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Chapter 1

Introducing HALCON

HALCON defines the state of the art in machine vision software. It provides a comprehensive vision
library and is always based on the latest and most advanced technology. Whatever your task, HALCON
will solve it, fast and with highest accuracy.

Vision Development Environment

A professional image processing tool must be more than just a library of image processing operators.
Solving image processing tasks is just one part of a complete solution, which comprises other software
components like process control or database access, and hardware components from illumination to
image acquisition devices and many other mechanical components. Therefore, it is important that the
image processing system is easy to use and can be integrated into the development cycle in a flexible
manner.

To achieve this, HALCON takes care of all important aspects:

• The software development is supported by HALCON’s IDE (integrated development environment),
consisting of HDevelop and HDevEngine. HDevelop is a highly interactive development tool that
enables a quick development of image processing tasks. Via HDevEngine, you can directly execute
HDevelop programs and procedures from your C++, C#, Visual Basic, or C application. As an
alternative, HDevelop can also export programs and procedures in your programming language.

• The problem-oriented documentation covers all levels from a quick access to important information
up to a detailed discussion of advanced topics.

• These descriptions are combined with hundreds of examples for an intuitive understanding of the
solutions, which can serve as templates to shorten the development time.

• Last but not least, HALCON provides open interfaces for efficient data exchange, to integrate own
operators, or to access specialized hardware round off the system.
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6 Introducing HALCON

Vision Library

HALCON fulfills all requirements of a professional vision library:

• It comprises methods for all standard and advanced types of image processing from image acqui-
sition from many different devices up to the advanced shape-based matching.

• Apart from image processing functionality, HALCON provides tools that are typically needed in
the context of machine vision applications, e.g., for the communication via sockets or the serial
interface, file handling, data analysis, arithmetic operations, or classification.

• HALCON offers flexible ways of parallelization to exploit multi-processor or multi-core hardware
to speed up an application.

• HALCON can handle images larger than 32k x 32k (HALCON XL).

• The HALCON library that is used in an application will not be visible to the end user and requires
only minimum resources in an installation, which makes it perfect for OEM developments.

1.1 Key Features

Leading-Edge Technologies

In addition to the full set of standard machine vision methods, HALCON offers functionality that is out-
standing in the field of machine vision libraries, e.g., 3D camera calibration, shape-based and component-
based matching, subpixel-precise edge and line extraction, subpixel contour processing, 3D matching,
arbitrary regions of interest, and much more.

Apart from this, many methods that are known from other libraries are offered with a much better per-
formance. An example for this is the morphology, which is up to 100 times faster than in other products,
and at the same time offers much more flexibility.

One Software for All Applications

Thanks to its more than 1600 operators, HALCON is at home in all areas of research, development, and
production where images are processed and analyzed. Numerous customers all over the world already
use HALCON to solve their machine vision tasks.

Protection of Investment

By choosing HALCON, you choose independence: Switch to another operating system? HALCON
supports a wide range of Windows, Linux, and UNIX platforms, including x64 systems. Migrate your
applications from C++ to C#? HALCON can be used within various programming languages and en-
vironments. Your application grows and needs more computing power? Switch to a multi-processor
or multi-core computer and HALCON will automatically parallelize its execution (see section 2.1.3 on
page 19). Last but not least, you are free to choose the image acquisition hardware that fulfills your
requirements, because HALCON provides ready-to-use interfaces to hundreds of industrial cameras and
frame grabbers, including GenICam, GigE Vision, and IIDC 1394.
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Rapid Prototyping

In many cases it is important to determine quickly if and how a problem can be solved. With HDevelop,
HALCON’s interactive development environment, you can rapidly develop machine vision applications.
Besides being a fully-fledged program interpreter with debug functions, HDevelop assists you actively,
e.g., by suggesting operators and by automatically visualizing the result of an operation. With the help of
integrated tools you can inspect images and results and quickly find suitable parameter values that solve
your vision task.

Open Architecture

HALCON offers a comprehensive vision library but does not claim to be all-encompassing. Therefore,
it is based on an open architecture. Thus, you can extend HALCON by integrating your own vision
functionality in form of new operators (see section 2.4.1 on page 25). And if you want to use an image
acquisition device that HALCON does not yet support you can use the images directly or create an image
acquisition interface for it.

1.2 Who Should Use HALCON?

To put it shortly: everybody in need of a machine vision software.

HALCON is especially designed to be used by:

• OEMs to develop machines that include vision components, e.g., for chip or print inspection, or to
develop software solutions, e.g., for car plate reading or cell analysis,

• System integrators to develop customer-specific machine vision solutions,

• VARs that bundle HALCON with other products, and

• Research groups and universities that profit from the unbeatable completeness of the library, typ-
ically in combination with the integrated development environment HDevelop for intuitive proto-
typing.

1.3 Required Knowledge

Image Processing

Of course, the more familiar you are with the terminology and the standard methods of image processing,
the easier it is to apply HALCON to solve your machine vision task. The Solution Guide I guides
you from the various application areas to HALCON’s machine vision methods and introduces them
with examples. As an alternative, you can start out in chapter 3 on page 29 or chapter 4 on page 47,
which present examples from various industries and application areas and include references to more
information about the examples.
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8 Introducing HALCON

Programming

If you want to use HALCON via a programming language, you must be familiar with this language and
the corresponding development tools. The Programmer’s Guide concentrates on describing HALCON’s
language interfaces, i.e., the provided data structures and classes, how to call operators, etc.

Operating System

You will need basic knowledge about your platform’s operating system in order to install HALCON and
the corresponding license.

1.4 Getting Started with HALCON

To get a first impression of HALCON, we recommend to install the demo version of HDevelop, which
can be used without a license. It provides the full image processing functionality of HALCON; the main
restrictions are that the image acquisition interfaces cannot be used and that programs cannot be saved.

Equipped with the demo version of HDevelop, you can set out and explore the possibilities that HAL-
CON offers you by running the example programs described in the following chapters. See section 2.2
on page 21 for a brief introduction to HDevelop.

You can either download HALCON from MVTec’s web server or install it from DVD. Note that not all
HALCON releases are available on DVD.

To evaluate the full power of HALCON, e.g., online image acquisition or using HALCON from a pro-
gramming language, you can obtain a temporary license from your local distributor free of charge. De-
tailed information about licensing can be found in the Installation Guide.

1.4.1 How to Install the HALCON Demo Version from DVD

Detailed information about the installation process can be found in the Installation Guide.

1.4.1.1 Windows Platforms

For the following steps, you need administrator privileges.!

• Insert the DVD in your DVD drive. If the installation process does not start automatically, run
Setup.exe in the directory install-windows.

• The setup program is self-explanatory and guides you through the installation process.

• The setup allows you to choose between different types of installations; select Demo to install the
demo version.

After the installation, you can start the demo version of HDevelop from the Windows start menu without
further action.
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1.4.1.2 UNIX Platforms

• Insert the DVD in your DVD drive and mount the corresponding device. You probably need root
privileges to mount the device correctly.

• Run the shell script install-unix in the top-level directory of the DVD.

• The script asks for the installation path of HALCON and allows to select which optional compo-
nents are installed. Simply accept the suggested defaults by pressing Enter .

• After the installation, you must set some environment variables. The setup program informs you
about the necessary actions.

To start the demo version of HDevelop, execute hdevelop_demo from a shell.

1.4.2 How to Install the HALCON Demo Version via WWW

• MVTec’s download area can be found under http://www.mvtec.com/download. Note that you
must first register before downloading the software.

• Select the demo version of HALCON and your operating system. Then, follow the instructions.

On a Windows system, you can start the demo version of HDevelop from the start menu. On a UNIX
system, execute hdevelop_demo from a shell.

1.5 Where to Get More Information

• This Manual

Information about developing applications in HDevelop or in a programming language can be
found in chapter 2 on page 13.

The following two chapters present HALCON example programs sorted by machine vision indus-
try (see chapter 3 on page 29) and by application area (see chapter 4 on page 47), respectively.

• Solution Guide I

This manual describes the main machine vision methods and how to use them in HALCON, in-
cluding many examples. Chapter 1 on page 5 guides you from the various application areas to
suitable methods.

• Installation Guide

This manual explains the different licensing methods and supplies detailed information about in-
stalling, upgrading, and uninstalling HALCON.

• HDevelop User’s Guide

This manual is your guide to using HDevelop, HALCON’s interactive development environment.
It describes the elements of its graphical user interface, the language used in HDevelop programs,
how to export programs to other programming languages, and more.
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10 Introducing HALCON

• Programmer’s Guide

If you want to use HALCON from a programming language consult this manual for detailed infor-
mation about the provided interfaces and their data types, classes, etc. Furthermore, this manual
explains how to use HDevEngine to execute HDevelop programs and procedures from a program-
ming language.

• Extension Package Programmer’s Manual

This manual explains how to integrate your own functionality into HALCON via the so-called
extension packages.

• Image Acquisition Interface Programmer’s Manual

If you want to use an image acquisition interface that is not yet supported by HALCON this manual
explains how to create your own image acquisition interface for it.

• Solution Guide II

Currently, this guide consists of the following Solution Guides:

Solution Guide II-A (Image Acquisition): This manual shows how to use simple and complex
configurations of image acquisition devices, explains the various timing modes, and more.

Solution Guide II-B (Matching): Here you can find out about how to use HALCON’s 2D and
perspective matching methods to find objects based on a single model image and to locate
them with subpixel accuracy.

Solution Guide II-C (2D Data Codes): This manual shows how to use HALCON’s 2D data
code reader.

Solution Guide II-D (Classification): This manual shows how to classify images or regions
with different types of classifiers.

• Solution Guide III

Currently, this guide consists of the following Solution Guides:

Solution Guide III-A (1D Measuring): This manual shows how to detect edges and how to
measure their position and distance along lines and arcs.

Solution Guide III-B (2D Measuring): This manual shows how to measure 2D features like
position, orientation, angles, and generally the dimensions of and the relations between ob-
jects.

Solution Guide III-C (3D Vision): This manual is your gate into the world of 3D vision.

• Reference Manuals

The reference of all HALCON operators is available in HDevelop, C++, C#, COM (IDL), and C
syntax.

• Release Notes

If you have used an earlier version of HALCON, please take a look at the release notes, which
can be found in the file release_notes.html in the directory into which you have installed
HALCON.
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• Example Programs

HALCON provides an extensive set of example programs, not only for HDevelop but also for
different programming languages. These examples can be found in the directory denoted by the
environment variable %HALCONEXAMPLES% or, if the variable is not set, in the subdirectory exam-

ples of the folder into which you have installed HALCON.

• Support

Your local distributor is the competent contact for all questions about HALCON. Please take a look
at http://www.halcon.com/support for the current list of distributors.

• Training Seminars

Some distributors offer training seminars where you can learn more about HALCON (see
http://www.halcon.com/support/training.html for a list of upcoming seminars).
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Chapter 2

How to Develop Applications with
HALCON

HALCON offers many ways for the application development. But to make full use of the architecture
the mode depicted in figure 2.1 is recommended.

• Image inspection, prototyping of the vision method, and the final development of the vision method
are performed within HDevelop. Here, the program is structured into procedures that each repre-
sent one sub-task like initialization, processing, or cleanup. The main procedure is used only as a
test environment to call the procedures by passing images and receiving the results.

• The complete application is developed in a programming environment like Microsoft Visual Stu-
dio. There are two ways to integrate the HDevelop procedures: Either you export the procedures
to your programming language and then import them, e.g., via an include statement. Alternatively,
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14 How to Develop Applications with HALCON

you can directly execute the HDevelop procedures using HDevEngine. The user interface and
other necessary code is implemented using the normal mechanisms offered by the given language.
Finally, the project is compiled and linked.

• Together with the HALCON library, the generated application represents the solution that can, e.g.,
be loaded onto the destination machine or sent to a customer.

The three-step approach has several advantages:

• Whenever needed, the vision part can easily be optimized or extended because HDevelop offers
much better inspection and debugging facilities for image data than the standard programming
environments.

• If you are using HDevEngine, you do not even need to compile and link your application after a
change in the HDevelop program (if you did not change the signatures of the procedures). If you
are using exported code, you typically do not need to modify the rest of the application but only to
compile and link the application again.

• Because the vision part is separated from the general code, it can easily be executed in a stand-
alone manner. Furthermore, it can be given to others without the need to pass the whole project. In
the case of support questions, the HDevelop program with one or more images can quickly be sent
to the distributor.

• Finally, a reuse for other architectures like Linux can easily be achieved because HDevelop runs in
exactly the same manner on multiple operating systems.

For basic information on the prototyping with HDevelop see section 2.2 on page 21. How to export code
from HDevelop is explained in the HDevelop User’s Guide in chapter 8 on page 305. A brief introduction
to using HALCON in a programming environment can be found in section 2.3 on page 23. How to use
HDevEngine is explained in the Programmer’s Guide in part VI on page 171. For using a programming
environment like Microsoft Visual C++, see the relevant Microsoft documentation.

Note that in both cases (HDevEngine or export), the application contains “only” the HALCON func-
tionality – HDevelop’s powerful development tools like the assistants or other GUI elements cannot be
accessed from a programming language.

For C#, however, HALCON provides parts of HDevelop’s GUI functionality in form of the so-called
HALCON Codelets, which consist of example applications and classes. See the Programmer’s Guide,
section 11.1 on page 105, for more information.

2.1 A Look Under the Surface of HALCON: Architecture and
Data Structures

HALCON’s architecture, data structures, and internal mechanisms were developed according to the phi-
losophy that they should be

1. efficient

2. open
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3. standardized

4. self-describing

Efficient means that the execution time of each HALCON operator is as short as possible. Furthermore,
the operator design has been made such that combinations that are standard sequences or more complex
tasks remain efficient.

The open architecture is important in two respects: First, you can use HALCON from many different
programming languages. Passing external data to HALCON and accessing internal data of HALCON
is also supported. Finally, there are transparent interfaces to integrate user-defined operators and non-
standard image acquisition devices. This open architecture allows, e.g., a simple update to a new version
of an image acquisition interface without changing the installation of HALCON.

Standardized means that the signatures, naming, and usage of operators and data structures follow strict
rules. This allows a quick learning combined with few errors.

Finally, HALCON provides detailed information about each operator and their parameters not only in
the documentation but also online via specialized operators.

Figure 2.2: Basic architecture of HALCON.

HALCON’s basic architecture is depicted in figure 2.2. The main part is the image processing library,
which consists of a huge number of operators. You can also develop your own operators in form of
a so-called Extension Package. You use the operators in your application via the so-called language
interfaces like HALCON/C++. These are libraries which allow a direct use of the operators in the typical
programming style of the different programming languages. HDevelop also uses a language interface,
but this is transparent to the user.

For the access of image acquisition devices, HALCON provides a common interface, the so-called Image
Acquisition Interface. It allows to use quite different acquisition devices in a common way. The libraries
containing the device-specific implementations are loaded dynamically when needed.

Below, we take a closer look at HALCON’s operators and data structures.
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16 How to Develop Applications with HALCON

2.1.1 HALCON Operators

Whenever any kind of functionality is used from the HALCON library, it is done via an operator. The
current version has more than 1600 of these operators. Most of them comprise multiple methods, which
are selected via parameters. A full list of all operators can be found in the Reference Manuals or in the
dialog Operators of HDevelop. Important features of operators are:

• There is no hierarchy among operators. From the software architecture point of view, all operators
are on the same level.

• Of course, there are logical groups of operators. This can directly be seen by the classes offered
for C++, .NET, and COM, where operators processing the same data type are used as members of
the corresponding classes.

• Operators have standardized rules for ordering input and output parameters (see section 2.1.2).

• The design of operators follows the rules of the open architecture. Therefore, you can create
your own operators and thus extend HALCON, while getting the same look-and-feel for your own
operators (see section 2.4.1 on page 25).

• Many operators can make transparent use of automatic parallelization, which allows an easy way
of speeding up the program when using large images on a multi-processor or multi-core computer
(see section 2.1.3 on page 19).

2.1.2 Parameters and Data Structures

Philosophy:

• HALCON has two basic types of parameters: iconic data (images, regions, XLD contours) and
control data (integers, strings, handles, etc.), see below.

• The parameters for each operator are arranged in a standardized order: input iconic, output iconic,
input control, and output control. Not all of the groups might be needed for a given operator.
However, the order remains the same.

• Each operator has a self-describing interface. This description contains, besides the standard doc-
umentation, information about parameters like types or value lists, which can be accessed online
in the Reference Manuals or in the dialog Operators of HDevelop.

• Input parameters of operators are never modified, which results in a very clear and simple seman-
tics. There are only three operators that do not follow this principle to ensure maximum perfor-
mance (namely set_grayval, overpaint_gray, and overpaint_region).

• The open architecture allows to access internal data and to integrate external data.

• All necessary data structures for 2D image processing like (multi-channel) images, regions, con-
tours, tuples (a kind of array), etc. are directly supported using an extremely efficient implementa-
tion.

A detailed description of the low-level data structures can be found in the Extension Package Program-
mer’s Manual, chapter 4 on page 59. For the corresponding types and classes in the supported program-
ming languages see the Programmer’s Guide.
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2.1.2.1 Images

Philosophy:

• Images belong to the iconic data.

• The major part of an image are the channels, i.e., matrices containing the gray values of various
pixel types (see below).

• For each image, the so-called domain specifies which part of the image is processed. It thus acts as
a region of interest (ROI). The domain is a HALCON region (see section 2.1.2.2) and can therefore
be defined very flexibly (from a simple rectangle to a set of unconnected pixels, see below). For
details about ROI handling see the Solution Guide I, Region Of Interest on page 19.

Pixel Data

An almost arbitrary content is possible, from standard 8-bit gray values to floating-point numbers de-
scribing derivatives.

For integer values one, two, and four byte versions (with and without sign) are available. Besides this,
floating point and complex images are available. Finally, special data types for describing edge directions
or hue values are supported.

Image Channels

A channel corresponds to an image matrix. Each image can have an arbitrary number of channels. All
channels of an image have the same size.

Typical cases are: single-channel gray value image, color image with three channels (e.g., RGB), or a
multi-channel image from a multispectral sensor or as a result of texture filtering.

Coordinate Systems

The origin of an image lies in the center of the pixel in the upper left corner. The individual pixels are
accessed using row and column coordinates, like in a matrix. The coordinates range from (0,0) up to
(height-1, width-1).

Note that because the origin lies in the center of the upper left pixel, the pixels’ corners have non-integer
coordinates. For example, the pixel in the upper left corner has the corner coordinates (-0.5, -0,5), (-0.5,
+0.5), (0.5, -0.5), and (0.5, 0.5).

2.1.2.2 Regions

Philosophy:

• Regions belong to the iconic data.

• A region is defined as a set of pixels. The pixels of a region do not need to be connected. This
means that even an arbitrary collection of pixels can be handled as a single region. With the oper-
ator connection a region can be split into its so-called connected components, i.e., components
consisting of connected pixels.
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• The implementation of regions is based on an efficient implementation of the so-called runlength
encoding. This encoding has many advantages: low memory consumption, efficient processing,
and easy handling of regions of interest (domains).

• Because of the implementation based on runlength encoding, it is possible to have overlapping
regions, e.g., as the result of a dilation of connected components. This would not be possible with
a classical implementation based on label images.

• The coordinates of pixels inside a region are not limited to the coordinates of a given image, the
region can be larger than the image, possibly as the result of a dilation operation. Whether a region
should be clipped to the maximum image extents can be controlled using the operator set_system
with the parameter value ’clip_region’.

Note that by default regions are clipped to the current image size. As long as no image has been
created or loaded, they are clipped to the default image size (HDevelop: 512× 512; programming
languages: 128 × 128). To prevent an undesired clipping, we recommend to create or load an
image before creating or loading regions.

• The number of regions for an application is virtually unlimited.

2.1.2.3 XLDs

Philosophy:

• XLD is the abbreviation for eXtended Line Description and comprises all contour and polygon
based data.

• XLDs belong to the iconic data.

• Subpixel-accurate operators like edges_sub_pix return the contours as XLD data.

• A contour is a sequence of 2D control points, which are connected by lines.

• Typically, the distance between control points is about one pixel.

• XLD objects contain, besides the control points, so-called local and global attributes. Typical
examples for these are, e.g., the edge amplitude of a control point or the regression parameters of
a contour segment.

• Besides the extraction of XLD objects, HALCON supports further processing. Examples for this
are the selection of contours based on given feature ranges or the segmentation of a contour into
lines, arcs, polygons or parallels.

2.1.2.4 Handles

Philosophy:

• Handles belong to the control data.

• Handles are references to complex data structures, e.g., a connection to an image acquisition device
or a model for the shape-based matching. For efficiency and data security reasons, not the entire
structure but only the handle is passed between the operators.
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• Handles are unique integer values. These integers are magic numbers that must not be changed
and can differ from execution to execution and version to version.

• Examples where handles are used are graphics windows, files, sockets, image acquisition devices,
OCR, OCV, measuring, matching.

2.1.2.5 Tuple Mode

Philosophy:

• Iconic and control data can contain single objects / values or multiple ones (so-called tuples). For
example, a control variable can contain none, one, or an arbitrary number of the basic data types
(integers, floating-point values, strings), where the types of each element can be different.

• Most operators accept single values (simple mode) as well as multiple values (tuple mode). If, e.g.,
an operator like area_center is called with a single region, one value is returned for the area and
the coordinates of the center of the region. When the operator is called with multiple regions, tuples
with the corresponding number of values are returned instead. Thus, if you call area_center with
four regions, it returns three tuples (one for the area and two for the coordinates of the center), each
containing four values corresponding to the four regions.

• The index of control tuples range from 0 to the number of values minus 1. In contrast, the index of
iconic tuples starts with 1.

2.1.3 HALCON and Parallel Programming

HALCON supports parallel programming (e.g., multithreaded programs) by being thread-safe and reen-
trant. This means that multiple threads can call a HALCON operator simultaneously.

Besides supporting parallel programming, HALCON automatically parallelizes operators if started on
multi-processor or multi-core hardware, e.g., a dual-Pentium board. The parallelization mechanism
is based on distributing the data which has to be processed, i.e., the images, on multiple threads that
run on different processors (so-called data parallelism). For example, for a filtering operation on a
four-processor board the image will be split into four parts which will then be processed in parallel by
four threads executing the (same) filtering operator. Together with HALCON’s philosophy for treating
images and regions, this form of parallelization is very efficient because images need not to be copied.
The degree of parallelization is optimized online to minimize the parallelization overhead. For example,
very small images will not be processed in parallel, as the overhead would surpass the parallelization
speed-up. Moreover, not all HALCON operators lend themselves to parallelization.

Detailed information on parallel programming using HALCON can be found in the Programmer’s Guide,
chapter 2 on page 17.

Note that HALCON is designed for shared-memory systems, i.e., systems in which multiple processors
share a common memory as it is the case for typical multi-processor or multi-core boards. The main
reason is that only in a shared-memory system threads can share the HALCON object database and
do not need to copy images. This limitation means that HALCON’s parallelization techniques are not
suited to the use on workstation clusters or other multi-processor or multi-core hardware that does not
offer shared memory.
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2.1.4 HALCON supports Compute Devices

HALCON supports GPU processing, which can speed up your application significantly. With HALCON,
executing code on the GPU is transparent, easy to use - just switch it on or off - and it is based on OpenCL
and therefore independend from manufacturers and not even limited to graphic cards.

We support all new NVIDIA and ATI cards. Lists of compatible cards can be found here:

• NVIDIA: http://www.nvidia.com/object/cuda_learn_products.html

• ATI/AMD: http://developer.amd.com/gpu/atistreamsdk/pages/default.aspx#five

Always install the latest driver. Note that currently for AMD, Stream SDK still needs to be installed.

Many HALCON operators support compute devices. To find out whether an operator supports compute
devices or not, please refer to the reference of the operator in the Reference Manual. If the operator
supports compute devices, like e.g., edges_sub_pix, this is noted in the section ’Parallelization’.

As mentioned before, GPU processing is very easy to use. The GPU is initialized with the opera-
tor init_compute_device. GPU processing is switched on with activate_compute_device and
switched off with deactivate_compute_device.

Note that to compute on the GPU, the data will be transfered from the CPU to the GPU. Transfering
data consumes precious processing time. Therefore, in order to fully profit from GPU processing we
recommend to

• use a high-end graphics card,

• use hardware with a high memory bandwidth, and

• design your program well, i.e., group as many GPU-supporting operations as possible, to reduce
memory transfers.

However, using compute devices does not always result in an improved runtime. Normal CPU processing
may be faster if

• your CPU is already very fast, especially when using multi-core system.

• you are using fast operators.

When computing on the GPU, by default, one graphics card will be used. You can, however, also use
several compute devices. In that case one thread is used per device.

Please refer to the Reference Manual for more information on the compute devices. Limitations of GPU
processing are documented in section 2.5.2 on page 26.

2.1.5 HALCON XL

HALCON is optimized for normal-sized images, i.e., images smaller than 32k x 32k. However, in
particular line scan camera applications often provide larger images, typically with the height exceeding
32k. For these applications, you can use HALCON XL, which by itself has no limitation for the image
size.

However, there still are other limitations:
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• If the image size exceeds 0.5 GB, you cannot process it on a 32 bit platform but must use a 64 bit
operating system.

• Independent of the used operating system, the available memory of your system might pose a
limitation.

2.1.6 Image Acquisition

Currently, HALCON provides interfaces for more than 50 frame grabbers and hundreds of industrial
cameras (analog, Camera Link, USB 2.0, IEEE 1394, and GigE) in the form of dynamically loadable
libraries (Windows: DLLs; UNIX: shared libraries). These libraries are installed together with the HAL-
CON libraries. Library names start with the prefix hAcq; the libraries ending with the suffix xl are used
by HALCON XL.

In the following, we give a brief overview of the HALCON image acquisition interface; please refer to
the Solution Guide II-A for detailed information about this topic.

The HALCON image acquisition interface libraries form the bridge between software provided by the
manufacturer of the image acquisition device and HALCON. They form a common, generic interface
that requires a small set of operators only.

If you successfully installed your image acquisition device, all you need to do to access it from HALCON
is to call the operator open_framegrabber, specifying the name of the image acquisition interface and
some additional information, e.g., regarding the connected camera. Then, images can be grabbed by
calling the operator grab_image (or grab_image_async).

Please note that the HALCON image acqusition interfaces may change more frequently than the HAL-
CON library itself. One reason for this is that MVTec continuously develops new interfaces; fur-
thermore, if the software provided by the manufacturers of image acquisition devices changes, e.g.,
if new features are integrated, the corresponding HALCON interfaces will be adapted. You can
find the latest information together with downloadable interfaces (including documentation) under
http://www.halcon.com/image-acquisition.

2.2 Quick Start with HDevelop

HDevelop is a powerful integrated development environment for both prototyping and application devel-
opment. HDevelop is very easy to use. Below, you find a brief introduction. Detailed information about
HDevelop can be found in the HDevelop User’s Guide.

To start HDevelop under Windows, click on Start > Programs > MVTec HALCON > HDevelop. Un-
der UNIX, HDevelop is started from the shell by executing hdevelop.

To load an example, select the menu File > Open. This will open a file selection dialog that shows the
main directories of the HDevelop examples (under Windows). For beginners, we recommend to select
an example from the directory Applications. As an alternative, the menu File > Browse Examples

... can be used. Here, a dialog is opened that allows you to select examples based on different categories
instead of the actual location.
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After loading the file, the corresponding program code is displayed in the program window. The used
variables - so far not instantiated - can be seen in the variable watch window. The program is now ready
for execution.

Steps to run a program:

1. In the toolbar, click the button Run to execute the program. To continue at a stop statement, click
Run again.

2. Besides the button Run, HDevelop provides a button to step through a program, executing single
lines and displaying the results immediately afterwards. The buttons Step Into and Step Out

are useful if the program contains procedures.

3. To rerun the complete program click the button Set program to initial state and then Run.
To rerun parts only, click with the mouse to the left of the desired program line so that the program
counter (green arrow) is repositioned. Now click Run.

Hints for understanding the program:

1. At the bottom of the main window, HDevelop provides a status bar. This displays useful informa-
tion in many cases. Especially during execution, when the program stops to visualize results or
waits for a user interaction corresponding instructions are given.

2. For information concerning individual program lines double click them so that the name of the
applied operator and its parameters are displayed in the operator/procedure window. There, the
help button provides specific information.

3. Many programs will automatically display relevant data in the graphics window. Manual visual-
ization can easily be achieved by double clicking on the icons in the variable watch window.

4. Some examples contain procedures. Program lines containing procedures are marked by the colors
that are specified in the menu Edit > Preferences > User Interfaces > Program List-

ing. You can switch between the procedures (including the main procedure) via the combo box
Procedures in the program window.

5. In many examples expressions like assignments, arithmetic operations (both often represented in
the program by “:=”), or control structures like loops occur. If you need help concerning the
language used in HDevelop please consult the HDevelop User’s Guide.

Further hints for HDevelop:

1. Depending on the selected installation type, not all images used in an example program might be
available. In this case, we recommend to insert the HALCON DVD or to install the needed images.

2. Some programs use image acquisition devices for image acquisition. If the corresponding device
is not available, an error message will be raised. In this case, we recommend to either use another
example or to modify the parameters to fit to the available hardware. Furthermore, if HDevelop
Demo is used, no image acquisition interfaces can be used, including File, which reads images
from files. If you want to use these programs, please use HDevelop.
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2.3 Using HALCON Within Programming Languages

As shown in figure 2.2 on page 15, HALCON provides so-called language interfaces. These are libraries
that enable you to call the operators and to use the data types of the HALCON library in an easy way.
Two language interfaces are designed for specific languages. These are the C and the C++ interfaces. In
contrast, the COM and the .NET interface can be used with different languages, e.g., with Visual Basic,
C#, or Delphi.

Independent of which programming language you choose, a suitable interface library (halconc.*, hal-
concpp.*, halconx.*) together with the HALCON library (halcon.*) must be linked to the application. In
addition to this, for C and C++ the corresponding include files must be included. For .NET applications,
the corresponding assembly halcondotnet.dll must be referenced.

To start the development, we recommend to first check one of the ready-to-run example programs. Here,
you can see how the project must be set up and how operators and types are used.

For each language interface, the names of types, classes, the naming conventions of operators, etc. may
differ to be compliant with the typical rules that apply for the selected language. For details of the op-
erator signatures, please refer to the corresponding reference manuals, which are available in HDevelop,
C++, .NET (C#), COM (Visual Basic), and C syntax.

2.3.1 C++

The C++ interface is much more sophisticated than the C interface. Here, the advantages of C++ and
object-oriented programming are used, i.e., automatic type conversion, construction and destruction, or
grouping functions together with their data into classes. Like in the C interface, global functions for each
HALCON operator are provided for a procedural style of programming. Here, the classes Hobject and
HTuple are used. Furthermore, operators can be used as members of classes like HDataCode2d, HMea-
sure, or HShapeModel. In addition, classes like HImage or HRegion are used. For more information
see the Programmer’s Guide, part II on page 29.

The following code shows a small excerpt of an example program to read an image and to display it in a
graphics window and apply some basic blob analysis.

HImage Mandrill("monkey");

HWindoww(0, 0, 512, 512);

Mandrill.Display(w);

HRegionBright = (Mandrill >= 128);

HRegionArray Conn = Bright.Connection();

HRegionArray Large = Conn.SelectShape("area", "and", 500, 90000);

2.3.2 C# and Visual Basic .NET

C# and Visual Basic .NET use HALCON via the .NET interface.
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Analogously to C++, two styles for programming are offered: procedural and object-oriented. For the
procedural style, the class HOperatorSet provides all HALCON operators, where HObject is used to
handle iconic data and HTuple is used for control data. For the object-oriented style, classes like HDat-
aCode2d, HMeasure, or HShapeModel are provided for the central functionality. In addition, classes for
iconic data, e.g., HImage or HRegion, are available. For more information see the Programmer’s Guide,
part III on page 83

The following code shows a small C# example program to read an image and apply some basic blob
analysis.

HImage image = new HImage("monkey");

HRegion region;

region = image.Threshold(128, 255);

2.3.3 Visual Basic 6

Analogously to C++, two styles for programming are offered: procedural and object-oriented. For the
procedural style, the class HOperatorSetX provides all HALCON operators, where HUntypedObjectX
is used to handle iconic data and the built-in type Variant is used for control data. For the object-
oriented style, classes like HDataCode2dX, HMeasureX, or HShapeModelX are provided for the central
functionality. In addition, classes for iconic data, e.g., HImageX or HRegionX, are available. For more
information see the Programmer’s Guide, part IV on page 121

The following code shows a small example program to read an image and apply some basic blob analysis.

Dim image As New HImageX

Dim region As HRegionX

Call image.ReadImage("monkey")

Set region = image.Threshold(128, 255)

2.3.4 C

The C interface is the simplest interface supported by HALCON. Each operator is represented by either
one or two global functions where the operator name and the parameter sequence is identical to HDe-
velop. All operators are available in a version that accepts tuples as input. These operators have names
that start with "T_". Furthermore, if an operator also accepts single parameters for all control param-
eters, a simplified operator that only uses basic types (long, double, and char*) is provided. These
operators have no "T_" prefix. Two types (Hobject and Htuple) are offered for iconic and control data.
Because C does not offer destructors, you have to free iconic data by calling the operator clear_obj.
To manipulate, create, destroy, and access tuples, macros are provided. For more information see the
Programmer’s Guide, part V on page 143.

The following code shows a small excerpt of an example program to read an image and to display it in a
graphics window.
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read_image(&Monkey, "monkey");

get_image_size(Monkey, &Width, &Height);

open_window(0, 0, Width, Height, 0, "visible", "", &WindowHandle);

disp_obj(Monkey, WindowHandle);

2.4 Extending HALCON

2.4.1 Extension Packages (User-Defined Operators)

HALCON may easily be extended by new operators. Although HALCON already contains more than
1600 operators for various tasks, you may wish to implement new operators, e.g., in order to access a
special hardware or to implement an alternative algorithm. To do so, HALCON provides the Extension
Package Interface, which allows the integration of new operators (implemented in C) in the form of
so-called extension packages. It contains several predefined routines and macros for the easy handling
of image data and memory objects in C. Once a new operator has been successfully integrated, it can be
used like any other HALCON operator. The Extension Package Programmer’s Manual contains detailed
information about extending the operator library.

2.4.2 Image Acquisition Interfaces

Using a similar mechanism, image acquisition interfaces are integrated using dynamic libraries. This
allows you to integrate unsupported image acquisition devices without further changes of the rest of the
system. How to create and integrate an image acquisition interface is described in the Image Acquisition
Interface Programmer’s Manual. Furthermore, HALCON is shipped with a template source code that
can be used as the basis of an integration.

2.5 Limitations

2.5.1 General Limitations

With HALCON XL (see section 2.1.5 on page 21), many of HALCON’s previous limitations have been
removed. Below, we list the remaining ones that are relevant for typical application development with
HALCON.

• Maximum image size:

– HALCON: 32 767×32 767

– HALCON XL: 1 073 741 823×1 073 741 823 (230 − 1× 230 − 1)

• Range for coordinates:

– HALCON: from -32 768 to +32 767
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– HALCON XL: from -1 073 741 824 to 1 073 741 823 (-230 to 230 − 1)

• Maximum number of operators: 3000

2.5.2 Limitations Related to Compute Devices

Currently, the following limitations apply to the use of compute devices (see section 2.1.4 on page 20).

Operators that are based on texture are limited to the maximum size of the graphics card. Currently this
limit is 8192×8192. This is relevant for the following operators:

• projective_trans_image and projective_trans_image_size,

• affine_trans_image and affine_trans_image_size,

• polar_trans_image, polar_trans_image_inv, and polar_trans_image_ext,

• rotate_image,

• mirror_image,

• map_image,

• image_to_world_plane, and

• change_radial_distortion_image.

Further limitations are listed below.

• All other operators are restricted to the maximum allocated block size, e.g. 200 MB on the Tesla
C2050.

• edges_sub_pix and lines_gauss are not Open CL accelerated for HALCON XL.

• edges_sub_pix and lines_gauss need a lot of memory on the compute device.

2.5.3 Limitations Related to Image Acquisition

• Maximum number of acquisition interfaces: 128

• Maximum number of open handles per acquisition interface: 64

• Maximum number of channels per image:

– grab_image, grab_image_async: 1000

– otherwise: unlimited

• Maximum number of interface-specific parameters: 2048



2.5 Limitations 27

2.5.4 Limitations Related to Extension Packages

• maximum number of operators from extension packages: 99

• maximum number of parameters:

iconic input parameters: 9
iconic output parameters: 9
control input parameters: 20
control output parameters: 20
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Chapter 3

Industries

This chapter introduces example programs from various industries:

• Automobile Parts And Manufacturers (section 3.1),

• Electric Components And Equipment (section 3.2 on page 31),

• Agriculture, Food (section 3.3 on page 32),

• Health Care And Life Science (section 3.4 on page 33),

• Iron, Steel And Metal (section 3.5 on page 34),

• Machinery (section 3.6 on page 35),

• Packaging (section 3.7 on page 37),

• Photogrammetry And Remote Sensing (section 3.8 on page 39),

• Printing (section 3.9 on page 41),

• Rubber, Synthetic Material, Foil (section 3.10 on page 41),

• Semiconductors (section 3.11 on page 42), and

• Solar, Renewable Energy, Recycling (section 3.12 on page 45).
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3.1 Automobile Parts And Manufacturers

3.1.1 Locate Car Door

Example: hdevelop/Applications/Position-Recognition-3D/locate_car_door.hdev

The task of this application is to locate a car door placed in different orientations and positions by using
the calibrated perspective deformable matching. First a model is defined from a planar area of the car
door, then a reference pose is calculated by using an image with a calibration plate in the object plane.
For all subsequent takes, the pose can then be determined using the perspective deformable matching as
shown in figure 3.1.

a) b)

Figure 3.1: (a) Calibration of the reference car door pose; (b) located car door with position values.

More information on perspective deformable matching and matching in general can be found in the
Solution Guide II-B, section 3.6 on page 124 and the Solution Guide I, chapter 9 on page 97.
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3.2 Electric Components And Equipment

3.2.1 Check the State of a Dip Switch

Example: hdevelop/Applications/Position-Recognition-2D/cbm_dip_switch.hdev

The task of this example is to check a dip switch, i.e., to determine the positions of the single switches
relative to the casing (see figure 3.2). The task is solved using component-based matching.

a) b)

Figure 3.2: (a) Model image of the dip switch with ROIs for the components; (b) located dip switch with
state of the switches.

A detailed description of this application can be found in the Solution Guide I on page 113. More
information on component-based matching can be found in the Solution Guide II-B, section 3.4 on page
92.

3.2.2 Inspect Power Supply Cables

Example: hdevelop/Filters/Lines/lines_color.hdev

The task of this example is to locate and inspect the power supply cables depicted in figure 3.3. The input
for the program are sample images of colored power supply cables. The task is to extract the centers of
each cable together with the width. This is performed using the subpixel-precise color line extractor.

A detailed description of this application can be found in the Solution Guide I on page 183.
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a) b)

Figure 3.3: (a) Original color image with cable centers extracted using the color line extractor; (b) corre-
sponding results when using the gray value image.

3.3 Agriculture, Food

3.3.1 "Best Before" Date

Example: hdevelop/Applications/OCR/bottle.hdev

The task of this example is to inspect the "best before" date on the bottle depicted in figure 3.4. The task
is solved using OCR.

a) b)

Figure 3.4: (a) Original image; (b) read date.

A detailed description of this application can be found in the Solution Guide I on page 257.
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3.4 Health Care And Life Science

3.4.1 Analyzing Particles

Example: hdevelop/Applications/Measuring-2D/particle.hdev

The task of this application is to analyze particles in a liquid. The main difficulty is the presence of two
types of objects: big bright objects and small objects with low contrast. In addition, the presence of noise
complicates the segmentation. The task is solved by blob analysis.

a) b)

Figure 3.5: Extracting the small particles: (a) original image, (b) result.

A detailed description of this application can be found in the Solution Guide I on page 38.

3.4.2 Angiography

Example: hdevelop/Filters/Lines/lines_gauss.hdev

The task of this example is to extract the blood vessels in the X-ray image of the heart depicted in
figure 3.6. The vessels are emphasized by using a contrast medium. For the diagnosis it is important
to extract the width of the vessels to determine locally narrowed parts (stenoses). The task is solved by
using the subpixel-precise line extractor.

A detailed description of this application can be found in the Solution Guide I on page 78.
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a) b)

Figure 3.6: (a) X-ray image of the heart; (b) extracted blood vessels.

3.5 Iron, Steel And Metal

3.5.1 Inspect Cast Part

Example: hdevelop/Applications/Measuring-2D/measure_arc.hdev

The task of this example is to inspect the distance between elongated holes of a cast part after chamfering
(see figure 3.7). The task is solved using 1D measuring.

Figure 3.7: Measuring the distance between the holes.

A detailed description of this application can be found in the Solution Guide I on page 54. More
information on 1D measuring can be found in the Solution Guide III-A.
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3.6 Machinery

3.6.1 Reading Engraved Text

Example: hdevelop/Applications/OCR/engraved.hdev

The task of this example is to read the engraved text on the metal surface depicted in figure 3.8. The task
is solved using OCR.

b)a)

Figure 3.8: (a) Original image; (b) read characters.

A detailed description of this application can be found in the Solution Guide I on page 258.

3.6.2 Inspecting the Contours of a Tool

Example: hdevelop/Applications/Measuring-2D/circles.hdev

The task of this example is to inspect the circular contours of the tool depicted in figure 3.9. The task is
solved by contour processing, which is applied to an automatically derived region of interest (ROI).

A detailed description of this application can be found in the Solution Guide I on page 25.
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Figure 3.9: Fitting circles to the contours of the tool.

3.6.3 Locating a Pipe Wrench in Different States

Example: hdevelop/Applications/Position-Recognition-2D/cbm_pipe_wrench.hdev

The task of this example is to locate a pipe wrench based on four predefined ROIs, two for each rigid
part (see figure 3.10). The task is solved using component-based matching.

b)a)

Figure 3.10: (a) Model image with specified ROIs for the components; (b) located pipe wrench in another
state.

A detailed description of this application can be found in the Solution Guide I on page 114. More
information on component-based matching can be found in the Solution Guide II-B, section 3.4 on page
92.
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3.7 Packaging

3.7.1 Check Mixed Blister

Example: hdevelop/Applications/Completeness-Check/check_blister_mixed.hdev

The task of this example is to check the content of manually filled blisters. The first image (reference)
shows the correct combination. The subsequent images are then checked against the reference image
unsing a GMM classifier as shown in figure 3.11.

a) b)

Figure 3.11: (a) The GMM classifier is trained with reference blister image; (b) recognition of a defect, a
missing pill.

More information on classification can be found in the Solution Guide II-D and in the Solution Guide I,
chapter 12 on page 155.
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3.7.2 Locate Cookie Box

Example: hdevelop/Applications/Object-Recognition-2D/locate_cookie_box.hdev

This example shows how to find a cookie box in different orientations with the descriptor-based match-
ing. First, a model and a reference pose are computed from the reference image, then the model is
searched in a sequence of images showing the cookie box in different orientations. Using the resulting
pose, we can also check whether the box is placed upside down or not as shown in figure 3.12.

Note that, when running this example in HDevelop, the training of the model takes about half a minute.

Figure 3.12: A model is trained first and the box side matching this model can be found in subsequent
images even if placed upside down.

More information on descriptor-based matching and matching in general can be found in the Solution
Guide II-B, section 3.7 on page 136 and the Solution Guide I, chapter 9 on page 97.
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3.8 Photogrammetry And Remote Sensing

3.8.1 Extracting Forest Features from Color Infrared Image

Example: hdevelop/Applications/Object-Recognition-2D/forest.hdev

The task of this example is to detect different object classes in the color infrared image depicted in
figure 3.13: trees (coniferous and deciduous), meadows, and roads. The image data is a color infrared
image, which allows to extract roads very easily because of their specific color. The taks is solved using
color processing and blob analysis.

a) b) c)

Figure 3.13: (a) Original image; (b) extracted trees and meadows; (c) extracted roads.

A detailed description of this application can be found in the Solution Guide I on page 38.

3.8.2 Segmenting a Color Image

Example: hdevelop/Filters/Edges/edges_color.hdev

The task of this example is to segment the color image depicted in figure 3.14. The example demonstrates
the possibilities of a multi-channel edge filter. When using the corresponding gray value image, the
(green) soccer field cannot be distinguished from the surrounding (red) track.

A detailed description of this application can be found in the Solution Guide I on page 68.
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c)

b)

a)

Figure 3.14: (a) Original image; (b) extracted color edges, overlaid on the color image; (c) extracted gray
value edges, overlaid on the gray value image.

3.8.3 Extract Roads

Example: hdevelop/Applications/Object-Recognition-2D/roads.hdev

The task of this example is to extract the roads in the aerial image depicted in figure 3.15. For the road
extraction it is assumed that a road consists of two parallel edges with homogeneous gray values and a
line segment in between. The task is solved mainly by contour processing.

a) b) c)

Figure 3.15: (a) Original image; (b) zoomed image part; (c) extracted roads.

A detailed description of this application can be found in the Solution Guide I on page 92.
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3.9 Printing

3.9.1 Reading Bar Codes on a Toner Cartridge

Example: hdevelop/Identification/Bar-Code/code39.hdev

The task of this example is to read bar codes of type Code 39 like the two bar codes depicted in fig-
ure 3.16. The bar code type Code 39 is very popular on packages and other kind of product descriptions.

Figure 3.16: Detected bar codes.

3.10 Rubber, Synthetic Material, Foil

3.10.1 Checking a Boundary for Fins

Example: hdevelop/Applications/Measuring-2D/fin.hdev

The task of this example is to check the outer boundary of a plastic part. In this case, some objects show
fins that are not allowed for faultless pieces (see figure 3.17). The task is solved using blob analysis.

A detailed description of this application can be found in the Solution Guide I on page 40.
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Figure 3.17: Boundary with extracted fin.

3.11 Semiconductors

3.11.1 Bonding Balls

Example: hdevelop/Applications/Completeness-Check/ball.hdev

The task of this example is to inspect the diameter of the ball bonds depicted in figure 3.18. The task is
solved using blob analysis.

Figure 3.18: Measuring the diameter of ball bonds.

A detailed description of this application can be found in the Solution Guide I on page 41.
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3.11.2 Inspecting an IC Using Fuzzy Measuring

Example: hdevelop/Applications/Measuring-2D/fuzzy_measure_pin.hdev

The task of this example is to inspect the lead width and the lead distance of the IC depicted in figure 3.19.
It is solved using 1D measuring.

Figure 3.19: Measuring the width and distance of the leads.

A detailed description of this application can be found in the Solution Guide I on page 55. More
information on 1D measuring can be found in the Solution Guide III-A.

3.11.3 Measuring Leads of a Moving IC

Example: hdevelop/Applications/Measuring-2D/pm_measure_board.hdev

The task of this example is to measure the positions of the leads of a chip (see figure 3.20). Because the
chip can appear at varying positions and angles, the regions of interest used for the measurement must
be aligned. The actual measurement is then realized by 1D measuring.

A detailed description of this application can be found in the Solution Guide I on page 56. More
information on 1D measuring can be found in the Solution Guide III-A.
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a) b)

Figure 3.20: (a) Model image with measurement ROIs; (b) measuring the leads in the aligned ROIs.

3.11.4 Creating a Mosaic Image

Example: hdevelop/Tools/Mosaicking/gen_projective_mosaic.hdev

The task of this example is to create an image of the elongated printed circuit board depicted in fig-
ure 3.21. Using standard image sizes, most of the image would be empty. The solution is to acquire
images from multiple viewpoints and then create a mosaic image using a point-based matching.

Figure 3.21: Creating a mosaic image from multiple overlapping images.

A detailed description of this application can be found in the Solution Guide I on page 116.
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3.11.5 Locating Board Components by Color

Example: hdevelop/Applications/Completeness-Check/ic.hdev

The task of this example is to locate all components on the printed circuit board depicted in figure 3.22.
It is solved by color processing and blob analysis.

a) b)

Figure 3.22: (a) Original image; (b) extracted ICs, resistors, and capacitors.

A detailed description of this application can be found in the Solution Guide I on page 184.

3.12 Solar, Renewable Energy, Recycling

3.12.1 Inspect Solar Cells

Example: examples/hdevelop/Applications/Completeness-Check/inspect_solar_panel.hdev

The task of this example is to extract defect fingers from solar cells. A typical problem is that individual
fingers of a solar cell are broken as depicted in figure 3.23. The task is solved using blob analysis and
morphology.

More information on blob analysis can be found in the Solution Guide I, chapter 4 on page 31.
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Figure 3.23: Extract broken fingers on a solar cell.
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Chapter 4

Application Areas

This chapter introduces example programs from various application areas:

• Identification With Bar Codes (section 4.1),

• Identification With Data Codes (section 4.2 on page 49),

• Completeness Check (section 4.3 on page 50),

• Measuring And Comparison 2D (section 4.4 on page 51),

• Measuring And Comparison 3D (section 4.5 on page 52),

• Optical Character Recognition (section 4.6 on page 53),

• Position Recognition 2D (section 4.7 on page 54),

• Position Recognition 3D (section 4.8 on page 55),

• Object Recognition 2D (section 4.9 on page 56),

• Object Recognition 3D (section 4.10 on page 57),

• Robot Vision (section 4.11 on page 58),

• Print Inspection (section 4.12 on page 59),

• Surface Inspection (section 4.13 on page 60), and

• Traffic (section 4.14 on page 61).
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4.1 Identification With Bar Codes

4.1.1 Reading a Bar Code on a CD

Example: hdevelop/Applications/Bar-Codes/circular_barcode.hdev

Figure 4.1 shows an image of a CD, on which a bar code is printed radially. The task is to read this
circular bar code. Because the bar code reader cannot read this kind of print directly, the image first must
be transformed such that the elements of the bar code are parallel.

b)

a)

Figure 4.1: (a) Original image with segmented ring; (b) rectified ring with decoded bar code.

A detailed description of this application can be found in the Solution Guide I on page 228.
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4.2 Identification With Data Codes

4.2.1 Reading 2D Data Codes on Chips

Example: hdevelop/Applications/Data-Codes/ecc200_optimized.hdev

This example program reads 2D data codes (type ECC200) engraved in chips (see figure 4.2).

Figure 4.2: Decoded data code.

A detailed description of this application can be found in the Solution Guide I on page 240. More
information on 2D data codes can be found in the Solution Guide II-C.
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4.3 Completeness Check

4.3.1 Inspect Razor Blades

Example: solution_guide/matching/align_measurements.hdev

The task of this example is to check the razor blades depicted in figure 4.3. The program uses shape-based
matching to locate all blades and then uses 1D measuring to inspect the blades. Missing parts are detected
and displayed. This example is described in more detail in the Solution Guide II-B, section 2.4.3.2 on
page 42.

Figure 4.3: Inspecting razor blades.
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4.4 Measuring And Comparison 2D

4.4.1 Inspect IC

Example: hdevelop/Applications/Measuring-2D/measure_pin.hdev

The task of this example is to inspect major dimensions of an IC (see figure 4.4). The task is solved using
1D measuring.

a) b)

Figure 4.4: Measuring the dimensions of leads: (a) width of the leads and distance between them; (b)
length of the leads.

A detailed description of this application can be found in the Solution Guide I on page 57. More
information in 1D measuring can be found in the Solution Guide III-A.
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4.5 Measuring And Comparison 3D

4.5.1 Inspect IC

Example: hdevelop/Applications/Measuring-3D/resistor.hdev

The task of this example is to inspect a soldered component using depth-from-focus (see figure 4.5).
There, a sequence of images that are acquired with a continuously varying focus is used to derive a depth
image.

b)

c)

a)

Figure 4.5: Depth-from-focus: (a) sequence of input images; (b) depth image; (c) segmentation of com-
ponents.

More information on depth-from-focus can be found in the Solution Guide III-C, chapter 7 on page 157.
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4.6 Optical Character Recognition

4.6.1 Reading Forms

Example: hdevelop/Applications/OCR/ocrcolor.hdev

The task of this example is to extract and read the symbols in the form. A typical problem is that the
symbols are not printed in the correct place, as depicted in figure 4.6.

Figure 4.6: Example images for OCR.

A detailed description of this application can be found in the Solution Guide I on page 259.
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4.7 Position Recognition 2D

4.7.1 Locate Components on a PCB

Example: hdevelop/Matching/Component-Based/cbm_modules_simple.hdev

The task of this example is to locate multiple components on a printed circuit board in one step (see
figure 4.7). On a printed circuit board, typically multiple different objects are mounted, whose positions
can vary because of the tolerances in the mounting process. To locate all objects quickly and in a robust
manner, the component-based matching is used.

a)

b)

Figure 4.7: Component-based matching: (a) training objects; (b) objects, located in different images where
the relation of the objects with respect to each other varies.

A detailed description of this application can be found in the Solution Guide I on page 112. More
information on component-based matching can be found in the Solution Guide II-B, section 3.4 on page
92.
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4.8 Position Recognition 3D

4.8.1 Get 3D Poses of Work Sheets

Example: hdevelop/Applications/Position-Recognition-3D/3d_position_of_rectangle.hdev

The task of this example is to determine the 3D poses of work sheets like the one shown in figure 4.8.
The task is solved by a pose estimation for 3D rectangles. How to determine the poses of known 3D
objects is described in the Solution Guide III-C, chapter 4 on page 75.

Figure 4.8: Estimating the 3D pose of a rectangular work sheet: (left) pose of the work sheet visualized
by extruding the object’s border, (right) numerical result for the pose.
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4.9 Object Recognition 2D

4.9.1 Distinguishing coins

Example: solution_guide/basics/matching_coins.hdev

The task of this application is to distinguish different types of Euro coins, depending on the country of
origin. The coins differ on one side, having a specific symbol for each country (see figure 4.9). The task
is solved by shape-based matching, using one model for each country symbol.

Figure 4.9: Multiple coins that are distinguished.

A detailed description of this application can be found in the Solution Guide I on page 110. More
information on shape-based matching can be found in the Solution Guide II-B, section 3.3 on page 64.
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4.10 Object Recognition 3D

4.10.1 Find 3D Clamps

Example: hdevelop/Applications/Position-Recognition-3D/3d_matching_clamps.hdev

The task of this example is to find the 3D clamps shown in figure 4.10 and determine their poses, i.e.,
their position and orientation in space. The task is solved by a shape-based 3D matching.

Figure 4.10: 3D matching: (left) original image containing a clamp, (right) 3D model of the found clamp
projected in the image and display of its pose.

A detailed description of this application can be found in the Solution Guide I on page 134. More
information on shape-based 3D matching can be found in the Solution Guide III-C, section 4.2 on page
81.
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4.11 Robot Vision

4.11.1 Grasp Nut

Example: solution_guide/3d_vision/handeye_stationarycam_grasp_nut.hdev

The task of this example is to determine the relation between the camera, the pose of the nut shown in
figure 4.11, and the pose of a robot that has to grasp the nut. The task is solved by a hand-eye calibration.

b)a)

G1 & G2: grasping points

C1 − C4: corner points

grasping pose

reference coordinate system

Figure 4.11: (a) Determining the 3D pose for grasping a nut, (b) robot at grasping pose.

A detailed description of this application can be found in the Solution Guide III-C, chapter 8 on page
173.
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4.12 Print Inspection

4.12.1 Inspect a Printed Logo

Example: hdevelop/Applications/Print-Inspection/print_check.hdev

The task of this example is to inspect the logo printed on the pen clip depicted in figure 4.12. As an
additional difficulty, the pens move from image to image. The task is solved using a variation model.

b) c)

a)

Figure 4.12: Inspection of the logo that is printed on the pen clip: (a) training images; (b) accepted images;
(c) rejected images.

A detailed description of this application can be found in the Solution Guide I on page 145.
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4.13 Surface Inspection

4.13.1 Surface Scratches

Example: solution_guide/basics/surface_scratch.hdev

This example detects scratches on a metal surface (see figure 4.13). The task is solved using blob
analysis. The main difficulties for the segmentation are the inhomogenous background and the fact that
the scratches are thin structures.

c)

a) b)

Figure 4.13: Detecting scratches on a metal surface: (a) original image, (b) extracted scratches still partly
fractioned, (c) final result with merged scratches.

A detailed description of this application can be found in the Solution Guide I on page 42.
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4.14 Traffic

4.14.1 Detect Road Signs

Example: hdevelop/Applications/Traffic-Monitoring/detect_road_signs.hdev

A monitoring system in a car checks the sidewalk for road signs to support the driver. The task is solved
using perspective deformable matching. To show the imaging process we focus on two road signs, the
attention and the dead end road sign. First, the models of both signs are generated and then tracked in a
street sequence as shown in figure 4.14.

Figure 4.14: Using the models of the attention and the dead end sign, those signs can be tracked in a
street.

A detailed description of this application can be found in the Solution Guide I, chapter 9 on page 97.
More information on perspective deformable matching can be found in the Solution Guide II-B, sec-
tion 3.6 on page 124.
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