Operators
	13.4.1 Acquire Image(s)
	13.4.2 Demosaick Bayer Pattern
	13.4.3 Decompose Channels
	13.4.4 Transform Color Space
	13.4.5 Train Colors
	13.4.6 Use Region Of Interest
	13.4.7 Process Image (Channels)
	13.4.8 Classify Colors
	13.4.9 Compose Channels
	13.4.10 Visualize Results

	13.5 Tips & Tricks
	13.5.1 Speed Up

	13.6 Advanced Topics
	13.6.1 Color Edge Extraction
	13.6.2 Color Line Extraction

	14 Texture Analysis
	14.1 Basic Concept
	14.1.1 Acquire Image(s)
	14.1.2 Apply Texture Filter
	14.1.3 Compute Features
	14.1.4 A First Example

	14.2 Extended Concept
	14.2.1 Rectify Image(s)
	14.2.2 Scale Down Image(s)
	14.2.3 Use Region Of Interest
	14.2.4 Align ROIs Or Images
	14.2.5 Apply Texture Filter
	14.2.6 Compute Features
	14.2.7 Visualize Results
	14.2.8 Use Results

	14.3 Programming Examples
	14.3.1 Detect Defects in a Texture with Novelty Detection
	14.3.2 Detect Defects in a Web Using Dynamic Thresholding
	14.3.3 Classification of Different Types of Wood

	14.4 Selecting Operators
	14.4.1 Acquire Image(s)
	14.4.2 Rectify Image(s)
	14.4.3 Scale Down Image(s)
	14.4.4 Use Region Of Interest
	14.4.5 Align ROIs Or Images
	14.4.6 Apply Texture Filter
	14.4.7 Compute Features
	14.4.8 Visualize Results
	14.4.9 Use Results

	14.5 Relation to Other Methods
	14.5.1 Methods that are Using Texture Analysis

	14.6 Advanced Topics
	14.6.1 Fast Fourier Transform (FFT)
	14.6.2 Texture Analysis in Color Images

	14.7 More Information About Texture Features
	14.7.1 Entropy and Anisotropy ([file:../reference/referencehdevelop.pdf]entropy_gray)
	14.7.2 Cooccurrence Matrix ([file:../reference/referencehdevelop.pdf]gen_cooc_matrix)
	14.7.3 Features of the Cooccurrence Matrix

	14.8 More Information About Texture Filtering
	14.8.1 The Laws Filter ([file:../reference/referencehdevelop.pdf]texture_laws)

	15 Bar Code
	15.1 Basic Concept
	15.1.1 Acquire Image(s)
	15.1.2 Create Bar Code Model
	15.1.3 Read Bar Code(s)
	15.1.4 Destroy Bar Code Model
	15.1.5 A First Example

	15.2 Extended Concept
	15.2.1 Use Region Of Interest
	15.2.2 Preprocess Image(s)
	15.2.3 Rectify Image(s)
	15.2.4 Create Bar Code Model
	15.2.5 Adjust Bar Code Model
	15.2.6 Read Bar Code(s)
	15.2.7 Check Print Quality
	15.2.8 Visualize Results

	15.3 Programming Examples
	15.3.1 How to Read Difficult Barcodes
	15.3.2 Reading a Bar Code on a CD
	15.3.3 Checking Bar Code Print Quality

	15.4 Selecting Operators
	15.4.1 Acquire Image(s)
	15.4.2 Use Region Of Interest
	15.4.3 Preprocess Image(s)
	15.4.4 Rectify Image(s)
	15.4.5 Create Bar Code Model
	15.4.6 Adjust Bar Code Model
	15.4.7 Read Bar Code(s)
	15.4.8 Destroy Bar Code Model
	15.4.9 Check Print Quality
	15.4.10 Visualize Results

	15.5 Relation to Other Methods
	15.5.1 Alternatives to Bar Code

	15.6 Advanced Topics
	15.6.1 Use Timeout

	16 Data Code
	16.1 Basic Concept
	16.1.1 Acquire Image(s)
	16.1.2 Create Data Code Model
	16.1.3 Read Data Code(s)
	16.1.4 Destroy Data Code Model
	16.1.5 A First Example

	16.2 Extended Concept
	16.2.1 Acquire Image(s)
	16.2.2 Rectify Image(s)
	16.2.3 Create Data Code Model
	16.2.4 Optimize Model
	16.2.5 Train Model
	16.2.6 Use Region Of Interest
	16.2.7 Read Data Code(s)
	16.2.8 Inspect Data Code(s)
	16.2.9 Check Print Quality
	16.2.10 Visualize Results

	16.3 Programming Examples
	16.3.1 Training a Data Code Model
	16.3.2 Reading 2D Data Codes on Chips

	16.4 Selecting Operators
	16.4.1 Acquire Image(s)
	16.4.2 Rectify Image(s)
	16.4.3 Create Data Code Model
	16.4.4 Optimize Model
	16.4.5 Train Model
	16.4.6 Use Region Of Interest
	16.4.7 Read Data Code(s)
	16.4.8 Inspect Data Code(s)
	16.4.9 Check Print Quality
	16.4.10 Visualize Results
	16.4.11 Destroy Data Code Model

	16.5 Advanced Topics
	16.5.1 Use Timeout

	17 OCR
	17.1 Basic Concept
	17.1.1 Acquire Image(s)
	17.1.2 Segment Image(s)
	17.1.3 Train OCR
	17.1.4 Read Symbol
	17.1.5 Destroy Classifier
	17.1.6 A First Example

	17.2 Extended Concept
	17.2.1 Use Region Of Interest
	17.2.2 Align ROIs Or Images
	17.2.3 Rectify Image(s)
	17.2.4 Preprocess Image(s) (Filtering)
	17.2.5 Extract Segmentation Parameters
	17.2.6 Segment Image(s)
	17.2.7 Train OCR
	17.2.8 Read Symbol
	17.2.9 Visualize Results

	17.3 Programming Examples
	17.3.1 Generating a Training File
	17.3.2 Creating and Training an OCR Classifier
	17.3.3 Reading Numbers
	17.3.4 "Best Before" Date
	17.3.5 Reading Engraved Text
	17.3.6 Reading Forms
	17.3.7 Segment and Select Characters
	17.3.8 Syntactic and Lexicon-Based Auto-Correction of OCR Results

	17.4 Selecting Operators
	17.4.1 Acquire Image(s)
	17.4.2 Use Region Of Interest
	17.4.3 Align ROIs Or Images
	17.4.4 Rectify Image(s)
	17.4.5 Preprocess Image(s) (Filtering)
	17.4.6 Extract Segmentation Parameters
	17.4.7 Segment Image(s)
	17.4.8 Train OCR
	17.4.9 Read Symbol
	17.4.10 Visualize Results
	17.4.11 Destroy Classifier

	17.5 Relation to Other Methods
	17.5.1 Alternatives to OCR

	17.6 Tips & Tricks
	17.6.1 Composed Symbols

	17.7 Advanced Topics
	17.7.1 Line Scan Cameras
	17.7.2 Circular Prints
	17.7.3 OCR Features

	17.8 Pretrained OCR Fonts
	17.8.1 Nomenclature for the Ready-to-Use OCR Fonts
	17.8.2 Ready-to-Use OCR Font 'Document'
	17.8.3 Ready-to-Use OCR Font 'DotPrint'
	17.8.4 Ready-to-Use OCR Font 'HandWritten_0-9'
	17.8.5 Ready-to-Use OCR Font 'Industrial'
	17.8.6 Ready-to-Use OCR Font 'MICR'
	17.8.7 Ready-to-Use OCR Font 'OCR-A'
	17.8.8 Ready-to-Use OCR Font 'OCR-B'
	17.8.9 Ready-to-Use OCR Font 'Pharma'
	17.8.10 Ready-to-Use OCR Font 'SEMI'

	18 Stereo Vision
	18.1 Basic Concept
	18.1.1 Acquire Calibration Image(s)
	18.1.2 Calibrate Stereo Camera System
	18.1.3 Acquire Stereo Image(s)
	18.1.4 Rectify Image(s)
	18.1.5 Reconstruct 3D Information

	18.2 Extended Concept
	18.2.1 Use Region Of Interest
	18.2.2 Transform Results Into World Coordinates
	18.2.3 Visualize Results

	18.3 Programming Examples
	18.3.1 Segment the Components of a Board With Binocular Stereo
	18.3.2 Reconstruct the Surface of Pipe Joints With Multi-View Stereo

	18.4 Selecting Operators
	18.4.1 Calibrate Stereo Camera System
	18.4.2 Acquire Image(s)
	18.4.3 Rectify Image(s)
	18.4.4 Use Region Of Interest
	18.4.5 Reconstruct 3D Information
	18.4.6 Transform Results Into World Coordinates
	18.4.7 Visualize Results

	18.5 Relation to Other Methods
	18.5.1 Methods that are Using Stereo Vision

	18.6 Tips & Tricks
	18.6.1 Speed Up

	18.7 Advanced Topics
	18.7.1 High Accuracy

	19 Visualization
	19.1 Basic Concept
	19.1.1 Handling Graphics Windows
	19.1.2 Displaying
	19.1.3 A First Example

	19.2 Extended Concept
	19.2.1 Handling Graphics Windows
	19.2.2 Displaying
	19.2.3 Mouse Interaction
	19.2.4 Gnuplot

	19.3 Programming Examples
	19.3.1 Displaying HALCON data structures

	19.4 Selecting Operators
	19.4.1 Handling Graphics Windows
	19.4.2 Displaying
	19.4.3 Mouse Interaction
	19.4.4 Gnuplot

	19.5 Tips & Tricks
	19.5.1 Saving Window Content
	19.5.2 Execution Time

	19.6 Advanced Topics
	19.6.1 Programming Environments
	19.6.2 Flicker-Free Visualization
	19.6.3 Remote Visualization
	19.6.4 Programmed Visualization

	Index

